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Abstract —Individual heterogeneity in reproductive rate is found to play an important role in
the emergence and persistence of cooperation. Most existing literature focused mainly on the
enhancement of cooperation by the introduction of inhomogeneous teaching capability of the in-
dividuals. It is far from clear how heterogeneous learning ability of the individuals affects the
evolution of cooperation. To fill this research gap, we make comparative studies of the evolu-
tionary spatial prisoner’s dilemma game with reduced learning or teaching ability of the players,
under both synchronous and asynchronous strategy updating schemes. By carrying out exten-
sive computer simulations, we show that cooperation can always be facilitated if inhomogeneous
teaching ability of the players is considered, irrespective of the strategy updating manner. By
contrast, cooperation is promoted (inhibited) in the case of synchronous (asynchronous) strategy
updating, if heterogeneous learning ability is considered, which is attributed to the reduced ability

of cooperators to expand their domains.

Introduction. — Cooperation is ubiquitous in na-
ture, ranging from biological, social, physical, to eco-
nomical systems [1]. Understanding and searching for
generic mechanisms that can foster and sustain cooper-
ation among selfish, unrelated individuals still remains
an interesting and challenging problem up to date [2-5].
Evolutionary game theory offers a powerful mathematical
framework to address the conundrum of evolution of co-
operation [2]. Particularly, the prisoner’s dilemma (PD)
has long been considered the paradigm for studying the
emergence of cooperation among selfish individuals. In a
typical scenario of the PD game, two interacting individ-
uals have to choose simultaneously whether they want to
cooperate or defect. Being a cooperator will pay the cost ¢
in order to provide a greater benefit b to the partner. Be-
ing a defector does not distribute any benefits and incur no
cost. Under such circumstances, mutual cooperation will

(a) corresponding author: mzqchen@hku.hk

yield the highest collective benefit shared equally between
the players, while a defector can have a higher individual
payoff if the opponent decides to cooperate. Therefore,
mutual cooperation can easily be crushed by any unilat-
eral defection, which in turn drives both players to choos-
ing defection, whereby they will end up with a lower payoff
than if both would cooperate, leading to the deadlock and
dilemma.

In the past decades, many mechanisms supporting coop-
eration have been proposed to resolve the dilemma, such
as kin selection [6], direct and indirect reciprocity [7, 8],
spatial (or network) reciprocity [9, 10], multi-level (or
group) selection [11], voluntary participation [12], non-
linear attractive effect [13], dynamical linking [14], mi-
gration [15], credit records [16], co-evolving networks [17],
diversity of time scale [18,19], heterogeneous interaction
degree [20], interdependent interaction network [21], pun-
ishment [22, 23], wisdom of group [24], to name a few.
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For a comprehensive review on this field, we refer to
Refs. [25,26], and for some recent brief reviews, we refer
to Refs. [27,28].

One of the most recent contributions to the subject is
concerned with the assignment of heterogeneous imitation
capability to players such that different individuals may
respond differently to the same payoff information, repre-
senting the diversity of human behavior (or social status)
in reality [29]. It is noticeable that when the inhomo-
geneous imitation activity is introduced, either by arti-
ficially adding unidirectional connections [30] or through
the heterogenous interaction degree [31], to characterize
the asymmetric and different influence of players to each
other, remarkable increase of cooperation can be observed.
Wu et al. introduced dynamic impact weight among the
interacting individuals, guiding the preferential selection
of a neighbor whose strategy would be imitated [32]. The
time evolution of impact weight is according to the rule
of “win-strengthen, lose-weaken”. The authors found that
cooperative behavior can be remarkably promoted, owing
to the formed heterogeneous impact weight distribution in
the steady state (through which compact clusters of coop-
erators can be sustained stably). In Ref. [33], Szolnoki and
Szabo studied a simplified version of the model introduced
in [32], and considered just two types of players, say A and
B, with one type having reduced teaching activity in ex-
erting strategies on others. By studying the concentration
of cooperators as a function of the fraction of individu-
als with reduced teaching activity, the authors found that
the diversity in the teaching capability can enforce the
emergence of cooperative behavior among selfish competi-
tors. In their further study [34], it was revealed that the
mechanism for the promotion of cooperation is conceptu-
ally similar to the one reported previously for scale-free
networks by Santos and Pacheco [31].

Though the role of asymmetric teaching activity in sus-
taining cooperation has already been investigated exhaus-
tively in the literature [33,34], how asymmetric learning
activity of the individuals affects the evolution of coop-
eration remains largely unexplored. Moreover, we notice
that in the previous work by Szolnoki et al. [33,34], the
strategy updating process was usually implemented asyn-
chronously. It has been pointed out that whether strategy
updating is implemented synchronously or asynchronously
may play a considerable role in determining the quantita-
tive, or even qualitative, properties of the final evolution-
ary outcomes. In Ref. [35], Huberman and Glance discov-
ered for the first time that large disparities may occur by
using the two different strategy updating scenarios in cel-
lular automata-type simulations for the study of coopera-
tion. When a stochastic imitation process characterized by
the Fermi function is adopted for the update rule [36-38],
the synchronous strategy updating manner usually leads
to a lower critical value of the temptation to defect, beyond
which cooperators are wiped out in the population [32,39].
More recently, we have shown that when the game evolv-
ing dynamics is governed by an aspiration-based response

rule [40], intermediate aspirations will give rise to the low-
est cooperation level [41], in contrast to the highest co-
operation level obtained when an asynchronous strategy
updating scheme is employed instead [40].

In this paper, we wish to extend the scope of asymmetric
effects on the evolution of cooperation in the spatial PD
game by introducing inhomogeneous imitation activities of
players as their intrinsically determined property. For this
purpose, we will adopt the approach of Refs. [33,34] to ex-
ploring the consequence of varying learning and teaching
activity in the strategy imitation process, through carry-
ing out both synchronous and asynchronous strategy up-
dating of the game dynamics. As we will show below that,
different from the claim in [33], inhomogeneous learning
activity does have relevant and significant impact on the
evolution of cooperation in spatial PD game.

Model. — We consider an evolutionary two-strategy
PD game with players located on vertices of either a square
lattice with periodic boundary conditions or random regu-
lar graphs (each vertex has a degree of 4). Without loss of
generality, we focus on the donation game, which is a true
PD game, according to which the elements of the payoff
matrix are: reward for mutual cooperation 1.0, the temp-
tation to defect b =1 + ¢ (where 0 < ¢ < 1), punishment
for mutual defection 0, and the sucker’s payoff —c. Note
that the weak PD version was considered in [33,34], where
the above sucker’s payoff is set to zero.

In the initial stage, each individual can either choose
to cooperate or to defect with equal probability. Follow-
ing [33,34], amongst all players, a fraction v of players
are chosen randomly and designated as having a restricted
ability to transfer their strategy or learn from others, irre-
spective of their initial strategies. After that, we simulate
the evolutionary process in accordance with the standard
Monte Carlo (MC) simulation procedure comprising the
following elementary steps. In the asynchronous strategy
updating scheme, we randomly select a player x, among
the population, to collect its payoff P, by playing the game
with all its neighbors. Next, one neighbor y of the player x
is also randomly chosen, and acquires its payoff P, in the
same way as previously the player x. Finally, the player x
adopts the strategy from the player y with a probability
¢ in dependence of their payoff difference, which is deter-
mined by the Fermi function

1
T exp[(Pe — P)/A]

q 1)
in the case of learning-activity-driven strategy updating,

or by
1

=T epl(B - B/ (”

in the case of teaching-activity-driven strategy updating.
The values of pre-factors w;, w, can be either 1 or w,
whose value is restricted in the region (0, 1), characteriz-
ing the reduced learning or teaching activity of the players.
The parameter « denotes the amplitude of noise [36-38],

q
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or selection intensity [42], related to the strategy adoption
process. Positive values of x imply that better performing
players are readily imitated, but it is not impossible to
adopt the strategy of a player who is performing worse.
Such errors in judgment can be attributed to mistakes
and external influences that affect the evaluation of the
opponent. In the present study, « is set to be 0.4, a value
that was advantageous for cooperation in the scenario with
Wy = wy = 1 [43]. During a full MC step, all players will
have a chance to pass their strategy once on average. In
the synchronous strategy updating scheme, rather than
sequentially selecting individuals to revise strategies, all
the players acquire payoffs by playing with their neigh-
bors and update their strategies simultaneously according
to Eq. (1) or Eq. (2), depending on whether learning or
teaching activity driven strategy updating is under con-
sideration.

Unless otherwise specified, all our simulations are per-
formed in the population of size N = 250 x 250. In each
independent run, the key quantity, i.e., the average frac-
tion of cooperators fc, is obtained by averaging over 10*
MC steps after a long relaxation of 3 x 10* steps to ensure
the dynamical equilibrium has been convincingly achieved.
The data presented below are averaged over up to 30 in-
dependent runs for each set of parameter values in order
to assure suitable accuracy.

It is worth pointing out that the extended mean-field
method exemplified in [25], i.e., pair approximation, based
on the assumption of continuous time to address the asyn-
chronous strategy updating dynamics, cannot distinguish
the effect of reduced learning and teaching activities, since
the pre-factors w, and w, can be absorbed into the time
factor, and hence the numerical solutions of Egs. (1) and
(2) remain unchanged for any positive w. For this rea-
son, we mainly resort to MC simulations and qualitative
analysis in our current studies.

Results and analysis. — Let us first discuss the com-
puter simulation results of our model defined on a square
lattice. In Fig. 1, we have plotted the average fraction of
cooperators fo in the steady state as a function of v for
b = 1.02 and different values of w = 1.0,0.3,0.1 and 0.05.
In particular, Figs. 1(a) and 1(b) [ 1(c) and 1(d)] corre-
spond to the case of reduced learning (teaching) activity of
the players, while the left column[Figs. 1(a) and 1(c)] and
right column [Figs. 1(b) and 1(d)] of Fig. 1 are for the syn-
chronous and asynchronous strategy updating schemes, re-
spectively.

Note that for w = 1.0, the model is equivalent to a
homogeneous system, where fo will not change with v.
In addition, for » = 0 and v = 1, no matter what the
value of w is, we actually consider systems with the same
evolutionary dynamics (albeit with different evolving time
scales). Hence we will pay more attention to the cases of
w < 1.0. Note that w = 0 will not be considered, since
the system does not evolve at all.

Reduced teaching activity with asynchronous strategy

Fig. 1: Average fraction of cooperators fc in the stationary
state in dependence of v for different w, obtained for b = 1.02
and k = 0.4. The top (bottom) two panels correspond, re-
spectively, to the cases of reduced learning (teaching) activity,
and the left (right) columns correspond to synchronous (asyn-
chronous) strategy updating, respectively. Each data point
is averaged over 30 independent runs, and the error bars are
smaller or comparable to the symbol size. Note the different
scales of the axis.

updating scheme. Basically, the properties of our obtained
results [Fig. 1(d)] in such a situation are similar to those
found by Szolnoki et al. for the weak PD game [33,34]: For
all w < 1, fo increases monotonically until reaching the
maximum value at some moderate value of v, and then de-
creases to the levels at v = 0. And for a sufficiently small
w = 0.05, fo can even reach unity, that is, cooperators can
completely dominate the population. It was revealed that
when the teaching activity is reduced from a moderate
fraction of the players (distributed randomly among the
population), some influential cooperators (with w, = 1.0)
may grow as local “leaders” to attract others to imitate
them, which will stabilize the compact clusters composed
of cooperators, and further facilitate the development of a
high level of cooperation.

Reduced teaching activity with synchronous strategy up-
dating scheme. In such a case, the properties of the results
[Fig. 1(c)] are generally similar to the case of asynchronous
strategy updating: The presence of moderate fraction of
players with reduced teaching activity benefits the emer-
gence of cooperation the most, and for each v, smaller w
usually results in higher fo. The main difference comes
from the extreme case v = 1.0, where fc is now greater
than that for » = 0.0, in stark contrast to asynchronous
case Fig. 1(d). We notice that for v = 1.0, as w is de-
creasing, the effective number of players who succeed in
strategy transformation is also becoming less so. As a re-
sult, for a very small w, the relaxation becomes sufficiently
slow such that the system with synchronous strategy up-
dating can be regarded as being equivalent to the one with
asynchronous updating. This point can be verified by the
fact that fo ~ 0.42 for » = 1.0 and w = 0.05 in Fig. 1(c),
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Fig. 2:
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Typical snapshots of the strategy configuration of the individuals in the stationary state by employing asynchronous

upadting, and cooperators and defectors are colored by dark gray and white, respectively. Left panel (middle panel) is for the
case of reduced learning (teaching) activity with b = 1.02 (b = 1.075), v = 0.5, and w = 0.05. The average fc in the steady state
are around 0.287(5), and the average cluster size of cooperators are about 18 and 39, for the two cases. Note that only a fraction
of the total 250 x 250 lattice is displayed. Right panel illustrates the corresponding cluster size distribution of cooperators in

the equilibrium for the two considered cases.
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Fig. 3: Average fraction of cooperators fc in the stationary
state as a function of the temptation b for different w, obtained
for v = 0.5 and k = 0.4. The top (bottom) two panels corre-
spond, respectively, to the cases of reduced learning (teach-
ing) activity, and the left (right) columns correspond to syn-
chronous (asynchronous) strategy updating, respectively. Each
data point is averaged over from 30 independent runs, and the
error bars are smaller or comparable to the symbol size. Note
the different scales of the axis.

which is in consistent with fo ~ 0.43 for » = 0 or 1.0 in
Fig. 1(d).

Reduced learning activity with asynchronous strategy up-
dating scheme. In this situation, we observe in Fig. 1(b)
that fo varies with v in a totally different way from that in
the case of reduced teaching activity [Fig. 1(d)]. In partic-
ular, for different w, as v increases from zero to unity, fc
decreases monotoniclly until reaching the minimum value
at some moderate value of v and then goes up to the lev-
els at v = 0. Rather than promoting the evolution of
cooperation in the case of reduced teaching activity, the

05

0.2 n T T T

Fig. 4: Same as in Fig. 1, but for the PD game taking place on
random regular graphs.
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Fig. 5: Same as in Fig. 3, but for the PD game taking place on
random regular graphs.
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introduction of the inhomogeneous learning activity of the
players inhibits the formation and boom of cooperation.
In Ref. [33], the authors mentioned that cooperation is
not modified directly by the application of inhomogeneous
learning activities for w = 0.1 and v = 0.5. Here, dif-
ferent from their claims, we do find that inhomogeneous
learning activities of the players play a significant role in
determining the final cooperation level. And, as shown in
Fig. 1(b), it is actually detrimental to cooperation under
asynchronous strategy updating.

How do inhomogeneous learning and teaching abilities
give rise to totally contradicting outcomes? Let us first
figure out how these mechanisms work at the microscopic
level of the players’ strategy transformation. When the
game dynamics is driven by Eq. (2), a fraction v of the
players are assigned with reduced teaching activity, which
actually means that the remaining fraction 1 — v are spec-
ified with enhanced teaching capability. Whenever the
players revise their strategies, those “influential” players
with enhanced teaching ability have a greater impact on
their neighbors so that their strategies are more likely to
be imitated, in comparison with the players with reduced
teaching activity. Consequently, if at the initial stage,
some influential cooperators happened to have enough co-
operative neighbors, they would attract their “weak” de-
fective neighbors to follow them to form stable clusters of
cooperators. From Fig. 1(d), we note that the best condi-
tion for cooperation arises at v ~ 0.7.

However, when the game dynamics is guided by Eq. (1),
being “influential” or “weak” players becomes less impor-
tant, since the pre-factor w, in Eq. (1) just decreases the
possibility of strategy transformation of one’s own, and
exerts no impact on immediate neighbors. In fact, under
such circumstances, it is more difficult for cooperators to
grow into large-size clusters in comparison with the case of
reduced teaching activity, since those surrounding “weak”
defectors of a cluster (composed of cooperators) have a
negligible ability (or willingness) to change to cooperation
provided w is very small. This argument is validated by
the results in Fig. 2, where the typical strategy configura-
tions of the players in both cases of reduced learning and
teaching activities are shown for comparison. We have cal-
ibrated parameters such that the stationary fc for the two
cases are nearly the same. It is shown that cooperators
can form more compact clusters when reduced teaching
activity is considered, which is further substantiated by
analyzing the cluster size distribution of cooperators in
the equilibrium. As demonstrated by the curves in the
right panel of Fig. 2, cooperators are usually able to form
clusters with larger sizes in the case of reduced teaching
activity. On the other hand, the presence of “slow-witted”
defectors (e.g. with w, = 0.05) may easily induce their
“quick-witted” cooperative neighbors (with w, = 1.0) to
mimic them. Combining these two factors, it is foresee-
able that cooperation might be considerably inhibited for
moderate values of v with small w when reduced learning
activity and asynchronous strategy updating is adopted.

Reduced learning activity with synchronous strategy up-
dating scheme. From Fig. 1(b), we recognize that the com-
bination of reduced learning activity with asynchronous
strategy updating suppresses the development of cooper-
ation. However, when the strategy updating is performed
synchronously instead, cooperators regain advantage in
expanding their territory in the presence of reduced learn-
ing capability. The results in Fig. 1(a) display clearly that
as v increases to unity, the concentration of cooperators
also increases for all w < 1.0. We note that the coop-
eration level saturates if the parameter w is sufficiently
small, e.g., w < 0.1. Specifically, for v = 1.0 (i.e., all
the players are designated as having a restricted ability to
learn from others), we once again observe that for small w,
fo ~ 0.42, whose value is consistent with that in the case
of asynchronous strategy updating with v = 1.0, where
fe =~ 0.43 in Fig. 1(b). Note the different scales of the
y-axis of the sub-figures.

The above phenomenon can be understood as follows.
For v = 0, all the players can respond relatively quickly
to positive payoff differences. Since cooperators and de-
fectors are distributed randomly in the initial state, de-
fectors can earn higher payoffs than cooperators. As a re-
sult, the cooperation level will decrease monotonically as
time evolves. If the temptation to defect b is sufficiently
small, the survived cooperators have a chance to strike
back by forming compact clusters [9]. But if b is large
(e.g., b = 1.02 in this case), defectors are able to invade
the clusters of cooperators definitely and cooperators are
doomed to extinction. With the introduction of players
with reduced learning activities, the velocity of invasion
of defectors on cooperators is considerably slowed down.
When all the players try to update their strategies simul-
taneously, those already clustered cooperators may obtain
a fair opportunity to enforce the neighboring “weak” de-
fectors to follow them. In this way, cooperators may form
stable clusters to support each other. Note that clustered
defectors have much less likelihood to drive neighboring
cooperators to follow them, since mutual defection results
in just zero payoffs for the involved players.

Up to now, we have figured out how the combinations
of strategy updating manners and reduced learning or
teaching activities affect the stationary concentration of
cooperators for a special value of the temptation to defect
b = 1.02. In order to obtain a thorough view on their
combinative effects, we have in Fig. 3 featured the depen-
dence of fo on b for several w values, with the parameter
v being fixed as 0.5. The presented results show explicitly
that when inhomogeneous teaching strategy is considered,
cooperation can always be enhanced to some extent ir-
respective of the strategy updating manners [Figs. 3(c)
and 3(d)]. However, when inhomogeneous learning activ-
ity is taken into account instead, how the strategy updat-
ing is executed has an essential impact on the evolution of
cooperation. In particular, asynchronous strategy updat-
ing will deteriorate the flourish of cooperation, in stark
contrast to the synchronous updating case, as reflected
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in Fig. 3(b), where with the decrease of w the stationary
concentration of cooperation fo is also decreased corre-
spondingly for fixed b values.

Conclusion and discussion. — To summarize, we
have implemented extensive computer simulations to sys-
tematically investigate the role of reduced learning or
teaching ability of the players in the evolution of coop-
eration in evolutionary spatial prisoner’s dilemma games.
Our main findings are: I) Reduced teaching ability of the
players is beneficial for the promotion of cooperation irre-
spective of whether the strategy updating is implemented
in a synchronous or asynchronous manner; IT) Reduced
learning ability of the players can foster the development
of cooperation only in the case of synchronous strategy up-
dating, and inhibit the evolution of cooperation provided
the strategy updating is executed in the asynchronous
manner.

To check whether the above findings are also valid for
other complex underlying interaction structure, we have
studied our model on random regular graphs [44], where
the connections among the players are totally random, ex-
cept that each player has exactly 4 neighbors. The results
are summarized in Figs. 4 and 5. We see that, despite of
some quantitative differences, all the qualitative proper-
ties of the results on square lattice are preserved. Thus,
our findings are robust to the underlying interaction struc-
ture of the individuals. We believe that our current work
has provided a thorough overview on how the asymmetry
of learning and teaching activities affect the evolution of
cooperation in spatially structured populations.
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