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RECOGNIZING COVERAGE FUNCTIONS*
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Abstract. A coverage function f over a ground set [m] is associated with a universe U of
weighted elements and m sets Ai,..., Ay C U, and for any T C [m], f(T) is defined as the total
weight of the elements in the union UjcrA;. Coverage functions are an important special case of
submodular functions, and arise in many applications, for instance, as a class of utility functions of
agents in combinatorial auctions. Nalve representations of coverage functions have size exponential
in m, and in algorithmic applications, an access to a value oracle is assumed. In this paper, we ask
whether one can recognize if a given oracle is that of a coverage function or not. We demonstrate
an algorithm which makes O(m|U|) queries to an oracle of a coverage function and completely
reconstructs it. This is polynomial time whenever |U| is polynomially bounded implying the function
has a succinct description. To complement the above result, we show a negative result. We prove
that “noncoverageness” needs large certificates—there exists a function which is not coverage and yet
any algorithm making fewer than 2™~ queries cannot distinguish this function from some coverage
function. Our positive result shows that the property of coverageness has O(m|U|)-query proximity
oblivious testers, while our negative result shows an exponential lower bound. We believe our lower
bound also goes through for general property testers, and provide some evidence of the same.
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1. Introduction. A function f : 2(" s R- defined over subsets of [m] =
{1,2,...,m} is a coverage function iff there exists a universe U, nonnegative reals w;
for each element ¢ € U, and subsets Ay, Ao, ..., A, of U such that

1) VT C ] ST =w (| 4 )

ieT

where we use the notation w(S) := >, gw;. The set system (U; Ay,..., Ay,) is said
to induce the coverage function f. The size of the universe U is unspecified; the
function f is called succinct if |U| is upper bounded by a fixed polynomial of m.
Observe that succinct coverage functions have succinct representations.

Coverage functions form an important class of submodular functions: a function f
is submodular if f(A)+ f(B) > f(AUB)+ f(ANB) for any pair of subsets A and B.
Coverage functions arise in many applications (plant location [7], machine learning
[16]), an important one being that in auction theory [5, 17] where utilities of agents
are often modeled as coverage functions. Many auction mechanisms take advantage
of the specific property of these utility functions; a notable one is the recent work
of Dughmi, Roughgarden, and Yan [9] and Dughmi [10] who give O(1)-approximate
and truthful-in-expectation mechanisms when utilities of agents are coverage. (Such
a result is impossible for general submodular functions [8].)
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In this paper we are interested in the problem of recognizing coverage functions
given access only to a value oracle for the function. More precisely, we are interested
in algorithms which can query the value of f at any subset T' C [m], and we want to
know how many queries are needed to decide whether or not the function is coverage.

Our first result is a positive one. We give a deterministic reconstruction algo-
rithm which makes O(m|U|) queries to a value oracle of a true coverage function
and reconstructs the coverage function, that is, deduces the underlying set system
(U; Aq, ..., A,,) and weights of the elements in U. Thus, we give a deterministic,
polynomial time, ezxact learning algorithm for succinct coverage functions. Our algo-
rithm can also be interpreted as an algorithm to reconstruct a sparse signal from a
(highly) stylized form of linear measurements. We elucidate on this in section 3 where
we also describe our algorithm.

How about general coverage functions? It is not clear whether these functions
can be succinctly represented and thus the reconstruction problem may be hard. But
it is possible that for any “noncoverage” function, there is a succinct certificate which
proves the function is not coverage, and if one is able to find this, one could distin-
guish between coverage and noncoverage functions with a polynomial sized proof. For
instance, for submodular functions, there is a certificate of nonsubmodularity of size
4—these are the function value at sets A, B, AU B, and AN B which violate submod-
ularity. Our second result is a negative one. We show that there exists a function f*
which is not coverage, but any certificate of noncoverageness is of size 271,

Connection to property testing. In property testing [14, 15], the objective is to
distinguish functions which have a certain property, say coverage, from functions
which are “far” from having the property. The usual notion of distance is Hamming
distance w.r.t. the uniform distribution, that is, a function f is said to be e-far from
coverage if it needs to be altered in at least €-2™ places to make it coverage. A coverage
tester takes as input a parameter € and accepts if f is coverage and rejects if f is e-
far; it is allowed to err with probability < 1/3 in either case. A prozimity oblivious
tester [13] doesn’t take e as input, rather, it rejects a function f with probability at
least p(g), where p : (0,1] — (0, 1] is a monotonically increasing function with p(0) =0.

Our positive result immediately implies an O(m|U|)-proximity oblivious tester.
We run the reconstruction algorithm. If there is any inconsistency found (that is,
some w; < 0), then we reject. If no inconsistencies are found, then we pick a set T
at random and compare f(7T) and f/(T'), where f’ is our reconstruction, rejecting if
they do not agree. If f is coverage, then we always accept. If f is e-far, then the final
comparison will disagree with probability at least ¢ since f’ is coverage. In contrast,
our negative result rules out a proximity oblivious tester making fewer than 2™!
queries for general coverage functions. This is because the proximity oblivious tester
must query a certificate when the input is f*.

We describe a noncoverage function g* related to f* (they arise out of the same
construction with different parameters) which requires a 29%m) certificate, and we
believe that the distance of this function from coverage is close to 1. In fact, ¢* has
what we call “W-distance” 1 — exp(—0(m)), and if a certain upper bound regarding
the number of roots of a certain multilinear polynomial holds, then indeed g¢* has
large Hamming distance from coverage as well. We don’t know how to upper bound
the roots to the degree we require, but we provide some evidence that such a bound
may hold. This is elucidated in section 4.

Related work. The work most relevant to, and indeed which inspired this paper,
is that of Seshadhri and Vondrak [21], which addresses the question of testing general
submodular set functions. The authors focus on a particular simple testing algorithm,
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the “square tester,” which samples a random set R, 4,5 ¢ R and checks whether or not
f(R,i,j)+ f(R) < f(R,i) + f(R, 7). Seshadhri and Vondrak [21] show that e~ 9(V™)
random samples are sufficient to distinguish submodular functions from those e-far
from submodularity and, furthermore, at least e~4® samples are necessary. Apart
from the obvious problem of closing this rather large gap, Seshadhri and Vondrak [21]
suggest tackling special, well-motivated cases of submodularity. In fact, the question
of testing coverage functions was specifically raised by Seshadhri [20] (attributed to
N. Nisan). It is instructive to compare our results with that of Seshadhri and Vondrak
[21]. First, although coverage functions are a special case of submodular functions,
the subexponential time tester of Seshadhri and Vondrak [21] does not imply a tester
for coverage functions. This is because a function might be submodular but far from
coverage; in fact, our lower bound examples are submodular. Given our result that
there are no small certificates of noncoverageness, we believe testing coverageness may
be more difficult than testing submodularity. Indeed, if the conjecture referred to in
the previous paragraph is true, then this is the case.

Another relevant paper is that of Badanidiyuru et al. [2]. Among other results,
Badanidiyuru et al. [2] show that any coverage function f can be arbitrarily well
approximated by a succinct coverage function. More precisely, if f is defined via
(U; Aq, ..., A,,) and weights w, then for any ¢ > 0, there exists another coverage
function f’ defined via (U’; A},...,A.,) and weights w’, with |U’| = poly(m,1/e),
such that f'(7') is within (1 £ ¢)f(T) for all subsets 7. This, in some sense, shows
that succinct coverage functions capture the essence of all coverage functions. Un-
fortunately, this “sketch” is found using random sampling on the universe U and it
is unknown whether this can be obtained via polynomially many (in m) queries to
an oracle for f. If this were possible, then one could possibly couple this sketching
algorithm along with our succinct tester to determine if a given function is close to
coverage pointwise.

Recently, there has been some work in learning submodular functions and in par-
ticular learning coverage functions. Feldman and Kothari [11] describe an algorithm
that given values of a coverage function with values in [0, 1] at O(logn/e*) uniformly
at random points, constructs a coverage function h such that ||f — h||; < e. Note that
the learning framework differs from our framework in two ways: first, error is ¢ error,
and h may differ from f in all the points of the domain, but not by much and, second,
the algorithm has access only to random points and not membership queries. Feldman
and Vondrék [12] extend this result to general submodular functions, except the de-
pendence on ¢ is exponential. Another model of learning is due to Balcan and Harvey
[3], which they call the PMAC model. Given parameters ¢, d, &, and samples from
a distribution, the goal is to output an hypothesis with probability at least (1 — &),
which dominates the function and is within « times the function values pointwise for
(1 — ¢) mass of the points with respect to the same distribution. Balcan and Harvey
[3] describe an algorithm with @ = O(log(1/¢)) taking poly(n,log(1/d),1/e) sam-
ples, which works for monotone submodular functions and any product distribution.
Feldman and Vondrak [12] describe an algorithm which removes the monotonicity
assumption, works for « arbitrarily close to 1, but works only for uniform distribution
and the dependence on ¢, 0, (a — 1) is exponential.

2. Characterizing coverage functions. Given a set function f : 2™ — R>o,
we define the W-transform w : 20"\ ) — R as

2) vse2mNg,  w(S) = > (1S D),

T:SUT=[m]
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We call the resulting sets {w(S) : S C [m]} the W-coefficients of f. The W-coefficients
uniquely define a set function; this follows since the (2™ — 1) x (2™ — 1) matrix M
defined as M(S,T) = (—1)IS"TIH1 if SUT = [m] and 0 otherwise, is full rank.!
Inverting we get the unique evaluation of f in terms of its W-coefficients:

3) VI Cml, f(T)= Y w().

SCm]:SNT#D

In fact, w(S) is total weight covered by each set in .S and not covered by sets outside
of S.

THEOREM 2.1. A set function f : 2™ — R>q is coverage iff all its W -coefficients
are nonnegative.

Proof. Suppose that f is a function with all W-coefficients nonnegative. Consider
a universe U consisting of {S : S C [m]} with weight of element S being w(S), the
Sth W-coefficient of f. Given U, for i = 1...m, define A; := {S C [m] : i € S}. For
any T C [m], U;ep Ai ={S C [m] : SNT # 0}. From (3) we get f(T) = w({J;eq As)
proving that f is a coverage function.

Suppose f is a coverage function. By definition, there exists (U; Ay, ..., A;,) with
nonnegative weights on elements in U such that f(T) = w (U;cr 4i). Each S € U
corresponds to a subset of [m] defined as {i: S € A;}. We may further assume each
element of U corresponds to a unique subset; if more than one element has the same
incidence structure, we may merge them into one element with weight equaling the
sum of both the weights. This transformation doesn’t change the function value (and
thus the W-coefficients) and keeps the weights nonnegative. Furthermore, we may
also assume every subset on [m] is an element of U by giving weights equal to 0; this
doesn’t change the function value either. In particular, |U| may be assumed to be 2.
As before, one can check that for any 7' C [m], f(T') = > g5.gnpzp w(S5). From (3) we
get that these are the W-coefficients of f, and are hence nonnegative. O

From the second part of the proof above, note that the positive W-coefficients of a
coverage function f correspond to the elements in the universe U. Let {S : w(S) > 0}
be the support of a coverage function f. Note that succinct coverage functions are
precisely those with support size bounded by a polynomial in m.

One can use Theorem 2.1 to certify noncoverageness of a function f: one of its
W-coefficients w(S) must be negative, and the function values in the summand of
(2) certify it. Observe, however, that this certificate can be exponentially large. In
section 4 we will show this is inherent in any certificate of coverageness. The W-
transformation also motivates the following notion of distance to coverage functions.

DEFINITION 1. The W-distance of a function f (from coverage functions) is the
fraction of its negative W -coefficients.

Comparison with Fourier transformation. Readers who are familiar with har-
monic analysis of Boolean functions might find (2) similar to the Fourier transforma-
tion. Indeed, if we sum over all 7" in the summation of (2) instead of only over the
T s.t. SUT = [m], then it becomes the Fourier transformation. However, it is worth
pointing out that due to this subtle change, the W-transformation behaves quite dif-
ferently to the representation by Fourier basis. In particular, unlike the Fourier basis,
the basis of the W-transform is not orthonormal with respect to the usual notion of
inner product.

Characterization via multilinear extension. We can use the above characterization
in Theorem 2.1 to obtain another characterization via derivatives of the multilinear

LOne can check M~1(S,T) =1if SNT # 0 and 0 otherwise.
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extension. Such a result was known [1], but to our knowledge hasn’t appeared in
print. The proof of this straightforward theorem is provided in Appendix A. Given a
set function f : 2[" s R, one defines the multilinear F : [0, 1]" as follows:

Fz) =Y fS) []a: [JQ )
SCn]

i€cS  igs

Given a subset T' C [m] with |T'| = k, we use the shorthand % to denote %,
iy 0T,
where T' = {iy,...,ir}. We call a partial derivative % odd if |T| is odd, and even
otherwise.
THEOREM 2.2. A function [ is coverage iff the odd derivatives of F' are nonneg-

ative, and the evens are nonpositive for all x € [0,1]™.

3. Reconstructing succinct coverage functions. Given a coverage function
f, suppose {S1,...,S,} is the support of f (w.r.t. W-coefficients). (Note that |U| >
n.) That is, these are the sets in the W-transform of f with w(S;) > 0, and all the
other sets have weight 0. We now give an algorithm to find these sets and weights
using O(mn) queries. As a corollary, we will obtain a polynomial time algorithm for
testing succinct coverage functions, where n = poly(m).

The procedure is iterative and is similar to the Goldreich-Levin algorithm to
compute “large” Fourier coefficients. The algorithm maintains a partition of 2" at
all times, and for each part in the partition, stores the total weight of all the sets
contained in the part. We start with the trivial partition containing all sets whose
weight is given by f([m]). In each iteration, these partitions are refined; for instance,
in the first iteration we divide the partition into sets containing a given element ¢ and
those that don’t contain the element i. The total weights of the first collection can be
found by querying f({i}). Any time the sum of a part evaluates to 0, we discard it
and subdivide it no more. After m iterations, the remaining n parts give the support
sets and their weights. To describe formally, we introduce some notation.

Given a vector x € {0,1}* we let supp(x) be the subset of [k] containing the
elements ¢ with x(i) = 1. Let F(x) := {S C [m] : SN [k] = supp(x)}, that is,
subsets of [m] which “match” with the vector x on the elements in [k]. Note that
|F(x)] = 2™ %, and {F(x) : x € {0,1}*} is a partition of 2[™}; if k = 0, then F(x) is
the trivial partition consisting of all subsets of [m]. Given x € {0, 1}*, we let x® 0 be
the (k4 1) dimensional vector with x appended with a 0. Similarly, define x ® 1. At
the kth iteration, the algorithm maintains the partition {F(x) : x € {0,1}*} and the
total weight of subsets in each F(x). Subsequent iteration refines each partition F(x)
into F(x @ 0) and F(x @ 1), evaluating the total weight in each part. Observe, if the
total weight of F(x) equals 0, then since the function is coverage, so must be the total
weight of both F(x @ 0) and F(x @ 1), and thus the algorithm need not explicitly
refine such an x. When the total weight of F(x) is not 0, the algorithm makes O(1)
queries to the oracle to refine. In the end, only n sets have positive weight, and so
the algorithm terminates in m iterations making O(mn) queries.

We now describe the refinement procedure. In what follows, we say a vector y < x
if they are of the same dimension and y (i) < x(i) for all i. Wesay y < xif y < x and
y # x. The procedure goes over the vectors x in increasing number of ones, and for
each calculates the weight of F(x@® 1). This immediately gives the weight of F(x®0)
since w(F(x®0)) = w(F(x)) —w(F(x@®1)). It is essential we perform this operation
in this order, as weights calculated earlier are required later (see step 6 below).

CrLAIM 3.1. The procedure Refine returns the correct weights of the refinement.
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PROCEDURE Refine.
1: Input: 0 < k < m, and weights from the previous iteration {w(F(x)) >
0:x € {0,1}F}.
2: Output: {w(F(x®0)),w(F(x®1)):x e {0,1}F}.
3: Order {x: w(F(x)) > 0} by increasing number of 1’s breaking ties arbi-
trarily.
Call the order {x1,...,xn};

4: fori=1— N do

5. Query f([k]\supp(x;)) =: F and f(([k] \supp(x;))U{k+1}) =: FL.
6:  Define Ay, := F} = F) =3 Ax,.

7. w(F(x ®1)) =Ax,; w(F(x®0)) =w(F(xi)) — Ax,-

8: end for

Proof. Recall that Ay, := F}! —EQ—ZXJ_ <x, Dx; as defined in procedure Refine. It
suffices to show that Ax, = w (F(x; © 1)) = > 5. 5nx)=x: k15 W(S). The right-hand
side (RHS) equals

(4) > w(s) = Y Yo w(s).

S:SN[k]Cx;, k+1€S y<xi Snlk]=y,k+1€S

The first term above equates to

> w9 = > w(S) — > ws) = F'-F.

S:salk\x;=0, 5:5([k]\x;Uk+1)#0 5:5([k]\x; )0
The second term in (4) is precisely >° _ w(F(y & 1)). If i = 1, then this is 0; for
other ¢ this equates to > Ay, by induction. a

X <X;

PROCEDURE Recover Coverage.

1: Input: Value oracle to coverage function f.
2: Output: {Si,...,S,} with w(S;) > 0.
Initialize k = 0, x to be the empty vector, and list L to contain x.
Let w(F(x)) = £([m)).
for k=1—mdo
Run Refine on each x in list L and remove it.
Add x® 0 and x ® 1 to L only if the weights evaluate to positive.
end for
For each x € {0,1}™ in L, return corresponding set and weight calculated
by the Refine procedure.

@

THEOREM 3.2. Given value oracle access to a coverage function f with positive
weight sets {S1,...,Sn}, the procedure Recover Coverage returns the correct weights
with O(mn) queries to the oracle.

Proof. Let Ly, be the list L in the algorithm at iteration k. The number of queries
made by Refine when input a list L is O(|L|). Therefore, the total number of queries
made by the algorithm is O (}_;", |L;|) = O(mn) since |L;| < |L,,| =n. 0O

As mentioned in the introduction, the above reconstruction algorithm implies a
tester. More precisely, given any n, there exists an O(mn+¢~1) time tester which will
return YES for coverage functions having W-support size at most n, and return NO

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/08/15 to 147.8.204.164. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

RECOGNIZING COVERAGE FUNCTIONS 1591

with Q(1) probability for functions that are e-far from the set of coverage functions
with W-support at most n. Run the reconstruction algorithm described above. If we
get a set with negative weight, return No. If we succeed, then if f is truly a coverage
function, we have derived the unique weights. We sample O(¢~!) random sets and
compare the value of our computed function with that of the oracle; if the function
is e-far from coverage, then we will catch it with probability O(1).

We end this section with a lower bound.

THEOREM 3.3. Reconstructing coverage functions on m elements with W -support
size n requires at least Q(mn/logn) probes.

Proof. Consider the bipartite graphs. On one side (A side) let there be m vertices
that correspond to the sets. On the other side (U side) let there be n vertices that
correspond to the elements in U. Let the weight be 1 on all vertices in U. Each non-
isomorphic bipartite graph (on permutation of the U vertices) maps to a different
coverage function over the A side: the neighborhood of a vertex A; € A is precisely
the elements it contains. Note each such a graph corresponds to a way of allocating
n identical balls (U-side vertices) into 2™ different bins (different choice of set of
adjacent A-side vertices), where each bin can contain multiple balls. This number is
at least (2mn+_"1_1) > (%m)"’l. Hence, we need at least Q(mn) bits of information.
Notice that each probe of function value only provides O(logn) bits of information;
since the function value is always an integer between 0 and n, we get the lower bound
in Theorem 3.3. O

4. Noncoverageness needs exponential sized certificates. In this section
we demonstrate noncoverage functions which need exponentially many queries to dis-
tinguish them from coverage functions. In fact, we describe a family of functions. For
any integer k € [m], consider the function fj, which has W-coefficients wy(S) = —1 if
|S| > k, and wg(S) = N if |S| < k, where N is a large positive integer which will be
precisely determined later. Clearly f; is not a coverage function for k& < m. Hence-
forth, we will use boldface when we talk about this specific noncoverage function and
light face for a generic function.

First, observe that from (2) it follows that w(.S) for any function f can be precisely
determined by querying the 215 sets in {T': TUS = [m]} = {SUX : X C S}. Tt
follows that f), can be distinguished from coverage using 2Ft! queries. We show
an almost tight lower bound: any tester which makes less than 2* queries cannot
distinguish fj from a coverage function, and thus any certificate of noncoverageness
needs to access the 2% values. More precisely, we show that given the value of f; on
a collection of sets J with | 7| < 2¥, there exists a coverage function f which has the
same values on the sets in J. This bound is information theoretic and holds even if
the tester has infinite computational power.

THEOREM 4.1. There exists a coverage function consistent with the queries of fy
on J if |J| < 2*.

COROLLARY 4.2. Any certificate of noncoverageness of fi, must be of size at least
2k,

Setting k(m) = m/4, we get f* = fi(,,) has W-distance at least (1 — e=©(™)),
giving us the following corollary.

COROLLARY 4.3. Any tester distinguishing between coverage functions and func-
tions of W-distance as large as (1 —e=©™)) needs at least 2°0™) queries.

We give a sketch of the proof before diving into the details. Suppose a tester
queries the collection J. We first observe that the existence of a coverage function
consistent with the queries in J can be expressed as a set of linear inequalities.
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Using Farkas’ lemma, we get a certificate of the nonezxistence of such a completion.
This certificate, at a high level, corresponds to an assignment of values on the m-
dimensional hypercube satisfying certain linear constraints. We show that if the
parameter N is properly chosen, most of these assignments can be assumed to be 0.
In the next step we use this property to show that unless the size of |J| > 2F, all
the assignments need to be 0 which contradicts the Farkas linear constraints, thereby
proving the existence of the coverage function consistent with fi values given on J.

4.1. Consistent coverage functions and Farkas’ lemma. We start by choos-
ing N > (2™)!. First, note that this implies f;(T") > 0 for all T' C [m]. This follows
from (3); in fact, this only requires N > 2™. Now recall, from Theorem 2.1, a function
f defined on subsets of [m] is coverage iff it satisfies

VS C [m] : > (—DSMTHLET) >0,
T:SUT=[m]
VT C [m)] : f(T) > 0.

Let J be the collection of sets on which the function f; has been queried. Define

bi(S) == > ()T (T).

TeJ:SUT=[m]
Therefore, if we can find assignments f : 20" \ J — R satisfying

(5) VS C [m) S (DT > by(s),

T¢J:SUT=[m]
(6) VI'¢ T : f(T) =0,
we have exhibited a coverage function consistent with the values of f; on 7. Applying

Farkas’ lemma (see, for instance, [4]), we see that there is no feasible solution to (5),
(6) iff there is a feasible solution « : 20"} s Rs( satisfying

(7) > alS)bi(S) >0,
SC[m]
(8) VT ¢ T : Y (-1ETHas) <o,
S:SUT=[m]
9) VS C[m]: a(S) > 0.

Henceforth, we assume there exists a feasible solution to the system above. We
make the following observation.

Cramm 4.4.  If there exists a solution « satisfying (7), (8), and (9), then
2_scm) X)Wk (S) <0, where wy are the W -coefficients w.r.t. fi.

Proof. By definition, VS C [m]:

wi(S) = Y (FLFTER(T = Y (F)ETTE(T) —bi(S).

T:SUT=[m] T¢J:SUT=[m]

Therefore, (7) along with the above equality implies

S a@)(En)ETHEY(T) = Y a(S)wr(S) = Y a(S)bk(S) > 0.
SC[m)

T¢J S:SUT=[m] SC[m]
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But by (8), Y- gcfyny @(S)(=1)ISTIH <0 for all T ¢ 7, and £ (T) > 0 for all T C [m].
So we have that g, @(S)wi(S) <O0. a0

In the next lemma we show that one can assume there is a feasible solution to
(7), (8), and (9) with many of the a(S)’s set to 0.

LEMMA 4.5. If there exists o satisfying (7), (8), and (9), then we may assume
as =0 for all S such that |S| < k.

Intuitively, what this lemma says is that the constraint (5) for sets of size < k
should not help in catching the function not being coverage. This is because the true
function values satisfies the constraints with huge “redundancy”:

> (=)IEMTHR(T) = N> 0.
T:SUT=[m]

Proof. Suppose there is an « satisfying (7), (8), and (9). Then, by scaling we
may assume that

(10) > als) =1

SC[m]

Choose « to be a basic feasible solution satisfying (8), (9), (10). Such a solution
makes 2™ of the inequalities tight, and by Cramer’s rule, all nonzero a(S) > ﬁ
since all coefficients are {£1,0}.

From Claim 4.4, we get } gc(,,;a(S)wi(S) < 0. Assume for contradiction

that there exists Sp, |So| < k, such that ag, > 0. Since ag, > ﬁ, we have
2o 5C[m) A(S)wi(S) = ﬁN — 2 sCmys|>k @¢(S) > 1—1=0, a contradiction. The

latter inequality follows from (10) and our assumption that N > (2™)!. O
4.2. Nullity of Farkas certificate. In the following discussion, due to Lem-

ma 4.5 we assume «(S) = 0 for all S, |S| < k. Consider the following linear function
of the a’s. For a set T', define

g(T)= Y (=TT a(s).

S:SUT=[m]

From (8), we get g(T)) < 0 for all T ¢ J. The following lemma shows that given
Lemma 4.5, and the fact that some o must be strictly positive (otherwise it violates
(7)), one can lower bound the size of 7.

LEMMA 4.6. If a(S) =0 V|S| <k, and a(S) > 0 for some S, then g(T) > 0 for
> 9k subsets T C [m].

Proof. Tt will be useful to note that a’s can be written in terms of ¢’s as follows:

(11) alS)= > g(I) = G- g(I), whereG:= Y g(T).

T:TNS#D TCS TC[m]

Let S be a minimal set with «(S) > 0. Note that |[S| > k + 1. Consider any i € S.
By minimality, we have (S \ i) = 0, giving us

(12) 0=G- > gM)=G-> g(T)- > g(TUi).

TCS\i TCS TCS

Observe that the first two terms evaluate to a(5); this is established in (11). There-
fore, we have established that for all i € S, > 7.5 g(T'Ui) = a(S) > 0. By induction,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/08/15 to 147.8.204.164. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

1594 DEEPARNAB CHAKRABARTY AND ZHIYI HUANG

we can extend the above calculation to any nonempty subset X C S. We remind the
reader here that this is for a minimal positive set S and not any set .S.

(13) For any minimal set S with a(S) > 0 and any proper, nonempty

XC8 Y g(TuX)=(—1)¥Hla(s).
TCS
Note that the summands in (13) are disjoint for different sets X and, furthermore,
whenever | X| is odd, the sum is > 0 implying at least one of the summands must be
positive for each odd subset X C S. This proves the lemma since |S| > k + 1.

Proof of (13). Let’s denote the sum Y -5 g(TUX) as h(X). We need to prove for
every proper, nonempty subset X C S, h(X) = (—1)I*X+1a(S). Let us establish this
first for singletons. For X = {i}, we need to show h({i}) = «(S); this is established by
(12) and (11). We now prove by induction on | X| with the previous statement estab-
lishing the base case. By induction, h(Y) = (—1)Y*1a(S) for every nonempty proper
subset Y C X. By minimality of S we get a(S\ X) = 0. This gives us (from (11))

0=a(S\X)=G- > g(I)=G- > h).

TCS\X Yex

Rearranging, h(X) = G — Yycyx h(Y) = o) — L (T (-1 la(s) =
(—1)XI+1a(S). 0

Proof of Theorem 4.1. Suppose there is no consistent completion, implying «’s
satisfying (7), (8), and (9). By Lemmas 4.5 and 4.6, we get that if (8) holds, then
|7 >2k. 0

4.3. Lower bounds for property testing. As noted in the introduction,
Theorem 4.1 implies lower bounds for proximity oblivious testers—for any k < m,
a proximity oblivious tester must reject fi with some nonzero probability, and if it
does reject f,, making < 2* queries, then it must reject the consistent coverage func-
tion, which isn’t allowed by the definition.

However, f; could be very close to a coverage function in the usual notion of
Hamming distance w.r.t. the uniform distribution. From Corollary 4.3, we know that
for k = E(m), f* has a large W-distance from coverage. It is natural to ask how
do these two distances relate. We first note that the two notions are unrelated; in
particular, we show two functions each “far” in one notion, but “near” in the other.
The proofs of the following two lemmas are provided in Appendix B.

LEMMA 4.7. There is a function with W -distance 1 — e=®(™) whose distance to
coverage is e~ M)

LEMMA 4.8. There is a function with W-distance O(m?/2™) whose distance to
coverage is §2(1).

Despite the fact that the two notions are not comparable, we believe that £* may
be far in the usual notion of distance as well. In fact, if the following conjecture
regarding roots of certain multilinear polynomials is true, then the above is indeed
the case. Unfortunately, we are unable to prove/disprove this conjecture and leave it
as an open question.

CONJECTURE 4.9. For any m-variate multilinear polynomials

p(x) = Z /\SH;ES

SC[m] €S

with As < 0 for all |S| > k, has at most O(k2™ /\/m) zeroes on the hypercube {0,1}™.
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In fact, we conjecture that the maximum number of zeros is achieved when the
k + 1 layers of function values in the “middle of the hypercube” are zero, that is,
p(x) =0iff (m —k)/2 < ||x|1 < (m+ k)/2. At the end of this section, we present
some evidence for this conjecture by proving it for symmetric polynomials, that is,
when p(z1,...,2m) = p(To(1), . - -, Zo(m)) for any permutation o of [m]. We now show
that the conjecture implies f* is far from coverage in the usual notion of distance.

LEMMA 4.10. Assuming Conjecture 4.9, with k(m) = o(/m), £* is 1 — o(1) far
from coverage.

Remark 1. Theorem 3.3 implies there is such an f* requiring superpolynomial
queries to test as long as we have k(m) = w(logm).

Proof. Consider the coverage function f that is closest to f* in the usual notion
of distance. Let w, w* be the W-coeflicients of f, f*. Define the function f’:= f —f*
and let w' := w — w*. By linearity of WW-transformation, we get that w’ are the
W-coefficients for f’. Therefore,

F@= 3 w(s) = 3 w/(S)(L - 1rnsg).

S:TNS#£D SC[m]

Consider the following binary vector representation of 7' C [m]: x € {0,1}™ such
that x;, = 0 iff ¢ € T. Using this, the function f’ can be interpreted as f/'(x) =

= 2 scm W (S) [Lics i, where W' =3 g, w'(S5) is a constant. We are using
here the fact that 7N S = () is equivalent to S C T. By our choice of w* and
the assumption that w(S) > 0 for all S, we have w'(S) > 1 for all |S| > k. From
Conjecture 4.9, we get that at most O(k/y/m)-fraction of the function values of f’
are zeroes implying f is at least 1 — O(k/y/m) far from f*. The lemma follows since

k = o(y/m). 0

Proof of Conjecture 4.9 for symmetric functions. Since p is symmetric, each Ag
is equal for sets of the same cardinality. Let \; denote the value of Ag when |S| = j.
Then p is equivalent to the function g : {1,...,m} — R,

1) 00 =g =ple: 2l = 3 AJ’l_[xi:ZAj(;)
j=05:|S|=j €S Jj=0

We now define functions g (i) := g~ (i +1) — g~ (i) for t > 0. Note that g is

a function from {1,...,m — t} to the reals. We will let )\gt) denote the coefficient of

(;) in the decomposition of ¢() as in (14). By our assumption, )\5-0) <0 forall j > k.
Note that /\g-t) = /\5-’:11). This is because

_ 1 -1 fi+1 - (t—1) (1
9O i) = gD +1) - ZA ( )—ij (j)
=0
R SN
_Z/\j (j—l)'

§=0
Therefore, we get )\gt) <0 for all j > k — t. In particular, ¢'*) is negative in
{1,....m—k}.

Given a univariate function f, let’s say that f crosses zero at i if f(i) < 0 and
f@+1)>0,o0r, f(i) > 0and f(i4+1) <0. If f crosses zero at most ¢ times, it’s clear
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it can have at most £ zeroes. Thus it suffices to show that ¢() crosses zero at most k
times. Note that ¢(*) never crosses zero. The proof follows from the claim that if g
crosses zero r times, then ¢~ can cross zero at most r + 1 times. This is because
at the places at which ¢(t~1) crosses zero, ¢g*) changes sign (or remains 0) and thus
crosses zero as well. This is true for all except the last place since ¢ is defined on a
domain which is smaller by 1. This ends the proof.

. . . O F(x
Appendix A. Proof of Theorem 2.2. A calculation gives aT() =

ZSC[n]:SﬂT:@ hs(T) [Lies i HingUT(l — i), where

hs(T) = (~)/T1 3" (-1)Z (s U 2).

ZCT

To prove the theorem we need to show that f is coverage iff for all 7" and all sets
SNT =0, hs(T) > 0if |T| is odd and hg(T) < 0if |T| is even. We claim the following
lemma.

LEMMA A.1. For any set S such that

SNT =0,hs(T) = (-1 " w().

TCUC[m]\S

If f is coverage, we get that sign(hs(T)) = sign((—1)IT1*1), which is what we
want. If f is not coverage, and thus w(U) < 0 for some nonempty subset U, then
hp o (U) = (—=1)!YH+1w(U) which has different parity as |U]. Thus the above lemma
completes the proof of the theorem.

Proof. We can use (3) to get

hs(T) = (1T Y- (= 3" w(U)

ZCT U:UN(SUZ)#D
ST Y ww) Y ()7
UC[m] ZCT:UN(SUZ)#D

Note that if UNS # @, the second summation boils to Z:ZQT(—l)‘Z| = 0. Otherwise,

it is
Z (-7l = Z (—1)al+el

ZCT:UNZ#D ViCT\U, 0#Y2CTNU
Now, unless T\ U = ), we have 32y, g (~1)"*1 = 0. Thus, we get

> (-pP= {Z@;«ézg(—l)'z =-1 TCU,

ZCT:UNZ#D 0 otherwise.

Putting it all together we get

(M) =T 3 w@). O

U:UNS=0,TCU
Appendix B. Proof of Lemmas 4.7 and 4.8.

Proof of Lemma 4.7. Let us consider a function f which is similar to the lower
bound example in section 4. More concisely, f’s W-representation satisfies that
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w(S) = =1if m > |S| > k, and w(S) = N if |S| < k or S = [m]. Here we will
let k =m/4 and N > 0 is a sufficiently large number; N = 5m! suffices. For simplic-
ity, assume that m is a multiple of 8.

First, it follows immediately from the definition that the fraction of weights that
are negative is at least (1 — e ©®) = (1 — ¢=©(™)). Next, let us prove that there
exists a coverage function f’ such that the function values of f and f’ differ in at
most e~ ©(™) fraction of the entries. Let w’ denote the W-representation of f’. Let
Af = f'— f and Aw = w' — w. Note that Aw is the W-representation of Af.
In the remainder, we will find a function Af over the subsets of [m] satisfying the
following properties: (a) Af is nonzero on at most a e~©(™ fraction of the subsets,
and (b) the W-representation of Af, that is Aw, has the property that Aw(S) > 1 if
m > |S| > m/4 and Aw(S) > =N if |S| < k or S = [m].

In particular, we will consider Af that is symmetric, that is, for any 7" and T’
with |T| = |T'| = 4, we have Af(T) = Af(T') = f(i) for some f : [m] — R. Note
that for symmetric functions, the W-representation is also symmetric, that is, given
by Aw(S) = Aw(S") = w(j) whenever |S| = |S’| = j. One can easily get a relation
between w and fas follows:

@(j) =Aw(S) = Y (“)ETHALT)

T:SUT=[m]
_ Z Z (_1)i+j+m+1f(i)
i=0 T:SUT—=[m],|T|=i
_ - (_1)i+j+m+1f(i)
2 (- nm )
_ < ) j+(m z)Jrlf( )

(15) =3 (7)o fm -

7

In the first equality S is an arbitrary subset of size j. We now show that there exists
a choice of f : [m] — R such that (a’) f(i) = 0 for 3m/8 < i < 5m/8. Note that
this will imply Af is zero on at least (1 — e~®(™)) subsets implying condition (a).
Furthermore, the choice of f will imply that (b') @(j) > 1 whenever m > j > m/4,
and w(j) > —N otherwise. This implies condition (b).

For this, let a; := (—1)"+! f(m —4). From (15), we get (—1)7@(j) = S au (9).
We consider the RHS as a polynomial over j and, in fact, the degree ¢ polynomials
(Jf) = M form what is known as the Mahler bases of rational polynomials
(see, for example [18, 19]).

As a result, one can choose a; for 0 < i < 3m/8 such that 23”6/8 al(‘) is any
desired rational polynomial of degree (3m/8 — 1). In particular, we choose «;’s so
that

) 5m/8—1
(16) > ai]) =ml)=acm T G- k=172

k=m/4+1

Similarly, >, i~ 5m/8 a;(’) can be chosen to be j(j — 1)+ (j — 5m/8)g(j) for any
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degree (3m/8 — 2) polynomial g(j). We choose «;’s for 5m/8 < i < m so that

> afl)=mo
5m/8<i<m Ly

(17) = (20(m!) +4) (=)™ 5 —1)...(j — 5m/8) H (j—k—1/2).
k=5m/8+1

Finally, as promised, we let a; = 0 for 3m/8 < ¢ < 5m/8. We now argue that
condition (b’) holds. Note that @w(j) = (=1)7(h1(j) + h2(5)).

Itm/4 < j <5m/8: From (17), ha(j) = 0. Also, from (16), we get that the sign of
hyi(j) for m/4 < j < 5m/8 is precisely (—1)°/8(—1)>™/8=7 = (~1). So, (—1)7hy(j)
is positive. Furthermore, the absolute value of hi(j) is at least 1, implying w(j) > 1.

If 5m/8 < j < m: We use that @w(j) > (—1)7h2(j) — |h1(4)]. The former term
is at least 5m! via a similar reasoning as above. |hi(j)|, as follows from (16), is at
most 4m!. This is because the product is at most m! in absolute value. This gives
w(j) > m! > 1 in this range.

If 0 < j < m/4orj=m: Once again, we get that @(j) = (—1)7h1(j) which
changes its sign as j changes. However, the absolute value is at most 4m!, so choosing
N =5m!, we get w(j) > —N.

Thus, condition (b') is also satisfied, in turn implying that (b) is satisfied. O

Proof of Lemma 4.8. Consider the function f whose W-representation satisfies
that w(S) =m if |S| =1, w(S) = —1if |S| =2, and w(S) =0 if |S| > 3.

We first note that for any subset 7" and any i,j ¢ T, we have

FT+itd) = F(T+i) = FT+) + f(T) == D w(S)=-w(i.j) =1

S:i,jES

Therefore, the function is supermodular. So for any subset R and any ¢ ¢ R, we have

FR+D) = f(R) = f()) = f0) = D w(S)=m—(m—1)=1

S:eSs

Hence, the function is monotonically increasing. Note that f(f)) = 0. We get that f
is nonnegative.

Next, we will show that f is at least 1/4 far from coverage functions. Let us
partition all the 2 subsets into groups of size 4 such that for any subset S of [m]—i—j,
we let S, S+, S+ 7, and S+ ¢+ 7 be in the same group. Note that the function is
strictly supermodular yet any coverage function must be submodular. So at least one
of the four function values in each group need to be changed in each group in order
to make it a coverage function. g
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