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Abstract 

 

The influence of local thermal nonequilibrium (LTNE) with Cattaneo effects in the solid on the 

onset of thermal convective instability in a horizontal layer of Darcy porous medium saturated by 

a ferrofluid in the presence of a uniform vertical magnetic field is investigated. The presence of 

Cattaneo effect is to instil instability via oscillatory motion as well which is not reminiscent of 

the observed instability phenomenon in its absence. Increase in the value of solid thermal 

relaxation time parameter   is found to advance the onset of oscillatory ferroconvection. The 

onset of stationary ferroconvection is delayed, while the onset of oscillatory convection is 

hastened with an increase in the value of inter-phase heat transfer coefficient tH . The threshold 

value of tH , at which the transition from stationary to oscillatory convection takes place, 

decreases with increasing noticeably and marginally with increasing magnetic parameter 3M , 

while it increases with increasing ratio of conductivities   and magnetic number 1M . The critical 

wave number for stationary convection is found to be higher than those of oscillatory convection.  
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1 Introduction 

 

 Ferrofluids are stable colloidal suspensions of magnetic nanoparticles in a nonmagnetic 

carrier fluid.  The use of ferrofluids as a heat transfer medium stem from a possibility of 

controlling its flow and heat transfer process via an external magnetic field. Besides, magnetic 

forces are used to create circulation of coolant in small passages where natural convection is 

either absent or ineffective. Both theoretical and experimental developments of the subject are 

well documented in the literature (Rosensweig [1], Berkovsky et al. [2], Blums et al. [3], Hergt et 

al. [4], Alexiou et al.[5]). The magnetization of ferrofluids depends on the magnetic field, 

temperature and density. Hence, any variations of these quantities induce change of body force 

distribution in the fluid and eventually give rise to convection in ferrofluids in the presence of a 

gradient of magnetic field known as ferroconvection. Considering the prospect of heat transfer 

applications in electronics, micro and nanoelectromechanical systems and magnetically 

controlled heat transfer in energy conversion systems, ferroconvection in magnetized ferrofluids 

has triggered lot of research interest over the years (Odenbach, [6], Ganguly et al. [7], Kaloni and 

Lou [8]). Recently, Nkurikiyimfura et al. [9] reviewed the recent developments in this field. In 

particular, they have emphasized on thermal conductivity enhancement and thermomagnetic 

convection in devices using ferrofluids as heat transfer media. 

  

Ferroconvection in a porous medium has also attracted considerable attention in the 

literature owing to its importance in controlled emplacement of liquids or treatment of chemicals, 

and emplacement of geophysically imageable liquids into particular zones for subsequent 

imaging etc. Besides, the subject of flow of ferrofluids through porous media is motivated by the 

potential use of ferrofluids to stabilize fingering in oil recovery processes. Rosensweig et al. [10] 

studied experimentally the penetration of ferrofluids in the Hele-Shaw cell. The stability of the 

magnetic fluid penetration through a porous medium in high uniform magnetic field oblique to 

the interface is considered by Zahn and Rosensweig [11]. The onset of ferroconvection in a 

porous medium in the presence of a vertical magnetic field is discussed by Vaidyanathan et al. 

[12] by employing the Brinkman equation while Qin and Chadam [13] carried out the nonlinear 

stability analysis of ferroconvection in a porous layer by including the inertial effects to 

accommodate high velocity. The laboratory–scale experimental results of the behaviour of 

ferrofluids in porous media consisting of sands and sediments have been presented by Borglin et 

al. [14]. Sunil and Amit Mahajan [15] used generalized energy method to study nonlinear 
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convection in a magnetized ferrofluid saturated porous layer heated uniformly from below for the 

stress-free boundaries case. Shivakumara et al. ([16], [17]) investigated theoretically the onset of 

convection in a layer of ferrofluid saturated porous medium for various types of velocity and 

temperature boundary conditions. The onset of buoyancy-driven convection in a ferrofluid 

saturated sparsely packed porous medium with fixed heat flux condition at the lower rigid 

boundary and a general thermal boundary condition at the upper free boundary has been studied 

by Nanjundappa et al. [18]. 

 

In many practical applications involving hyper-porous materials and also media in which 

there is a large temperature difference between the fluid and solid phases, it has been realized 

that the assumption of local thermal equilibrium (LTE) is inadequate for proper understanding of 

the heat transfer problems. In such circumstances, the local thermal non-equilibrium (LTNE) 

effects are to be taken into consideration. Virto et al. [19] analyzed various causes of LTNE 

situations in detail. Under the circumstances, the recent trend in the study of thermal convective 

instability problems in porous media is to account for LTNE effects by considering a two-field 

model for energy equation each representing the fluid and solid phases separately. Realizing this 

fact, investigations have been carried out in the recent past to know LTNE effects on porous 

ferroconvection as well (Sunil et al. [20], Lee et al. [21], Shivakumara et al. ([22], [23]).   

 

 The energy equation used in the study of convective instability problems in a 

fluid/porous layer is a parabolic-type partial differential equation which allows an infinite-speed 

for heat transport. Nonetheless, the new theories make use of modified versions involve 

hyperbolic-type heat transport equation admitting finite-speed for heat transport. Thus, heat 

transport is viewed as a wave phenomenon rather than a diffusion phenomenon and this is 

referred to as second sound. In particular, the second sound effect appears greater in solids, 

especially those involved in porous metallic foams. A key way to introduce this effect is to use 

Cattaneo [24] law for the heat flux. Based on this approach, studies have been undertaken in the 

past to investigate thermal convection in an ordinary viscous fluid layer (Straughan and Franchi 

[25]; Lebon and Cloot [26]) and also in an ordinary viscous fluid-saturated porous medium using 

a local thermal equilibrium (LTE) model with Cattaneo–Fox and Cattaneo–Christov effects 

(Straughan [27]). The details about the developments on this topic are amply documented in the 

book by Straughan [28]. Recently, Straughan [29] investigated the effect of Cattaneo heat flux 

theory on thermal convection in a fluid-saturated Darcy porous medium using a local thermal 
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non-equilibrium (LTNE) model for the first time. In addition to performing linear instability 

analysis, a global nonlinear stability threshold is determined and the effect of second sound is 

delineated in a detailed manner. Stranges et al. [30] examined natural convection of non-Fourier 

fluids of the single phase-lagging type which possess a relaxation time, reflecting the delay in the 

response of the heat flux and the temperature gradient. A review on thermal instability in a 

Brinkman porous medium incorporating fluid inertia and Cattaneo–Christov theory in the 

constitutive equation for heat flux is presented by Haddad [31] using LTE model. Recently, 

Shivakumara et al. [32] investigated the onset of thermal convection in a layer of fluid-saturated 

Brinkman porous medium taking into account fluid inertia and LTNE between the solid and fluid 

phases with Cattaneo effect in the solid. 

 

However, no attention has been given to understand the influence of LTNE with Cattaneo 

effects in the solid on the onset of convection in a ferrofluid saturated porous layer heated from 

below. Since ferrofluids are used as heat carrier fluids in micro and nano devices, the proposed 

study is relevant in many heat transfer devices particularly to low- temperature fluids or fast heat 

transfer processes. Moreover, the Cattaneo effect on nanofluids has also been recognized in the 

literature and hence probing its influence on ferroconvection in porous media is considered to be 

relevant and important. The Cattaneo heat flux theory amounts to change the solid phase 

temperature equation from traditional parabolic to hyperbolic type which accounts for finite-

speed heat transport in solids. As a result, thermal convective instability in a ferrofluid-saturated 

porous layer is found to occur via oscillatory mode under certain conditions. This is a novel 

result because instability is found to occur only via stationary convection in the absence of 

Cattaneo effect [21]. The results are presented graphically for a wide range of physical 

parameters and some of the convection systems previously reported in the literature is shown to 

be special cases of the present study. 

 

2 Mathematical Formulation  
 

The physical configuration is as shown in Fig. 1. We consider an initially quiescent 

incompressible constant viscosity ferrofluid saturated horizontal layer of Darcy porous medium 

of characteristic thickness d in the presence of a uniform applied magnetic field 0H  in the 

vertical direction. The lower surface is held at constant temperature lT , while the upper surface is 

at uT  (< lT ). A Cartesian co-ordinate system (x, y, z) is used with the origin at the bottom of the 
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porous layer and the z-axis directed vertically upward in the presence of gravitational field. The 

solid and fluid phases of the porous medium are assumed to be in LTNE and a two-field model 

for temperatures is used. The solid temperature equation is modified to allow the heat transfer via 

a Cattaneo heat flux theory, while the usual Fourier heat-transfer law is used in the ferrofluid. 

The basic equations governing the flow of an incompressible ferrofluid saturating a layer of 

Darcy porous medium with LTNE and Cattaneo effects in the solid are (Straughan, [29], Nield 

and Bejan, [33]):  

. 0q                            (1)     

 0 0p 1 ( )
 


  

        
 t f a

f f f

k kk
q T T g M H                                       (2) 

       2

0 0

f

f f f t s ff f

T
c c q T k T h T T

t
   


     


                                                      (3) 

       01 1s
t s fs

T
c Q h T T

t
  


      


                                                          (4) 

. 0B                                                                                                                                            (5) 

0H   or H                                                                                                                     (6) 

where ( , , )q u v w  the velocity vector , p  the pressure, M  the magnetization, H  the magnetic 

field intensity, k  the permeability of the porous medium,   the porosity of the porous medium, 

B  the magnetic induction, H  the magnetic field intensity, φ  the magnetic potential, f  the 

fluid viscosity, 0μ  the magnetic permeability of vacuum, fT  the temperature of the fluid, sT  the 

temperature of the solid, Q  the heat flux vector in the solid, c  the specific heat, fk  the thermal 

conductivity of the fluid, th  is the inter-phase heat transfer coefficient, t  is the thermal 

expansion coefficient,   / 2a l uT T T   is the average temperature, 0  is the reference density 

and 2 2 2 2 2 2 2/ / /x y z         is the Laplacian operator. The term 0( )M H   in Eq. (2) 

is the magnetic body force which appears as a result of polarization of the ferrofluid in the 

presence of magnetic field.  

The Cattaneo’s law for the solid heat flux is 

s s s

Q
Q k T

t



   


                                                                                                                      (7) 

where sk  is the thermal conductivity of the solid and s  is the solid thermal relaxation time. 
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Further, B , M and H are related by 

0( )B M H  .                                                                                                                      (8) 

It is assumed that the magnetization is aligned with the magnetic field, but allowed a dependence 

on the magnitude of the magnetic field as well as temperature (Finlayson, [34]) and thus 

( , )f

H
M M H T

H
                                                                                                       (9) 

where, M M   and H H  . The magnetic equation of state, following (Finlayson, [34]), is 

taken as  

0 0( ) ( )f aM M H H K T T                                                                                   (10) 

where, ,
0

( / )H Ta
M H    is the magnetic susceptibility, ,

0
( / )H TafK M T     is the 

pyromagnetic co-efficient and 0 0( , )aM M H T .  

The basic state is quiescent and given by 

 0,0,0bq  , ( ),f fbT T z  ( ),s sbT T z    0,0, ( ) ,bM M z   0,0, ( ) ,bB B z  

  0,0, ( ) ,bH H z    0,0, ( )bQ Q z                       (11a) 

where the subscript b denotes the basic state. Substituting Eq. (11a) into Eqs. (2), (3), (4) and (7), 

we obtain  

 0 0

( ) ( )
1 ( ) ( )b b

t fb a b

dp z dH z
T z T g M z

dz dz
       
 

                                                    

2 ( ) 0fbT z                                                                                                                            

2 ( ) 0sbT z  .                                                                                                                          (11b-d) 

Solving Eqs. (11c) and (11d) subject to the boundary conditions fb sb lT T T   at 0z   and 

fb sb uT T T   at z d , we obtain 

 ( ) / 2 ( )fb a sbT z T z d T z                                                                                                (11e) 

where, / ( ) /l uT d T T d     is the  temperature gradient.  Substituting Eq. (8) into Eq. (5) and 

using Eqs. (11a) and (11e), the basic state magnetic field intensity ( )bH z  and magnetization 

( )bM z  are found to be (see Finlayson [34]) 

 

  0
ˆ

1 2
b

K d
H z H z k





  
    

   
,   0

ˆ
1 2

b

K d
M z M z k





  
    

   
                                                   (11f) 
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where k̂  is the unit vector in the vertical z-direction. Using Eqs. (11e) and (11f) in Eq. (11a) and 

integrating, we obtain 

2 2
0 0 0

0 0 0 2

1
( ) ( ) ( )

2 1 2(1 )
b t

M K K
p z p g z g z z d z z z d

   
   

 
      

 
                              (11g) 

where 0p  is the pressure at  0z  .  

 

3 Linear Stability Theory 

 

 To investigate the conditions under which the basic state is stable against small 

disturbances, we consider a perturbed state in the form  

qq 


, ( ) 'bp p z p  , ( )f ffbT T z T   , ( )s ssbT T z T   , HzHH b 


)(  

MzMM b 


)( ,  ( ) 'bQ Q z Q   .                                                                                            (12) 

The perturbed quantities, ( )  q'= u , v , w , p',  fT  , sT  , ( )x y zH'= H , H , H   , ( )x y zM'= M , M , M   and 

( , )x y zQ'= Q' , Q' Q'  are assumed to be small. Substituting Eq. (12) into Eqs. (8) and (9) and 

using Eqs. (5) and (6), we obtain (after dropping the primes)         

 0 01 /x x xH M M H H   ,   0 01 /y y yH M M H H   ,  1z z z fH M H K T    .      (13) 

Again substituting Eq. (12) into Eq. (2), linearizing, eliminating the pressure term by taking curl 

twice and using Eq. (13)  the z-component of the resulting equation can be obtained as (after 

dropping the primes):     

  0
0 0

2
2 2 2

0
1

 
    


      
 

f t fh h h

K
K T g T

z
                                                                   (14) 

where, 2 2 2 2 2/ /h x y       is the horizontal Laplacian operator. Equations (3) and (4), after 

using Eq. (12) and linearizing, take the following form (after dropping the primes):     

     2

0 0

f fb

f f t s ff f

T dT
c c w k T h T T

t dz
   


    


                                           (15)                   

      01 1s

t s fs

T
c Q h T T

t
  


       


.                                                                     (16)                     

Equation (7), after substituting Eq. (12), may be written as (after dropping the primes) 

s s s

Q
Q k T

t



   


                                                                                                                    (17) 

It is convenient to eliminate  Q  from Eq.(16), using Eq. (17), to get 



8 

 

      2

01 1 1 1s

s s s t s s fs

T
c k T h T T

t t t
    

    
          

     
.                                     (18)  

It is seen that Eq. (18) is effectively hyperbolic and oscillatory instability may be possible with 

increasing s . Equation (18) becomes parabolic when 0s  . Equations (5) and (6), after 

substituting Eq. (12) and using Eq. (13), may be written as (after dropping the primes) 

 
2

2
0

2
0

1  1 0
f

h

TM
K

H z z


 

  
      

  
.                                                                                  (19) 

The normal mode expansion of the dependent variables is assumed in the form 

     , , , ( ), ( ), ( ), ( ) exp ( )f s f sw T T W z z z z i x my t                (20) 

where,   and m are wave numbers in the x and y directions, respectively, ( )zW  is the amplitude 

of vertical component of perturbed velocity, ( )f z  is the amplitude of perturbed fluid 

temperature, ( )s z  is the amplitude of perturbed solid temperature, ( )z  is the amplitude of 

perturbed magnetic potential and   is the complex growth rate of the disturbance. 

Substituting Eq. (20) into Eqs. (14), (15), (18) and (19), and non-dimensionalizing the variables 

by setting  
 

 
* * *

*, *, * , ,
x y z

x y z
d d d

 
  
 

, 
2

* ,  
f

t t
d


 * ,  

f

d
W W




1 
 f f

d

    

1 
 s s

d

   , 
 

2

1
*  

d






  


                                                                                                            (21) 

where,  0/f f f
k c   is the effective thermal diffusivity of the fluid, we obtain the following 

dimensionless equations (after dropping the asterisks): 

   2 2 2
1 11D fD a W a R M D M                                                                          (22) 

   2 2

f t s fD a H W       
 

                                                                            (23) 

      221 1 0s t s fD a H            
 

                                                      (24) 

 2 2
3 0fD a M D    .                                                                                     (25) 

Here, dz/dD   is the differential operator, 22 ma    is the overall horizontal wave 

number, 
2

0 /D t f fR g k d      is the Darcy-Rayleigh number and it is a ratio of buoyant to 
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viscous forces, gKM t 0
2

01 )1/(    is the magnetic number and it is a ratio of magnetic 

to gravitational forces, 3 0 0(1 / ) /(1 )M M H     is the measure of nonlinearity of 

magnetization, 2 /t t fH h d k  is the scaled inter-phase heat transfer coefficient, and 

 / 1f sk k     is the porosity modified conductivity ratio,    0 0/f ss f
c k c k    is the 

ratio of conductivities and 2/s f d    is the non-dimensional solid thermal relaxation time 

parameter.  

 Equations (22)-(25) are to be solved subject to appropriate boundary conditions. The 

boundaries are impermeable, ferromagnetic, and perfect thermal conductors. The boundary 

conditions are: 

0f sW D          at 0, 1z  .                                                                                        (26) 

Equations (22)-(25) admit solutions in the form  

1 sinW A z , 2 sinf A z  , 3 sins A z  , 4 cosA z                                                  (27) 

where 1A - 4A  are constants. The substitution of Eq. (27) into Eqs. (22)-(25), followed by 

elimination of the constants 1A - 4A  from the resulting equations, yields the following 

characteristic equation: 

 

 
    

 

2 2
1 1

2 2
3

1 0

1 0
0

0 1 1 0

0 0

 

 

     

 

  

   


    



D D

t t

t t

a R M a R M

H H

H H

M a

                                             (28) 

where, 2 2a   . One of the ways in which Eq. (28) may be used to examine the stability of 

the system will now be discussed. All the parameters, except the Darcy-Rayleigh number DR , are 

taken as given. Expanding the determinant gives the following expression for DR :       

 

             

      

2 2
3

2 2 2
1 3

1 1 1
.

1 1

t

D

t

M a H
R

M M a a H

             

    

           


    
  (29)  



10 

 

To examine the instability of the system, the real part of    is set to zero and we take i  . 

Substituting i   in Eq. (29) and clearing the complex quantities from the denominator, we 

get 

   

      

2 2
3 1 2

2 2 2 2 2 2 2 2 2 2 2
1 31 2 2 1

  

        

   


      
D

t t

M a i
R

a M M a H H
                (30) 

where,  

    

  

2 2 2 2 2 2 2 2 2
1

2 2 2 2 2 2 2

1 2 1

2 2 1

          

       

       

    

t

t

H

H
 

   2 2 2 2 2 2 2 2 2 2 2
2 2 2 1                        t tH H .  

Since the Rayleigh number DR  is a physical quantity, it must be real. Hence, from Eq. (30) it 

implies either 0   or  2 0 0   , and accordingly the condition for the onset of 

stationary and oscillatory convection is obtained.  

 

3.1 Stationary convection  0   

The stationary convection (direct bifurcation) corresponds to 0  and it occurs at s
D DR R , 

where 

    

   

2 2 2
3

2 2 2
1 3

1

1

ts
D

t

M a H
R

a M M a H

   

  

  


  
.                                                                                (31) 

Equation (31) reveals that the Cattaneo effects have no influence on the onset of stationary 

convection because   is not appearing in the expression for s
DR  . This is because the basic state 

remains the same irrespective of the Cattaneo effect as it corresponds to pure conduction. 

Equation (31) coincides with the expression obtained by Lee et al. [21]. We note that s
DR  attains 

its critical value s
DcR  at 2 2

ca a , where 2
ca  satisfies the equation  

           
6 5 4 3 2

2 2 2 2 2 2

1 2 3 4 5 6 7 0c c c c c cb a b a b a b a b a b a b                                                 (32)    

where, 

  2

1 1 31b M M   

    2

2 3 3 1 3 1 32 1 1tb M M M M H M M       
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      

  

4 2 2

3 1 3 1 3

2

3 3 3 1 3 3

1 2 2 1 1

4 2 1 2

t

t

b M M H M M

H M M M M M M

  

   

      

       
 

    

       

2 4 2

3 1 3 3 3
2

4
2 2

1 3 3 1

1 3 1
2

1 1 1 2 2 1

t

t

M M M M H M
b

H M M M M

  


    

      
  
         
 

 

       

      

4 2 2

3 3 1 3 3 1 3 3
4

5
2 2

1 3 3 1 1

4 6 1 2 1

1 2 1 1 2 4 5 4 8

t

t

M M M M H M M M M
b

H M M M M M

  


    

         
  
         
 

 

      6 2 2

6 3 1 3 1 32 1 1t t tb H H M M M H M M             

    8 4 2 2

7 1 1 2t tb H H           . 

 

Equation (32) is solved numerically for various values of , 1M , 3M  and tH  the critical value of 

2

ca  is obtained.  Using this 2
ca  in Eq. (31), the critical Rayleigh number s

DcR  is obtained, above 

which the convection sets in. It is interesting to check Eq. (31) under some limiting cases. When 

1 0M  (for ordinary fluid), Eq. (31) reduces to  

  
 

2

2

1ts
D

t

H
R

a H

  

 

 



                                                                                                            (33) 

The above expression is the same as the one obtained by Banu and Rees [35] and Straughan [29]. 

When 0tH  , Eq. (33) simply reduces to  

2

2

s
DR

a


 .                                                                                                                                     (34) 

Evidently, s
DR  given by Eq.(34) attains its minimum at a  . That is, the critical Darcy-

Rayleigh number is 24  and the associated critical wave number is  ; the known results for the 

classical Darcy-Bénard problem.  

 

3.2 Oscillatory convection  0   

The oscillatory onset corresponds to 2 0( 0)    in Eq. (30) and this gives a dispersion 

relation of the form 

   
2

2 2
1 2 3 0   B B B                                                                                                          (35)                                                                                                     

where,  

2 2
1  B  

 2 2 2 2 2
2 2        t tB H H  
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 2 2
3 2          t tB H H . 

For the occurrence of oscillatory convection, 2  should be positive. From Eq. (35), it is observed 

that the coefficient 1B is always positive while the coefficients 2B and/or 3B can be negative 

depending on the choices of parametric values. If this is the case, then from Descartes’ rule of 

signs it follows that one or two positive values of 2 exist indicating the occurrence of oscillatory 

convection for those choices of parametric values. However, if  =0 (i.e. in the absence of 

Cattaneo effect in the solid) then it is noted that both 2B  and 3B are positive and the occurrence 

of oscillatory convection is ruled out. Thus, it is evident that the Cattaneo effect in the solid is the 

cause to initiate the occurrence of convective instability via oscillatory convection. 

The oscillatory convection occurs at o
D DR R , where  

 
      

2 2
3 1

2 2 2 2 2 2 2 2 2 2 2
1 31 2 2 1

 

        

 


      

o
D

t t

M a
R

a M M a H H
                 (36) 

and 2  is given by Eq.(35). When 1 0M or 3 0M , Eq. (36) reduces to the case of ordinary 

viscous fluid. The critical oscillatory Darcy-Rayleigh number o
DcR  with respect to the wave 

number is computed numerically as follows.  Equation (35) is solved first to determine the 

positive values of
2  for chosen parametric values. If there are none, then no oscillatory 

convection is possible.  If there is only one positive value of 
2  then the critical value of 

o
DR  

with respect to the wave number is computed numerically from Eq. (36). If there are two positive 

values of
2  then there corresponds a value of 

o
DR  for each positive value of

2 . That is, 

oscillatory convection sets in simultaneously at two different frequencies but for the same wave 

number and in which case closed oscillatory neutral curve may occur. Since we are dealing with 

convective instability problem, we are interested in the least value of Rayleigh number at which 

the oscillatory convection sets in first. Therefore, the lower value of 
o
DR  is preferred for each 

fixed wave number and the critical value of this with respect to the wave number is computed.   

 

4 Results and discussion 

The local thermal non-equilibrium (LTNE) model is used with Cattaneo effects in the solid to 

investigate the onset of ferroconvection in a horizontal layer of Darcy porous medium. The range of 

values of magnetic parameters chosen are based on the physical parameters for a commercially 
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available magnetic fluid EMG 905 produced by Ferrofluidics (Auernhammer and Brand [36]); 

density 
3 3[ / ] 1.24 10kg m   , kinematic viscosity  0 2 627 / 12 10C m s      , thermal diffusivity 

2 8[ / ] 8 10m s   , heat capacity 
3[ / ] 1.47 10c J kgK   , coefficient of thermal expansion 

4[1/ ] 8.6 10t K   , susceptibility at low field 1.9  , pyromagnetic coefficient at 

50 / [ / ] 110H kA m A Km   and mean particle diameter   10.2nm  . For such fluids, the magnetic 

parameters have the following order of magnitude: 
4

1 10 10M   and 3 1M  . In addition, the 

results are also presented for copper oxide and aluminium oxide solid skeletons as both materials 

have practical use in heat exchangers.  

 

The typical steady and oscillatory neutral stability curves in the 2( , )DR a -plane for 

different values of   (with 1  ) and   (with 0.5  ) are shown in Figs. 2(a) and (b), 

respectively when 1  , 1 1M  , 3 1M   and  15tH . The figures show the upward concave 

shape of the neutral stability curves, typical of stability problems of the Darcy–Bénard type, and 

the unstable state lies above each neutral stability curve. From the figures it is evident that 

increasing   is to decrease the region of stability while an opposite trend is noticed with 

increasing . Further inspection of Fig. 2(a) reveals that there exists a threshold value of 

 beyond which only oscillatory convection is preferred and for the present case it is 0.3258. 

Whereas Fig. 2(b) shows that oscillatory convection is preferred for values of   lower than 5.55.  

Thus the presence of Cattaneo effect in the solid is to instigate the occurrence of convective 

instability via oscillatory motions under certain conditions, whereas in the absence of such effects 

the instability occurs always via stationary convection (Lee et al. [21]). 

The critical Darcy-Rayleigh number for the onset of stationary ( s

DcR ) and oscillatory 

( O

DcR ) convection, the corresponding critical wave number ( 2

ca ) and the critical frequency of 

oscillation ( 2c ) are computed numerically for various values of physical parameters and the 

results are summarized in Figs. 3-7. Figures 3(a), (b) and (c) show the variation of critical Darcy-

Rayleigh numbers, the critical wave number and the critical frequency of oscillation, respectively 

as a function of tH  for different values of  (= 0.5, 1 and 10) and for two values of 1M  (= 0 and 

0.6) with 3 1M  , 1  and 1  . Figure 3(a) shows that, depending on the parametric values, 

the instability occurs via oscillatory convection when tH  exceeds a threshold value T

tH , and this 
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value decreases significantly with increasing . It is noted that the onset of stationary convection 

(denoted by s) is delayed, while the onset of oscillatory convection (denoted by o) is hastened 

with increasing tH . Thus the effect of inter-phase heat-transfer coefficient tH  on the nature of 

convective instability is not consistent. Moreover, the influence of tH  on the oscillatory onset is 

more noticeable in the beginning and thereafter its effect becomes fairly insensitive.  This 

behavior is found to be more pronounced when  = 10. The size of 1M  is related to the 

importance of magnetic forces compared to gravitational forces. The case 1 0M   corresponds to 

convective instability in an ordinary viscous fluid saturating a porous medium. It is observed that 

an increase in 1M  is to decrease both the stationary and oscillatory critical Rayleigh numbers 

suggesting the ferrofluid carries heat more efficiently than the ordinary viscous fluid as it hastens 

the onset of ferroconvection. This is due to an increase in the destabilizing magnetic force with 

increasing 1M , which favours the fluid to flow more easily. Also the threshold value T

tH , beyond 

which oscillatory convection is preferred, increases with increasing 1M . 

The variation of critical wave number as a function of tH  is exhibited in Fig. 3(b). It is 

seen that the critical wave number for the oscillatory convection (denoted by o) starts beyond 

threshold value T

tH for each case. The values of 2

ca  increase sharply with tH  initially and 

become almost insensitive with further increase in tH and this trend is more predominant at 

 =10. Thus the size of convection cells decreases with increasing tH . It is further seen that 

increasing 1M is to increase, while increasing  is to decrease 2

ca  and hence their effect is to 

decrease and enlarge the size of convection cells, respectively.  It is also observed that the values 

of 2

ca  for stationary convection are higher than those of oscillatory convection.  

The critical frequency of oscillations 2c  displayed in Fig. 3(c) shows that the variation in 

2c  with tH  is significant for  = 0.5 and 1, while this trend is found to be not so high significant 

for  = 10. However, the parameter 1M  exhibits a dual effect on 2

c  with increasing tH . It is 

observed that, initially, increase in 1M  is to decrease 2

c  up to a certain value of tH , and 

thereafter an opposite behavior could be seen.     
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The effect of non linearity of magnetization parameter 3M  on the stability characteristics 

of the system is presented in Figs. 4(a-c) for two values 3M  (=1 and 10) as a function of 
tH  

with 1 0.6M  , 1  and 1  . From Fig. 4(a), it is noted that both onset of stationary and 

oscillatory convection is hastened with increasing 3M . Increase in the value of 3M  makes the 

ferrofluid to acquire larger magnetization which in turn interacts with the imposed magnetic field 

and releases more energy to drive the flow faster. Alternatively, a higher value of 3M  would 

arise either due to a larger pyromagnetic coefficient or larger temperature gradient. Both these 

factors are conducive for generating a larger gradient in the Kelvin body force field, possibly 

promoting the instability.  Further, it is seen that oscillatory convection is preferred at decreasing 

threshold values of tH  with increasing 3M . It is seen that increasing 3M is to decrease 2

ca  and its 

effect is to increase the size of convection cells (Fig. 4(b)). Figure 4(c) shows that the parameter 

3M  exhibits a dual effect on 2

c  with increasing tH . Initially, increase in 3M  is to increase 2

c  up 

to a certain value of tH , and thereafter the trend gets reversed.     

    

The impact of conductivity ratio   on the stability characteristics of the system is 

displayed in Figs. 5(a-c) for two values of   as a function of tH  for selected values of   

with 1 0.6M  , 3 1M  and 1  . From the figures, it is seen that the effect of increasing   is to 

delay the onset of oscillatory convection and thereby to increase the threshold value of tH (Fig. 

5a). Also, the effect of   on the onset of oscillatory convection diminishes with increasing . 

The critical wave number increases with  indicating its effect is to decrease the size of 

convection cells (Fig. 5b). For a fixed value of , 2c   decreases with increasing   (Fig. 5c).  

The values of   and   for copper oxide and aluminium oxide solid skeletons are given 

by (Straughan [29] and references therein)  

48.664 10C uO   , 46.403 10C uO   and 
2 3

21.420 10Al O   , 
2 3

37.337 10Al O   . 

For these two sets of parametric values, the results are displayed in Figs. 6 and 7 for two values 

of  (= 10, 12) with 1 0.5M   and 3 1M  .  It is seen that oscillatory convection is preferred at 

relatively high values of tH  when compared to values of  =1 and  =1 (see Figs. 3 and 4). This 

demonstrates the interplay of Cattaneo effects in the solid and various physical parameters on the 

occurrence of oscillatory convection. As expected, increase in the value of   is to hasten the 
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onset of oscillatory ferroconvection (Figs. 6a and 7a). Here, it is seen that the critical wave 

number increases with increasing
tH  and . That is, the size of the convection cells decreases in 

the (x, y) - plane. The critical wave number of oscillatory convection is lower than that of 

stationary convection for values of   considered indicating the cell size changes by a large 

amount to a much wider cell (Figs. 6b and 7b). The variation of 2

c  with tH  is illustrated in Figs. 

6(c) and 7(c).  From the figures it is observed that increasing 
tH  is to increase 2

c . Nonetheless, 

the parameter   exhibits a dual effect on 2

c  with increasing tH . Table 1 shows the transition 

values from stationary to oscillatory convection observed for different values of solid thermal 

relaxation time parameter  and magnetic number 1M when 3 1M  , 1   and 1  . It is seen 

that the pattern of behavior observed for porous skeletons made of copper oxide (CuO ) and 

aluminium oxide ( 2 3Al O ) is reflected in the table (cf. Figs. 6 and 7).  

A regime of local thermal non-equilibrium (LTNE) is considered. 

 
 

5 Conclusions 

 

A regime of local thermal non-equilibrium (LTNE) is considered with Cattaneo effect in the solid 

on the onset of ferroconvection in a horizontal layer of Darcy porous medium.  As a result of 

temperature waves in the solid via a Cattaneo-like heat flux theory, novel consequences have 

been discovered. If the solid thermal relaxation time  exceeds a threshold value, then the 

instability occurs via oscillatory convection. This is in contrast to the observed instability 

phenomenon in the absence of Cattaneo effects wherein ferroconvection occurs only via 

stationary convection. The effect of increasing   and decrease in the ratio of diffusivities    is 

to hasten the onset of oscillatory convection. Increase in the value of inter-phase heat transfer 

coefficient tH  is to delay the onset of stationary convection, while it exhibits an opposite trend on 

the onset of oscillatory convection. Besides, the threshold value T

tH (i.e. the value of tH  at which 

the transition from stationary to oscillatory convection takes place) decreases with increasing   

noticeably and marginally with increasing 3M , whereas it increases with increasing   and 1M . 

The effect of increasing magnetic parameters 1M and 3M  is to hasten the onset of both stationary 

and oscillatory ferroconvection. The size of convection cells is enlarged with increasing 3M  

and , but it is narrowed with increasing  and 1M .  Moreover, the critical wave number for 
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stationary convection is higher than those of oscillatory convection. The results obtained for 

copper oxide and aluminium oxide solid skeletons also found to exhibit similar behavior.    

 

References 

 

1. Rosensweig, R.E.: Ferrohydrodynamics. Cambridge University Press, Cambridge, London      

(1985) 

 

2. Berkovsky, B.M., Medvedev, V.F., Krakov, M.S.: Magnetic Fluids: Engineering 

Applications. Oxford University Press, New York (1993)  

 

3. Blums, E.S., Cebers, A.O., Maiorov, M.M.: Magnetic Fluids. de Gruyter, New York (1997)  

 

4. Hergt, R., Andrä, W., Ambly, C.G., Hilger, I., Kaiser, W.A., Richter, U., Schmidt, H.G.: 

Physical limitations of hypothermia using magnetite fine particles. IEEE Trans. Magn. 34, 

3745–3754 (1998) 

 

5. Alexiou, C., Arnold, W., Hulin, P., Klein, R., Schmidt, A., Bergemann, C., Parak, F.G.: 

Therapeutic efficacy of ferrofluid bound anticancer agent. Magnetohydrodynamics. 37, 318–

322 (2001) 

 

6. Odenbach, S.:  Recent progress in magnetic fluid research. J. Phys. Condens. Matter. 16, 

R1135–R1150 (2004) 

 

7. Ganguly, R. Sen, S. Puri, I.K.: Heat transfer augmentation using a magnetic fluid under the 

influence of a line dipole. J. Magn. Magn. Mater. 271, 63–73 (2004) 

 

8. Kaloni, P.N., Lou, J.X.: Convective instability of magnetic fluids. Phys. Rev. E. 70, 026313–

026324 (2004) 

 

9. Nkurikiyimfura, I., Wang, Y., Pan, Z.: Heat transfer enhancement by magnetic nanofluids – 
A review. Renewable and Sustainable Energy Rev. 21, 548–561 (2013) 

 

10. Rosensweig, R.E., Zahn, M., Vogler, T.: Stabilization of fluid penetration through a porous        

medium using magnetizable fluids. In: Berkovsky B (ed.) Thermomechanics of magnetic        

fluids. Hemisphere Washington DC 195–211 (1978) 

 

11. Zhan, M., Rosensweig, R.E.: Stability of magnetic fluid penetration through a porous 

medium with uniform magnetic field oblique to the interface. IEEE Transactions of Mag. 

MAG-16, 275–282 (1980) 

 

12. Vaidyanathan, G., Sekar, R., Balasubramanian, R.: Ferroconvective instability of fluids 

saturating a porous medium. Int. J. Engg. Sci. 29, 259–1267 (1991) 

 

13. Qin, Y., Chadam, J.: A non-linear stability problem for ferromagnetic fluids in a porous 

medium. Appl. Math. Letters. 8(2), 25–29 (1995) 

 



18 

 

14. Borglin, S.E., Mordis, J., Oldenburg, C.M.: Experimental studies of the flow of ferrofluid in 

porous media. Transp. Porous Med. 41, 61–80 (2000)   

 

15. Sunil, Amit Mahajan: A Nonlinear stability analysis for thermoconvective magnetized 

ferrofluid saturating a porous medium. Transp. Porous Med. 76, 327–343 (2009) 

 

16. Shivakumara, I.S., Nanjundappa, C.E., Ravisha, M.: Thermomagnetic convection in a 

magnetic nanofluid saturated porous medium. Int. J. Appl. Math. Engg. Sci. 2(2), 157–170 

(2008)  

 

17. Shivakumara, I.S., Nanjundappa, C.E., Ravisha, M.: Effect of boundary conditions on the 

onset of thermomagnetic convection in a ferrofluid saturated porous medium. ASME J. Heat 

Transf. 131, 101003-1-101003-9 (2009) 

 

18. Nanjundappa, C.E., Shivakumara, I.S., Ravisha, M.: The onset of ferroconvection in a 

horizontal saturated porous layer heated from below and cooled from above with constant 

heat flux subject to MFD viscosity. Int. Comm. Heat Mass Transf. 37, 1246–1250 (2010) 

 

19. Virto, L., Carbonell, M., Castilla, R., Gamez-Montero, P.J.: Heating of saturated porous 

media in practice: several causes of local thermal non-equilibrium. Int. J. Heat Mass Transf. 

52, 5412–5422 (2009) 

 

20. Sunil, Poonam Sharma, Amit Mahajan.: Nonlinear ferroconvection in a porous layer using a 

thermal nonequilibrium model. Special Topics Rev. Porous Med. 1 105–121 (2010) 

 

21. Lee, J., Shivakumara, I.S. Ravisha, M.: Effect of thermal non-equilibrium on convective   

instability in a ferromagnetic fluid saturated porous medium. Transp. Porous Med. 86, 103–

124. (2011) 

 

22. Shivakumara, I.S., Lee, J., Ravisha, M., Gangadhara Reddy, R.: The onset of Brinkman 

ferroconvection using a thermal non-equilibrium model. Int. J. Heat Mass Transf. 54, 2116–

2125 (2011) 

 

23. Shivakumara, I.S., Lee, J., Ravisha, M., Gangadhara Reddy, R.: The effects of local thermal 

nonequilibrium and MFD viscosity on the onset of Brinkman ferroconvection. Meccanica. 

47, 1359–1378 (2012)  

 

24. Cattaneo, C.: Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 3, 83–101 

(1948) 

 

25. Straughan, B., Franchi, F.: Bénard convection and the Cattaneo law of heat conduction. Proc. 

Roy. Soc. A 96, 175–178 (1984) 

 

26. Lebon, G., Cloot, A.: Bénard–Marangoni, instability in a Maxwell–Cattaneo fluid. Phys. Lett. 

A 105, 361–364 (1984) 

 

27. Straughan, B.: Thermal convection with the Cattaneo–Christov model. Int. J. Heat Mass 

Transf. 53, 95–98 (2010) 

 



19 

 

28. Straughan, B.: Heat waves, Series in Applied Math Science. Springer, New York 177, (2011) 

 

29. Straughan, B.: Porous convection with local thermal non-equilibrium temperatures and with 

Cattaneo effects in the solid. Proc. Roy. Soc. A 469, 20130187 (2013) 

 

30. Stranges, D.F., Khayat R.E., Albaalbaki, B.: Thermal convection of non-Fourier fluids. 

Linear stability. Int. J. Thermal Sci.  74, 14–23 (2014)    

 

31. Haddad, S.A.M.: Thermal instability in Brinkman porous media with Cattaneo–Christov heat 

flux. Int. J. Heat Mass Transf. 68, 659–668 (2014) 

 

32. Shivakumara, I.S., Ravisha, M., Ng, C.O., Varun, V.L.:  A thermal non-equilibrium model 

with Cattaneo effect for convection in a Brinkman porous layer. Int. J. Non-Linear Mech. 71, 

39–47 (2015) 

 

33. Nield, D.A., Bejan, A.: Convection in porous media, 4th Ed., Springer, New York (2013) 

 

34. Finlayson, B.A.: Convective instability of ferromagnetic fluids. J. Fluid Mech. 40, 753–767 

(1970) 

 

35. Banu, N.,  Rees, D.A.S.: Onset of Darcy–Benard convection using a thermal non-equilibrium 

Model. Int. J. Heat Mass Transf. 45, 2221–2228 (2002) 

 

36. Auernhammer, G. K., Brand, H.R.: Thermal convection in a rotating layer of a magnetic 

fluid. Eur. Phys. J. B 16, 157-168 (2000)  

 

 

 

 

 

 

 
 

 

Fig. 1 Physical configuration 

 

 

 

 

 



20 

 

5 10 15 20 25 30
30

33

36

39

 

 0.3 

 2a

\[Alpha] = 1; \[Gamma] = 1; tau = 0.45; M1 = 1; M3 = 1; Ha = 15; x = i;

 

0.38

0.45

0.5

0.3258

oscillatory

stationary

 
DR

 

 

(a)

 
 
 

5 10 15 20 25 30
30

33

36

39

 5.55 

 

 2a

\[Alpha] = 1; \[Gamma] = 1; tau = 0.45; M1 = 1; M3 = 1; Ha = 15; x = i;

 

8

3

1

0.1
oscillatory

stationary

 
DR

(b)

 

 

 
 

 

Fig. 2 Neutral curves for different values of (a)   with 1   and (b)   with 0.5   when 1  , 

1 1M  , 3 1M   and  15tH .    
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1M    s

DcR  O

DcR  2

ca  2

c  T

tH  

 

 

 

 

 

 

0 

 

 

0.5 

51.4717  11.7549  9 

52.3596  11.8085  10 

 51.6612 11.1435 3.04151 11 

 51.0431 11.2594 5.25999 12 

 

 

1 

47.2367  11.3397  5 

48.4147  11.4821  6 

 47.0621 10.4643 3.25119 7 

 46.3464 10.5938 4.69445 8 

 

 

10 

39.4784  9.8696  0 

41.3621  10.3126  1 

 41.1084 9.8912 0.66283 2 

 40.5969 9.9529 0.842401 3 

 

 
 

 

 

 

 

0.5 

 

 

0.5 

40.0787  14.3567  9 

40.7502  14.4384  10 

 40.4659 13.3834 2.8879 11 

 39.9368 13.5598 5.64275 12 

 

 

1 

36.9165  13.7875  5 

37.7897  13.9754  6 

 37.0868 12.5915 3.20576 7 

 36.4721 12.7989 5.03109 8 

 

 

10 

31.276  11.9940  0 

32.6286  12.5173  1 

 32.5644 11.9871 0.694873 2 

 32.1363 12.0875 0.924355 3 

 

 

 

 

 

1 

 

 

 

0.5 

32.5135  16.0927  9 

33.0471  16.1923  10 

 32.9698 14.8707 2.63031 11 

 32.5119 15.0959 5.80113 12 

 

 

1 

30.0191  15.4341  5 

30.7049  15.6473  6 

 30.3244 14.0264 3.08234 7 

 29.7899 14.3009 5.21651 8 

 

 

10 

26.6831  14.0412  1 

27.6259  14.4956  2 

 26.3354 13.5781 0.98024 3 

 26.2008 13.5944 1.05184 4 

 

Table 1 Critical Darcy Rayleigh number, critical wave number for different values of solid 

thermal relaxation time parameter  and magnetic number 1M when 3 1M  ,  1   and 1  . 


