
RESEARCH ARTICLE

A Simple Algorithm for Finding All k-Edge-
Connected Components
TianhaoWang2, Yong Zhang1,3*, Francis Y. L. Chin4,5, Hing-Fung Ting4, Yung H. Tsin6,
Sheung-Hung Poon7

1Research Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese
Academy of Sciences, Shenzhen, China, 2 Software School, Fudan University, Shanghai, China, 3College
of Mathematics and Information Science, Hebei University, Baoding, China, 4 Department of Computer
Science, The University of Hong Kong, Hong Kong, China, 5Hang Seng Management College, Hong Kong,
China, 6 School of Computer Science, University of Windsor, Windsor, Canada, 7 School of Computing and
Informatics, Institut Teknologi Brunei, Gadong, Brunei Darussalam

* yzhang.hku@gmail.com

Abstract
The problem of finding k-edge-connected components is a fundamental problem in com-

puter science. Given a graphG = (V, E), the problem is to partition the vertex set V into {V1,

V2,. . ., Vh}, where each Vi is maximized, such that for any two vertices x and y in Vi, there are

k edge-disjoint paths connecting them. In this paper, we present an algorithm to solve this

problem for all k. The algorithm preprocesses the input graph to construct an Auxiliary
Graph to store information concerning edge-connectivity among every vertex pair inO(Fn)
time, where F is the time complexity to find the maximum flow between two vertices in graph

G and n = jVj. For any value of k, the k-edge-connected components can then be deter-

mined by traversing the auxiliary graph inO(n) time. The input graph can be a directed or

undirected, simple graph or multigraph. Previous works on this problem mainly focus on

fixed value of k.

1 Introduction
Graph connectivity is a fundamental problem in computer science, which has many back-
ground applications in the real world. For example, reliability is one of the major concerns in
communications networks: if a network is reliable, the network would still work when some
nodes or edges fail. Reliability in communication networks can be represented by the connec-
tivity between each pair of nodes. In social networks, computing the closeness among people is
a very important problem, which also relates to the connectivity of the networks. There are
many other applications which are related to the connectivity of networks, e.g., finding web
pages of high commonality in internet searching; finding protein complexes and gene clusters
in computational biology, etc.

In theoretical computer science, graph connectivity has been well studied for more than
forty years. It has a strong relationship with the problems of maximal network flow and mini-
mal cut.

PLOSONE | DOI:10.1371/journal.pone.0136264 September 14, 2015 1 / 10

OPEN ACCESS

Citation:Wang T, Zhang Y, Chin FYL, Ting H-F, Tsin
YH, Poon S-H (2015) A Simple Algorithm for Finding
All k-Edge-Connected Components. PLoS ONE
10(9): e0136264. doi:10.1371/journal.pone.0136264

Editor: Chun-Hsi Huang, University of Connecticut,
UNITED STATES

Received: November 6, 2014

Accepted: August 3, 2015

Published: September 14, 2015

Copyright: © 2015 Wang et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper.

Funding: This work is supported by National Natural
Science Foundation of China (No. 11171086,
61433012, U1435215), Research Grants Council of
Hong Kong (No. HKU 7114/13E, HKU 7164/12E,
HKU 7111/12E), Natural Sciences and Engineering
Research Council of Canada, NSERC 7811-2009,
Natural Science Foundation of Hebei Province (No.
A2013201218), and Chinese Academy of Sciences
research grant (No. KGZD-EW-103-5(9)).

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0136264&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Given an undirected graph G = (V, E), where V is the vertex set and E is the edge set, an edge
set Ec, which is a subset of E, is an edge-cut of nodes x, y 2 V, if removing all edges in Ec discon-
nects x and y in G. We say that x and y are k-edge-connected in G if there is no edge-cut discon-
necting x and y with cardinality strictly less than k. In other words, there are at least k edge
disjoint paths connecting x and y. From the definition, if two vertices x and y are i-edge-con-
nected, they must be j-edge-connected for any integer j< i. If any vertex pair is at least k-edge-
connected in G, we say that graph G is k-edge-connected. For example, in Fig 1, the entire
graph is 2-edge-connected and obviously 1-edge-connected too.

Instead of just determining whether the entire graph G is k-edge-connected, we are inter-
ested in finding subsets of vertices which are k-edge-connected in G. Note that each vertex is k-
edge-connected to itself. For example, in social networks, finding a group of people who are
strongly connected is more important than computing the connectivity of the entire social net-
work. In an undirected graph G = (V, E), a vertex set V0 � V is a k-edge-connected component if
it is a maximal subset of V such that for any two vertices x, y 2 V0, x and y are at least k-edge-
connected in G. For example, in Fig 1, {a, b, c, f, g} is a 3-edge-connected component. It is easy
to see that k-edge-connectivity is an equivalence relation in V. Thus, the set of the k-edge-con-
nected components forms a partition of V. The 2-edge-connected and 3-edge-connected com-
ponents for the example in Fig 1 are {a, b, c, d, e, f, g} and {a, b, c, f, g}, {d}, {e} respectively. The
collection of k-edge-connected components is a partition of V immediately implies that every
k-edge-connected component is unique and maximal.

For a directed graph G = (V, E), let u, v 2 V. Let kuv be the maximum number of edge-dis-
joint directed paths from u to v, and kvu be the maximum number of edge-disjoint directed
paths from v to u. Then, u and v are k-edge-connected, where k = min{kuv, kvu}. Notice that the
directed paths from u to v and the directed paths from v to umay not be edge-disjoint. More-
over, kuv and kvu may be different. A k-edge-connected component of G is a maximal subset V0

of V such that 8u, v 2 V0, u and v are at least k-edge-connected.
An edge-cut of u and v is an edge set whose removal destroys either all the directed paths

from u to v or all the directed paths from v to u. Amin-cut of u and v is an edge-cut of u and v
with minimum cardinality. If u and v are k-edge-connected, the cardinality of their min-cut is
k. In Fig 2, all vertices are 1-edge-connected and {b, c, f, g} are 2-edge-connected.

Problem Statement: Given a graph G = (V, E), find the k-edge-connected components of G
for every k� 1.

Related works
Finding k-edge-connected components of undirected graphs has been extensively investigated,
especially for some small k.

Fig 1. Edge connectivity in undirected graphs.

doi:10.1371/journal.pone.0136264.g001

A Simple Algorithm for Finding All k-Edge-Connected Components

PLOS ONE | DOI:10.1371/journal.pone.0136264 September 14, 2015 2 / 10



For k = 1, this problem is equivalent to finding the connected components of G, which can
be done in linear time by a single breadth first search or depth first search.

For k = 2, based on depth-first search, Tarjan presented an algorithm for finding all 2-edge-
connected components in linear time in [1].

For k = 3, the first linear time algorithm was given by Galil and Italiano [2]. Their method is
to reduce the 3-edge-connectivity problem to the 3-vertex-connectivity problem and then
apply Hopcroft and Tarjan’s algorithm for 3-vertex-connectivity to solve the problem. Unfor-
tunately, the algorithm is quite complicated. Many more practical linear-time algorithms [3–6]
were given later. All of these algorithms are based on depth-first search. Depth-first search
(DFS) is a very useful tool for computing connectivity, which partitions the edges in graph G
into tree edges and back edges. The tree edges form the DFS-tree while each back edge forms a
cycle with a path in the DFS tree. Thus, back edges may be considered one by one to increase
the connectivity between vertices.

For general k, Matula [7] gave an algorithm to determine the edge-connectivity of G = (V,
E) in O(jVjjEj) time. He also showed that given k in advance, testing whether a graph is k-
edge-connected can be done in O(kjVj2) time. Nagamochi and Watanabe [3] gave an

OðjV jminðk; jV j; ffiffiffiffiffiffijEjp ÞjEjÞ-time algorithm for finding all k-edge-connected components in a
direct or undirected graph G = (V, E) given k in advance. Using the reduction in [8], i.e., any
k-edge-connected undirected graph G = (V, E) has a k-edge-connected spanning subgraph
G0 = (V, E0) with jE0j = O(kjVj). They showed that the time complexity can be reduced to
O(jEj + k2jVj2) for undirected graphs. This result is also based on an interesting observation:
if the cardinality of a cut (X, V − X) is strictly less than k, then the edge connectivity of any
two vertices x and y such that x 2 X and y 2 V − X is also strictly less than k. In this case, there
is no need to consider such vertex pair (x, y) since x and ymust be in different k-edge-connected
components. Thus,O(jVj) time for finding min-cut of vertex pairs is sufficient. In database
community, k-edge-connectivity problem is also a well studied research topic [9, 10]. Based on a
graph decomposition paradigm, Chang et al. [10] gave an O(hljEj) time algorithm, where h is
the height of the decomposition tree of the graph, and l is a small number which is less than jVj.

Since the edge connectivity of two vertices u, v 2 V can be represented by the cardinality of
the minimum (u, v)-cut in G, if the minimum (u, v)-cut can be computed efficiently for all
pairs of vertices, the edge connectivity problem could be solved efficiently. The cut tree (a.k.a.
Gomory-Hu tree) [11] is a good candidate structure to represent the minimum (u, v)-cut for
all pairs of vertices. A cut tree is a tree T = (V, ET), where each edge (u, v) 2 ET has a weight
which represents the cardinality of the minimum (u, v)-cut in G, and the cardinality of the
minimum (s, t)-cut for any two vertices s and t 2 V is the minimum edge weight on the path
connecting s and t in the cut tree T. To construct the cut tree, there are mainly two methods
from Gomory and Hu [11] and Gusfield [12], respectively. Both methods need to compute the

Fig 2. Edge connectivity in directed graphs.

doi:10.1371/journal.pone.0136264.g002

A Simple Algorithm for Finding All k-Edge-Connected Components

PLOS ONE | DOI:10.1371/journal.pone.0136264 September 14, 2015 3 / 10



minimum cut for some designated pair of vertices. The cut tree can be only used to compute
the edge connectivity for undirected graphs. For directed graphs, Schnorr [13] introduced β
cut-tree to show the edge connectivity between vertices in directed graphs. From the β cut-tree,
the minimal of the maximal number of edge disjoint paths for any pair of vertices can be found
easily. Schnorr [13] constructed the β cut-tree by calculating the maximal flow O(jVj log jVj)
times, which was improved to 3jVj − 3 times by Gusfield and Naor [14].

Methods and Contributions
Previous works focused on finding the k-edge-connected components when k is given in
advance, especially for some small k, e.g., k = 2, k = 3, or the input graph is an undirected
graph. Our algorithm can give answers for all possible values of k, and for both directed and
undirected, simple graph or multiple graph.

If the capacity of each edge is regarded as one, computing k-edge-connected component can
be solved by executing an algorithm for max-flow (or min-cut, by the max-flow min-cut theo-
rem [15]). Since the cardinality of the minimum edge-cut separating vertices a and b is the
number of edge-disjoint paths between a and b, a naive idea is to run an s-tmin-cut algorithm
for each pair of vertices on the graph. If we use an O(n3) time algorithm proposed by Goldberg
and Tarjan [16], we can achieve an O(n5) time algorithm to get the min-cut of any two vertices.
The other method is to use the global min-cut algorithm proposed by Stoer andWagner [17],
which finds the global min-cut in O(mn + n2 log n) time. If the min-cut capacity is more than
k, the graph is a k-edge-connected component; otherwise, any two vertices separated by the cut
cannot be in the same k-edge-connected component. In the worst case, the global min-cut algo-
rithm can be executed n − 1 rounds, leading to an O(n2m + n3 log n) time algorithm.

In this paper, we give a simple algorithm to find the k-edge-connected components for all k
in a directed or undirected, simple or multiple graph. We use an s-tmax-flow algorithm as the
basic procedure which is executed 2n − 2 rounds to construct an auxiliary graph to store infor-
mation concerning the edge-connectivity between all vertex pairs of the input graph. The time
complexity to construct the auxiliary graph is O(Fn), where F is the time required to compute
the maximal flow between two vertices in graph G, e.g., for the maximal flow algorithm of Ford
and Fulkerson [18], F = O(fm), where f is the maximal value of all pairs of maximal flows, and
for the algorithm by Goldberg and Tarjan [16], F = O(n3). Furthermore, any improvement
made on F automatically implies improvement on the time complexity of our algorithm.

After the auxiliary graph is constructed, for any value of k, the k-edge-connected compo-
nents can then be determined by traversing the auxiliary graph in O(n) time by a simple scan
over the auxiliary graph.

Outline of this paper
In Section 2, a data structure, called auxiliary graph, which could be used to efficiently find all
k-edge-connected components for all k is introduced. In Section 3, the procedure
CONSTRUCTION for constructing the auxiliary graph is presented. The correctness proof and the
complexity analysis are given in Section 4 and Section 5, respectively. Finally, we give the con-
cluding remark in Section 6.

2 Auxiliary Graph
It is well-known that the set of k-edge-connected components (k� 1) is a partition of V. More-
over, each k-edge-connected component is the union of a collection of (k + 1)-edge-connected
components. Fig 3 depicts the k-edge-connected components of the graph in Fig 2 for k 2
{1, 2, 3} (note that for h> 3, the collection of h-edge-connected components is identical to the

A Simple Algorithm for Finding All k-Edge-Connected Components

PLOS ONE | DOI:10.1371/journal.pone.0136264 September 14, 2015 4 / 10



collection of 3-edge-connected components which is a collection of singletons each of which
consists of a distinct vertex in V). Consider k = 2. The 2-edge-connected component {b, c, f, g} is
the union of the collection of 3-edge-connected components {b}, {c}, {f}, {g}. For the remaining
three 2-edge-connected components, each of them is the union of the collection consisting of
the component itself. For k = 1. There is only one 1-edge-connected component {a, b, c, d, e, f, g}
which is the union of the collection of 2-edge-connected components {a}, {d}, {e}, {b, c, f, g}.

Owing to this hierarchical structure of k-edge-connected components, it is possible to store
the k-edge-connected components, for all k� 1, in a compact form in a data structure which
we call auxiliary graph. The auxiliary graph, henceforth denoted by A, is a weighted undirected
tree with vertex set V. Let h be the smallest integers such that the h-connected components are
singletons. Let Ah be the edgeless spanning forest of A. Then the collection of all h-edge-con-
nected components of G is the collection of vertex sets of the connected components of Ah

(each of which consists of a single vertex). Let Ah−1 be a spanning forest of A obtained from
adding the edges of weight h − 1 of A to Ah. Then the collection of all (h − 1)-edge-connected
components of G is the collection of vertex sets of the connected components of Ah−1. In gen-
eral, for k< h, let Ak+1 be a spanning forest of A such that the collection of all (k + 1)-edge-con-
nected components of G is the collection of vertex sets of the connected components of Ak+1.
Let Ak be a spanning forest of A obtained from adding the edges of weight k of A to Ak+1. Then
the collection of all k-edge-connected components of G is the collection of vertex sets of the
connected components of Ak.

Fig 4 shows an auxiliary graph of the directed graph in Fig 2. The collection of all 3-edge-
connected components is represented by the edgeless spanning forest (i.e. {a}, {b}, {c}, {d}, {e},
{f}, {g}). The collection of all 2-edge-connected components is represented by the spanning for-
est induced by the edge set consisting of edges of weight two. The collection of all 1-edge-con-
nected components is represented by the spanning forest induced by the edge set consisting of
edges of weight one or two which is the auxiliary graph itself. Notice that in this subgraph, the
edges of weight one connect subtrees that represent 2-edge-connected components.

Fig 3. The components for all k derived from the graph in Fig 2.

doi:10.1371/journal.pone.0136264.g003

Fig 4. An Auxiliary Graph derived from the graph in Fig 2.

doi:10.1371/journal.pone.0136264.g004

A Simple Algorithm for Finding All k-Edge-Connected Components

PLOS ONE | DOI:10.1371/journal.pone.0136264 September 14, 2015 5 / 10



Auxiliary Graph: A = (V, EA) is a weighted undirected tree, which represents the edge con-
nectivity among vertices in G. Two vertices u, v 2 V is k-edge-connected in G if k is the mini-
mum edge weight on the path connecting u and v in A (see Lemma 4). Fig 4 gives an auxiliary
graph of the graph in Fig 2. The auxiliary graph A is constructed by procedure CONSTRUCTION.

In the next section, we shall explain how to construct the auxiliary graph and how to gener-
ate the collection of all k-edge-connected components, for any value of k.

3 Algorithm Description
To determine the weights of the edges in the auxiliary graph, we can use any s-tmax-flow algo-
rithm, e.g., Ford and Fulkerson algorithm [18].

Since the max-flow algorithms run on directed graphs only, if the input graph G is undi-
rected, then each of its edges will be replaced by two directed edges with opposite orientations.

In procedure CONSTRUCTION (see Algorithm 1), on receiving a graph G = (V, E), a vertex s
(the source) and a set of available vertices N (vertices that can be chosen as the sink), the algo-
rithm randomly picks a vertex t 2 N − {s}, and runs the max-flow algorithm to determine the
max-flow from s to t. If G is a directed graph, it would also run the max-flow algorithm to
determine the max-flow from t to s because the two max-flow values can be different. After this
step, if G is directed, we will obtain two min-cuts, (S, T) and (S0, T0). Since the connectivity of s,
t in a directed graph is the minimum of the s − tmax-flow and t − smax-flow, the smaller of
these two max-flows, say x, is assigned to edge (s, t) as the connectivity between s and t. We
also set (S, T) to the corresponding min-cut (for the case where G is undirected, (S, T) is already
the desired min-cut). Then, an edge (s, t) with weight x is added to the auxiliary graph A. The
procedure then calls itself recursively, first with S as the set of available vertices and s as the
source, and then with T as the set of available vertices and t as the source. The recursive calls
terminate when S or T is reduced to a single vertex.

Algorithm 1: Construction(G(V, E), s, N)
If N = {s}
Return.

Randomly pick a vertex t from N − {s}.
(x, S, T)≔ S-T MAX-FLOW(G, s, t).
(x0, T0, S0)≔ S-T MAX-FLOW(G, t, s).
If x0 < x
x≔ x0, S≔ S0, T≔ T0

Add edge (s, t) with weight x to A
CONSTRUCTION(G, s, N \ S)
CONSTRUCTION(G, t, N \ T)

After the auxiliary graph A is constructed, for each query k, the k-edge-connected compo-
nents can be easily determined as follows: traverse the auxiliary graph A and delete all edges
with weights less than k. Then, each connected component in the resulting graph represents a
k-edge-connected component in G. Since the number of edges in the auxiliary graph A is n − 1
(see Lemma 5), a search on A can be done in O(n) time, e.g., running the depth-first-search.

4 Correctness of The Algorithm
Lemma 1. The connectivity of vertices is transitive. Let C(p,q) denote the connectivity between p
and q. Let C(a, b) = x, C(b, c) = y, C(a, c) = z, then

z � minðx; yÞ:

A Simple Algorithm for Finding All k-Edge-Connected Components

PLOS ONE | DOI:10.1371/journal.pone.0136264 September 14, 2015 6 / 10



Proof. Suppose to the contrary that z<min(x, y). Let C be a min-cut for a and c. Then jCj =
z<min(x, y)) jCj< x and jCj< y. Since jCj< x, C is not an edge-cut of a and b. Therefore,
there is a directed path from a to b and a directed path from b to a after C is removed. Similarly,
jCj< y implies that there is a directed path from b to c and a directed path from c to b after C is
removed. It follows that there is a directed path from a to c and a directed path from c to a after
C is removed. This contradicts the assumption that C is a min-cut for a and c.

After executing Procedure CONSTRUCTION(G, s, t), the vertex set of G is partitioned into sub-
sets S and T such that s 2 S and t 2 T.

Lemma 2. For any s0 2 S and t0 2 T, C(s0,t0)� C(s, t).
Proof. Let C(x! y) to be the value of the minimal cut between x and y in graph G. Let x1 =

C(s! t) and x2 = C(t! s). W.l.o.g., x1 � x2, thus, the connectivity between s and t is x1 and
from Procedure CONSTRUCTION(G, s, t), the partition S and T are computed according to the cut
from s to t such that s 2 S and t 2 T. For any s0 2 S and t0 2 T, we have C(s0 ! t0)� C(s! t),
thus, the connectivity between s0 and t0 satisfies C(s0, t0) = min{C(s0 ! t0), C(t0 ! s0)}� C(s0 !
t0)� C(s! t) = C(s, t).

Lemma 3. Let w(a, b) denote the weight of an edge (a, b) in the auxiliary graph A(V, EA).
Then,

8ðs; tÞ; ðt; uÞ 2 EA;Cðs; uÞ ¼ minðwðs; tÞ;wðt; uÞÞ:

Proof. By the construction of the auxiliary tree A, w(s, t) = C(s, t), for every edge (s, t). As
shown in Fig 5, let C(s, t) = x, C(t, u) = y, C(s, u) = z.

Without loss of generality, assume we determine the value of x first. Since y has not yet been
determined, we must have s 2 S; t, u 2 T (t, u are on the same side of the cut, while s is on the
opposite side). From Lemma 2, we have z = C(s, u)� C(s, t) = x. After y is determined, two
cases are to be considered.

If y� x: Since z� x, then min(x, y) = x) z�min(x, y). But from Lemma 1, we have z�
min(x, y). We thus have z = min(x, y)) C(s, u) = min{C(s, t), C(t, u)} = min(w(s, t), w(t, u)).

Fig 5. s − u connectivity is the minimum of x and y.

doi:10.1371/journal.pone.0136264.g005

A Simple Algorithm for Finding All k-Edge-Connected Components

PLOS ONE | DOI:10.1371/journal.pone.0136264 September 14, 2015 7 / 10



Otherwise, y< x and we need to prove that y� z. By Lemma 1, C(t, u)�min{C(t, s), C(s,
u)}) y�min{x, z}) y� z as z� x. It follows that z� y< x which implies that z�min{x,
y} = min{C(s, t), C(t, u)} = min{w(s, t), w(t, u)}.

Lemma 4. The auxiliary graph A is a tree and the connectivity between any two vertices in G
is given by the minimum weight on the path connecting them in A.

Proof. First, we shall prove that A is a tree by induction on jNj (note that V = N, initially).
When jNj = 1 or 2, A is clearly a tree. Suppose A is a tree for jNj< h(� 3).
Consider jNj = h. Procedure CONSTRUCTION(G, s, N) is invoked first, resulting in the edge (s,

t) and the min-cut (S, T). Then CONSTRUCTION(G, s, S) and CONSTRUCTION(G, t, T) are invoked.
Since jSj,jTj< h, by the induction hypothesis, the auxiliary graph with vertex set S and that
with vertex set T are trees. The two trees and the edge (s, t) forms a tree which is the auxiliary
graph with the vertex set N(= S[T).

Next, to prove that the connectivity between any two vertices in G is given by the minimum
weight on the path connecting them in A, we apply induction on the length of the path.

Let x, y be any two distinct vertices. Since A is a tree, there is a distinct path P connecting
them in A. Suppose P consists of h edges and h+1 vertices, such that the length of P is h, and P
= (x =)v0 v1 v2. . .vh(= y). If h = 1, the lemma clearly holds true. If h = 2, the lemma follows
from Lemma 3.

Suppose the lemma holds true for h< k(� 3). Consider h = k. Whenever an edge is added
to the auxiliary graph A, it always connects a node with an isolated vertex in the current config-
uration of A, making the isolated vertex a leaf node of the updated A. Thus, when the path P =
(x =)v0 v1 v2. . .vh(= y) is constructed, either v0 or vh is the newly added vertex. W.l.o.g., let vh be
the newly added vertex. From the induction hypothesis, C(x, vh−1) = min{w(vi, vi+1)j1� i< h
− 1}. Consider the three vertices x, vh−1 and vh, similar to the proof of Lemma 3, it is easily veri-
fied that C(x, vh) = min{C(x, vh−1), C(vh−1, vh)}. It follows that C(x, vh) = min{min{w(vi, vi+1)j1
� i< h − 1}, C(vh−1, vh)} = min{min{w(vi, vi+1)j1� i< h − 1}, w(vh−1, vh)} = min{w(vi, vi+1)j1
� i< h}.

Theorem 1. The algorithm returns the correct auxiliary graph.
Proof. Immediate from Lemma 4.

5 Complexity Analysis of The Algorithm
Our algorithm works in a preprocessing-query manner. In the preprocessing phase, Procedure
CONSTRUCTION is used to construct the auxiliary graph A. Then, in the query phase, A is used to
compute the k-edge-connected components for any query k.

Lemma 5. There are n − 1 calls of procedure CONSTRUCTION.
Proof. Since each call of procedure CONSTRUCTION adds an edge to A, and there are n − 1

edges in the finished A (Lemma 4 proved A is a tree, and thus A has n − 1 edges), there are n
− 1 calls of procedure CONSTRUCTION.

Theorem 2. The preprocessing phase takes O(Fn) time and the query phase takes O(n) time
per query, where F is the time to compute the maximal flow for two vertices in graph G.

Proof. By Lemma 5, procedure CONSTRUCTION is called n − 1 times. In procedure CONSTRUC-

TION, the basic algorithm for finding the maximal flow and runs in O(F) time is executed for
n − 1 times. Therefore, the preprocessing phase takes O(Fn) time. (Note: if we use the Ford-
Fulkerson algorithm [18] to compute the max-flow, the total time complexity is O(fmn), where
f is the maximal value of all pair of maximal flows).

Since each query initiates a DFS traversal over A, the query time is thus O(m + n). Since the
vertex set of A is V and jVj = n, andm = jEAj = n − 1 (By Lemma 4, the auxiliary graph is a
tree), the query time is O(n).

A Simple Algorithm for Finding All k-Edge-Connected Components

PLOS ONE | DOI:10.1371/journal.pone.0136264 September 14, 2015 8 / 10



6 Concluding Remarks
In this paper, an algorithm for finding all k-edge-connected components of a graph, for all k, is
presented. The algorithm performs a preprocessing over the input graph to construct an auxil-
iary graph which is a tree in O(Fn) time, where F is the time complexity to find the maximum
flow in the graph. Clearly, any improvement made on F automatically implies improvement to
the time complexity of our algorithm. Every subsequent query asking for the k-edge-connected
components for any k(� 1) can be answered in O(n) time by traversing the auxiliary graph A.
The input graph can be a directed or undirected, simple or multiple graph.

There are other interesting problems concerning edge-connectivity that are worthwhile to
study. For example, a variant of k-edge-connected problem has been studied by the database
community [10]. In this variant, a subset of vertices X is k-edge-connected in G if for any two
vertices in X, there are at least k-edge disjoint paths within the subgraph G(X) of G induced by
X. This variant was motivated by finding cores (or cliques) in large scale networks, which is a
fundamental database problem. Note that k-edge-connectivity remains an equivalence relation
under this new definition of k-edge-connectivity on induced subgraph, and the vertex partition
is always a refinement of the vertex partition of the k-edge-connected components.

Acknowledgments
This work is supported by National Natural Science Foundation of China (No. 11171086,
61433012, U1435215), Research Grants Council of Hong Kong (No. HKU 7114/13E, HKU
7164/12E, HKU 7111/12E), Natural Sciences and Engineering Research Council of Canada,
NSERC 7811-2009, Natural Science Foundation of Hebei Province (No. A2013201218), Chi-
nese Academy of Sciences research grant (No. KGZD-EW-103-5(9)).

Author Contributions
Conceived and designed the experiments: TW YZ FC HT YT SP. Performed the experiments:
TW YZ FC HT YT SP. Analyzed the data: TW YZ FC HT YT SP. Contributed reagents/materi-
als/analysis tools: TW YZ FC HT YT SP. Wrote the paper: TW YZ FC HT YT SP.

References
1. Tarjan R. E., A note on finding the bridges of a graph, Information Processing Letters 2(6): 160–161,

1974. doi: 10.1016/0020-0190(74)90003-9

2. Galil Z. and Italiano G. F., Reducing edge connectivity to vertex connectivity, SIGACT News 22, 57–61,
1991. doi: 10.1145/122413.122416

3. Nagamochi H. andWatanabe T., Computing k-edge-connected components of a multigraph, IEICE
Trans.Fundamentals E76-A(4): 513–517, 1992

4. Nagamochi H. and Ibaraki T., A linear-time algorithm for computing 3-edge-connected components in a
multigraph, Japan J. Indust. Appl. Math. 9, 163–180, 1992. doi: 10.1007/BF03167564

5. Tsin Y. H., A Simple 3-Edge-Connected Component Algorithm. Theory Comput. Syst. 40(2): 125–142,
2007. doi: 10.1007/s00224-005-1269-4

6. Tsin Y. H., Yet another optimal algorithm for 3-edge-connectivity, J. Discrete Algorithms 130–146,
2009. doi: 10.1016/j.jda.2008.04.003

7. D. W. Matula, Determining edge connectivity inO(nm), In Proc. of FOCS, 1987.

8. Nagamochi H. and Ibaraki T, A linear-time algorithm for finding a sparse k-connected spanning sub-
graph of a k-connected graph, Algorithmica 7(1–6): 583–596, 1992. doi: 10.1007/BF01758778

9. R. Zhou, C. Liu, J. Yu, W. Liang, B. Chen, J. Li, Finding maximal k-edge-connected subgraphs from a
large graph. In Proc. of EDBT 2012, 480–491.

10. L. Chang, J. X. Yu, L. Qin, X. Lin, C. Liu, andW. Liang, Efficiently computing k-edge connected compo-
nents via graph decomposition, In Proc. of SIGMOD 2013, 205–216.

A Simple Algorithm for Finding All k-Edge-Connected Components

PLOS ONE | DOI:10.1371/journal.pone.0136264 September 14, 2015 9 / 10

http://dx.doi.org/10.1016/0020-0190(74)90003-9
http://dx.doi.org/10.1145/122413.122416
http://dx.doi.org/10.1007/BF03167564
http://dx.doi.org/10.1007/s00224-005-1269-4
http://dx.doi.org/10.1016/j.jda.2008.04.003
http://dx.doi.org/10.1007/BF01758778


11. Gomory R. E. and Hu T. C., Multi-terminal network flows, J. Soc. Indust. Appl. Math 9(4), 551–570,
1961. doi: 10.1137/0109047

12. Gusfield D., Very Simple Methods for all pairs network flow analysis, SIAM Journal on Computing 19
(1), 143–155, 1990. doi: 10.1137/0219009

13. Schnorr C. P., Bottlenecks and edge connectivity in unsymmetrical networks, SIAM J. Comput. 8
(2):265–274, 1979. doi: 10.1137/0208019

14. Gusfield D., Naor D., Efficient algorithms for generalized cut-trees,Networks 21: 505–520, 1991. doi:
10.1002/net.3230210503

15. Ford L. R. and Fulkerson D. R., Maximal flow through a network,Canad. J. Math 8:399–404, 1956. doi:
10.4153/CJM-1956-045-5

16. Goldberg A. V. and Tarjan R. E., A new approach to maximum flow problem, J. ACM 35(4), 1988. doi:
10.1145/48014.61051

17. Stoer M. andWagner F., A simple min-cut algorithm, J. ACM 44(4), 1997. doi: 10.1145/263867.
263872

18. Ford L. R. and Fulkerson D. R., Flows in Networks, Princeton University Press Princeton, New Jersey,
1962.

A Simple Algorithm for Finding All k-Edge-Connected Components

PLOS ONE | DOI:10.1371/journal.pone.0136264 September 14, 2015 10 / 10

http://dx.doi.org/10.1137/0109047
http://dx.doi.org/10.1137/0219009
http://dx.doi.org/10.1137/0208019
http://dx.doi.org/10.1002/net.3230210503
http://dx.doi.org/10.4153/CJM-1956-045-5
http://dx.doi.org/10.1145/48014.61051
http://dx.doi.org/10.1145/263867.263872
http://dx.doi.org/10.1145/263867.263872

