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Abstract. In this paper, we study the time consistent strategies in the mean-variance portfolio selection with
short-selling prohibition in both discrete and continuous time settings. Recently, [T. Björk, A. Mur-
goci, and X. Y. Zhou, Math. Finance, 24 (2014), pp. 1–24] considered the problem with state depen-
dent risk aversion in the sense that the risk aversion is inversely proportional to the current wealth,
and they showed that the time consistent control is linear in wealth. Considering the counterpart
of their continuous time equilibrium control in the discrete time framework, the corresponding “op-
timal” wealth process can take negative values; and this negativity in wealth will lead the investor
to a risk seeker which results in an unbounded value function that is economically unsound; even
more, the limiting of the discrete solutions has shown to be their obtained continuous solution in
[T. Björk, A. Murgoci, and X. Y. Zhou, Math. Finance, 24 (2014), pp. 1–24]. To deal this lim-
itation, we eliminate the chance of getting nonpositive wealth by prohibiting short-selling. Using
backward induction, the equilibrium control in discrete time setting is shown to be linear in wealth.
An application of the extended Hamilton–Jacobi–Bellman equation (see [T. Björk and A. Murgoci,
A General Theory of Markovian Time Inconsistent Stochastic Control Problems, working paper,
Stockholm School of Economics, Stockholm, Sweden, 2010]) makes us also conclude that the con-
tinuous time equilibrium control is also linear in wealth with investment to wealth ratio satisfying
an integral equation uniquely. We also show that the discrete time equilibrium controls converge
to that in continuous time setting. Finally, in numerical studies, we illustrate that the constrained
strategy in continuous setting can outperform the unconstrained one in some situations as depicted
in Figure 8.
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154 BENSOUSSAN, WONG, YAM, AND YUNG

1. Introduction. Since the first introduction in [18], the mean-variance portfolio selection
has become a key research topic, in which the investor aims to determine the optimal portfolio
that minimizes the variance risk of the terminal wealth subject to a predetermined budget
constraint and at an arbitrary terminal expected return level; [19] and [22] later extended his
model to multiperiod and continuous time settings, respectively, by using tools from stochastic
control theory.

Due to the nonlinear expectation and dependence of current state in the mean-variance
utility (see [3]), the usual tower property fails to hold, and the corresponding optimal port-
folio selection problem is time inconsistent in the sense that it does not admit the Bellman
optimality principle; that is, an optimal control that optimizes the mean-variance utility at
time zero need not be optimal at a later time; as an example, see the optimal control in [5]
and [6], which is one depending on both the current and the initial states.

Time inconsistency in optimization problems was first studied in [26]. There are basically
three different approaches to providing solution concept for these time-inconsistent problems.
First, under the notion of precommitment, only the solution that optimizes the initial objective
function would be considered, whether it is optimal for the objective function at a later time
or not is not relevant; relevant literature includes [5], [6], and [17]. Second, an agent primarily
adopts the strategy that optimizes the objective function on the first day, and then on the
next day, he will give up this strategy and use a new one that optimizes the objective function
on the second day, and so on.

The third approach originated in [21] and [26], where the primitive idea of time-consistent
strategies for time-inconsistent problems was provided; however, [20] later pointed out the
nonexistence of such strategies in certain cases. In regard to this consideration, [20] treated
time-inconsistent problems as a noncooperative game, in which strategies at different time
points are planned by different players who aim to optimize their own objective functions; Nash
equilibrium of these strategies was then utilized to define the time-consistent strategy for the
agent of the original problem. This game theoretic approach and its extensions could be found
in some recent works with an application in solving for the time-inconsistent consumption
problems with nonclassical discounting utility, such as [3], [8], [9], and [10]. Specifically, [10]
provided a precise definition of the (time-consistent) equilibrium control in continuous time
settings, such that the control will be still an equilibrium one for any subproblems over an
arbitrary confined time interval before the planning horizon.

Following their idea from [10], [3] studied the time-inconsistent control problem in a general
Markovian framework in both discrete time and continuous time settings, and derived the
extended Hamilton–Jacobi–Bellman (HJB) equation together with the verification theorem,
which gives the necessary and sufficient condition of “equilibrium controls”. Apart from
the classical mean-variance utility model and the consumption and investment model with
nonclassical (hyperbolic) discount, the time-inconsistent Markov framework in [3] has other
further extensions and applications: collective objectives [16], recursive utility [25], and asset-
liability management [28].

In view of the complexity, calibrating an equilibrium control strategy is normally easier
than computing a precommitment policy. To obtain the equilibrium strategy, we need only
solve for the extended HJB; see, e.g., [3], [10], and [28]. On the other hand, to obtain
the optimal control or precommitment solution, we have to deal with a couple of Fokker–D
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Planck and HJB equations (see [2] for detailed discussions), which commonly involves more
computationally intensive considerations.

[1] and [3] studied the mean-variance portfolio selection and provided a time-consistent
strategy via a game theoretic approach. It is important to note that their obtained common
equilibrium control is completely independent of the current state; in spite of this indepen-
dence, [4] reformulated the portfolio selection problem with wealth-dependent risk aversion.
In particular, they illustrated that the equilibrium control is dependent on the current wealth
if the risk aversion is inversely proportional to the current wealth. On the other hand, [28]
adopted the asset and liability modeling in [6] with regime switching market parameters. [28]
explicitly established that the equilibrium control is affine in current liability, while the equi-
librium value function is affine in current surplus and is quadratic in current liability; that is,
they both depend on the current state.

In this paper, we study the mean-variance portfolio selection with risk aversion being
inversely proportional to the current wealth under short-selling prohibition first in the dis-
crete time framework and then in its continuous time counterpart. In an earlier work, [4]
also considered the similar time-inconsistent problem without short-selling prohibition. Their
continuous model essentially relies on the positivity of the current wealth. Under no short-
selling prohibition, there could be admissible controls leading to a nonpositive wealth process;
nevertheless their obtained equilibrium control is linear in wealth, which in turn guarantees
positivity of the optimal wealth process at any time almost surely. Even more, if one considers
the discrete analogue of their continuous model, it is quite obvious to see the possibility that
the wealth process can take nonpositive values even with the control being linear in wealth
(see Remark 2.6 in section 2). In the present setting, the negative wealth will definitely lead
to negative risk aversion, and now instead of risk averse, the investor becomes a risk seeker,
and hence the corresponding mean-variance utility could be unbounded! This observation
makes apparent the economic limitation of their continuous counterpart in the discrete frame-
work. To avoid the possibility of taking nonpositive values for the wealth process, we forbid
short-selling allowance on both stocks and riskless bonds in our work and aim at establishing
the corresponding equilibrium controls for the mean variance portfolio with wealth-dependent
risk aversion in both discrete and continuous time settings.

Considering constrained optimal controls is a very interesting and highly nontrivial prob-
lem in stochastic control theory. For example, in portfolio selection, in practice it is not
ethical to allow an unlimited amount of short selling, and hence some definite measures such
as this one imposes on the admissible control. Along this direction, there are a number of
studies in the literature; for example, [23] and [24] studied the consumption and investment
problem when selling stocks short is prohibited (but borrowing the riskless asset is allowed).
[7] generalized the portfolio constraints to a closed, convex, nonempty subset; and later, [27]
applied their result to study the problem under money borrowing constraints and stock short-
sale restrictions. On the other hand, [13] studied the mean-variance portfolio selection with
the portfolio taking values in a predetermined constrained set via the precommitment ap-
proach. In order to tackle these portfolio selection problems under constraints, all the above
mentioned authors converted the primal problem into an unconstrained dual optimization
problem. In contrast, [15] used the precommitment solution to the mean-variance problem
with stock short-selling prohibition in terms of the solution of two extended stochastic RiccatiD
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156 BENSOUSSAN, WONG, YAM, AND YUNG

equations. Rather than constraining the portfolio, [12] studied the investment and consump-
tion problem with no bankruptcy, i.e., negative wealth prohibition. To our knowledge, there is
still very limited theoretical study via the time-consistent approach on the time-inconsistent
control problem with constraints; though [11] studied the mean-variance problem via the
time-consistent approach with constraints in investment policy, they provided only a numeri-
cal study on determining the time-consistent solution but not in any analytic form.

In section 2, we review the unconstrained mean-variance portfolio selection in both the
continuous time and discrete time frameworks via the time-consistent approach; also in this
section, the economic limitation of the corresponding discrete counterpart of the continuous
model (as studied by [4]) without short-selling constraints becomes apparent. In section 3, we
introduce the formulation of the discrete time mean-variance portfolio selection problem. In
section 4, we solve for the discrete time problem by using backward recursion and establish
the equilibrium control in Theorem 4.1. In section 5, we introduce the formulation of the
continuous time mean-variance problem and state the corresponding extended HJB equations
for the mean-variance problem in Theorem 5.1. In section 6, we make use of a suitable
ansatz in solving for the extended HJB system obtained in Theorem 5.1, and then we prove
the existence and the uniqueness of the solution in Theorems 6.1 and 6.2. Furthermore, by
utilizing the results in section 3, we also show that the equilibrium controls of a sequence
of canonical discrete time models as stated in Theorem 6.4 will converge to the equilibrium
control of the continuous time model as introduced in section 5. Numerical simulation will be
provided by comparing the performance of different constraints in control in section 7, and
we conclude in section 8. The main technical details in Theorems 5.1 and 6.4 are given in the
appendices.

2. Unconstrained time-consistent optimization. In the mean-variance portfolio selection
problem with wealth dependent risk aversion, we seek an optimal control u to maximize the
following objective functional:

(2.1) J(t, x;u) := Et,x[X
u
T ]−

γ

2x
V art,x[X

u
T ],

in which the wealth dynamic dXu
t = (rXu

t + αut)dt + σutdWt, where γ is a risk-aversion
coefficient, r is the riskless return rate, α := μ− r represents the net appreciation rate of the
risky asset with μ being the appreciation rate of the risky asset, σ is the volatility rate of the
risky asset, and finally Wt represents Brownian motion. For the sake of simplifying notation,
we denote that Et,x[X

u
T ] = E[Xu

T |Xt = x] and V art,x[X
u
T ] = V ar[Xu

T |Xt = x]. The class of all
admissible controls, U c, is the collection of all real-valued Markovian controls.

Note that the objective functional J is nonlinear in Et,x[X
u
T ], which cannot be linearly

separated from initial state in J , and so the corresponding optimization problem is time
inconsistent in the sense that the Bellman optimality principle does not hold (see [3]); that
is, though any obtained optimal control can optimize J at time 0, the same control cannot
guarantee the optimality of J at all future times.

To deal with similar time-inconsistent optimization problems, it is getting popular in the
recent literature to formulate the problem as a noncooperative game (with each time point
as a player) and then look for a certain control in the equilibrium sense: in [3] and [10], the
following definition of equilibrium control is provided in the class of all Markovian controlsD
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for the time-inconsistent control problem in the continuous time setting as follows; a similar
definition of equilibrium control in the discrete setting will be given in Definition 2.3.

Definition 2.1. A Markovian control û is said to be an equilibrium control if for every
u ∈ U c,

(2.2) lim inf
h↓0+

J(t, x; û)− J(t, x;uh)

h
≥ 0 for any (t, x) ∈ [0, T ]× R,

where uh is given by

uh(s, y) =

{
u(s, y) for t ≤ s < t+ h,

û(s, y) for t+ h ≤ s ≤ T.

By solving for the HJB system in accordance with Definition 2.1 in [4], they obtain the
following.

Theorem 2.2. The Markovian control û(t, x) = c(t)x is an equilibrium one for (2.1), where
c(t) ∈ C[0, T ] uniquely solves for the integral equation:

c(t) =
α

γσ2

{
e−

∫ T
t [r+αc(s)+σ2c2(s)]ds + γe−

∫ T
t σ2c2(s)ds − γ

}
.

Note that this equilibrium solution is linear in the current wealth x.
Define tn := nε, where ε := T

N . Next, we consider the discrete time analogue of the portfolio
selection problem with wealth dependent risk aversion in (2.1). The objective functional is
defined as

(2.3) J(n, x;u) := En,x[X
u
N ]− γ

2x
V arn,x[X

u
N ].

Considering the continuous time dynamics of bond price Bt and stock price St, by the
direct application of Itô’s formula, the changes of bond price and stock price over a step are
given, respectively, by

Btn+1 = erεBtn ,

Stn+1 = e(μ−
1
2
σ2)ε+σ(Wtn+1−Wtn)Stn .

Therefore, the dynamic of the wealth at time tn, Xn, is governed by

Xn+1 = (Xn − un)e
rε + une

(μ− 1
2
σ2)ε+σ(Wtn+1−Wtn),

in which un represents the control at time tn. Again, we denote that En,x[X
u
N ] = E[Xu

N |Xn =
x] and V arn,x[X

u
N ] = V ar[Xu

N |Xn = x]. The set of all admissible controls, Ud, is the col-
lection of all real-valued Markovian controls. As before, this optimization problem is time
inconsistent, which motivates us to look for the equilibrium (time-consistent; see [3] and [20])
control as defined next.

Definition 2.3. A Markovian control û is said to be an equilibrium control if for every
u ∈ Ud,

J(n, x; û) ≥ J(n, x;u) for any x ∈ R
+, n ∈ T ,D
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where u is given by

uk =

{
uk if k = n,

ûk if k > n.

For further motivations of Definitions 2.1 and 2.3, and for the game theoretic approach
on tackling some other time-inconsistent problems, one can consult [3], [10], and [20].

For any x > 0, the optimization problem (2.3) admits a unique equilibrium control:
Theorem 2.4. The equilibrium control û is given by ûn(x) = Cnx, where

Cn :=
An+1 − γerε(Bn+1 −A2

n+1)

e2rε(eαε − 1)2(Bn+1 −A2
n+1) + (eσ2ε − 1)e2μεBn+1

erε(eαε − 1)

γ
,

and An and Bn can be obtained recursively by

An = (erε + erε(eαε − 1)Cn)An+1, AN = 1;

Bn = [(erε + (eαε − 1)Cn)
2 + (eσ

2ε − 1)e2μεC2
n]Bn+1, BN = 1.

A proof of Theorem 2.4 is obtained by solving for û by backward recursion; the approach
is similar to that of Theorem 4.1 below, and the details are omitted. Furthermore, the solution
in this discrete time model will converge to that in the continuous time setting as N goes to
infinity:

Theorem 2.5. If c(t) is the solution of integral equation in Theorem 2.2 and Cn are given in
Theorem 2.4, then there exists K > 0 independent of both n and N such that |Cn−c(tn)| < Kε.

Again we skip the details of the proof since it is almost the same as that of Theorem 6.4
below.

Remark 2.6. The solution in this discrete time framework relies on the assumption that
x > 0. Since the equilibrium control can take any real values, it is plausible that the ratio
of the risky investment to wealth under the adoption of the equilibrium control, Ctn , lies
outside [0, 1], i.e., short-selling happens. In this scenario, even though the equilibrium control
is linear in wealth, we cannot eliminate the possibility that in the next period the wealth takes
nonpositive value:

Xn+1 = Xn

[
(1− Cn)e

rε + Cne
(μ− 1

2
σ2)ε+σ(Wtn+1−Wtn)

]
.

Suppose that Xn > 0. (i) If Cn > 1 (short-selling riskless asset), Xn+1 ≤ 0 if Wtn+1 −
Wtn < ε

σ [r − (μ − 1
2σ

2)] + ln
(
Cn−1
Cn

)
. (ii) If Cn < 0 (short-selling risky asset), Xn+1 ≤ 0 if

Wtn+1 −Wtn < ε
σ [r − (μ − 1

2σ
2)] + ln

(
1−Cn
−Cn

)
.

In the continuous time framework, the equilibrium control of an unconstrained problem
is linear in wealth, and now the wealth process becomes a geometric Brownian motion which
avoids the possibility of getting negative. In contrast, the negative wealth may happen in
the discrete time framework; however, its solution converges to that in the continuous time
framework.

The negative wealth will then reinforce the investor to become a risk seeker, which seems
to be counterintuitive. Furthermore, negative wealth also makes the wealth dependent risk
aversion γ

x economically unsound; namely, the investor could be very risk averse when heD
ow

nl
oa

de
d 

10
/0

8/
15

 to
 1

47
.8

.2
04

.1
64

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TIME-CONSISTENT CONSTRAINED PORTFOLIO SELECTION 159

has $0.1 in his pocket, while the investor becomes a strong risk seeker when he owes $0.1.
It sounds economically irrational that the investor behaves dramatically different just for
this 0.2 dollar of difference! Third, mathematically, the optimal objective functional in (2.3)
will be unbounded under negative risk aversion. Thus, if we model the risk aversion to be
inversely proportional to the wealth, we have to restrict plausible trading strategies that avoid
bankruptcy.

It is usual to implement the portfolio management in a discrete time framework. The
equilibrium strategy in an unconstrained discrete time framework can result in bankruptcy.
It can also cause the loss of concavity of the mean-variance utility at some time, and thus its
control cannot be implemented in a discrete time framework. Therefore, it is economically
questionable that the unethical discrete time strategy will converge to the equilibrium control
in [4] defined among all continuous time no bankruptcy strategies.

To overcome this anomaly, in the rest of this paper, to eliminate the chance of negative
wealth, the admissible controls have to be constrained so that no short selling is allowed. We
next consider the portfolio selection problem under short-selling prohibition in both discrete
and continuous time frameworks.

3. Problem setting: Discrete time. Given the probability space (Ω,F ,P), E denotes the
expectation with respect to real-life probability measure P. The values of bonds and stocks
are given by n ∈ T := {0, 1, . . . , N − 1},

Bn+1 = rnBn,

Sn+1 = RnSn,

where rn > 0 is the deterministic riskless return rate. Rn is the positive random return
rate of the stock, where μn := E[Rn] and σ2

n := V ar[Rn]. Also assume that Ri and Rj are
independent for any i �= j. Define Fn := σ(Ri, i ≤ n) and F = ∪N

n=0Fn. Denote un to be
the amount of money invested on the stock at time n; the corresponding wealth process Xu

n

satisfies

(3.1) Xu
n+1 = rn(X

u
n − un) +Rnun.

Also we confine our control un by

(3.2) pnXn ≤ un ≤ qnXn,

where 0 ≤ pn ≤ qn ≤ 1, subject to which short selling is not allowed, and the wealth has to
be positive. Define the class of admissible controls Ud

[p,q] := {un|pnXn ≤ un ≤ qnXn, n ∈ T }.
The objective functional is defined as

(3.3) J(n, x;u) := En,x[X
u
N ]− γn

2x
V arn,x[X

u
N ],

where En,x[X
u
N ] = E[Xu

N |Xn = x], V arn,x[X
u
N ] = V ar[Xu

N |Xn = x], and the risk-aversion
coefficient γn > 0 for all n ∈ T . From the dynamics of the wealth process, we have

En,x[X
u
n+1] = rnx+ αnun,

En,x[(X
u
n+1)

2] = (rnx+ αnun)
2 + σ2

nu
2
n,D
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where αn := μn− rn. We now look for the equilibrium solution as defined in Definition 2.3 for
this J(n, x;u) in (3.3) under the dynamic (3.1) and constraint (3.2) (here we use Ud

[p,q] instead

of Ud).
Remark 3.1. The present problem is more general than the problem for (2.3) in the previ-

ous section except the additional constraint on all admissible controls. Besides, we here allow
both the time varying of parameters and the risky return rate to be an arbitrary random

variable. If one takes rn = erε and Rn = e(μ−
1
2
σ2)ε+σ(Wtn+1−Wtn), the dynamics of the wealth

process in two models coincide, and the independence of Ri and Rj for all i �= j follows from
the stationary independent increments of Brownian motion. Moreover, for pn = 0 and qn = 1
for all n, constraint (3.2) is the standard short-selling prohibition.

4. Equilibrium solution for the discrete time problem. Define f, g as

f(n, x) = En,x[(X
û
N )2],(4.1)

g(n, x) = En,x[X
û
N ].(4.2)

Theorem 4.1. The equilibrium control for the objective functional (3.3) subject to the dy-
namics (3.1) and constraint (3.2), û, is given by

(4.3) ûn(x) = Cnx,

where Cn is defined as follows: for n < N ,

Cn := Gn

(
An+1 − γnrn(Bn+1 −A2

n+1)

α2
n(Bn+1 −A2

n+1) + σ2
nBn+1

αn

γn

)
,

and An and Bn can be obtained recursively as

An = (rn + αnCn)An+1,(4.4)

AN = 1;(4.5)

Bn = [(rn + αnCn)
2 + σ2

nC
2
n]Bn+1,(4.6)

BN = 1;(4.7)

and Gn is a layer function defined as the following:

Gn(x) :=

⎧⎪⎨
⎪⎩
qn if x > qn,

x if x ∈ [pn, qn],

pn if x < pn.

Also, we have

f(n, x) = Bnx
2,(4.8)

g(n, x) = Anx(4.9)

and

Bn > 0,(4.10)

Bn −A2
n ≥ 0(4.11)D
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for all n ∈ T .
Note that if (4.8) and (4.9) hold, (4.10) and (4.11) can be interpreted in this way: Bn

represents the coefficients of x2 for the conditional second moment of the terminal wealth up
to time n, while Bn − A2

n represents the coefficients of x2 for the conditional variance of the
terminal wealth up to time n. And hence both of them should be nonnegative.

Proof of Theorem 4.1. Our proof relies on backward induction. It is trivial that (4.8)–
(4.11) hold for n = N . Assume that (4.3), (4.8)–(4.11) hold for n ≥ k+1, and we now turn to
establishing their validity for n = k. Let u = (uk, ûk+1, . . . , ûN ); by using the notion of (4.1)
and (4.2) and the tower property,

J(k, x;u) = Ek,x[X
u
N ]− γk

2x
V ark,x[X

u
N ]

= Ek,x[Ek+1,X
uk
k+1

[X û
N ]]− γk

2x

(
Ek,x[Ek+1,X

uk
k+1

[(X û
N )2]]− (Ek,x[Ek+1,X

uk
k+1

[X û
N ]])2

)
= Ek,x[g(k + 1,Xuk

k+1)]−
γk
2x

(
Ek,x[f(k + 1,Xuk

k+1)]− (Ek,x[g(k + 1,Xuk
k+1)])

2
)
.

Since (4.8) and (4.9) hold for n = k + 1, we have

J(k, x;u) = Ak+1Ek,x[X
uk
k+1]−

γk
2x

(
Bk+1Ek,x[(X

uk
k+1)

2]−A2
k+1(Ek,x[X

uk
k+1])

2
)

= Ak+1(rkx+ αkuk)−
γk
2x

(
Bk+1[(rkx+ αkuk)

2 + σ2
ku

2
k]−A2

k+1(rkx+ αkuk)
2
)

= − γk
2x

(
α2
k(Bk+1 −A2

k+1) + σ2
kBk+1

)
u2k + αk

(
Ak+1 − γkrk(Bk+1 −A2

k+1)
)
uk

+ rkx
(
Ak+1 −

γk
2
rk(Bk+1 −A2

k+1)
)
.

The equilibrium control at k can be obtained by maximizing the above quadratic function of
uk. From the hypothesis that (4.10) and (4.11) hold for n = k + 1, this quadratic function is
strictly concave in uk. By the first order condition, the quadratic function is maximized by
adopting (4.3); so (4.3) holds for n = k. Furthermore,

f(k, x) = Ek,x[(X
û
N )2]

= Ek,x[f(k + 1,X û
k+1)]

= Bk+1Ek,x[(X
û
k+1)

2]

= Bk+1[(rkx+ αkCkx)
2 + σ2

k(Ckx)
2]

= Bk+1[(rk + αkCk)
2 + σ2

kC
2
k ]x

2,

g(k, x) = Ek,x[X
û
N ]

= Ek,x[g(k + 1,X û
k+1)]

= Ak+1Ek,x[X
û
k+1]

= Ak+1(rk + αkCk)x.

Hence, (4.8) and (4.9) hold for n = k. Obviously, Bk+1 > 0 and Bk+1 −A2
k+1 ≥ 0 imply

Bk = Bk+1[(rk + αkCk)
2 + σ2

kC
2
k ] > 0;

Bk −A2
k = (rk + αkCk)

2(Bk+1 −A2
k+1) + σ2

kC
2
kBk+1 ≥ 0.

Therefore, (4.10) and (4.11) hold for n = k, and the claim follows by backward induction.D
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5. Problem setting: Continuous time model motivated by the discrete framework.
Given the probability space (Ω,F ,P), E denotes the expectation with respect to P, and Wt

denotes the standard P-Brownian motion. The values of bonds and stocks are given by

dBt = rtBtdt,

dSt = μtStdt+ σtStdWt,

where rt is the riskless return rate, and μt and σt are the appreciation and the volatility rates
of the stock, respectively. Also assume that rt, μt, and σt are locally Lipschitz continuous and
σ2
t > 0 on [0, T ]. The dynamic of controlled wealth process is

(5.1) dXu
t = (rtX

u
t + αtut)dt+ σtutdWt,

where αt := μt − rt. The Markovian admissible controls are confined by the constraint

(5.2) ptXt ≤ ut ≤ qtXt,

where pt and qt are locally Lipschitz continuous functions. Define the class of all admissible
controls U c

[p,q] := {ut|ptXt ≤ ut ≤ qtXt, t ∈ [0, T ]}. The objective functional is

(5.3) J(t, x;u) := Et,x[X
u
T ]−

γt
2x

V art,x[X
u
T ],

where T < ∞ and risk-aversion coefficient γt is assumed to be positive and differentiable with
bounded derivative. The definition of equilibrium control in the continuous time setting is
given in Definition 2.1 (here we use U c

[p,q] instead of U c). We can define the equilibrium value
function by equilibrium control:

V (t, x) = J(t, x; û).

By the extended HJB system and its corresponding verification theorem derived in [3], we
have the following extended HJB system and the verification theorem for objective function
J(t, x;u) in (5.3) subject to (5.1) and (5.2).

Theorem 5.1 (verification theorem). Suppose that there are functions V, g, û : [0, T ]×R
+ →

R, f : [0, T ]× R
+ × [0, T ]× R

+ → R such that they satisfy the following system of equations:

Vt(t, x)− fs(t, x, t, x) −
γ′t
2x

g2(t, x)

+ sup
u∈[ptx,qtx]

{
(rtx+ αtu)

(
Vx(t, x)− fy(t, x, t, x) +

γt
2x2

g2(t, x)
)

+
1

2
σ2
t u

2
[
Vxx(t, x)− fyy(t, x, t, x) − 2fxy(t, x, t, x) −

γt
x3

g2(t, x)

+ 2
γt
x2

g(t, x)gx(t, x) −
γt
x
g2x(t, x)

]}
= 0,(5.4)

ft(t, x, s, y) + (rtx+ αtû)fx(t, x, s, y) +
1

2
σ2
t û

2fxx(t, x, s, y) = 0,(5.5)

gt(t, x) + (rtx+ αtû)gx(t, x) +
1

2
σ2
t û

2gxx(t, x) = 0,(5.6)

V (T, x) = x,(5.7)

f(T, x, s, y) = x− γs
2y

x2,(5.8)

g(T, x) = x,(5.9)D
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where the supremum in the first equation is attained at û(t, x) for all x ∈ R
+.

Then û is an equilibrium control law for J(t, x;u) in (5.3) subject to (5.1) and (5.2), and
V is the corresponding equilibrium value function. Moreover, f and g have the following
probabilistic representations:

f(t, x, s, y) = Et,x

[
X û

T − γs
2y

(
X û

T

)2]
,

g(t, x) = Et,x

[
X û

T

]
.(5.10)

The proof of the above theorem is given in Appendix A.
Remark 5.2. The problem setting in this section allows a time varying parameter. It is

more general than (2.1) except the constraint on the control. If we take pt = 0 and qt = 1 for
all t ∈ [0, T ], constraint (5.2) is a standard short-selling prohibition.

6. Equilibrium control in continuous time problem. By considering the equilibrium con-
trol in the discrete time setting, we apply the following ansatz to the equilibrium control in
the continuous time problem:

û = c(t)x.

By the probabilistic representation in (5.10), we consider the following expression for f and
g:

f(t, x, s, y) = e
∫ T
t [rτ+ατ c(τ)]dτx− γs

2y
e2

∫ T
t [rτ+ατ c(τ)+

1
2
σ2
τ c

2(τ)]dτx2,(6.1)

g(t, x) = e
∫ T
t [rτ+ατ c(τ)]dτx.(6.2)

By direct calculations, these f and g can be shown to satisfy (5.5) and (5.6). Furthermore,
we also have the following expression for V :

(6.3) V (t, x) =
{
e
∫ T
t
[rs+αsc(s)]ds − γt

2

[
e2

∫ T
t [rs+αsc(s)+

1
2
σ2
sc

2(s)]ds − e2
∫ T
t
[rs+αsc(s)]ds

]}
x.

Standard derivation gives

Vx(t, x)− fy(t, x, t, x) +
γt
2x2

g2(t, x)

= e
∫ T
t [rs+αsc(s)]ds − γt

[
e2

∫ T
t [rs+αsc(s)+

1
2
σ2
sc

2(s)]ds − e2
∫ T
t [rs+αsc(s)]ds

]

and

Vxx(t, x)− fyy(t, x, t, x) − 2fxy(t, x, t, x)−
γt
x3

g2(t, x) + 2
γt
x2

g(t, x)gx(t, x)−
γt
x
g2x(t, x)

= −γt
x
e2

∫ T
t [rs+αsc(s)+

1
2
σ2
sc

2(s)]ds.
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Substituting these derivatives into (5.4), we have a concave quadratic equation in u (where
Vt(t, x) is independent of u):

Vt(t, x)− fs(t, x, t, x) −
γ′t
2x

g2(t, x)

+ sup
u∈[pt,qt]

{
rtx

(
e
∫ T
t [rs+αsc(s)]ds − γt

[
e2

∫ T
t [rs+αsc(s)+

1
2
σ2
sc

2(s)]ds − e2
∫ T
t [rs+αsc(s)]ds

])

+ αt

(
e
∫ T
t [rs+αsc(s)]ds − γt

[
e2

∫ T
t [rs+αsc(s)+

1
2
σ2
sc

2(s)]ds − e2
∫ T
t [rs+αsc(s)]ds

])
u

− γt
2x

σ2
t e

2
∫ T
t [rs+αsc(s)+

1
2
σ2
sc

2(s)]dsu2
}
= 0.

The first order condition gives us with optimal û

(6.4) û(t, x) = Gt

(
αt

γtσ
2
t

{
e−

∫ T
t [rs+αsc(s)+σ2

sc
2(s)]ds + γte

− ∫ T
t

σ2
sc

2(s)ds − γt

})
x,

where Gt is a layer function defined as the following:

Gt(x) :=

⎧⎪⎨
⎪⎩
qt if x > qt,

x if x ∈ [pt, qt],

pt if x < pt.

Since pt and qt are Lipschitz continuous, the layer function Gt is jointly Lipschitz:

(6.5) |Gt(x)−Gs(y)| ≤ |x− y|+K|t− s|.

By comparing coefficients of (6.4) and û = c(t)x, we ought to have c(t) to satisfy the integral
equation

(6.6) c(t) = Gt

(
αt

γtσ
2
t

{
e−

∫ T
t [rs+αsc(s)+σ2

sc
2(s)]ds + γte

− ∫ T
t σ2

sc
2(s)ds − γt

})
.

Theorem 6.1. Assume that c is the unique solution in C[0, T ] of the integral equation (6.6).
If V, g : [0, T ] × R

+ → R, f : [0, T ] × R
+ × [0, T ]× R

+ → R are given by (6.3), (6.2), and
(6.1), respectively, and û : [0, T ] × R

+ → R is given by û(t, x) = c(t)x, then V, f, g, û satisfy
the HJB system given by (5.4)–(5.9). Moreover, by the verification theorem (Theorem 5.1), û
is an equilibrium control law, V is an equilibrium value function, and f, g have probabilistic
representation as in (5.10).

Proof. Equations (5.5)–(5.9) are obviously satisfied by the choices of f , g, and û as in (6.2)
and (6.1). By (6.4) and the concavity, we have shown that the supremum of (5.4) is attained
at û. We only have to show (5.4); indeed, by the choices of f , g, and V as in (6.2), (6.1), and
(6.3), we have

V (t, x) = f(t, x, t, x) +
γt
2x

[g(t, x)]2,
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and thus we can express the following derivatives of V as

Vt(t, x) = ft(t, x, t, x) + fs(t, x, t, x) +
γt
x
gt(t, x)g(t, x) +

γ′t
2x

g2(t, x),

Vx(t, x) = fx(t, x, t, x) + fy(t, x, t, x)−
γt
2x2

g2(t, x) +
γ

x
gx(t, x)g(t, x),

Vxx(t, x) = fxx(t, x, t, x) + 2fxy(t, x, t, x) + fyy(t, x, t, x) +
γt
x3

g2(t, x)− 2γt
x2

gx(t, x)g(t, x)

+
γt
x
gxx(t, x)g(t, x) +

γt
x
g2x(t, x).

Replacing u by û, the (5.4) can be rewritten as

Vt(t, x)− fs(t, x, t, x) −
γ′t
2x

g2(t, x) +
{
(rtx+ αtû)

(
Vx(t, x)− fy(t, x, t, x) +

γt
2x2

g2(t, x)
)

+
1

2
σ2
t û

2
[
Vxx(t, x) − fyy(t, x, t, x)− 2fxy(t, x, t, x) −

γt
x3

g2(t, x)

+ 2
γt
x2

g(t, x)gx(t, x)−
γt
x
g2x(t, x)

]}
= ft(t, x, t, x) + (rtx+ αtû)fx(t, x, t, x) +

1

2
σ2
t û

2fxx(t, x, t, x)

+
γt
x
g(t, x)

[
gt(t, x) + (rtx+ αtû)gx(t, x) +

1

2
σ2
t û

2gxx(t, x)

]
= 0.

The last equality follows from (5.5) and (5.6).
What remains now is to verify whether the integral equation (6.6) admits a unique solution

in C[0, T ].
Theorem 6.2. The integral equation (6.6) admits a unique solution c ∈ C[0, T ].
Remark 6.3. The existence proof of integral equation (6.6) in Theorem 6.2 and the integral

equation in [4] are similar. We both construct an iteration scheme for the integral equation
and establish the existence of a convergence subsequence in accordance with the Arzela–Ascoli
theorem. On the other hand, in [4], it does not seem clear enough on showing the limit of the
subsequence actually satisfying the integral equation; indeed, just a subsequential convergence
does not suffice to take the limit on both sides of the corresponding recursive relation. In our
proof of Theorem 6.2, we conclude that the limit of the subsequence is the limit of the sequence
by showing that the iteration (6.7) is actually Cauchy. Nevertheless, we can similarly show
that the corresponding iteration scheme in [4] is also Cauchy in spite of Theorem 4.9 in [4].

Proof of Theorem 6.2. In the following, for the sake of notation, K ′ represents different
constants at different lines. The proof is based on an application of the Arzela–Ascoli theorem.
Construct a sequence cn ∈ C[0, T ] as follows:

c0(t) = Gt

(
αt

γtσ2
t

)
,

cn+1(t) = Gt

(
αt

γtσ2
t

dn(t)

)
,(6.7)
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where dn(t) := e−
∫ T
t [rs+αscn(s)+σ2

sc
2
n(s)]ds + γte

− ∫ T
t

σ2
sc

2
n(s)ds − γt. Since 0 ≤ pt ≤ Gt ≤ qt ≤ 1

for all t ∈ [0, T ], cn is uniformly bounded by 0 and 1 in [0, T ]. We next show that {cn}
is equicontinuous. Note that all rt, αt, σt, γt are Lipschitz continuous (since γt has bounded
derivative), and so they are uniformly bounded on [0, T ]. Define

r := max
t∈[0,T ]

|rt|, α := max
t∈[0,T ]

|αt|, σ := max
t∈[0,T ]

|σt|, γ := max
t∈[0,T ]

|γt| < ∞,

σ := min
t∈[0,T ]

σt, γ := min
t∈[0,T ]

γt > 0.(6.8)

For any s, t ∈ [0, T ], we have

|cn+1(t)− cn+1(s)|

=

∣∣∣∣∣Gt

(
αt

γtσ2
t

dn(t)

)
−Gs

(
αs

γsσ2
s

dn(s)

) ∣∣∣∣∣
≤
∣∣∣∣∣ αt

γtσ2
t

dn(t)−
αs

γsσ2
s

dn(s)

∣∣∣∣∣+K|t− s|

≤
∣∣∣∣∣ αt

σ2
t γt

dn(t)−
αs

σ2
t γt

dn(t)

∣∣∣∣∣+
∣∣∣∣∣ αs

σ2
t γt

dn(t)−
αs

σ2
t γs

dn(t)

∣∣∣∣∣+
∣∣∣∣∣ αs

σ2
t γs

dn(t)−
αs

σ2
sγs

dn(t)

∣∣∣∣∣
+

∣∣∣∣∣ αs

σ2
sγs

dn(t)−
αs

σ2
sγs

dn(s)

∣∣∣∣∣+K|t− s|

= |αt − αs|
∣∣∣∣∣dn(t)γtσ

2
t

∣∣∣∣∣+ |γt − γs|
∣∣∣∣∣αsdn(t)

γtγsσ
2
t

∣∣∣∣∣+ |σt − σs|
∣∣∣∣∣αsdn(t)(σt + σs)

σ2
t σ

2
sγs

∣∣∣∣∣
+ |dn(t)− dn(s)|

∣∣∣∣∣αs

σ2
s

∣∣∣∣∣+K|t− s|

≤ K ′ (|dn(t)||t− s|+ |dn(t)− dn(s)|+ |t− s|) .(6.9)

The equicontinuity of {cn} follows if we can show that dn(t) is uniformly bounded and dn(t)
is Lipschitz continuous:

(6.10) −γ ≤ dn(t) ≤ e−
∫ T
t [rs+αscn(s)+σ2

sc
2
n(s)]ds + γte

− ∫ T
t

σ2
sc

2
n(s)ds ≤ e(r+α)T + γ.

Therefore, dn(t) is uniformly bounded. Furthermore,

|dn(t)− dn(s)|
≤
∣∣∣e− ∫ T

t [ru+αucn(u)+σ2
uc

2
n(u)]du − e−

∫ T
s [ru+αucn(u)+σ2

uc
2
n(u)]du

∣∣∣
+ |γt − γs||e−

∫ T
t

σ2
uc

2
n(u)du − 1|+ γs

∣∣∣e− ∫ T
t

σ2
uc

2
n(u)du − e−

∫ T
s

σ2
uc

2
n(u)du

∣∣∣
≤ e−

∫ T
t [ru+αucn(u)+σ2

uc
2
n(u)]du

∣∣∣1− e−
∫ t
s [ru+αucn(u)+σ2

uc
2
n(u)]du

∣∣∣
+ |γt − γs|+ γse

− ∫ T
t σ2

uc
2
n(u)du

∣∣∣1− e−
∫ t
s σ2

uc
2
n(u)du

∣∣∣
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≤ K ′e(r+α)T

∣∣∣∣
∫ t

s

[
ru + αucn(u) + σ2

uc
2
n(u)

]
du

∣∣∣∣+K ′|t− s|+K ′eσ
2T

∣∣∣∣
∫ t

s
σ2
uc

2
n(u)du

∣∣∣∣
≤ K ′e(r+α)T (r + α+ σ2)|t− s|+K ′|t− s|+K ′eσ

2Tσ2|t− s| ≤ K ′|t− s|.(6.11)

The Arzela–Ascoli theorem concludes with the existence of a subsequence cnk
and c : [0, T ] →

R such that cnk
→ c ∈ C[0, T ] uniformly on [0, T ]. Next, we shall show that for any t ∈ [0, T ],

{cn(t)}n∈N is a Cauchy sequence, so cn(t) → c(t) uniformly. Define c̄n := cn − cn−1. By
definition, cn is bounded by 0 and 1 uniformly on [0, T ], and so

|c̄n+1(t)| =
∣∣∣∣∣Gt

(
αt

γtσ
2
t

{
e−

∫ T
t [rs+αscn(s)+σ2

sc
2
n(s)]ds + γte

− ∫ T
t σ2

sc
2
n(s)ds − γt

})

−Gt

(
αt

γtσ2
t

{
e−

∫ T
t [rs+αscn−1(s)+σ2

sc
2
n−1(s)]ds + γte

− ∫ T
t σ2

sc
2
n−1(s)ds − γt

}) ∣∣∣∣∣
≤
∣∣∣∣ αt

γtσ2
t

∣∣∣∣ (
∣∣∣e− ∫ T

t [rs+αscn(s)+σ2
sc

2
n(s)]ds − e−

∫ T
t [rs+αscn−1(s)+σ2

sc
2
n−1(s)]ds

∣∣∣
+ γt

∣∣∣e− ∫ T
t

σ2
sc

2
n(s)ds − e−

∫ T
t

σ2
sc

2
n−1(s)ds

∣∣∣)
≤ K ′

{
e(r+α)T

∫ T

t
α|c̄n(s)|+ σ2[cn(s) + cn−1(s)]|c̄n(s)|ds

+ γ

∫ T

t
σ2[cn(s) + cn−1(s)]|c̄n(s)|ds

}

≤ K ′
(
e(r+α)T (α+ 2σ2) + 2γ σ2

)∫ T

t
|c̄n(s)|ds(6.12)

for all t ∈ [0, T ]. Define φn(t) :=
∫ T
t |c̄n(s)|ds. From (6.12), we have

−φ′
n(t) ≤ Kφn−1(t),

which implies

φn(t) = −
∫ T

t
φ′
n(s)ds ≤ K

∫ T

t
φn−1(s)ds.

By induction, we can deduce that

φn+1(t) ≤
Kn

n!
(T − t)nφ1(0).

By (6.12) again, we have

|c̄n+1(t)| ≤ Kφn(t) ≤
Kn

(n− 1)!
(T − t)n−1φ1(0).

Then, given a large integer n, for any m > n, we have

|cn(t)− cm(t)| ≤
∞∑
k=n

|c̄k+1(t)| ≤
(KT )n

(n− 1)!
φ1(0)

[
1 +

KT

n−KT

]
.
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Hence, we can conclude that {cn(t)}n∈N is a uniformly Cauchy sequence and c is the uniform
limit of cn. Then taking the limit on both sides of (6.7), c is the solution of (6.6). For the
uniqueness, assume that c1 and c2 are the solution of (6.6). Again, c1 and c2 are bounded by
0 and 1 uniformly on [0, T ], and by using the same approach as in (6.12), we have

|c1(t)− c2(t)|

=

∣∣∣∣∣Gt

(
αt

γtσ
2
t

{
e−

∫ T
t [rs+αsc1(s)+σ2

sc
2
1(s)]ds + γte

− ∫ T
t σ2

sc
2
1(s)ds − γt

})

−Gt

(
αt

γtσ
2
t

{
e−

∫ T
t [rs+αsc2(s)+σ2

sc
2
2(s)]ds + γte

− ∫ T
t σ2

sc
2
2(s)ds − γt

}) ∣∣∣∣∣
≤ K

{
e(r+α)T

∣∣∣∣∣
∫ T

t
αs[c1(s)− c2(s)] + σ2

s [c
2
1(s)− c22(s)]ds

∣∣∣∣∣+ γ

∣∣∣∣∣
∫ T

t
σ2
s [c

2
1(s)− c22(s)]ds

∣∣∣∣∣
}

≤ K

∫ T

t
|c1(s)− c2(s)|ds.

Finally, Gronwall’s inequality concludes that c1 = c2 on [0, T ].
Next, we consider the convergence of the results from discrete time to that in the contin-

uous time framework. The dynamic of wealth process in the discrete time model is

Xn+1 = (Xn − un)e
∫ tn+1
tn

rsds + une
∫ tn+1
tn

(μs− 1
2
σ2
s )ds+

∫ tn+1
tn

σsdWs .

Here, the riskless return rate is e
∫ tn+1
tn

rsds, and the risky return rate is e
∫ tn+1
tn

(μs− 1
2
σ2
s)ds+

∫ tn+1
tn

σsdWs .
Take the coefficients pn, qn, γn, rn, μn, σn, and αn as

pn = ptn , qn = qtn , γn = γtn , rn = e
∫ tn+1
tn

rsds, μn = e
∫ tn+1
tn

μsds,

σ2
n = (e

∫ tn+1
tn

σ2
sds − 1)e2

∫ tn+1
tn

μsds, αn = e
∫ tn+1
tn

rsds(e
∫ tn+1
tn

αsds − 1).(6.13)

Recall that the solution in the continuous time model is û(t, x) = c(t)x, where c(t) satisfies

c(t) = Gt

(
αt

γtσ2
t

{
e−

∫ T
t [rs+αsc(s)+σ2

sc
2(s)]ds + γte

− ∫ T
t

σ2
sc

2(s)ds − γt

})
.

Define a(t) and b(t) as follows:

a(t) := e
∫ T
t
[rs+αsc(s)]ds,

b(t) := e2
∫ T
t [rs+αsc(s)+

1
2
σ2
sc

2(s)]ds;(6.14)

thus a(t) and b(t) are differentiable, and a(t) and b(t) are solutions to the ODE system

a′(t) + (rt + αtc(t)) a(t) = 0,(6.15)

a(T ) = 1;(6.16)

b′(t) +
{
2 (rt + αtc(t)) + σ2

t c(t)
2
}
b(t) = 0,(6.17)

b(T ) = 1.(6.18)D
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Since the coefficients of this ODE system are all bounded uniformly on [0, T ], a(t) and b(t)
are their unique solutions. Then c(t) can be expressed in term of a(t) and b(t):

c(t) = Gt

[
αt

γtσ
2
t

a(t) + γt[a(t)
2 − b(t)]

b(t)

]
.

We have the following convergent theorem, which states that Cn as obtained in Theorem 4.1
converges to c(tn) as obtained in (6.6) as ε goes to 0, where the coefficients in the discrete
time model are given in (6.13). The above representation of c(t) in terms of a(t) and b(t) can
motivate the proof of this convergence result.

Theorem 6.4. For every fixed (small) ε > 0, if c(t) is the solution of the integral equation
(6.6) and Cn are given as in Theorem 4.1 with the coefficients as defined in (6.13), then there
exists K > 0, independent of n, such that |Cn − c(tn)| < Kε.

The proof of Theorem 6.4 is given in Appendix B.

7. Numerical simulation. In this section, we compare the performance under different
constraints on the investment to wealth ratio. In the first subsection, we investigate the
effect of constraints, and we shall compare the equilibrium investment to wealth ratio and
value function against t. In the second subsection, for different models of γ(t), we shall
compare the equilibrium investment to wealth ratio and value function at t = 0 and x = 1
against T . In the third subsection, we compare the mean-variance distribution representing
the conditional expectation and conditional variance for varying risk-aversion coefficients.
At the same time, we compare the performance of three investors: the first investor allows
short selling (unconstrained investor), the second investor disallows short selling (constrained
investor), and the third investor disallows short selling and invests at most half of his wealth
into risky assets (conservative investor); the performance of an investor, who puts his wealth
only in riskless assets, is augmented as a reference.

We set the risk-aversion coefficient γ(t) to be time varying, as is usual for an investor
being relatively less risk averse if the time to the expiry is still long, which we model γ(t) by
using the following logit function with known parameters k1 and k2:

γ(t;T ) :=
k1

1 + e−k2(t−T )
.

k1
2 gives the risk-aversion coefficient when the time is at the expiry date and it is the maximum
risk aversion. Larger k2 will lead to more significant change in risk aversion as the time to the
expiry is larger, so that the risk aversion of the long term investor will be smaller for larger
k2. Also, we fix r = 0.05, μ = 0.2, and σ = 0.2.

For the computation of investment to wealth ratio, the equilibrium value function, and
the conditional expected value and conditional variance with equilibrium control for the un-
constrained investor, refer to [4]. For the constrained investor, we first set pt = 0 and qt = 1,
then the investment to wealth ratio can be found from c(t) in (6.6), and the equilibrium value
function is given in (6.3). The computation details for the conservative investor can similarly
be found by setting pt = 0 and qt = 0.5.

Since obtaining the investment to wealth ratio c(t) directly from (6.6) is not immediate,D
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instead, the investment to wealth ratio, c(t;T ), can be expressed as

(7.1) c(t;T ) = G

[
α

γ(t;T )σ2

a(t;T ) + γ(t;T )[a(t;T )2 − b(t;T )]

b(t;T )

]
,

where a(t;T ) and b(t;T ) are the solution for the following ODE system:

da

dt
(t;T ) + (r + αc(t;T )) a(t;T ) = 0,

a(T ;T ) = 1;

db

dt
(t;T ) +

{
2 (r + αc(t;T )) + σ2c(t;T )2

}
b(t;T ) = 0,

b(T ;T ) = 1.

Thus a(t;T ) and b(t;T ) have the following expressions:

a(t;T ) = e
∫ T
t [r+αc(s;T )]ds,

b(t;T ) = e2
∫ T
t [r+αc(s;T )+ 1

2
σ2c2(s;T )]ds.

At the same time, we can express the equilibrium value function and the conditional expected
value and conditional variance with equilibrium control in terms of a(t) and b(t):

V (t, x;T ) = [a(t;T ) +
γ(t;T )

2
(a(t;T )2 − b(t;T ))]x,

Et,x[X
û
T ] = a(t;T )x,

V art,x[X
û
T ] = (b(t;T )− a(t;T )2)x2.

7.1. Effect of control constraints. In Figure 1, k1 = 5, k2 = 0.05, T = 50, all investors
will invest more in risky assets when the time is closer to the expiry. Moreover, when the
time is close to the expiry, the unconstrained investor will short sell riskless assets to invest
more in risky assets to get the most satisfaction. At the same time, the constrained investor
and the conservative investor are not allowed to invest too much in risky assets; their upper
constraints are activated so that they can invest in risky assets only at their maximum levels.
However, the highest risky investment for the unconstrained investor at the expiry makes his
uncertainty at time 0 become the largest, so his value function at that time will be less than
the constrained investor and the conservative investor. To hedge such a large uncertainty at
the expiry, the unconstrained investor will short sell the risky asset when the time is far from
the expiry, but the constrained investor and the conservative investor cannot short sell, so
they can put all their wealth only on riskless assets.

7.2. Effect of different risk-aversion coefficient models. We first consider the case of
large terminal risk aversion, so that all three risky investors will take the same strategy up
to the expiry, and we fix k1 = 50. In Figure 2, we further set k2 = 0.1, large k1 and small
k2 maintain large risk aversion, and all three risky investors maintain a steady investment.
The unconstrained investor invests less than half of his wealth over the whole time horizon
even though he is allowed to invest more in risky assets, so all three investors take the sameD
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(b)

Figure 1. Fix k1 = 5, k2 = 0.05, T = 50, x = 1: (a) The comparison between the investment to wealth
ratio against t for different investors. (b) The comparison between the equilibrium value functions against t
for different investors. Full line represents the unconstrained investor, dashed line represents the constrained
investor, dotted line represents the conservative investor, and dotdashed line represents the riskless investor
(available only in (b)).
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(b)

Figure 2. Fix k1 = 50, k2 = 0.1, t = 0, x = 1: (a) The comparison between the investment to wealth
ratio against T for different investors. (b) The comparison between the equilibrium value functions against T
for different investors. Full line represents the unconstrained investor, dashed line represents the constrained
investor, dotted line represents the conservative investor, and dotdashed line represents the riskless investor
(available only in (b)).

strategy. Besides, they invest less risky in midterm investments, compared with those over
the long and short terms, as they hedge out the risk over short term investments. For long
term investments, the risk aversion is small, so they can invest more in risky assets.

In Figures 3 and 4, we increase k2 to 0.2 and 0.3, respectively; then the risk aversion for the
long term investor will be smaller than that in Figure 2. Thus, the unconstrained investor will
take more risky investments in the long term, and the constrained investor and the conservative
investor will follow the unconstrained investor to carry out aggressive investments until the
risky investments reach their maximum limit. Because of being forbidden to take too risky ofD
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0 10 20 30 40 50
T0.0

0.2

0.4

0.6

0.8

1.0

c�0;T�

(a)

10 20 30 40 50
T

20

40

60

80

100

120

V�0,1;T�

(b)

Figure 3. Fix k1 = 50, k2 = 0.2, t = 0, x = 1: (a) The comparison between the investment to wealth
ratio against T for different investors. (b) The comparison between the equilibrium value functions against T
for different investors. Full line represents the unconstrained investor, dashed line represents the constrained
investor, dotted line represents the conservative investor, and dotdashed line represents the riskless investor
(available only in (b)).
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Figure 4. Fix k1 = 50, k2 = 0.3, t = 0, x = 1: (a) The comparison between the investment to wealth
ratio against T for different investors. (b) The comparison between the equilibrium value functions against T
for different investors. Full line represents the unconstrained investor, dashed line represents the constrained
investor, dotted line represents the conservative investor, and dotdashed line represents the riskless investor
(available only in (b)).

investments, the performance of the constrained investor and the conservative investor will not
be as good as that of the unconstrained investor since they cannot follow the unconstrained
investor to take more risky investments.

Later, we set k1 = 1 in Figures 5–7, and thus the terminal risk aversion is small so that
the unconstrained investor will short sell riskless assets at expiry. The long term investment
strategy is similar to the case of k1 = 50. The constrained investor and conservative investor
cannot short sell, so they can just invest as many risky assets as they can. The unconstrained
risky investments make the unconstrained investor able to perform better than the other twoD

ow
nl

oa
de

d 
10

/0
8/

15
 to

 1
47

.8
.2

04
.1

64
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TIME-CONSISTENT CONSTRAINED PORTFOLIO SELECTION 173
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Figure 5. Fix k1 = 1, k2 = 0.1, t = 0, x = 1: (a) The comparison between the investment to wealth
ratio against T for different investors. (b) The comparison between the equilibrium value functions against T
for different investors. Full line represents the unconstrained investor, dashed line represents the constrained
investor, dotted line represents the conservative investor, and dotdashed line represents the riskless investor
(available only in (b)).
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Figure 6. Fix k1 = 1, k2 = 0.2, t = 0, x = 1: (a) The comparison between the investment to wealth
ratio against T for different investors. (b) The comparison between the equilibrium value functions against T
for different investors. Full line represents the unconstrained investor, dashed line represents the constrained
investor, dotted line represents the conservative investor, and dotdashed line represents the riskless investor
(available only in (b)).

risky investors in Tables 1 and 2. However, the huge risky investments in the short term result
in a high volatility drawback in long term investments, and thus the conservative investors
perform better than the other two risky investors in Figure 5.

In Figure 6, the constrained investor has the best long term performance among all three
risky investors. It is because the excessive short term investments of the unconstrained investor
cause large long term uncertainty, while the conservative investor cannot follow the other two
risky investors to invest more in risky assets which causes his return to be less. In Figure 7,
the allowance of long term unconstrained risky investments makes the unconstrained investorD

ow
nl

oa
de

d 
10

/0
8/

15
 to

 1
47

.8
.2

04
.1

64
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

174 BENSOUSSAN, WONG, YAM, AND YUNG

0 10 20 30 40 50
T0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

c�0;T�

(a)

10 20 30 40 50
T

500

1000

1500

2000

V�0,1;T�

(b)

Figure 7. Fix k1 = 1, k2 = 0.3, t = 0, x = 1: (a) The comparison between the investment to wealth
ratio against T for different investors. (b) The comparison between the equilibrium value functions against T
for different investors. Full line represents the unconstrained investor, dashed line represents the constrained
investor, dotted line represents the conservative investor, and dotdashed line represents the riskless investor
(available only in (b)).

Table 1

Equilibrium utility value for different investors
in different T with k1 = 1, k2 = 0.1 when t = 0 and x = 1

Investor Unconstrained Constrained Conservative Riskless

T = 1 1.2839 1.2069 1.1301 1.0513

T = 10 2.4730 4.1623 1.8345 1.6487

T = 20 5.3994 9.0910 10.2240 2.7183

T = 50 78.8514 128.2294 162.7860 12.1825

Table 2

Equilibrium utility value for different investors
in different T with k1 = 1, k2 = 0.2 when t = 0 and x = 1

Investor Unconstrained Constrained Conservative Riskless

T = 1 1.3004 1.2077 1.1302 1.0513

T = 10 4.1916 5.7886 3.4140 1.6487

T = 20 19.3953 26.6351 11.8870 2.7183

T = 50 2754.3159 3545.4243 514.0615 12.1825

outperform the other two risky investors.
In conclusion, the unconstrained investor, constrained investor, and conservative investor

can perform better than the other two in a certain value of k1, k2, and T . We observe that the
long term investments of three risky investors are steady; larger k2 will make the unconstrained
investor have more risky long term investments because of smaller long term risk aversion.
However, if any investor cannot follow the long term investments of the unconstrained in-
vestor because of the constraint, then his investment performance will be affected. Smaller k1
encourages more risky investments in the short term, but it gives a drawback over long term
investment performance because of the volatility, and thus the unconstrained investor will beD
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significantly affected by this excessive risky investment in the short term. For further analysis
about the nontypical observation that the constrained investor outperforms the unconstrained
investor, Remark 5.4.1 in [29] provides a deep discussion in both mathematical and economical
aspects.

7.3. Mean-variance distribution between different control constraints. In Figures 8–10,
we compare the mean-variance distribution for different investors setting T = 5, 50. We model
the risk-aversion coefficient by the logit function with free varying k1, k2, and thus we can see
a two-dimensional area of mean-variance distribution. We can see that the distribution area
of the conservative investor is inside the distribution area of the constrained investor, but
they occupy the most efficient part of the distribution area of the constrained investor. A
similar relation appears between the constrained investor and unconstrained investor. Three
investors share the same mean-variance distribution for small variance because they adopt the
same investment strategy if the risk-aversion coefficient is large.

In Figures 8(a)–9, we see that the constrained investor and conservative investor are
restricted by the upper bound in expected return because of constrained investment in risky
assets, which explains the more conservative investor not performing well for small T .

It is also a surprise that the lower end of the mean-variance distribution of the uncon-
strained investor will have a shape of “2” for T = 50.

Note that [11] found the same observation that the constrained investor adopts a more
efficient strategy than that of the unconstrained investor.

8. Conclusion. In this paper, we studied mean-variance portfolio selection with short-
selling prohibition via the time-consistent approach. For the present case that the risk aversion
is inversely proportional to the current wealth, positive wealth assumption is required for the
investor to remain risk averse, and so the short selling has to be prohibited (Remark 2.6). By
using backward induction, the equilibrium control in the discrete time setting is shown to be
linear in wealth where its coefficients can be obtained by backward recursion (Theorem 4.1).
By using the extended HJB equation (Theorem 5.1), we showed that the equilibrium control
in the continuous time setting is also linear in wealth with coefficients satisfying the integral
equation in (Theorem 6.1); this integral equation has been shown to admit a unique solution
(Theorem 6.2). We also show that the equilibrium control in the discrete time setting converges
to that in the continuous time model (Theorem 6.4). Finally, some numerical comparisons of
the performance for different control constraint were made.

Further extensions of our present problem could be investigated. First, one can consider
the same problem with multiple risky assets; the corresponding feasible set of admissible
controls is then confined to a multidimensional cone in light of the requirement of short-
selling prohibition. Second, it is interesting to also consider the same problem with random
parameters, but the model may not be Markovian anymore, and thus the approach in [3]
cannot be directly applied. Instead, one can consider the work of [14], in which all adapted
controls are regarded as admissible controls, and hence the corresponding problem could
probably be resolved; finally, it may also be crucial to compare the performances of the
respective equilibrium controls among different admissible sets, [3] and [14], as we can perceive
that the equilibrium control over the smaller admissible set can outperform the correspondingD
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(a)

(b)

Figure 8. The comparison between the mean-variance distribution for different constraints with different
expiry times T : (a) T = 5, (b) T = 50, given the current time t = 0 and current wealth x = 1. The y-axis
represents the equilibrium conditional expected return, and the x-axis represents the equilibrium conditional
variance. Red area represents the unconstrained investor, orange area represents the constrained investor, and
yellow area represents the conservative investor.D

ow
nl

oa
de

d 
10

/0
8/

15
 to

 1
47

.8
.2

04
.1

64
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TIME-CONSISTENT CONSTRAINED PORTFOLIO SELECTION 177

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1.0

1.5

2.0

2.5

3.0

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1.0

1.5

2.0

2.5

3.0

(c)

Figure 9. The mean-variance distribution for different constraints: (a) unconstrained investor, (b) con-
strained investor, (c) conservative investor, given the expiry T = 5, the current time t = 0, and current
wealth x = 1. The y-axis represents the equilibrium conditional expected return, and the x-axis represents the
equilibrium conditional variance.
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(a)

(b)

(c)

Figure 10. The mean-variance distribution for different constraints: (a) unconstrained investor, (b) con-
strained investor, (c) conservative investor, given the expiry T = 50, the current time t = 0, and current
wealth x = 1. The y-axis represents the equilibrium conditional expected return, and the x-axis represents the
equilibrium conditional variance.D
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one over the larger one.

Appendix A. The proof of Theorem 5.1 and the relation between Theorem 5.1 and
equilibrium control. In this section, we prove Theorem 5.1 by using the same approach as
in Appendix A in [4], with the admissible set of u taking values being confined in [ptx, qtx]
(rather than in R) in the present short-selling prohibition model.

Proof of Theorem 5.1. Define

G(t, x, y) :=
γt
2x

y2.

According to the extended HJB system and the corresponding verification theorem given by
[3], if we could find V, g, û : [0, T ]×R

+ → R, f : [0, T ]×R
+ × [0, T ]×R

+ → R such that they
satisfy the following extended HJB system, then we can get the conclusion of Theorem 5.1:

sup
u∈[ptx,qtx]

{
(AuV )(t, x) − (Auf)(t, x, t, x) + (Auf t,x)(t, x)

−Au(G 	 g)(t, x) + (Hug)(t, x)} = 0,

(Aûf s,y)(t, x) = 0,

(Aûg)(t, x) = 0,

V (T, x) = x,

f(T, x, s, y) = x− γs
2y

x2,

g(T, x) = x,

where the supremum in the first equation is attained at û(t, x) for all x ∈ R
+, Au denotes the

controlled infinitesimal generator, and f s,y, G 	 g, and Hug are defined as

f s,y(t, x) = f(t, x, s, y),

(G 	 g)(t, x) = G(t, x, g(t, x)),

Hug(t, x) =
∂G

∂y
(t, x, y)

∣∣∣
y=g(t,x)

·Aug(t, x).

In reference to the dynamics of the controlled wealth process, we have the following expression
for the infinitesimal operator:

Au =
∂

∂t
+ (rtx+ αtu)

∂

∂x
+

1

2
σ2
t u

2 ∂2

∂x2
.

Thus, we have (5.5) to (5.9). Next, we make further computation on the first equation of the
extended HJB system term by term:

AuV (t, x) =
∂V

∂t
(t, x) + (rtx+ αtu)

∂V

∂x
(t, x) +

1

2
σ2
t u

2 ∂
2V

∂x2
(t, x),

Auf t,x(t, x) =
∂f

∂t
(t, x, t, x) + (rtx+ αtu)

∂f

∂x
(t, x, t, x) +

1

2
σ2
t u

2 ∂
2f

∂x2
(t, x, t, x),

Auf(t, x, t, x) =
∂f

∂t
(t, x, t, x) +

∂f

∂s
(t, x, t, x) + (rtx+ αtu)

(
∂f

∂x
(t, x, t, x) +

∂f

∂y
(t, x, t, x)

)
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+
1

2
σ2
t u

2

(
∂2f

∂x2
(t, x, t, x) +

∂2f

∂y2
(t, x, t, x) + 2

∂2f

∂x∂y
(t, x, t, x)

)
,

Au(G 	 g)(t, x) = γ′t
2x

g2(t, x) +
γt
x
g(t, x)

∂g

∂t
(t, x)

+ (rtx+ αtu)

(
− γt
2x2

g2(t, x) +
γt
x
g(t, x)

∂g

∂x
(t, x)

)

+
1

2
σ2
t u

2

{
γt
x3

g2(t, x)− 2
γt
x2

g(t, x)
∂g

∂x
(t, x) +

γt
x

(
∂g

∂x
(t, x)

)2
}

+
1

2
σ2
t u

2γt
x
g(t, x)

∂2g

∂x2
(t, x),

Hug(t, x) =
γt
x
g(t, x)

(
∂g

∂t
(t, x) + (rtx+ αtu)

∂g

∂x
(t, x) +

1

2
σ2
t u

2 ∂
2g

∂x2
(t, x)

)
.

Based on these expressions, we deduce (5.4).

Appendix B. Convergence of equilibrium controls in discrete time to those in continu-
ous time. We now aim to establish Theorem 6.4. First, we prove the following Theorem B.5
that An and Bn in Theorem 4.1 with the coefficients as specified in (6.13) converge, respec-
tively, to a(t) and b(t) as defined in (6.14). The present proof of the convergence is inspired
by [9].

Lemma B.1.
(a) Let c(t) be the solution of the integral equation (6.6). If a(t) and b(t) are defined in

(6.14), then there exist k1 > 0 and K1 < ∞, which are independent of ε, such that both a(t)
and b(t) are bounded above by K1 and bounded below by k1 uniformly on [0, T ].

(b) Let An and Bn be given in Theorem 4.1 with coefficients as specified in (6.13); there
exist k2 > 0 and K2 < ∞ such that Bn is bounded above by K2 and bounded below by k2
uniformly for all n and An is bounded above by K2 uniformly for all n.

Proof. (a) Since Gt is bounded by 0 and 1, c(t) is bounded by 0 and 1 uniformly on [0, T ].
Since rt, αt, and σt are Lipschitz continuous, rt, αt, and σt are bounded uniformly on [0, T ]
by r, α, and σ as in (6.8). We have

0 < e−(r+α)T ≤ a(t) ≤ e(r+α)T ,

0 < e−2(r+α)T ≤ b(t) ≤ e(2r+2α+σ2)T .

(b) By (4.4)–(4.7) in Theorem 4.1, we have An =
∏N−1

k=n (rk+αkCk) and Bn =
∏N−1

k=n

[
(rk+

αkCk)
2 + σ2

kC
2
k

]
. Note that Ck is bounded by 0 and 1, so we have

rk + αkCk = e
∫ tk+1
tk

rsds
[
1 + (e

∫ tk+1
tk

αsds − 1)Ck

]
≤ e(r+α)ε.

Thus, An is bounded above uniformly:

An ≤
N−1∏
k=n

e(r+α)ε = e(r+α)
∑N−1

k=n ε ≤ e(r+α)T .
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Similarly, note that rk + αkCk ≥ 0, and so (rk + αkCk)
2 ≤ e2(r+α)ε,

(rk + αkCk)
2 + σ2

kC
2
k ≤ e2(r+α)ε + (eσ

2ε − 1)e2(r+α)ε = e[2(r+α)+σ2]ε.

On the other hand, by completing the square in Ck,

(rk + αkCk)
2 + σ2

kC
2
k = (α2

k + σ2
k)C

2
k + 2rkαkCk + r2k ≥ r2k

1 +
α2
k

σ2
k

.

We claim that
α2
k

σ2
k
is bounded above by Kε with a constant K > 0 which is independent of ε:

α2
k

σ2
k

=
(e

∫ tn+1
tn

αsds − 1)2

(e
∫ tn+1
tn

σ2
sds − 1)

e−2
∫ tn+1
tn

αsds ≤ (eαε − 1)2

eζ ·
∫ tn+1

tn
σ2
sds

e−2
∫ tn+1
tn

αsds ≤ (αεeαη)2

εσ2
e2αε ≤ ε

α2

σ2
e4αT

for some ζ ∈ [0,
∫ tn+1

tn
σ2
sds] and η ∈ [0, ε] in light of the mean value theorem. Therefore,

Bn ≤
N−1∏
k=n

e[2(r+α)+σ2]ε ≤ e[2(r+α)+σ2]T ,

Bn ≥
N−1∏
k=n

e−2rε 1

1 + εα
2

σ2 e4αT
= e−2rT 1[

1 + T
N

α2

σ2 e4αT
]N−n

≥ e−2rT 1

limN→∞
[
1 + T

N
α2

σ2 e4αT
]N = e−2rT e

−α2

σ2 e
4αT T

> 0.

Lemma B.2. If c(t) is the solution of the integral equation (6.6), c(t) is Lipschitz continu-
ous.

Proof. Define d(t) := e−
∫ T
t [rs+αsc(s)+σ2

sc
2(s)]ds + γte

− ∫ T
t

σ2
sc

2(s)ds − γt. For any s, t ∈ [0, T ],

|c(t)− c(s)| =
∣∣∣∣∣Gt

(
αt

γtσ2
t

d(t)

)
−Gs

(
αs

γsσ2
s

d(s)

) ∣∣∣∣∣ ≤ K|d(t)||t− s|+K|d(t)− d(s)|+K|t− s|.

Lipschitz continuity of c follows if d(t) can be shown to be uniformly bounded and Lipschitz
continuous. With the same approaches as for (6.10) and (6.11), we can prove that d(t) is
uniformly bounded: −γ ≤ d(t) ≤ e(r+α)T + γ, and is also Lipschitz continuous.

Lemma B.3. Fix an ε > 0. a(t) and b(t) are defined as in (6.14), c(t) satisfies (6.6), and
An, Bn, and Cn are given in Theorem 4.1 with coefficients as specified in (6.13). There exists
K > 0 such that for all n,

|Cn − c(tn+1)| ≤ K (|An+1 − a(tn+1)|+ |Bn+1 − b(tn+1)|+ ε) .

Proof. Using Lemma B.1, we haveD
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|Cn − c(tn+1)|

≤
∣∣∣∣∣Gtn

(
An+1 − γnrn(Bn+1 −A2

n+1)

α2
n(Bn+1 −A2

n+1) + σ2
nBn+1

αn

γn

)

−Gtn+1

[
αtn+1

γtn+1σ
2
tn+1

a(tn+1) + γtn+1 [a(tn+1)
2 − b(tn+1)]

b(tn+1)

] ∣∣∣∣∣
≤ Kε+

∣∣∣∣ An+1 − γnrn(Bn+1 −A2
n+1)

α2
n(Bn+1 −A2

n+1) + σ2
nBn+1

αn

γn
− αtn+1

γtn+1σ
2
tn+1

a(tn+1) + γtn+1 [a(tn+1)
2 − b(tn+1)]

b(tn+1)

∣∣∣∣
≤ Kε+

∣∣∣∣ An+1 − γnrn(Bn+1 −A2
n+1)

α2
n(Bn+1 −A2

n+1) + σ2
nBn+1

αn

γn
− αn

γnσ2
n

An+1 − γnrn(Bn+1 −A2
n+1)

Bn+1

∣∣∣∣
+

∣∣∣∣ αn

γnσ2
n

An+1 − γnrn(Bn+1 −A2
n+1)

Bn+1
− αtn+1

γtn+1σ
2
tn+1

An+1 − γnrn(Bn+1 −A2
n+1)

Bn+1

∣∣∣∣
+

∣∣∣∣ αtn+1

γtn+1σ
2
tn+1

An+1 − γnrn(Bn+1 −A2
n+1)

Bn+1

− αtn+1

γtn+1σ
2
tn+1

a(tn+1) + γtn+1 [a(tn+1)
2 − b(tn+1)]

Bn+1

∣∣∣∣
+

∣∣∣∣ αtn+1

γtn+1σ
2
tn+1

a(tn+1) + γtn+1 [a(tn+1)
2 − b(tn+1)]

Bn+1

− αtn+1

γtn+1σ
2
tn+1

a(tn+1) + γtn+1 [a(tn+1)
2 − b(tn+1)]

b(tn+1)

∣∣∣∣
≤ Kε+

∣∣∣∣∣ 1
α2
n

σ2
n
(Bn+1 −A2

n+1) +Bn+1

− 1

Bn+1

∣∣∣∣∣
∣∣∣∣ αn

γnσ2
n

(
An+1 − γnrn(Bn+1 −A2

n+1)
) ∣∣∣∣

+

∣∣∣∣ αn

γnσ2
n

−
αtn+1

γtn+1σ
2
tn+1

∣∣∣∣
∣∣∣∣An+1 − γnrn(Bn+1 −A2

n+1)

Bn+1

∣∣∣∣
+
∣∣∣γnrnA2

n+1 − γtn+1a(tn+1)
2 − γnrnBn+1 + γtn+1b(tn+1) +An+1 − a(tn+1)

∣∣∣∣∣∣∣ αtn+1

γtn+1σ
2
tn+1

Bn+1

∣∣∣∣
+

∣∣∣∣ 1

Bn+1
− 1

b(tn+1)

∣∣∣∣
∣∣∣∣ αtn+1

γtn+1σ
2
tn+1

{
a(tn+1) + γtn+1 [a(tn+1)

2 − b(tn+1)]
} ∣∣∣∣

≤ Kε+
α

γσ2

(
K2 + γr(K2 +K2

2 )
) ∣∣∣∣∣ 1

α2
n

σ2
n
(Bn+1 −A2

n+1) +Bn+1

− 1

Bn+1

∣∣∣∣∣(B.1)

+
K2 + γr(K2 +K2

2 )

k2

∣∣∣∣ αn

γnσ2
n

−
αtn+1

γtn+1σ
2
tn+1

∣∣∣∣(B.2)

+
α

γσ2k2

∣∣∣An+1 − a(tn+1) + γnrnA
2
n+1 − γtn+1a(tn+1)

2 − γnrnBn+1 + γtn+1b(tn+1)
∣∣∣(B.3)

+
α

γσ2
(K1 + γ[K1 +K2

1 ])

∣∣∣∣ 1

Bn+1
− 1

b(tn+1)

∣∣∣∣.(B.4)

D
ow

nl
oa

de
d 

10
/0

8/
15

 to
 1

47
.8

.2
04

.1
64

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TIME-CONSISTENT CONSTRAINED PORTFOLIO SELECTION 183

We next study each summand on the right-hand side of the last inequality term by term. We
consider (B.1) first:∣∣∣∣∣ 1

α2
n

σ2
n
(Bn+1 −A2

n+1) +Bn+1

− 1

Bn+1

∣∣∣∣∣
≤
∣∣∣∣∣ 1
α2
n

σ2
n
(Bn+1 −A2

n+1) +Bn+1

∣∣∣∣∣
∣∣∣∣ 1

Bn+1

∣∣∣∣
∣∣∣∣α2

n

σ2
n

(Bn+1 −A2
n+1)

∣∣∣∣ ≤
∣∣∣∣α2

n

σ2
n

∣∣∣∣
∣∣∣∣Bn+1 −A2

n+1

B2
n+1

∣∣∣∣
≤
∣∣∣∣∣e

∫ tn+1
tn

2rsds(e
∫ tn+1
tn

αsds − 1)2

(e
∫ tn+1
tn

σ2
sds − 1)e2

∫ tn+1
tn

μsds

∣∣∣∣∣
(
K2 +K2

2

k22

)
≤ Ke2αε

α2ε2e2αε

σ2ε
≤ Ke4αT

α2

σ2
ε

≤ Kε,(B.5)

where the second inequality follows because α2
n

σ2
n
(Bn+1 −A2

n+1) > 0. Then, we consider (B.2):

∣∣∣∣ αn

γnσ2
n

− αtn+1

γtn+1σ
2
tn+1

∣∣∣∣
=

∣∣∣∣∣ e
∫ tn+1
tn

rsds(e
∫ tn+1
tn

αsds − 1)

γtn(e
∫ tn+1
tn

σ2
sds − 1)e2

∫ tn+1
tn

μsds
−

αtn+1

γtnσ
2
tn+1

∣∣∣∣∣+
∣∣∣∣∣ αtn+1

γtnσ
2
tn+1

−
αtn+1

γtn+1σ
2
tn+1

∣∣∣∣∣
=

1

γtn

∣∣∣∣∣ e
∫ tn+1
tn

rsdseη
∫ tn+1

tn
αsds

e2
∫ tn+1
tn

μsdseζ
∫ tn+1

tn
σ2
sds

−
αtn+1

σ2
tn+1

∣∣∣∣∣+
∣∣∣∣∣αtn+1

σ2
tn+1

∣∣∣∣∣
∣∣∣∣∣ 1

γtn
− 1

γtn+1

∣∣∣∣∣
≤ 1

γ

∣∣∣∣∣ e
∫ tn+1
tn

rsdseη

eζ · e2
∫ tn+1
tn

μsds
− 1

∣∣∣∣∣
∣∣∣∣∣
∫ tn+1

tn
αsds∫ tn+1

tn
σ2
sds

∣∣∣∣∣+ γ

∣∣∣∣∣
∫ tn+1

tn
αsds∫ tn+1

tn
σ2
sds

− αtn+1

σ2
tn+1

∣∣∣∣∣+ α

γσ2

∣∣∣∣∣γtn+1 − γtn

∣∣∣∣∣(B.6)

for some η between 0 and
∫ tn+1

tn
αsds and ζ ∈ [0,

∫ tn+1

tn
σ2
sds] in light of the mean value theorem.

Because

e−[3(r+α)+σ2]ε ≤ e−rεe−αε

e2(r+α)εeσ
2ε

≤ e
∫ tn+1
tn

rsdseη

e2
∫ tn+1
tn

μsdseζ
≤ erεeαε

e−2(r+α)ε
≤ e3(r+α)ε,

we have

(B.7)

∣∣∣∣∣ e
∫ tn+1
tn

rsdseη

e2
∫ tn+1
tn

μsdseζ
− 1

∣∣∣∣∣ ≤ Kε.

Moreover, since αt and σt are Lipschitz continuous, there exists K > 0 (note that σ2
s is

bounded below by σ2) such that

αtn+1 −Kε ≤ αs ≤ αtn+1 +Kε,

σ2
tn+1

−Kε ≤ σ2
s ≤ σ2

tn+1
+KεD
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for all s ∈ [tn, tn+1]. Note that σ2
tn+1

−Kε > 1
2σ

2 for all n (provided that ε is small enough),
and

αtn+1 −Kε

σ2
tn+1

+Kε
≤

∫ tn+1

tn
αsds∫ tn+1

tn
σ2
sds

≤ αtn+1 +Kε

σ2
tn+1

−Kε
,

αtn+1

σ2
tn+1

−
[
αtn+1K + σ2

tn+1
K

σ2
tn+1

(σ2
tn+1

+Kε)

]
ε ≤

∫ tn+1

tn
αsds∫ tn+1

tn
σ2
sds

≤ αtn+1

σ2
tn+1

+

[
αtn+1K + σ2

tn+1
K

σ2
tn+1

(σ2
tn+1

−Kε)

]
ε,

αtn+1

σ2
tn+1

−
[
αK + σ2K

σ4

]
ε ≤

∫ tn+1

tn
αsds∫ tn+1

tn
σ2
sds

≤ αtn+1

σ2
tn+1

+ 2

[
αK + σ2K

σ4

]
ε.(B.8)

Using (B.7) and (B.8), (B.6) becomes

∣∣∣∣ αn

γnσ2
n

− αtn+1

γtn+1σ
2
tn+1

∣∣∣∣
≤ 1

γ

∣∣∣∣∣ e
∫ tn+1
tn

rsdseη

eζ · e2
∫ tn+1
tn

μsds
− 1

∣∣∣∣∣
∣∣∣∣∣
∫ tn+1

tn
αsds∫ tn+1

tn
σ2
sds

∣∣∣∣∣+ γ

∣∣∣∣∣
∫ tn+1

tn
αsds∫ tn+1

tn
σ2
sds

−
αtn+1

σ2
tn+1

∣∣∣∣∣+ α

γσ2

∣∣∣∣∣γtn+1 − γtn

∣∣∣∣∣
≤ Kε

( ∫ tn+1

tn
αds∫ tn+1

tn
σ2ds

)
+Kε+Kε ≤ K ′ε.(B.9)

Furthermore, for the term (B.3), by using Lemma B.1,

|γnrnA2
n+1 − γtn+1a(tn+1)

2|
≤ γn(rn − 1)A2

n+1 + γn|An+1 − a(tn+1)||An+1 + a(tn+1)|+ a(tn+1)
2|γn − γtn+1 |

≤ γ(erε − 1)K2
2 + γ|An+1 − a(tn+1)|(K1 +K2) +K2

2Kε

≤ K (ε+ |An+1 − a(tn+1)|) ,
|γnrnBn+1 − γtn+1b(tn+1)|

≤ γn(e
rε − 1)Bn+1 + γn|Bn+1 − b(tn+1)|+ b(tn+1)|γn − γtn+1 |

≤ K (ε+ |Bn+1 − b(tn+1)|) .

Therefore, we further have

∣∣∣An+1 − a(tn+1) + γnrnA
2
n+1 − γtn+1a(tn+1)

2 − γnrnBn+1 + γtn+1b(tn+1)
∣∣∣

≤ K(ε+ |An+1 − a(tn+1)|+ |Bn+1 − b(tn+1)|).(B.10)

Finally, for the term (B.4), by using Lemma B.1, we have

(B.11)

∣∣∣∣ 1

Bn+1
− 1

b(tn+1)

∣∣∣∣ ≤
∣∣∣∣Bn+1 − b(tn+1)

Bn+1b(tn+1)

∣∣∣∣ ≤
∣∣∣∣Bn+1 − b(tn+1)

k2k1

∣∣∣∣ ≤ K|Bn+1 − b(tn+1)|.
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We now put (B.5), (B.9), (B.10), and (B.11) into (B.1)–(B.4), and we prove Lemma B.3:

|Cn − c(tn+1)|

≤ Kε+
α

γσ2

(
K2 + γr(K2 +K2

2 )
) ∣∣∣∣∣ 1

α2
n

σ2
n
(Bn+1 −A2

n+1) +Bn+1

− 1

Bn+1

∣∣∣∣∣
+

K2 + γr(K2 +K2
2 )

k2

∣∣∣∣ αn

γnσ2
n

− αtn+1

γtn+1σ
2
tn+1

∣∣∣∣
+

α

γσ2k2

∣∣∣An+1 − a(tn+1) + γnrnA
2
n+1 − γtn+1a(tn+1)

2 − γnrnBn+1 + γtn+1b(tn+1)
∣∣∣

+
α

γσ2
(K1 + γ[K1 +K2

1 ])

∣∣∣∣ 1

Bn+1
− 1

b(tn+1)

∣∣∣∣
≤ Kε+Kε+Kε+K(ε+ |An+1 − a(tn+1)|+ |Bn+1 − b(tn+1)|) +K|Bn+1 − b(tn+1)|
≤ K ′ (|An+1 − a(tn+1)|+ |Bn+1 − b(tn+1)|+ ε) .

Lemma B.4. Fix ε > 0. a(t) and b(t) are defined as in (6.14), and c(t) satisfies (6.6). Then
there exists K > 0 such that for all n,

|a(tn)− a(tn+1) + εa′(tn+1)| ≤ Kε2,(B.12)

|b(tn)− b(tn+1) + εb′(tn+1)| ≤ Kε2.(B.13)

Proof. By the mean value theorem, there is an η ∈ [tn, tn+1],

|a(tn)− a(tn+1) + εa′(tn+1)| ≤ ε|a′(tn+1)− a′(η)|.

By (6.15), we have

|a′(tn+1)− a′(η)|
≤ | (rη + αηc(η)) a(η)−

(
rtn+1 + αtn+1c(tn+1)

)
a(tn+1)|

≤ |rη + αηc(η)||a(η) − a(tn+1)|+ |a(tn+1)|| (rη + αηc(η)) −
(
rtn+1 + αtn+1c(tn+1)

)
|

≤ (r + α)(tn+1 − η)|a′(ζ)|+K1

(
|rη − rtn+1 |+ |αη − αtn+1 |c(η) + |αtn+1 ||c(η) − c(tn+1)|

)
≤ Kε| (rζ + αζc(ζ)) a(ζ)|+K1 (Kε+Kε+ αKε) ≤ Kε,

where the mean value theorem is applied in the third inequality for some ζ ∈ [η, tn+1], and
the fourth inequality follows because of Lipschitz continuity of rt and αt, boundedness of c(t),
and Lipschitz continuity of c(t) from Lemma B.2. And hence (B.12) follows. Similarly, for
(B.13), by the mean value theorem, there is an η′ ∈ [tn, tn+1],

|b(tn)− b(tn+1) + εb′(tn+1)| ≤ ε|b′(tn+1)− b′(η′)|.D
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By (6.17), we have

|b′(tn+1)− b′(η′)|
≤ |

(
2rη′ + 2αη′c(η

′) + σ2
η′c(η

′)2
)
b(η′)−

(
2rtn+1 + 2αtn+1c(tn+1) + σ2

tn+1
c(tn+1)

2
)
b(tn+1)|

≤ |2rη′ + 2αη′c(η
′) + σ2

η′c(η
′)2||b(η′)− b(tn+1)|

+ |b(tn+1)|
(
2|rη′ − rtn+1 |+ 2|αη′ − αtn+1 |c(η′) + 2|αtn+1 ||c(η′)− c(tn+1)|

)
+ |b(tn+1)|

(
|σ2

η′ − σ2
tn+1

|c(η′) + |σ2
tn+1

||c(η′)− c(tn+1)|
)

≤ (2r + 2α+ σ2)(tn+1 − η′)|b′(ζ ′)|+K2

(
2Kε+ 2Kε+ 2αKε+Kε+ σ2Kε

)
≤ Kε|

(
2rζ′ + 2αζ′c(ζ

′) + σ2
ζ′c(ζ

′)2
)
b(ζ ′)|+Kε ≤ Kε.

As a consequence, the inequality (B.13) also follows.
Theorem B.5. Fix ε > 0. a(t) and b(t) are defined as in (6.14), c(t) satisfies (6.6), and

An, Bn, and Cn are given in Theorem 4.1 with coefficients as specified in (6.13). There exists
K > 0 such that |An − a(tn)| ≤ Kε and |Bn − b(tn)| ≤ Kε.

Proof. Denote un := |An − a(tn)| and vn := |Bn − b(tn)|. By Lemmas B.3 and B.4, (4.4),
(6.15), uniformly boundedness of the parameters, and boundedness results in Lemma B.1, we
have

un ≤ |(rn + αnCn)An+1 − a(tn+1) + εa′(tn+1)|+Kε2

≤
∣∣∣∣ (e∫ tn+1

tn
rsds + e

∫ tn+1
tn

rsds(e
∫ tn+1
tn

αsds − 1)Cn

)
An+1 − a(tn+1)

− ε
(
rtn+1 + αtn+1c(tn+1)

)
a(tn+1)

∣∣∣∣+Kε2

≤
∣∣∣e∫ tn+1

tn
rsdsAn+1 − (1 + εrtn+1)a(tn+1)

∣∣∣+ ∣∣∣e∫ tn+1
tn

rsds(e
∫ tn+1
tn

αsds − 1)− εαtn+1

∣∣∣|CnAn+1|

+ ε|αtn+1An+1||Cn − c(tn+1)|+ ε|αtn+1c(tn+1)||An+1 − a(tn+1)|+Kε2

≤ (1 + rtn+1ε)un+1 + |An+1|
∣∣∣e∫ tn+1

tn
rsds − 1− rtn+1ε

∣∣
+ |An+1|

(∣∣∣ (e∫ tn+1
tn

rsds − 1
)(

e
∫ tn+1
tn

αsds − 1
) ∣∣∣+ ∣∣∣e∫ tn+1

tn
αsds − 1− εαtn+1

∣∣∣)
+ |αtn+1An+1|ε (un+1 + vn+1 + ε) + |αtn+1 |εun+1 +Kε2.(B.14)

By Taylor’s theorem, we have

|e
∫ tn+1
tn

rsds − 1− rtn+1ε| ≤
∣∣∣∣
∫ tn+1

tn

rsds−
∫ tn+1

tn

rtn+1ds+
1

2

(∫ tn+1

tn

rsds

)2

eη
∣∣∣∣

≤
∫ tn+1

tn

|rs − rtn+1 |ds+
1

2
erε

(∫ tn+1

tn

|rs|ds
)2

≤
∫ tn+1

tn

Kεds+
1

2
erT

(∫ tn+1

tn

rds

)2

≤ Kε2,(B.15)
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where η is some number between 0 and
∫ tn+1

tn
rsds, and the third inequality follows because rt

is Lipschitz continuous and bounded above by r. Similarly, we have

|e
∫ tn+1
tn

αsds − 1− αtn+1ε| ≤ Kε2.

By the mean value theorem, we also have

(B.16)
∣∣e∫ tn+1

tn
rsds − 1

∣∣ ≤ ∣∣∣∣eη′
∫ tn+1

tn

rsds

∣∣∣∣ ≤
(∫ tn+1

tn

rds

)
erε ≤ rεerT ≤ Kε

for an η′ being some number between 0 and
∫ tn+1

tn
rsds. Similarly, we have∣∣e∫ tn+1

tn
αsds − 1

∣∣ ≤ Kε.

Combining all these results, (B.14) becomes

un ≤ (1 + rε)un+1 +K2

∣∣∣e∫ tn+1
tn

rsds − 1− rtn+1ε
∣∣

+K2

(∣∣∣ (e∫ tn+1
tn

rsds − 1
)(

e
∫ tn+1
tn

αsds − 1
) ∣∣∣+ ∣∣∣e∫ tn+1

tn
αsds − 1− εαtn+1

∣∣∣)
+ αK2ε (un+1 + vn+1 + ε) + αεun+1 +Kε2

≤ (1 +Mε)un+1 +K2Kε2 +K(Kε2 +Kε2) +Mε(un+1 + vn+1) +Kε2 +Mεun+1 +Kε2

≤ un+1 + εM(un+1 + vn+1) +Kε2.(B.17)

Next, for vn, using Lemma B.4, (4.6), and (6.17), we have

vn ≤ |[(rn + αnCn)
2 + σ2

nC
2
n]Bn+1 − b(tn+1) + εb′(tn+1)|+Kε2

≤
∣∣∣∣
[(

e
∫ tn+1
tn

rsds + e
∫ tn+1
tn

rsds(e
∫ tn+1
tn

αsds − 1)Cn

)2
+ (e

∫ tn+1
tn

σ2
sds − 1)e2

∫ tn+1
tn

μsdsC2
n

]
Bn+1

− b(tn+1)− ε
[
2
(
rtn+1 + αtn+1c(tn+1)

)
+ σ2

tn+1
c(tn+1)

2
]
b(tn+1)

∣∣∣∣+Kε2

≤
∣∣∣e∫ tn+1

tn
2rsdsBn+1 − (1 + 2εrtn+1)b(tn+1)

∣∣∣
+ 2

∣∣∣e∫ tn+1
tn

2rsds(e
∫ tn+1
tn

αsds − 1)CnBn+1 − εαtn+1c(tn+1)b(tn+1)
∣∣∣

+
∣∣∣e∫ tn+1

tn
2rsds(e

∫ tn+1
tn

αsds − 1)2C2
nBn+1

∣∣∣
+
∣∣∣(e∫ tn+1

tn
σ2
sds − 1)e2

∫ tn+1
tn

μsdsC2
nBn+1 − εσ2

tn+1
c(tn+1)

2b(tn+1)
∣∣∣+Kε2

≤
∣∣∣e∫ tn+1

tn
2rsds − 1− 2εrtn+1

∣∣∣|Bn+1|+ |1 + 2εrtn+1 ||Bn+1 − b(tn+1)|

+ 2
∣∣∣e∫ tn+1

tn
αsds − 1− εαtn+1

∣∣∣|CnBn+1|+ 2ε|αtn+1Bn+1||Cn − c(tn+1)|
+ 2ε|αtn+1c(tn+1)||Bn+1 − b(tn+1)|

+ 2
∣∣∣(e∫ tn+1

tn
2rsds − 1)(e

∫ tn+1
tn

αsds − 1)CnBn+1

∣∣∣+ ∣∣∣e∫ tn+1
tn

2rsds(e
∫ tn+1
tn

αsds − 1)2C2
nBn+1

∣∣∣
+
∣∣∣(e∫ tn+1

tn
σ2
sds − 1)(e2

∫ tn+1
tn

μsds − 1)
∣∣∣|C2

nBn+1|+
∣∣∣e∫ tn+1

tn
σ2
sds − 1− εσ2

tn+1

∣∣∣|C2
nBn+1|

+ εσ2
tn+1

|Bn+1||C2
n − c(tn+1)

2|+ εσ2
tn+1

c(tn+1)
2|Bn+1 − b(tn+1)|+Kε2D

ow
nl

oa
de

d 
10

/0
8/

15
 to

 1
47

.8
.2

04
.1

64
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

188 BENSOUSSAN, WONG, YAM, AND YUNG

≤ K2

∣∣∣e∫ tn+1
tn

2rsds − 1− 2εrtn+1

∣∣∣+ (1 + 2rε)vn+1 + 2K2

∣∣∣e∫ tn+1
tn

αsds − 1− εαtn+1

∣∣∣
+ 2αK2ε|Cn − c(tn+1)|+ 2εαvn+1 + 2K2

∣∣∣(e∫ tn+1
tn

2rsds − 1)(e
∫ tn+1
tn

αsds − 1)
∣∣∣

+K2e
2rε(e

∫ tn+1
tn

αsds − 1)2 +K2

∣∣∣(e∫ tn+1
tn

σ2
sds − 1)(e2

∫ tn+1
tn

μsds − 1)
∣∣∣

+K2

∣∣∣e∫ tn+1
tn

σ2
sds − 1− εσ2

tn+1

∣∣∣+ εK2σ
2|C2

n − c(tn+1)
2|+ εσ2vn+1 +Kε2.(B.18)

Applying Taylor’s theorem as for (B.15), we deduce that

∣∣∣e∫ tn+1
tn

2rsds − 1− 2εrtn+1

∣∣∣ ≤ Kε2,
∣∣∣e∫ tn+1

tn
αsds − 1− 2εαtn+1

∣∣∣ ≤ Kε2,∣∣∣e∫ tn+1
tn

σ2
sds − 1− 2εσ2

tn+1

∣∣∣ ≤ Kε2.

Using the mean value theorem as for (B.16), we also obtain

|e
∫ tn+1
tn

2rsds − 1| ≤ Kε, |e
∫ tn+1
tn

αsds − 1| ≤ Kε,

|e
∫ tn+1
tn

2μsds − 1| ≤ Kε, |e
∫ tn+1
tn

σ2
sds − 1| ≤ Kε.

By Lemma B.3, we have

|Cn − C(tn+1)| ≤ K(un+1 + vn+1) +Kε,

|C2
n − C(tn+1)

2| = |Cn − C(tn+1)||Cn + C(tn+1)| ≤ 2K(un+1 + vn+1) + 2Kε.

Combining these estimates, (B.18) becomes

vn ≤ K2

∣∣∣e∫ tn+1
tn

2rsds − 1− 2εrtn+1

∣∣∣+ (1 + 2rε)vn+1 + 2K2

∣∣∣e∫ tn+1
tn

αsds − 1− εαtn+1

∣∣∣
+ 2αK2ε|Cn − c(tn+1)|+ 2εαvn+1 + 2K2

∣∣∣(e∫ tn+1
tn

2rsds − 1)(e
∫ tn+1
tn

αsds − 1)
∣∣∣

+K2e
2rε(e

∫ tn+1
tn

αsds − 1)2 +K2

∣∣∣(e∫ tn+1
tn

σ2
sds − 1)(e2

∫ tn+1
tn

μsds − 1)
∣∣∣

+K2

∣∣∣e∫ tn+1
tn

σ2
sds − 1− εσ2

tn+1

∣∣∣+ εK2σ
2|C2

n − c(tn+1)
2|+ εσ2vn+1 +Kε2

≤ K2Kε2 + [1 + (2μ + σ2)ε]vn+1 + 2K2Kε2 + 2αK2ε (K(un+1 + vn+1) +Kε) + 2K2K
2ε2

+K2e
2rTK2ε2 +K2K

2ε2 +K2Kε+ εK2σ
2 (2K(un+1 + vn+1) + 2Kε) +Kε2

≤ vn+1 + εM(un+1 + vn+1) +Kε2.(B.19)

Define xn := un + vn. By (B.17), (B.19), and uN = vN = 0, we have

xn ≤ (1+εM)xn+1+Kε2 ≤
N−1∑
k=n

(1+εM)k−nKε2 ≤ Kε2
(1 + εM)N−n − 1

εM
≤ Kε

eMT − 1

M
≤ Kε.

Thus |An − a(tn)| ≤ un ≤ xn ≤ Kε. Similarly, we can show that |Bn − b(tn)| ≤ Kε.D
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Based on the previous lemmas and theorem, we can now deduce that the solutions in the
discrete time model converge to that in the continuous time counterpart as the time interval
goes to zero.

Proof of Theorem 6.4. This theorem follows by applying Lemmas B.2 and B.3 and Theorem
B.5:

|Cn − c(tn)| ≤ |c(tn+1)− c(tn)|+ |Cn − c(tn+1)|
≤ Kε+K (|An+1 − a(tn+1)|+ |Bn+1 − b(tn+1)|+ ε)

≤ Kε.
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