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ABSTRACT

We present a full general relativistic numerical code for estimating the energy—momentum
deposition rate (EMDR) from neutrino pair annihilation (v +v — e~ +e™). The source of the
neutrinos is assumed to be a neutrino-cooled accretion disc around neutron and quark stars. We
calculate the neutrino trajectories by using a ray-tracing algorithm with the general relativistic
Hamilton’s equations for neutrinos and derive the spatial distribution of the EMDR due to
the annihilations of neutrinos and antineutrinos around rotating neutron and quark stars. We
obtain the EMDR for several classes of rotating neutron stars, described by different equations
of state of the neutron matter, and for quark stars, described by the Massachusetts Institute of
Technology (MIT) bag model equation of state and in the colour—flavour-locked (CFL) phase.
The distribution of the total annihilation rate of the neutrino—antineutrino pairs around rotating
neutron and quark stars is studied for isothermal discs and accretion discs in thermodynamical
equilibrium. We demonstrate both the differences in the equations of state for neutron and
quark matter and rotation with the general relativistic effects significantly modify the EMDR
of the electrons and positrons generated by the neutrino—antineutrino pair annihilation around
compact stellar objects, as measured at infinity.
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1 INTRODUCTION

The neutrino—antineutrino annihilation processes may play an important role in many astrophysical phenomena. Hyperaccreting discs around
neutron stars or magnetars, cooled from neutrino emission, could be the potential central engine of the gamma-ray bursts (GRBs) (Liu et al.
2010). The neutron star disc can cool more efficiently, and produce much higher neutrino luminosity and neutrino annihilation luminosity than
its black hole counterpart with the same accretion rate. The neutron star surface boundary layer could increase the annihilation luminosity as
well. An ultrarelativistic jet neutrino annihilation can be produced along the stellar poles. The role of the neutrino—antineutrino annihilation
into electrons and positrons as the energy source of the GRBs has been intensively investigated in the literature (Paczynski 1990; Mészaros &
Rees 1992; Ruffert & Janka 1998, 1999; Asano & lwamoto 2002). The study of the electron energy deposition rate fromthe v +v — e* +e~
neutrino annihilation reaction was initiated by Cooperstein, van den Horn & Baron (1986), Cooperstein, van den Horn & Baron (1987) and
Goodman, Dar & Nussinov (1987), respectively. Neutrino—antineutrino annihilation into electrons and positrons can deposit more than 105!
erg above the neutrino-sphere of a Type Il supernova (Goodman et al. 1987).

1.1 General réelativistic effects on neutrino—antineutrino annihilation in black hole discs

For a full understanding of the effects of the neutrino annihilation in strong gravitational fields, general relativistic effects must be taken into
account (Salmonson & Wilson 1999). In a Schwarzschild geometry, the efficiency of the v + v — et + e~ process is enhanced over the
Newtonian values up to a factor of more than 4, in the regime applicable to Type Il supernovae, and by up to a factor of 30 for collapsing
neutron stars (Salmonson & Wilson 1999). The neutrino pair annihilation rate into electron pairs between two neutron stars in a binary system
was obtained by Salmonson & Wilson (2001). The gravitational effects on neutrino pair annihilation near the neutrino-sphere and around the
thin accretion disc around Schwarzschild and Kerr black holes were considered in Asano & Fukuyama (2000, 2001), respectively. The study
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of the structure of neutron star discs based on the two-region (i.e. inner and outer) disc scenario was performed by Zhang & Dai (2009), who
calculated the neutrino annihilation luminosity from the disc in various cases. As compared with the black hole disc, the neutrino annihilation
luminosity above the neutron star disc is higher. The neutron star disc with the advection-dominated inner disc could produce the highest
neutrino luminosity, while the disc with an outflow has the lowest (Zhang & Dai 2009).

General relativity and rotation cause important differences in the spatial distribution of the energy deposition rate by neutrino and
antineutrino annihilation (Birkl et al. 2007). The energy—-momentum deposition rate (EMDR) from the v — v collisions above a rotating
black hole/thin accretion disc system was calculated by Miller et al. (2003) by imaging the accretion disc at a specified observer using the
full geodesic equations, and calculating the cumulative EMDR from the scattering of all pairs of neutrinos and antineutrinos arriving at the
observer. The dominant contribution to the EMDR comes from near the surface of the disc with a tilt of approximately 7t/4 in the direction of
the disc’s rotation. The EMDR at large radii is directed outwards in a conic section centred around the symmetry axis and is larger by a factor
of 10-20 than the on-axis values. There is also a linear dependence of the EMDR on the black hole angular momentum. Other investigations
of the general relativistic effects on neutrino propagation and annihilation were performed in Mallick & Majumder (2009) and Bhattacharyya
et al. (2009). A general relativistic ray-tracing method for estimating the EMDR by neutrino pair annihilation in collapsars was developed
recently in Harikae et al. (2010a). A special relativistic numerical scheme and code for estimating the energy and momentum transfer via
neutrino pair annihilation was developed in Harikae, Kotake & Takiwaki (2010b).

1.2 vy annihilation processesin accretion discs around neutron stars

In most of the previous investigations of the neutrino annihilation processes the central compact object was assumed to be a black hole. A
comparative study of the neutrino annihilation process from neutrinos emitted by accretions discs around neutron and quark stars was initiated
in Kovacs, Cheng & Harko (2010), and further developed in Kovacs, Cheng & Harko (2011). In these studies the electron—positron energy
deposition rate was obtained in the equatorial plane and along the rotation axis of neutron and quark stars, described by several equations
of state. The differences in the equations of state for neutron and quark matter also have important effects on the spatial distribution of the
energy deposition rate by neutrino—antineutrino annihilation. The neutrino trajectories have been obtained by using a ray-tracing algorithm,
based on numerically solving the Hamilton’s equations for neutrinos by reversing the proper time evolution. However, as shown by Miller
et al. (2003), the picture based on the results of the on-axis calculations will probably be modified if the contribution of off-axis annihilation
processes to the energy—momentum deposition is also taken into account. It is therefore crucial to extend the calculations, up to now restricted
over a narrow spatial domain in the system formed by the accretion disc and compact stellar object, to the whole vicinity of the system.
The information on the complete spatial distribution of the deposition rate can provide a more comprehensive insight into the scales of the
electron—positron energy produced near rotating neutron and quark stars and, in turn, a more adequate description of further astrophysical
processes related to the energy production mechanism via the vv pair annihilation.

Motivated by this goal, it is the purpose of the present paper to present a full three-dimensional general relativistic numerical code for
the study of the electron—positron energy deposition rate from the neutrino—antineutrino annihilation process, and to obtain the basic physical
parameters characterizing this process (the electron—positron energy deposition rate per unit volume and unit time) by taking into account the
full general relativistic corrections. The source of the neutrinos is assumed to be the accretion disc that can be formed around neutron and
quark stars (Zhang & Dai 2009). The code is used to obtain the full three-dimensional distribution of the electron—positron energy deposition
rate around neutron and quark stars described by several types of equations of state.

In order to compute the electron—positron energy deposition rate, the metric outside the rotating general relativistic stars must be
determined. In the present study we obtain the equilibrium configurations of the rotating neutron and quark stars by using the Rotating
Neutron Star (RNS) code, as introduced in Stergioulas & Friedman (1995). The software provides the metric potentials for various types of
compact rotating general relativistic objects, which can be used to obtain the electron—positron energy deposition rate on the rotation axis of
rotating neutron and quark stars.

The present paper is organized as follows. In Section 2 we present the basic formalism for the calculation of the kinematic parameters
(four-momenta) of the neutrino—antineutrino annihilation process, and for obtaining the electron—positron energy deposition rate. The ray-
tracing code is introduced in Section 3. The equations of state of the neutron and quark stars used in the numerical simulations are presented
in Section 4. The electron—positron energy deposition rates for the considered dense neutron and quark matter equations of state are obtained,
for two different disc models, in Section 5. In Section 6 we consider in detail the effect of the stellar rotation on the electron—positron energy
deposition rate. We discuss and conclude our results in Section 7.

2 ENERGY DEPOSITION RATE FROM vv PAIR ANNIHILATION

As a starting point in our study of the neutrino—antineutrino pair annihilation processes we consider a geometrically thin accretion disc,
rotating around a compact general relativistic object. We assume that the mass energy of the disc has only a negligible effect on the stationary
and axisymmetric space—time geometry. In the adapted coordinate system x* = (t, ¢, X, X?), with the time-like and space-like Killing vector
fields 0/0¢ and 0/0¢, respectively, the metric is given by

ds? = ?g,dr® + 2cgpdtde + g¢¢d¢2 + g1d(xH)? + gapd(x?)?. (1)
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The metric outside the rotating compact general relativistic stars can be described, in quasi-isotropic coordinates, as (Stergioulas, Kluzniak
& Bulik 1999)

ds? = —c?e?™dr? + ®(dr? + r2dH?) + ¥ *r? sin 0(do — wdr)?, 2

where the metric potentials y, p, « and the angular velocity of the stellar fluid relative to the local inertial frame w are all functions of the
quasi-isotropic radial coordinate » and of the poloidal angle . Hence, we chose the coordinates x* and x? to be  and 6, and we introduce the
metric functions «, y, p and w, respectively. Then the metric components can be written as

g = —e"" 4 " Pr¥(w/c)? sin? 6, ®)
815 = €' " (w/c)r?sin? @, (4)
g7 =€, ©®)
gop = 1€, (6)
8pp = €' Pr?sin? 0. @)

If the effect of the disc on the metric structure can be ignored then in the vicinity of the disc and of the central object any massless particle
propagate along null geodesics, which are determined by the geometry of the rotating compact star. We also suppose that the disc is the
primary source of neutrinos in the system, and we neglect any interaction between the disc and the neutrino—antineutrino radiation after their
generation with a relatively low temperature (~1 MeV). The low radiation temperature reduces the scattering cross-section of the v and v
collision with the neutrons or quarks, which allows us to neglect energy losses in the interaction with the stellar matter. As a result, we can
also assume that these particles remain in geodesic motion even in the interior of the central object. Our aim is to determine the EMDR due
to the neutrino—antineutrino pair annihilations into e~e™ pairs near the rotating compact general relativistic object.

2.1 Energy—momentum deposition rate from neutrino—antineutrino annihilation
The four-vector of the EMDR per unit volume produced by the v collisions at any point can be written as

P s [ P, + Ps
W = /d pv/d pufv(pva r)fv(pfn r)?{o’vvlvv — vyleves), (8)

where p, = (e,/c, p,) and p; = (s3/c, p;) are the four-momenta of the neutrinos and antineutrinos with energies ¢, and ¢;, and three-
momentum components p, and p;, whereas f, and f; are the number densities, and v, and v; are the three-velocities of the colliding
neutrino—antineutrino pairs, respectively (Goodman et al. 1987). The cross-section of the collision is denoted by o,;, and in the collision
frame can be calculated by using the formula

o5 = KG2(s,85/c? — P, - Pi)
= _KG% pu ° pﬁ’ (9)

where K = (1 £ 4sin? @y + 8sin® 6y)/6m, with sin?0y = 0.23, and G2 = 5.29 x 10~* cm? MeV~2. By applying the decompositions
P, = (8,/c)R, and d®p, = (¢2/c)de,d, with the solid angle vector R, = (cos ¥, sin  cos &, sin v sin &) pointing in the direction of p,
(determined by the sky angles ¢ and &) and by assuming that the neutrino source in the disc emits particles isotropically, the integral in
equation (8) can be separated into an energy integral and an angular part.

After inserting the scalar product of the four-momenta into the expression of the cross-section o,;, given by equation (9), and evaluating
the energy integrals for fermions in the isotropic case, we obtain the deposited energy and momentum per unit volume and per unit time
(dtdV = /—gd*x) in the form

2
d‘idF"/ = 2cKG12r/dﬂv/dﬂg/dsvsf/dsgsgfvf;(svs‘zu +e2%)1-9, - @),
2 o
= %4‘(5) I;ZGGSF / / CTSF)TA )L - @, - ;)2 ,d2,d9;, (10)
C

with the “solid angle four-vector’ ?EV = (c, 2,) (Salmonson & Wilson 1999). Here Ty(r,) and To(r;;) are the temperatures of the neutrino
and of the antineutrino, measured by any observer at the place of the collision, and ¢ is the Riemann zeta function. The neutrino and the
antineutrino temperatures generally depend on the radial coordinates r,, and r; of the points where the colliding vv pairs are emitted from the
surface of the disc. With the assumption that the isotropic emission of neutrinos and antineutrinos from the accretion disc produces Planck
blackbody spectra with the same energies for both species, only the Doppler shift of the temperature due to the disc rotation must be taken
into account. For a neutrino energy ¢,, measured on the disc, the neutrino temperature, measured at the observer’s location, can be written as
To(r) = ——

BT A (11)
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where u,(r,) and T'(r,) are the four-velocity of the disc and the neutrino temperature at the radius r, of the neutrino emission point. The
four-velocity of the accretion disc under the Keplerian rotation is given by
U; = (u', 0,0, u? = u'QK/c) ,
with the time component
' = [—gu — 2815/ — 8sp(R/C)?] e
and the angular frequency Q of the Keplerian disc

Q = dﬁ —c —8ip7 +\/(816.7)? — 817 8pp .7 .
dr 8o
The four-velocity of an accretion disc can be computed by using the metric components (3)—(7) where the angular frequency Q takes the

from

(vi—pit2ritolo;) \/w,z; +c2er=2(y; + p7) (vi — o7 +2r71)
QK = . = —w + = .
vi—pi+2rt Vi —pr+2rt

At given points of the vv pair emission the temperature functions Ty (r,) and T (r;) in equation (10) can be evaluated in the quasi-isotropic
coordinate system by using the expressions of Qx and u;. Then equation (10) can be written as
dZ [=] o /2 . 27 /2 ] /2

= - / d‘//v siny, d‘i:vzi(l//ua Sv)/ d')//D sinyr; / déazg(l/fm gﬁ)

dth c Jo 0 0 0

x [1 — cos ¥, cos y; — sin i, sin y; cos(&, — &)1 F (¥, &),
where the cofactor of the integral depends on the neutrino temperature T, measured in the corotating frame of the accretion disc, and is given
by @ = 1.84 x 10%(kT /10 MeV)® ergs—tcm~3 (Miller et al. 2003). For null geodesic originating from the accretion disc and arriving at
the observer from the direction determined by the sky angles (v,, &,) the redshift factor z, is equal to &, /(— p,-u4(¥, &)). If the origin of
the geodesic from the given direction is outside of the disc then z, is set to 0. The definition of z; is the same as for the neutrinos, but it is
calculated for the energy ¢; and the direction determined by the sky angles (v, &;). From this condition it follows that the redshift factor
strongly depends on the position of the observer.

(12)

2.2 Geometry of the geodesics

In order to determine the origin of the geodesics of the colliding vv pairs, we traced the null geodesics back from the observer to either
the disc surface, occupying a finite area in the equatorial plane, or until they reached the coordinate radius 25rg (ry = 2GM/c?, where M is
the total mass of the central star). The geodesic curves passing through any fixed point in the space-time are uniquely determined by the
tangent vector of the curve at that point, i.e. the four-momentum of the particle propagating along the curve. The collision angles determine
the four-momentum p, = (au/c)ﬁu of a neutrino measured in the locally Lorentzian collision frame (LLF), as can be seen in Fig. 1. The
components of the four-momentum in any global coordinate system can be derived by applying a tetrad transformation of the LLF vector
components to any global coordinate system at the location of the observer,

P = ey pe. (13)

For null particles, the tetrad components can be computed from the normalization condition p- p = 0. In a stationary and axisymmetric
space-time given by equation (1) the tetrad transforming four-vectors from the local frame to the quasi-isotropic coordinate system is given

Figure 1. The four-momentum of the neutrino measured in the LLF at the position of its collision with its anti-particle.
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by

e = (—gu) 2 (10,0, —gyA;12),

&) = g7 (0.1,0.0).

€w = g (0,0,1,0),

&y = (—8u/A)"?(0,0,0,1),

with Ag = gfd, — OuOse (Miller et al. 2003). Inserting the metric components (3)—(7) into these equations, we obtain
ey = e~ 2(1 — F2)71/2(1,0,0, F),

&) =¢"(0,1,0,0),

ep = r (0,0, 1,0),

ey = ¢"*[(0/c)(1 — F?)/F1"%(0,0,0, 1),

where we have used the short-hand notation F = e”r(w/c) sin 9. The neutrino momentum p, is obtained by specifying the neutrino energy
€, with the sky angles v, and &, and applying the tetrad transformation (13). For any stationary and axisymmetric geometry its covariant
components p; = —E/cand p, = L, namely, the energy and the angular momentum of the particle propagating in the space-time, are constants
of motion. (We note that E is a function of not only ¢, but also the sky angles). Then the coordinate functions x*(z) = [#(z), r(t), 0(t), ¢()]
are the dependent variables of the geodesic equations in which the constants of motions appear as parameters. Since the geodesic equation
containing the proper time derivatives of  and 6 is not separable in the geometry of compact general relativistic objects like neutron or quark
stars, we used Hamilton’s equations of motion to recast it into a more convenient form (Schnittman & Bertschinger 2004; Perez-Giz & Levin
2009): in the ray-tracing code we supplemented the coordinates of r and & with the covariant form of their momenta p; and py, and used the
dynamical equations for the extended set of variables. We present some details of this method in Section 3.

Following Miller et al. (2003) we placed 100 x 100 observers at equidistant points with respect to the coordinates r and 6 (fixed Ar
and A@) in the zx plane (¢ = 0) between 1.25ry <1 < 6rgand 0 < 6 < 7t/2. Here r is the curvature coordinate given by the transformation
(22). We calculated the EMDR four-vector at each observer in LLF by using equation (12), and we approximated the four-momentum per
proper time dP/dzr generated at each location as Miller et al. (2003) did: we have transformed the coordinates of the observers and the
components of the EMDR four-vector into quasi-isotropic coordinates, and multiplied the four-vector by the effective spatial three-volume

AV = 27, /857849800 Ar AO assigned to each observer. Although being a coordinate-dependent quantity, AV x d?P/dtdV provides a
qualitative description of the spatial distribution of d P /dz, especially far away from the central object, where the time-like curves along the
tangent vector field 9/9¢ already tend to be orthogonal to the spatial slices associated with the three-volume AV.

For the plots presenting the four-vector AV x d?P/dzdV in the plane of the coordinates x = rsin6 and z = rcos 6, we have converted
its components from the quasi-spheroidal coordinate system to the curvature coordinates, with the tetrad

=(1,0,0,0),

1 _

€ = Eef(yfp)/z[z +(v7 — 0710, 1,0,0),
1

& = Ee_(y_p)/z()’.e -0,06)0,0,1,0),

e, =(0,0,0,1),

derived from the coordinate transformation given by equation (22) in the next section.

3 THE RAY-TRACING CODE

For massless particles propagating along null geodesics in a stationary axisymmetric space—time with metric given by equation (1), the
geodesic equation of the time-derivatives x* = g p, and x? = g% p, with respect to the proper time ¢ can be written as

g (1) + g5 (8% = V(E, L), (14)
where the effective potential V(E, L) depending on the energy E and the angular momentum L of the particle is given by
869(E/c)’ + 2814 (E/c)L + guL?

8l — 8118s9

Equation (14) is generally not a separable differential equation with respect to the coordinates x* and x2. For given initial values of the
coordinates at some time T = t,, and for fixed constants of motion p; = —E/cand p, = L, we can, at least numerically, integrate this equation
for a null particle moving in the effective potential V. The only technical difficulty in the integration may stem from the non-separability
of equation (14). However, this can be easily circumvented by introducing the momenta p; and p, as dependent variables and replacing
equation (14) with their canonical equations of motion (Schnittman & Bertschinger 2004; Perez-Giz & Levin 2009). Then the complete set

V(E,L) =
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of the evolution equations consists of Hamilton’s equations
TS 2_ P2

Xt =, x°= (15)
811 822

. 1 /g1 , go21 , ) . 1 <g112 2 822 -

pi= —pi+ =3P+ Vi), p=s\"% P+t p+Ve), (16)
2 < g%l ! g%z 2 2 gfl ! g%z 2

and the decoupled geodesic equations for the coordinates t and ¢,

. 1 E/c L . E/c 0, L

i = 78(#(45(2 /€)+ 8w ) ¢:_gt¢(2 /€) + gu ] a7

€ 8ip — 8uu8o¢ 8ty — 818po

If the space-time geometry has the form given by equation (2), with the coordinates t, ¢, x* = r and x* = 6, the system (15)—(17) can be
written as

r=f"pr 0= f'py, (18)
t=flE/c+ fiL.  ¢=FflE/c+ fL (19)
pi = F{ p2 + F; p} + F(E/c} + F(E/c)L + F{ L%, (20)
Po = Fy p} + F3 p} + F§(E/c)’ + F(E/c)L + F{(E/c)L?, (1)
with the functions
fF =2 fé) = 2e2 flt — e—(y+p)/c, le — —e_(y+p)w/c,
ff’ = e Ut f2¢ = —e ) (0w? — e*r~2sin29),
F] = e %, Fy =r 272 +aj;),

_ 1 S
Fy =—5e Yz + p7), Fy = e " (y; + p)w — 7],

_ 1 1 1\ =2
F = —e 0t {E(%? + pi)o’ —ww; + 562’0 (i —yi—2r ) r?sin? 0} ,
FY = e72q, F) =72 %q,,
1 _ _
F = =53¢0+ pa). F{ ="y + p)o — wgl.

1 1 P
F = —e~ 049 {E(m + po)0? — ww, + Eez"(p,g —yo —2tantH)r 2sin~? 9} ,

depending on only the coordinates r and 6. This is a system of ordinary differential equations, with the unknown functions r(z), (<), p;(z),
ps (), t(r) and ¢(7), respectively. The constants of motion E and L are considered as parameters of the system. If the parameters and the initial
values of the unknown functions are given, so that the mass-shell condition p - p = 0 holds (a constraint imposed on the initial data), then
the system of differential equations (18)—(21) can be integrated numerically. In the ray-tracing algorithm we have applied the fourth-order
adaptive Runge—Kutta method for the integration.

In order to calculate the equilibrium configurations of the rotating neutron and quark stars with different equations of state we use the
RNS code, as introduced in Stergioulas & Friedman (1995), and discussed in detail in Stergioulas (2003). This code was used for the study
of different models of rotating neutron stars (Nozawa et al. 1998), and for the study of the rapidly rotating strange stars (Stergioulas et al.
1999). The RNS code computes the metric functions in a quasi-spheroidal coordinate system and writes them as functions of the compactified
dimensionless distance s = r/ (r + r.), where r is the equatorial radius of the star, and the cosine of the poloidal angle. The quasi-spheroidal
radial coordinate is converted into curvature radius r according to the equation
r=rexp{ly(r,0) —p(r.0)1/2}, (22)
where the latter coordinate will be used in the graphic presentation of the physical quantities calculated in the following sections.

In order to determine the metric functions «, y, p and » and their spatial derivatives in the evolution equations, we have used
numerical tables generated by the RNS code with a high-resolution mesh (1001 x 3001) of the compactified quasi-isotropic radial coordinate
s = r/(r + re), and the angular coordinate u = cos . Since the code calculates the metric functions and their derivative functions only at
the two-dimensional grid points (s, ) we applied bi-cubic interpolation to evaluate all the functions at any arbitrary point (r, 6) between the
discrete points of the numerical tables. The derivatives with respect to r and 6 of the metric functions were calculated from their derivatives
with respect to the grid variables sand .

For a given set of canonical data [r (o), #(0), pr(t0), pe(T0)], We traced the (anti)neutrinos back from the observers in the zx plane either
to the equatorial plane, where they are supposed to be produced, or to any point up to the radius 25rg. At the location of the observer, specified
with the coordinates [r(t), #(z)], the momenta p;(to), pPs(to) together with the parameters E/c and L were calculated from equations
(13). For given collision angles (v, &) and a fixed value of ¢, the four-momentum measured in the LLF was obtained from the expression
PLLe = (a/c)ﬁ (Miller et al. 2003). If the geodesic curve crossed the equatorial plane in the area between the inner and the outer edge of the
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disc, the exact radius of the intersection point was determined from a cubic spline interpolation of the closest 3—-3 data points located on the
curve above and below the equatorial plane.

4 EQUATIONS OF STATE AND STELLAR MODELS

In order to obtain a consistent and realistic physical description of the rotating general relativistic neutron and quark stars, we have to adopt
the equations of state for the dense neutron and quark matter, respectively. In the present study we consider the following equations of state.

(i) Akmal-Pandharipande-Ravenhall (APR) Equation of State (EOS) (Akmal, Pandharipande & Ravenhall 1998). EOS APR has been
obtained by using the variational chain summation methods and the Argonne v;g two-nucleon interaction. Boost corrections to the two-nucleon
interaction, which give the leading relativistic effect of order (v/c)?, as well as three-nucleon interactions, are also included in the nuclear
Hamiltonian. The density range is from 2 x 10 to 2.6 x 10'® gcm=3. The maximum mass limit in the static case for this EOS is 2.20 M. We
join this equation of state to the composite BBP (e/c? > 4.3 x 10**gcm~2) (Baym, Bethe & Pethick 1971a), BPS (10* < 4.3 x 10 gcm—2)
(Baym, Pethick & Sutherland 1971b), FMT (e/c? < 10* gcm~2) (Feynman, Metropolis & Teller 1949) equations of state, respectively.

(ii) Douchin—Haensel (DH) EOS (Douchin & Haensel 2001). EOS DH is an equation of state of the neutron star matter, describing both
the neutron star crust and the liquid core. It is based on the effective nuclear interaction SLy of the Skyrme type, which is particularly suitable
for the application to the calculation of the properties of very neutron rich matter. The structure of the crust, and its EOS, is calculated in
the zero temperature approximation, and under the assumption of the ground state composition. The EOS of the liquid core is calculated
assuming (minimal) npew. composition. The density range is from 3.49 x 10 to 4.04 x 10 gcm~=2. The minimum and maximum masses
of the static neutron stars for this EOS are 0.094 and 2.05 M, respectively.

(iii) Shen-Toki-Oyamatsu—-Sumiyoshi (STOS) EOS (Shen et al. 1998). The STOS equation of state of nuclear matter is obtained by
using the relativistic mean field (RMF) theory with non-linear o and w terms in a wide density and temperature range, with various proton
fractions. The EOS was specifically designed for the use of supernova simulation and for the neutron star calculations. The Thomas—Fermi
approximation is used to describe inhomogeneous matter, where heavy nuclei are formed together with free nucleon gas. The temperature is
mentioned for each STOS equation of state, so that, for example, STOSO represents the STOS EOS for T = 0 MeV. For the proton fraction
we chose the value Y, = 102 in order to avoid the negative pressure regime for low baryon mass densities.

(iv) RMF equations of state with isovector scalar mean field corresponding to the §-meson-soft RMF and stiff RMF EOS (Kubis &
Kutschera 1997). While the §-meson mean field vanishes in symmetric nuclear matter, it can influence properties of asymmetric nuclear
matter in neutron stars. The RMF contribution due to the §-field to the nuclear symmetry energy is negative. The energy per particle of
neutron matter is then larger at high densities than the one with no §-field included. Also, the proton fraction of -stable matter increases.
Splitting of proton and neutron effective masses due to the §-field can affect transport properties of neutron star matter. The equations of state
can be parametrized by the coupling parameters C2 = g2/m?, C2 = g2/né, b = b/g3 and ¢ = ¢/g*, where m, and m,, are the masses of the
respective mesons, and b and c are the coefficients in the potential energy U(c) of the o -field. The soft RMF EOS is parametrized by C? =
1582 fm?, C2 = 1.019 fm?, b = —0.7188 and ¢ = 6.563, while the stiff RMF EOS is parametrized by C2 = 11.25 fm?, C2 = 6.483 fm?,
b =0.003825 and ¢ = 3.5 x 105, respectively.

(v) Baldo—Bombaci-Burgio (BBB) EOS (Baldo, Bombaci & Burgio 1997). The BBB EOS is an EOS for asymmetric nuclear matter,
derived from the Brueckner—Bethe—-Goldstone many-body theory with explicit three-body forces. Two EOSs are obtained, one corresponding
to the Argonne AV14 (BBBAV14), and the other to the Paris two-body nuclear force (BBBParis), implemented by the Urbana model for the
three-body force. The maximum static mass configurations are M. = 1.8 M and Mpyax = 1.94 Mo when the AV14 and Paris interactions
are used, respectively. The onset of direct Urca processes occurs at densities n > 0.65 fm=2 for the AV14 potential and n > 0.54 fm~—2 for the
Paris potential. The comparison with other microscopic models for the EOS shows noticeable differences. The density range is from 1.35 x
10* gcem~3 to 3.507 x 10° gem—3.

(vi) Bag model equation of state for quark matter (Q) EOS (Itoh 1970; Bodmer 1971; Witten 1984; Cheng, Dai & Lu 1998). For the
description of the quark matter we adopt first a simple phenomenological description, based on the MIT bag model equation of state, in which
the pressure p is related to the energy density p by

p=30-4B) 3)

where B is the difference between the energy density of the perturbative and non-perturbative Quantum Chromodynamics (QCD) vacuum
(the bag constant), with the value 4B = 4.2 x 10*gcm—3,

(vii) Itis generally agreed today that the colour—flavour-locked (CFL) state is likely to be the ground state of matter, at least for asymptotic
densities, and even if the quark masses are unequal (Alford, Rajagopal & Wilczek 1999; Rapp et al. 2000; Horvath & Lugones 2004; Alford
et al. 2008). Moreover, the equal number of flavours is enforced by symmetry, and electrons are absent, since the mixture is automatically
neutral. By assuming that the mass my of the s quark is not large as compared to the chemical potential w, the thermodynamical potential of
the quark matter in CFL phase can be approximated as (Lugones & Horvath 2002)

3ut  3m®  1-12In(m,/2n) , 3

Qepr=—75+— —

- T gt - A%+ B, 24
42 An? 3272 s 2 Wt (24)
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Figure2. Pressure as a function of density (in a logarithmic scale) for the equations of state DH, RMF soft, RMF stiff, STOS 0. STOS 0.5, STOS 1, BBBAV14,
BBBParis, APR, Q, CFL150 and CFL300, respectively.

where A is the gap energy. With the use of this expression the pressure P of the quark matter in the CFL phase can be obtained as an explicit
function of the energy density ¢ in the form (Lugones & Horvath 2002)
20?82 m?8?

o e 25
2 2m?’ (25)

P:%(8—4B)+

where

52=—Ot+1/0[2+g7'[2(8—3), (26)

and o = —mé/6 + 2A?/3. In the following the value of the gap energy A considered in each case will be also mentioned for the CFL equation
of state, so that, for example, CFL200 represents the CFL EOS with A = 200. For the bag constant B we adopt the value 4B = 4.2 x
10* gcm—3, while for the mass of the strange quark we take the value ms = 150 MeV.

The pressure—density relation for the considered equations of state is presented in Fig. 2.

5 DEPOSITION RATE NEAR ROTATING COMPACT STARS

In the present section we present the spatial distribution of the EMDR due to the vv pair annihilation in the vicinity of rotating neutron
and quark stars with the EOS presented in Section 4. We consider two types of geometrically thin accretion disc models with a neutrino—
antineutrino radiation, as considered in Asano & Fukuyama (2001) and Miller et al. (2003). The first model is an accretion disc in an isothermal
state, where the effective temperature is set to be a constant T(3r) over the entire surface of the disc. The constant T(3rg) is the temperature
measured at r = 3rg in the frame of reference corotating with the disc. Then the neutrino temperature T, at the place of the collision, given
by equation (11), has only an implicit dependence on the radial coordinate, measured along the disc, via the gravitational redshift and the
Lorentz boost, respectively.

The second type of the disc models uses a thermodynamical equilibrium approximation for the disc. Therefore, the temperature is
inversely proportional to the disc radius. Following Asano & Fukuyama (2001) and Miller et al. (2003), we assume that the radial distribution
of the temperature profile is given by the equation T(r) = T(3rq)3ry/r. We also set the position of the outer edge of the accretion disc to the
radius 5rg, which is the same as the one used by Miller et al. (2003). The inner edge of the disc is determined either by the marginally stable
orbit r s of the gravitational potential, or, if it is less than the equatorial radius R, of the central star, by the equatorial radius itself. The latter
is defined to be the radius where the pressure of the stellar matter drops to zero in the equatorial plane. Since the configurations of the stellar
models considered here do not produce stars compact enough to form a neutrino-sphere trapping the (anti)neutrinos, the entire surface of the
accretion disc is considered as a neutrino—antineutrino source (Kovacs et al. 2010).

We used equation (12) to calculate the EMDR due to the annihilation of the colliding neutrinos and antineutrinos, emitted by the thin
accretion disc. The angular integral is computed over 250 x 250 grid points, covering the celestial sphere, and therefore we traced more then
60 000 geodesics back from the location of each observer of the 10 to the disc, or to the sphere at 25r.

5.1 Constant temperature discs

5.1.1 Local energy deposition rates

In Figs 3 and 4 we present the EMDR derived at 10* observers in the zx plane above the accretion disc for the rotating neutron and quark star
models with the same total mass M and angular frequency €2, when the neutrino temperature of the disc is set to the constant T(3rg). As in
Kovacs et al. (2010, 2011), we consider the configurations for M = 1.8 M and € = 50005 for each EOS. The physical parameters for
these stellar models are presented in Table A1 (Appendix A). Since for the stellar models shown in the table the spin parameter, defined by
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Figure 3. The spatial distribution of the EMDR four-vector dP/dzt in the vicinity of a geometrically thin isothermal accretion disc, approximated by
AV x d?P/dtdV, for different models of a rotating compact neutron star, with the DH, stiff RMF, STOSO0, BBBParis, BBBAV14 and APR equations of state.
The total stellar mass and the angular frequency 2 are 1.8 M and 5000 s~1, respectively. The neutrino temperature of the disc is set to 1 MeV, and its outer
edge is located at 5rg. The colour plots present the time component of the EMDR four-vector in a logarithmic scale, normalized with o, whereas the arrows
indicate the projection of its spatial component (normalized with the time component) on to the zx plane. The red curve represents the stellar surface.

a, = JIM? (where J is the angular momentum of the stars), has a variation between the values ~0.3 and ~0.8, we can compare the distribution
of the annihilation rate four-vector in Figs 3 and 4 with the one calculated for Kerr black holes with similar spin. The comparison of our result
with the pictorial representation of the EMDR derived for Kerr black holes in Miller et al. (2003) shows that the vv pair annihilation has very
similar features for both compact stellar objects and black holes.
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Figure4. The same plot as in Fig. 3 but for the quark star models with Q and CFL150 type EOSs.

The colour plots representing the deposition rate four-vector near the rotating neutron and quark stars are similar to the EDMR distribution
close to a rotating black hole with a, = 0.5. As expected for any rotating accretion disc in a stationary and axisymmetric configuration,
the intensity of the energy—momentum deposition is maximal above the disc surface and drops rapidly for positions located far from the
equatorial plane. There is a considerable fall in the intensity at the disc edges but it is somewhat less steep towards the rotational axis. The
three-momentum vectors of the EMDR point outwards and their magnitudes are maximal in the vicinity of the disc. Their tilt is in the direction
of the disc rotation. Similar plots can be found in Birkl et al. (2007), where the EMDR distribution near the black holes was determined for
different kinds of neutrino tori and disc models under the assumption of non-isotropic neutrino—antineutrino scattering. Our results are also
consistent with the previous works presenting the EMDR calculations along the rotational axis and the equatorial plane of the same neutron
and quark star models (Kovacs et al. 2010, 2011).

Comparing the different stellar models to each other, we see that the energy—momentum deposition near the disc surface attains the
highest values in the case of the stars with DH, BBBParis, BBBAV14 and APR type EOSs, respectively. The quark star models and the
neutron stars with stiff RMF EOS produce somewhat less EMDR from neutrino—antineutrino annihilation, and the stellar model with STOSO
type EOS is by far the less efficient in producing energy-momentum from the colliding vv pairs. As stated in the previous works (Asano &
Fukuyama 2001; Miller et al. 2003), this difference in the efficiency is mainly due to the variation of the surface area of the accretion disc.
The plots demonstrate that the inner edge of the disc around neutron stars being the most effective in energy—momentum generation is located
at the marginally stable orbit with the radius of <2.5rg, whereas the stellar surface obtained for the model with the STOS0 type EOS pushes
the inner disc edge almost up to 4r.

5.1.2 Global integrated deposition rates for a distant observer

In order to determine the total EMDR for a distant observer we adopt the method used by Miller et al. (2003), in which they integrated the
four-vectors AV x d?P /dtdV from the observers along their geodesics until the constant surface at r = 25r is reached. The polar angle 6
at which the four-vector hit the surface was binned into 20 bins between 0 and 7t/2. The values of the time-like component of the EMDR
four-vector were summed up in each bin, providing the angular distribution of d? P’ /d¢d<2 at r = 25r4. The result is displayed in Fig. 5, where
we plotted dzP’/dtdQ|25,g as a function of 6 for each system shown in Figs 3 and 4. In the plot the integrated energy deposition rate is always
concentrated along a cone of opening angle 7t/4, which is due to the tilt of the spatial component of the EMDR four-vector near the disc
surface. Since the EMDR vector field has a similar distribution in the vicinity of the disc for each stellar model, the position of the opening
angle is rather insensitive to the EOS type and it is essentially the same as the one obtained for black holes in Miller et al. (2003). However,
the maximum of the peak at the cone strongly depends on the EOS type: the highest values for the deposited energy are produced for the
neutron stars with APR, DH, BBBParis and BBBAV'14 type EOSs, respectively. The quark stars, together with the stiff RMF-type neutron
star, generate somewhat smaller peaks for the EMDR, and the energy deposition along the cone is considerably less for the stellar model with
STOSO0-type EQS than for the other models. Comparing the normalized values of the total EMDR in Fig. 5 with the results derived for slowly
rotating Kerr black holes in Miller et al. (2003), we find that the maxima for the stellar models are roughly 10 times smaller than the ones
derived for the black holes. This may be the consequence of the singularity in the numerical tables of the metric functions and their derivatives
at the rotational axis, which we used in the integration of the geodesic equations. When we integrate from the observers located in the zx
plane out to 25r4 many geodesic curves pass through a region close to the rotational axis because of the tilt in the direction of the EMDR
four-vectors. The bi-cubic interpolation will fail in the cases where one of the grid points used by the interpolation routine coincide with the
coordinate singularity. As a result, we inevitably lose the contribution of 2-3000 geodesics to the EMDR integrated over 10 000 observers
(even if we use numerical tables with high angular resolution). Summing up the time components of the EMDR four-vectors tangent to the
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Figure 5. The deposited energy per solid angle binned as a function of the poloidal angle 6 at r = 25rg for an isothermal accretion disc rotating around a
compact star with the configurations shown in Figs 3 and 4. All the values are normalized with & M3.

lost geodesics indicates that we may underestimate the total EMDR at least by 10-25 per cent. Since the contribution from lost geodesics is
concentrated over the area of the cone, these numbers are high enough to reduce the peak of the deposited energy to a great extent. However,
this uncertainty will not change the results of our qualitative analysis in which we have shown that the energy and momentum deposition
near rotating neutron and quark stars exhibit similar features to those of the energy and momentum deposition near the Kerr black holes. For
a fixed total mass M and angular frequency <2 of the central body, the nature of the EOS has an important effect both on the stellar radius and
on the position of the inner edge of the accretion disc, which can, in turn, modify the integrated energy deposition rate in the vicinity of the
rotating compact star. Comparing the maxima of the EMDRSs calculated for the stellar models with APR and DH type EOS with those derived
for the neutron stars with stiff RMF EOS and quark stars with CFL150-type EOS, respectively, we see that the peaks of the first group are
about 30 per cent higher than those of the second one. The value of the total EMDR obtained for the neutron star with STOSO-type EOS is at
least a factor of 3 less at the peak than the maximal values of the energy deposition rate derived in the case of the first group.

5.2 Discsin thermodynamic equilibrium

The same analysis can be applied to the accretion disc models with the thermodynamical equilibrium approximation. For the same config-
urations of the stellar models, the effective potential around the rotating compact stars remains the same. Then, the geometrical properties
of the neutrino—antineutrino source, and the trajectories of the emitted null particles, will not change either, and the only difference is the
temperature gradient of the disc, which decreases the vv energy for higher radii of the disc. Since the inner edges of the disc are located at
different radii for the different stellar models, we normalize the temperature profile with T(3rg) (the temperature measured at 3r) for all the
models, in order to provide a neutrino—antineutrino source with more or less the same properties in each case (Asano & Fukuyama 2001;
Miller et al. 2003). This normalization results in an enhancement in the disc temperature at the radii less than 3ry in comparison with the
constant disc temperature. The position of the inner disc edge determines this enhancement, i.e. the maximal temperature in the innermost
region of the disc.

5.2.1 Local energy deposition rates

In Figs 6 and 7, we plotted the same configurations as in Figs 3 and 4 for the accretion disc with temperature gradient. The plots display
the general reduction of the EMDR almost over the entire surface of the disc for all the stellar models. Only the area close to the inner disc
edge can produce an amount of the EMDR comparable with the one of the isothermal disc model. The energy—momentum deposition process
has characteristics similar to those found in the calculations applying the isothermal disc. The hotspot of the intensive energy—-momentum
deposition due to vv annihilation over the innermost region of the disc is still present in the case of the neutron star models with DH,
BBBParis, BBBAV14 and APR type EOSs. The magnitude of the EMDR in that region is already smaller for the quark stars, and it is 10
times less for the stellar model with stiff RMF-type EOS. The intensity maximum near the neutron star with STOSO-type EOS is at least two
order of magnitude less than the maxima in the hotspot for the stellar models depositing energy and momentum in the most efficient way.

5.2.2 Global integrated deposition rates for a distant observer

In Fig. 8, we present the angular distribution of the total EMDR integrated out to 25r for the accretion disc model in thermodynamical
equilibrium. Compared with the isothermal case, there is still a relatively large component of the EMDR propagating from the innermost
region of the disc to outwards. Nevertheless, the opening angle is slightly larger than 7t/4, and the distribution is also broader around the cone.
This slight shift and the broadening of the peak of the total EMDR generated over a disc with the r~! temperature profile were found in the
vicinity of the rotating black holes as well (Miller et al. 2003). Comparing the distribution of the spatial component of the EMDR four-vector
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Figure 6. The same plot as in Fig. 3 but for accretion disc with temperature gradient.

close to the disc with the one close to the isothermal discs we can see that its average tilt is somewhat higher in the case of the discs in
thermodynamical equilibrium, i.e. the momentum deposition rate vectors point in the directions closer to the equatorial plane. As a result,
the opening angles of the surface along which the EMDR concentrates have a variation between 7t/4 and 7t/3 depending on the position of
the inner edge of the accretion disc. The differences in the average tilt of the spatial component of the EMDR four-vector are enhanced by
its temperature sensitivity in the innermost region of the accretion disc with 1/r temperature profile. Then, average tilt close to the innermost
disc surface results in wider opening angles and broader angular distribution around the stiff RMF type neutron star and the quark stars
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Figure 7. The same plot as in Fig. 4 but for accretion disc with temperature gradient.
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Figure 8. The same plot as in Fig. 5 but for accretion disc with temperature gradient.

whereas the position of the integrated EMDR maxima does not change much for the other stellar configurations, compared with the case of
the isothermal disc. The STOSO model with the extremely large stellar radius produces much less EMDR than the other stellar models do
since the inner edge of the disc is already in a relatively cool region of the 1/r temperature profile. Similarly to the plots showing the spatial
distribution of the EMDR, the enhancement in the deposition rate is the greatest for the neutron star models with APR, DH, BBBParis and
BBBAV14 type EOSs. The quark stars are found to be less effective in the energy and momentum generation from neutrino—antineutrino
annihilation, and the neutron stars with stiff RMF and SOTSO0 type EOS exhibit very poor properties in this respect.

6 DEPENDENCE OF THE DEPOSITION RATE ON THE SPEED OF STELLAR ROTATION

Another way to see the effects of the variation of the disc surface area on the deposition rate is to examine the stellar models with the same
stellar mass and EQS, but with different rotation velocities. As stated in Miller et al. (2003), the EMDR near a Kerr black hole has a strong
dependence on the specific angular momentum of the central object. A similar dependence is expected for stellar objects too, but the situation
here is more complicated even in the absence of the event horizon or, if the star is not compact enough, of a neutrino capturing region. On
one hand the radius of the marginally stable orbit in the space-time of a compact star decreases with the increasing spin parameter of the
body, and on the other hand the equatorial radius of the stellar surface increases as the shape of the rapidly rotating star becomes more oblate.
The former effect increases the radiant area of the accretion disc, while the latter one imposes an upper boundary on it, by fixing the minimal
radius at which the inner edge of the disc can be located. For black holes the area of the effective source of the vv radiation is proportional to
the spin parameter, and a rapidly rotating black hole can enhance the energy—-momentum deposition in its vicinity from neutrino—antineutrino
annihilation (Asano & Fukuyama 2001; Miller et al. 2003). In Kovacs et al. (2010, 2011) it was shown that this relation between the EDMR
and a, will break down in the case of some stellar models, where the surface of the strongly deformed star in the equatorial plane not only
prevents the radiant area of the disc from the further increase, but also reduces this area by forcing the inner edge of the disc to locate at
higher and higher radii. Although the higher spin indeed enhances the deposition rate even for the rapidly rotating stars with DH, BBBParis,
BBBAV14 and APR type EOSs, the stiff RMF and the STOS0 models, together with the quark stars, do not follow this relation. At high
rotational frequency the EMDR for the latter stellar models becomes inversely proportional to the spin parameter of the star.
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Figure9. The deposited energy per solid angle binned as a function of the poloidal angle 6 at r = 25r4 for an isothermal accretion disc (right-hand side plot),
and with a disc in thermodynamical equilibrium approximation (left-hand side plot) for different neutron and quark star models, rotating with different angular
velocities.  is set to 3000s~1 (1), 400051 (2) and 50005~ (3).

This phenomenon is shown in Fig. 9, where we present the total EMDR for two neutron stars with the APR and the stiff RMF EOSs, and
for two quark star models, with fixed total mass, but different angular velocities. The physical parameters of each stellar configuration with
lower angular velocity than 5000 s~ are shown in Table A2. While the stellar model with the APR-type EOS preserves the proportionality
between the spin of the stellar body and the integrated EMDR up to = 50005~ (for which a, = 0.35), the neutron star with stiff RMS-type
EOS produces less EMDR at this angular frequency (a, = 0.63) than it does for slower rotation. The quark stars also exhibit the inverted
relation between a, and the total EMDR, though to a lesser extent. The plots for the stellar models with Q and CFL150 type EOSs show that
the energy—momentum deposition is not so effective at the rotational speed of 5000s~! (a, = 0.41 and a, = 0.47) as it is at lower velocities.

Considering the spin parameter in these examples, it is obvious that the proportionality between a, and the EMDR is valid only for the
domain of relatively low spin values (a, < 0.4), and the efficiency of the energy—momentum deposition starts to decrease for higher spins,
where the radiant area of the accretion disc is shrunk by the expanding stellar surface. The only difference between the stellar model with
APR-type EOS and the one with stiff RMF-type EOS is the range of the rotational frequency, where they gain higher angular momentum
for a fixed total mass. The former has a relatively low spin for @ = 5000s~?, while the latter reaches almost a two times higher spin value
at this angular velocity. If we fix the total mass of the neutron star with APR-type EOS, and increase its rotational frequency further, we can
see that the oblate spheroidal shape of the stellar object also reduces the area of its accretion disc, as the stiff RMF-type model does at lower
angular velocities. For EMDR due to the annihilation of vv pairs emitted from a thin accretion disc rotating around a compact star, the most
efficient configurations are those in which the central body has a moderate spin (a, < 0.4). In this domain a, is high enough to produce more
rotational energy, which is converted into the disc radiation, but at the same time it is still low enough to prevent the stellar surface from
occupying a location where it would reduce the effective radiant area of the disc (Kovéacs et al. 2010, 2011).

7 DISCUSSIONS AND FINAL REMARKS

Neutrino-cooled accretion discs around stellar mass black holes or neutron stars are plausible candidates for the central engine of GRBs
(Zhang & Dai 2009). A phase transition during a supernova explosion can induce stellar collapse and result in large amplitude stellar
oscillations (Chan et al. 2009; Cheng et al. 2009). Extremely intense pulsating neutrino fluxes, with submillisecond period and with neutrino
energy greater than 30 MeV, can be emitted because the oscillations of the temperature and density are out of phase by almost 180°. Since the
energy and density of neutrinos at the peaks of the pulsating fluxes are much higher than the non-oscillating case, the electron/positron pair
creation rate can be enhanced significantly. Some mass layers on the stellar surface can be ejected by absorbing energy of neutrinos and pairs.
These ejecta can be further accelerated to relativistic speeds by absorbing electron/positron pairs, created by the neutrino and antineutrino
annihilation outside the stellar surface.

In the present paper, we have considered EMDR from the neutrino—antineutrino annihilation process around rotating neutron and quark
stars. To obtain the deposition rate we have developed a full general relativistic ray-tracing algorithm. The EMDR has been calculated
numerically for several equations of state of the neutron matter, and for two types of quark stars, respectively. All the general relativistic
correction factors, related to this process, can be derived from the metric of the central compact object. Due to the differences in the space-time
structure, the quark stars present some important differences with respect to the EMDR, as compared to the neutron stars. As a general result,
we have found that there is a general correlation between the EMDR and the spin parameter of the star. There is also a strong dependence
between the temperature profile of the disc and the EMDR, and at high rotational velocities the EMDR is much smaller for the model with
T o r~! than the one calculated for the isothermal discs.

In our study we have neglected the possible effects of the stellar magnetic field on the external geometry of the space-time around the
compact general relativistic effects, as well as on the motion of the neutrinos. Generally, we assume that the magnetic energy of the disc,
B?/8m is much smaller than the pV2/2, the kinetic energy density of the disc, B?/8m << pV;2/2, where V is the Keplerian velocity. Hence
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we neglect the possible influence of the magnetic field on the temperature profile of the disc. The neutrino emission rate is strongly dependent
on the temperature. In the standard models of GRBs it is assumed that the central object is surrounded by a degenerate accretion disc, which
allows super-Eddington accretion rates, of the order of one solar mass per second (Zhang 2007). If the central compact object is a neutron
or a quark star, such super-Eddington accretion rates can maintain the compact object at very high temperatures, thus allowing very high
neutrino luminosities, as well as a high rate of electron—positron pair production. The neutrino temperature can be estimated by assuming
that the accretion power nMc?, where 7 is the efficiency of the energy conversion and M is the accretion rate, is equal to the radiation power
4mtR%s T, which gives the temperature as T, = (nMc?/4mtR?c)"/*. By taking n = 0.1, R=10° cm and an accretion rate of M = 1M /10s,
we obtain T, = 7.14 x 10%K, a temperature which is of the order of MeV. Therefore, if the accretion disc is fed at a high rate, like, for
example, by the fallback material after a supernova explosion, a high neutrino—antineutrino emission rate can be maintained, and this could
explain some of the basic properties of the GRB phenomenon. In our study, we have tried to give a high numerical accuracy description of
these important astrophysical processes. As shown in Miller et al. (2003) and Birkl et al. (2007), respectively, the error in the calculation of
the energy deposition rate is less than 5 per cent if the number of the points over the full celestial sphere used in the integration is of the
order of 10*. Since we have integrated the EMDR over more than 6 x 10* points, we expect that the minimal error produced by our method
is of the order of 5 per cent. The loss of the geodesics due to the coordinate singularity along the rotational axis may increase this error up
to 15 per cent, and even to 30 per cent in some cases which makes our quantitative analysis somewhat uncertain in the region surrounding
the compact objects. Nevertheless, in the comparison of various compact star models the effects due to the differences in the inner cut-off
radii of the accretion discs dominate over those caused by the local variation of effective potential, especially close to the rotational axis. We
therefore do not expect that the resolution of the uncertainty would modify the qualitative picture to a great extent which has been presented
here on the energy generation mechanism from vv pair annihilation near rotating neutron and quark stars.
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APPENDIX A: PHYSICAL PARAMETERS OF NEUTRON AND QUARK STARS

Here, we present all the physical parameters of the compact stars with total mass M ~ 1.8 M, and different rotational frequencies, which
were obtained by the RNS code. In the tables p. is the central density, M is the gravitational mass, My is the rest mass, R; is the circumferential
radius at the equator, €2 is the angular velocity, €2, is the angular velocity of a particle in circular orbit at the equator, T/W is the rotational-
gravitational energy ratio, J is the angular momentum, | is the moment of inertia, @, gives the mass quadrupole moment, h, is the height from
the surface of the last stable co-rotating circular orbit in the equatorial plane, h_ is the height from surface of the last stable counter-rotating
circular orbit in the equatorial plane, Z,, is the polar redshift, Zy, is the backward equatorial redshift, Z; is the forward equatorial redshift, w./Q2
is the ratio of the central value of the potential » to €2, re is the coordinate equatorial radius, and r/r is the axes ratio (polar to equatorial),
respectively.

We have obtained rpns from the formula rp,s = R + hy, i.e. as a sum of the stellar radius in the equator and the height from the surface
of the last stable co-rotating circular orbit in the equatorial plane. Thus, the inner edge of the accretion disc is located at the radius of the
innermost stable circular orbit r, or at the equatorial radius R, of the stellar surface, if h, is zero. In order to check the value of r,s we have
used a truncated form of the analytical approximation given by Shibata & Sasaki (1998),

rms A 3r, (1 — 0.54433a, — 0.2261942 + 0.17989Q, — 0.23002a°
+ 0.26296a,.Q, — 0.29693a” + 0.4454642Q,) , (A1)

where a, = cJ/GM? and Q, = c*®,/G*M? are the dimensionless spin parameter and the dimensionless mass quadrupole moment, defined in
terms of the angular momentum J and the mass quadrupole moment @.

Table Al. The physical parameters of neutron and quark star models calculated with the RNS code for a total mass
of 1.8 Mg and angular velocity of 5 x 10%s~1, for different types of EOSs.

EOS DH  StiffRMF  STOS0 BBBAV14 BBBParis  APR Q CFL150

pc (105gem=3)  1.2940 0.5700 0.3690 2.1500 17000 12130 0.9310  0.7050
M (Mg) 1.8071  1.8152 1.8541 1.8048 1.7989  1.8084 18072  1.8069
Mo (M@) 2.0569  2.0173 2.0155 2.1075 2.0948  2.0976 21047  2.0986
Re (km) 12.009  15.909 21.039 10.350 10707 11408 11.833  12.464
Q(10%s1) 0.4998  0.5074 0.4902 0.5041 05042  0.4940 0.4911  0.5065
Qp(10%s71) 11613  0.7938 0.5372 1.4411 1.3705  1.2550 1.1994  1.1211
T/W(1072) 0.0344  0.0928 0.1491 0.0238 0.0272  0.0332 0.0467  0.0577
cIIGMZ, 11535  2.0742 2.9524 0.9538 1.0108 11319 1.3284 15341
1(10%gcm?)  2.0282  3.5925 5.2931 1.6627 17619  2.0137 2.3775  2.6619
®,(10*2gcm®)  83.325 458.35 1061.9 43.101 53.793  79.055 136.07  198.87
h. (km) 1.6748  0.0000 0.0000 3.3844 2.9361  2.2968 0.0000  0.0000
h_(km) 7.4825 - 7.8498 8.3523 8.1702 80095 0.0000  0.0000

Z, 0.3820  0.2945 0.2601 0.4695 0.4441  0.4086 0.3907  0.3704

Zs 0.0262 —0.1178 —0.2296  0.1207 0.0955  0.0622 0.0443  0.0070

Zy 0.7738  0.7492 0.7891 0.8605 0.8338 07945 07807  0.7814
wc/(1071) 0.5865  0.4549 0.4102 0.6666 0.6342 05848 05293  0.4997
re(km) 9.0959  12.944 18.015 7.4081 7.7814 84743 8.8896  9.4976
rplre 0.8860  0.7200 0.5400 0.9250 0.9150  0.8980 0.8700  0.8350
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Table A2. The physical parameters of neutron and quark star models calculated with the RNS code for a total
mass of 1.8 M, and angular velocities of 3 x 103571, and 4 x 10%s1, respectively, for different types of

EOSs.

EOS Stiff RMF  Stiff RMF APR APR Q Q CFL150 CFL150

pc (105gem—3) 0.6850 0.6400 1.2650 1.2400 1.0300 0.9800  0.7580 0.735
M(M@) 1.8054 1.8000 1.8007 1.8059 1.8029 1.8015 1.8012 1.8021

Mo (M) 2.0336 2.0171 21000 21015 21146 2.1058 2.1098 2.1034
Re(km) 14.037 14.609 11.052 11.203 11.391 11.581 11.932 12.140
Q(10%s71) 0.3004 0.4016 0.3018 0.4007 0.2994 0.3998  0.3021 0.4041
Qp(lO4 sfl) 0.9254 0.8785 13116 1.2864 1.2551 1.2283 1.1744 1.1514
T/W(10~2) 0.0237 0.0473 0.0115 0.0209 0.0155 0.0292  0.0184 0.0344
cJIG M2 0.9851 1.4065 0.6563 0.8930 0.7529 1.0357 0.8433 1.1644

| (1045 g cmz) 2.8823 3.0779 19110 1.9584 22101 2.2767 2.4533 2.5323
<I:v2(1042 g cm3) 102.82 212.48 26.753 49.114 43.923 83.430 62.235 117.04
h, (km) 0.0000 0.0000 3.3475 2.8157 0.0000 0.0000 0.0000 0.0000
h_(km) - - 6.7995 7.4238 0.0000 0.0000  0.0000 0.0000

Zp 0.2884 0.2896 0.4013 0.4052 0.3840 0.3860 0.3589 0.3635

Zy 0.0640 —0.0170 0.1917 0.1258 0.1750 0.1066 0.1462 0.0775

Zs 0.5260 0.6205 0.6252 0.7102 0.6082 0.6932 0.5873 0.6784
wc/(1071) 0.4697 0.4628 0.5877 0.5870 0.5359 0.5317  0.5005 0.4999
re(km) 11.175 11.725 8.159 8.2888 8.5039 8.6746 9.0429 9.2221
rp/re 0.9225 0.8500 0.9640 0.9350 0.9549 0.9170  0.9450 0.8990
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