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Abstract: This paper investigates a new class of linear multi-agent systems, in which nodes
are coupled by dynamic edges in the sense that each edge has a dynamic system attached. The
outputs of the edge dynamic systems combine to form the external input of the node dynamic
system, which is called neighboring input; while the outputs of the node dynamic systems are
inputs of the edge dynamic systems that therefore can not be directly controlled. Distributed
controllers for nodes are presented to realize output synchronization and output cooperation.
Output cooperation makes the outputs of nodes realize some cooperation that here is specified
as making the neighboring input track a predefined trajectory. The controllers depending on
local state and neighboring inputs are designed by combining the feedback passivity theory and
the internal model principle. A simulation example on the cooperated current control of an
electrical network illustrates the potential applications of the analytic results.

1. INTRODUCTION

Multi-agent systems and the closely related subject of
complex dynamic networks have emerged in the control
system literature during the past decade, see for example,
[Pogromsky, 2001], [Liu and Passino, 2006], [Yu et al.,
2009], [Zhao et al., 2011], [Guan et al., 2012], [Siljak, 2012],
[Liu et al., 2012], [Chen et al., 2013], because interactions
and cooperations between units become the trend as
the popularity of intelligent devices and the associated
communication technology increases. Such a system is
often described by a graph, where nodes represent the
dynamic subsystems and edges the interactions between
these subsystems. One significant feature of these systems
is that they can achieve some collective behaviours, such
as synchronization, swarming, formations and so on, with
each node running a local/distributed feedback controller,
rather than a centralized controller.

Among these collective behaviors, consensus and synchro-
nization are the most extensively studied ones. The term
consensus means that all the agents have their interest-
ing variables converge to one common constant value.
Since the seminal work [Jadbabaie et al., 2003], where the
jointly connected condition was presented for consensus
of undirected multi-agent systems with first-order inte-
grators, many results have been reported extending to
first-order or second-order multi-agent systems. Readers
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can refer to the recent surveys [Cao et al., 2013], [Chen
et al., 2013] and the earlier surveys [Olfati-Saber et al.,
2007], [Ren et al., 2007] for details. The term synchro-
nization means that all the agents have their interesting
variables converge to one time-varying trajectory. In fact,
synchronization has a long history of study in the field
of physics, including phase synchronization, limit-cycle
synchronization and chaos synchronization. All of them
are for nonlinear systems. For nonlinear synchronization in
networks of dynamic systems, refer to the survey [Arenas
et al., 2008]. In recent years, several works with focuses on
output feedback synchronization have been reported for
linear multi-agent systems, including [Tuna, 2009], [Seo
et al., 2009], [Scardovi and Sepulchre, 2009], and [Li et al.,
2010].

Differently from consensus or synchronization requiring
that agents are going to have an identical states, output
synchronization that might happen in non-identical agents
is more ubiquitous and interesting. Xiang et al. [2009]
studied output synchronization in networks of identical
agents by using the output regulation method. Output
synchronization in networks of single-input and single-
output non-identical agents was studied in [Kim et al.,
2011]. Wang et al. [2010] presented an internal model
controller for output synchronization of more general het-
erogeneous multi-agents systems. It is proved in [Wieland
et al., 2011] that the internal model principle is a necessary
and sufficient condition for non-trivial output synchro-
nization. Grip et al. [2012] studied output synchronization
problem of general right-invertible linear systems with no
knowledge about their own state or output of nodes but
there is knowledge of the relative outputs.
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In most studies on consensus, agents do not have inter-
actions with each other before their controllers are per-
formed. The received or measured neighboring information
forms somewhat virtual edges between agents. Each edge
can be thought as an algebraic map to get the relative error
between two connected agents. However, there are many
real large systems, in which the subsystems are inherently
coupled to each other, such as power networks, ecological
systems and so on. Previous studies on these large sys-
tems focus on stability analysis or decentralized controllers
whose purpose is to overcome the coupled influences for
stability [Davison, 1976, Moylan and Hill, 1978, Araki,
1978, Michel, 1983]. Such a kind of system was seldom
described by a graph, partly because the interactions be-
tween the subsystems can not be represented by edges with
an algebraic map. Therefore, many results on networked
systems can not be applied on such systems.

This paper presents a new class of multi-agent systems
which has not only dynamic nodes but also dynamic edges,
being able to cover many large-scale systems. Outputs of
edge dynamic systems combine to form external inputs of
node dynamic system, which are called neighboring inputs,
while outputs of node dynamic systems are inputs of edge
dynamic systems. Two problems of output synchronization
and output cooperation are studied here. Output cooper-
ation means that the nodes have their output cooperate
for some object that in this study is specified as making
the neighboring inputs track some non-trivial trajectories.
The proposed controller is distributed in the sense that the
feedback information contains not only the local output of
the agent itself, but also the neighboring input which rep-
resents some indirect information of neighboring agents.
More recently, a similar but different work with dynamic
edges has been reported in [Burger and Persis, 2013].
There agents interact with each other by the controllers
placed on edges, that means, it is the edge dynamics rather
than the node dynamics to be designed to achieve output
synchronization.

The development is passivity-based. The edge dynamics
is assumed to be strictly passive and the node dynamics
to be feedback passive from the neighboring input to the
local output of the node itself. We recognized that there
are several works to exploit passivity for seeking consensus
or synchronization of multi-agent systems. In [Chopra and
Spong, 2006], output synchronization in networks of non-
linear systems with input-output passive was investigated.
There a linear coupling controller for balanced directed
graphs, a nonlinear coupling controller for undirected
graphs, and extensions to time-delay communication are
addressed. In [Arcak, 2007], a passivity-based design is
proposed for a coordination problem of second-order multi-
agent systems by making the feedback channel be passive.
These results are not applicable here, because the exosys-
tems being not Hurwitz have to be considered (due to
internal model principle) in the closed-loop system that is
no longer formed by a negative feedback interconnection
of two passive systems. In the following developments, all
the proofs are omitted due to the space limitation.

2. PROBLEM FORMULATION

Consider a multi-agent system of N nodes and M edges,
where the node dynamics has the form of

{
ẋi = Aixi +Biui +Divi
yi = Cixi

, i = 1, 2, · · · , N, (1)

where xi ∈ Rni is the state of node i, ui ∈ Rmi the input,
yi ∈ Rp the output and vi ∈ Rp is the neighboring input
to present the influences from other nodes. Ai, Bi, Ci and
Di are constant matrices with compatible dimensions.

Differently from the general coordination problem where
vi is a algebraic function of xi and xj with node j being a
neighboring node of node i, what we consider here is that
all the nodes are coupled by dynamic edges, that is, each
edge, similar to the node, has a dynamic system model,{

żi = Eizi + Fisi
wi = Gizi

, i = 1, 2, · · · ,M, (2)

where zi ∈ Rnei , si ∈ Rmei and wi ∈ Rp are the state,
input and output of edge i, respectively. Ei, Fi and Gi are
constant matrices with compatible dimensions. Without
loss of generality, Bi, Di and Fi are assumed to be of full
column rank; Ci and Gi are assumed to be of full row rank.

The N × M incidence matrix H describes the coupled
relationship among the nodes, which is defined as

hij =

{
+1 node i is the positive end of edge j,
−1 node i is the negative end of edge j,
0 otherwise.

(3)

The orientation of an edge does not influence the results
developed in the following. It only reflects the action of
an edge on its connecting nodes. The neighboring input vi
and the edge input si are assumed to satisfy

vi = −
∑M

j=1
hijwj , i = 1, 2, · · · , N,

si =
∑N

j=1
hjiyj , i = 1, 2, · · · ,M

. (4)

The goal is to design ui for each node i, i = 1, · · · , N ,
which depends on the information of xi and vi, so as to
generate some cooperative behaviors. In this paper, the
following two kinds of cooperative problems are consid-
ered,

Definition 1. (Output Synchronization). Given a multi-
agent system consisting of dynamic systems (1) and (2)
with algebraic relationships (3) and (4), design a dis-
tributed control law depending on local state xi and
neighboring input vi such that all the node outputs of
the closed-loop system asymptotically converge to one
nontrivial common trajectory.

Definition 2. (Output Cooperation). Given a multi-agent
system consisting of dynamic systems (1) and (2) with
algebraic relationships (3) and (4), design a distributed
control law depending on the local output yi and neighbor-
ing input vi such that all the nodes have their neighboring
inputs (determined by the node outputs) of the closed-loop
system asymptotically converge to predefined trajectories
v̄is satisfying some conditions.

We firstly provide an assumption for the edge dynamic
system.

A1) The edge dynamic (Ei, Fi, Gi) is strictly passive in
the sense defined in [Hill and Moylan, 1976].

Assumption A1) implies that matrix Ei is Hurwitz, hence
in the output synchronization state, si = 0 and subse-
quently vi = 0. This means that the dynamic edges play
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no role in the steady output synchronization state, which
therefore leads to that output synchronization considered
here is a generalization of that considered by Wieland et.
al. in Wieland et al. [2011], where it is shown that the
necessary and sufficient for a nontrivial output synchro-
nization in networks of linear dynamic systems is that all
the nodes have their controllers contain the same internal
model. Accordingly, such a internal model is also necessary
in this paper. We assume that all the nodes have a priori
knowledge of this internal model, which is denoted by
Sη ∈ Rq and assumed to satisfy

A2) Matrix Sη has no eigenvalue of negative real part, but
there is a symmetric positive definite matrix Pη such
that PηSη + STη Pη ≤ 0.

3. OUTPUT SYNCHRONIZATION

Since all the nodes have a priori knowledge about the
desired model for their outputs, every node can indepen-
dently construct an exosystem of the desired model and
then force its output to asymptotically track the output
of the constructed exosystem, which in general can be

η̇i = Sηηi, yηi = Qηηi (5)

where ηi ∈ Rq is the exosystem state, yηi ∈ Rp the
exosystem output, andQη the output matrix. The tracking
error is defined by

ei = yi − yηi = Cixi −Qηηi. (6)

Noticing all the exosystems have the same state matrix
Sη, the internal model controller to make ei → 0 has the
form of {

ζ̇i = G1iζi +G2i(yi −Qηηi)
ui = Kxixi +Kζiζi

(7)

where ζi ∈ Rci is the controller state, matrix pair
(Gi1, Gi2) incorporates a p-copy internal model of matrix
Sη [Huang, 2004], and Kxi and Kηi are feedback gains.
With controller (7), the dynamics of node system (1)
becomes

˙̂xi = Âix̂i + D̂ivi + D̂ηiηi, yi = Ĉix̂i (8)

where x̂i = [xTi , ζ
T
i ]T ,

Âi =

[
Ai +BiKxi BiKζi

G2iCi G1i

]
, D̂i =

[
Di

0

]
,

D̂ηi =

[
0

−G2iQη

]
, Ĉi = [Ci 0] .

In a single-node system, it is enough to make Âi be
Hurwitz for output regulation, which requires each node
satisfies the following assumptions,

A3) Matrix pair (Ai, Bi) is stabilizable.
A4) For any eigenvalue λ of Sη,

rank

([
Ai − λI Bi
Ci 0

])
= ni + p.

Here for cooperations between nodes, we take an extra
requirement on the controller design.

A5) Controller (7) is such that Âi is Hurwitz and the

closed-loop system (Âi, D̂i, Ĉi) is passive.

Since Âi is Hurwitz and Sη has no stable eigenvalue, there
is a unique solution Πi satisfying,

Node i



iy


i ˆ
iAiv iy

Node 1

Node N

T
pH I

v y s

1E

2E



ME

pH I w

Fig. 1. A block diagram representation for the intercon-
nection of multi-agent systems (1)∼(4) with controller
(11).

ΠiSη = ÂiΠi + D̂ηi, (9)

and, since matrix pair (Gi1, Gi2) incorporates a p-copy
internal model of matrix Sη,

ĈiΠi = Qη. (10)

which implies that ei → 0 under controller (7) when vi =
0. In the presence of vi, making ei → 0 is a decentralized
servomechanism problem [Davison, 1976], because ηi is
independent of x̂i and zj . For this goal, the following result
is given,

Theorem 1. Given a multi-agent system consisting of
(1)∼(4) and exosystem (5). If assumptions A1)∼A5) hold,
then ei will exponentially converge to zero for all i =
1, · · · , N , under controller (7).

The above theorem means that when the exosystem ηi,
whose output node i will track, has the same dynamic
model for all the nodes, then the decentralized internal
model controller can work well for the network coupled by
dynamic edges if some passive properties are satisfied.

If these ηi are synchronous each other, then yi − yj →
0 can be obtained by controller (7). But in general,
ηi 6= ηj due to different initial conditions. Meanwhile, the
synchronization errors, either yi − yj or ηi − ηj , are not
directly available for synchronization seeking of ηi. Here
neighboring input vi is the only available information that
indirectly reflects the synchronization error. Our idea is to
adjust the exosystem dynamics (5) by feeding vi in order to
synchronize ηi. With this alteration, the following dynamic
controller is presented,

η̇i = Sηηi + εBηvi

ζ̇i = G1iζi +G2i(yi −Qηηi)
ui = Kxixi +Kζiζi

, (11)

where Bη ∈ Rq×p is the input matrix of exosystem, ε is
a positive scalar expressing the strength of adjusting the
dynamics of output reference, and (Gi1, Gi2), Kxi, Kζi

and Kηi are the same as those in (7). The block diagram
of the resulted closed-loop system is shown in Fig. 1.

Now the assumption on the network topology is given

A6) The network is connected, namely, the rank of inci-
dence matrix H is N − 1.

Define a matrix T ∈ R(N−1)×N satisfying T1 = 0 and
TTT = IN−1, where 1 means a vector with all the elements
being 1. Define an induced matrix H̄ = TH. It easily to
verify that H̄ is of full row rank.
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Theorem 2. Given a multi-agent system consisting of
(1)∼(4). If Assumptions A1)∼A6) hold and Bη is designed
such that (Sη, Bη, Qη) is passive, namely, Bη = P−1

η QTη ,
then there is a scalar ε∗ > 0 such that for all 0 < ε < ε∗,
controller (11) will solve the output synchronization prob-
lem. And moreover, the steady output trajectory is given
by

ys(t) = Qηe
St 1

N

N∑
i=1

ηi(0). (12)

In order to guarantee stability, an interconnection of two
passive systems only requires ε more than zero to ensure
that the feedback to be negative and permits an arbitrary
value of ε. But as shown in Fig. 1, here the signal channel
from reference output yηi to sj is not direct, but indirectly
through output yi of dynamic system x̂i. Critically, it is
not passive from yηi to yi due to ĈiD̂ηi = 0. This in turn
results an adjusting strength having an upper bound.

4. OUTPUT COOPERATION

This section extends the result developed above to the
output cooperation problem, to make the influences be-
tween nodes, vi, track some predefined trajectories v̄i(t)
by adjusting output reference ηi. Notice that the output
synchronization is a special case of the output coopera-
tion with v̄i(t) = 0 for all i = 1, · · · , N , and that it is
necessary for the same dynamic model to be embedded in
the controller for seeking output synchronization. Here we
similarly assume that v̄i complies with the same dynamics,

ν̇i = Sηνi, v̄i = Qvνi, i = 1, · · · , N. (13)

where νi ∈ Rq is the state of neighboring input reference
system.

Our idea is to take the reference output Qηηi as a virtual
control input of edge dynamics to regulate vi → v̄i. To this
end, the error vi − v̄i is fed into the dynamics of ηi which
should be changed to incorporate a p-copy model of Sη,
and the following controller is proposed,

˙̄ηi = GS η̄i + εGB(vi −Qvνi)
ζ̇i = G1iζi +G2i(yi −GQη̄i)
ui = Kxixi +Kζiζi

, (14)

where η̄i ∈ Rpq. Controllable matrix pair (GS , GB) incor-
porates a p-copy model of Sη. A possible choice for GS ,
GB and GQ is

GS = Ip ⊗ Sη, GB =

B
1
η · · · 0
...

. . .
...

0 · · · Bpη

 , GQ =

Q
1
η · · · 0

...
. . .

...
0 · · · Qpη


(15)

where Biη denotes the ith column of Bη and Qiη the ith
row of Qη. It can be verified that

(Ip⊗Pη)Gs+G
T
s (Ip⊗Pη) ≤ 0, (Ip⊗Pη)GB = GTQ. (16)

Compared to output synchronization, the analysis for out-
put cooperation is much more complex, although the for-
mer is a special case of the latter. Output synchronization
is directly realized by controlling the output of the node
itself; output cooperation is a result of the output of the
edge which however, is manipulated by the outputs of
two nodes. In fact, the output cooperation goal can not

be arbitrary, on which the following matching condition
assumption is made,

A7) The trajectories of neighboring input reference sys-

tems are in the manifold
∑N
i=1 νi = 0.

Now, we are ready to present our main result for output
cooperation,

Theorem 3. Given a multi-agent system consisting of
(1)∼(4). If Assumptions A1)∼A7) hold, then there is a
scalar ε∗ > 0 such that for all 0 < ε < ε∗, controller (14)
with (15) and (16) will solve the output cooperation prob-

lem. And moreover, the sum of nodal outputs ys =
∑N
i=1 yi

satisfies

ys(t)→ GQe
Gst

N∑
i=1

η̄i(0). (17)

It can be seen that different initial conditions of the output
reference systems will causes different steady outputs yi,
although steady neighboring inputs vi hold invariant for
all the nodes. This in turn means that for a given output
cooperation target v̄is, there are infinite feasible solutions
for nodal outputs.

5. MASTER-SLAVE OUTPUT COOPERATION

In order for a well-posed output cooperation problem,
the matching condition of Assumption A7) is required.
To relax this assumption, one possible way is to keep
some nodes free, running without requirements on their
neighboring inputs. Such nodes are called master nodes,
in the sense that they do not receive any command, so
that their output reference is not changed. The controller
for master node is given by (7). The remaining nodes are
called slave nodes whose controller is designed as (14), to
adjust their output reference to fit in with command v̄i.

Without loss of generality, we assume that the first l nodes
are slave nodes and the remaining N − l nodes are master
nodes, and present the following result,

Theorem 4. Given a multi-agent system consisting of
(1)∼(4). If the nodes have the controllers described by

˙̄ηi = GS η̄i + εGB(vi −Qvνi)
ζ̇i = G1iζi +G2i(yi −GQη̄i)
ui = Kxixi +Kζiζi

, i = 1, · · · , l, (18a)

{
ζ̇i = G1iζi +G2i(yi −Qηηi)
ui = Kxixi +Kζiζi

, i = l + 1, · · · , N, (18b)

where 0 ≤ l ≤ N − 1, and both νi and ηi are the state of
exosystems satisfying{

ν̇i = Sηνi, i = 1, 2, · · · , l
η̇j = Sηηj , j = l + 1, · · · , N . (19)

If assumptions A1)∼A6) are satisfied, then there is a
positive scalar ε∗ such that for all 0 < ε < ε∗,

vi → Qvνi, yj → Qηηj (20)

for all i = 1, · · · , l and j = l + 1, · · · , N .

It can be seen that the master node plays an output
tracking role to make its output yi track the given reference
Qηηi; while the slave node plays an output cooperation
role to make its neighboring input track the given reference
Qvνi. Theorem 4 tells that if the two kinds of nodes simul-
taneously exist in the network, they can definitely realize
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their targets without the so-called matching condition.
Recalling Theorem 1, the number of slave node can reach
l = 0.

6. EXAMPLE ON ELECTRICAL NETWORK

A simple electrical network consisting of two sources,
two loads and one transmission line is selected as an
application example to illustrate the analytic results. We
consider the sources with their current being control input.
Fig. 2 shows the electrical network. Node 1 and 2 are
sources, and node 3 is the ground. Every edge contains
a resistance and an inductance. The transmission line
connects the outputs of two sources, which means that
both sources jointly provide currents for loads.

12i

Node 3

1y1fCSource 1 1y 2y

3y

12R 12L

13R
13L

23R

23L
13i 23i

Electrical Network

1u

1v

2y2fCSource 2 2u

2v

Node 2Node 1

Network Topology

Fig. 2. The electrical network of three nodes

The incidence matrix is

H =

[
1 1 0
−1 0 1
0 −1 −1

]
. (21)

For the edges, the following dynamic functions can be
established,

L12i̇12 = −R12i12 + y1 − y2, (22a)

L13i̇13 = −R13i13 + y1 − y3, (22b)

L23i̇23 = −R23i23 + y2 − y3. (22c)

And for the sources,

Cf1u̇f1 = u1 − v1, y1 = uf1 (23a)

Cf2u̇f2 = u2 − v2, y2 = uf2. (23b)

The desired output is a 50hz sinewave, that is, Sη =[
0 −w
w 0

]
, with w = 100π. Here we consider the master-

slave output cooperation problem, as node 3 is the ground
that can not be controlled. Both node 1 and node 2 are
required to make their neighboring inputs track the desired
currents, v̄1 = 10 sin(wt + π/6) and v̄2 = 10 cos(wt),
respectively. They can be regarded as to be produced by
the following dynamic systems,

ν̇i = Sηνi, ν̄i = Qvνi with ν1(0) =

[
5

−5
√

3

]
,

ν2(0) =

[
10
0

]
, Qv = [1, 0].

Node 3 is regarded as a master node with perfect voltage
tracking performance, satisfying y3 ≡ η3 with

η̇3 = Sηη3, η3(0) = 0. (24)

Such a configuration of output cooperation corresponds to
the scenario where two sources work in the current control
mode.

Table 1. Parameters of the electrical network

R12 L12 R13 L13 R23 L23 Cf1 Cf2

0.05Ω 0.01mH 9Ω 1mH 8Ω 5mH 50µF 30µF

0 0.1 0.2 0.3 0.4 0.5 0.6
-20

0

20
Neighboring input

0 0.1 0.2 0.3 0.4 0.5 0.6
-10

0

10
Tracking error of neighboring intput

0 0.1 0.2 0.3 0.4 0.5 0.6
-100

0

100
Output

0 0.1 0.2 0.3 0.4 0.5 0.6
-5

0

5
Tracking error of output

Fig. 3. Trajectories of output and neighboring output of
node 1 with their tracking errors.

Take z1 = i12, z2 = i13, z3 = i23 and xi = ufi, i = 1, 2.
Notice that

v1 = i12 + i13,

v2 = −i12 + i23.
(25)

The electrical network is just a multi-agent system con-
sisting of (1)∼(4), with assumption A1) and A6) being
satisfied. The physical parameters are listed in Table 1.
Assumption A2) can be also verified with Pη = I2.

According to Theorem 4, the following controllers are
designed for two source nodes,

˙̄ηi = GS η̄i + εGB(vi − ν̄i)
ζ̇i = G1iζi +G2i(yi −GQη̄i)
ui = Kxixi +Kζiζi

, i = 1, 2, (26)

where

GS = Sη, GQ = [0 1] , GB = PηG
T
Q =

[
0
1

]
,

G11 = Sη, G21 =

[
1
1

]
,Kx1 = −1,Kζ1 = [−500, −500],

G12 =

[
0 1
−w2 0

]
, G22 =

[
0
1

]
,Kx2 = −2,Kζ2 = [0, −500].

It can be verified that assumption A5) is satisfied for both
source nodes under the controller gains defined above. All
the conditions in Theorem 4 are satisfied, therefore, there
is ε for the above controller to make the electrical network
realize the output cooperation.

Simulation results with ε = 500 obtained in the Matlab
environment are given in Fig. 2, where due to space
limitations only the trajectories related to node 1 are
shown. The electrical network is builded by making use of
the SimPowerSystems Toolbox. It can be found that after
the transition time, each source adjusts its output to make
the neighboring input of itself converge to the desired one.

7. CONCLUSION

A new class of multi-agent systems was presented, where
the nodes are indirectly coupled by dynamic systems,
called dynamic edges. The node dynamics can be directly
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controlled and is influenced by the neighboring input which
is a weighted sum of outputs of edge dynamic systems;
while the edge dynamics can not be directly controlled
due to its input being the node outputs. Distributed
controllers designed by feedback passivity theory and
the internal model principle were presented for output
synchronization and output cooperation, respectively. A
simulation example of cooperated current control of a
simple electrical network illustrates the efficacy of the
analytic results.
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