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The term “non-coding RNA” is commonly employed for RNA 
that does not encode a protein.1 Although the current under-
standing of these RNA molecules represents perhaps only the 
tip of the iceberg, with the rapid development of molecular bio-
technology, noncoding RNAs are increasingly found to have far 
more important functions than previously recognized and many 
new classes of noncoding RNA have been identified. Among 
them, small interfering RNAs (siRNAs) and microRNAs (miR-
NAs) have attracted considerable attention because their role 
in gene regulation makes them likely targets for drug discovery 
and development. Indeed, the therapeutic potential of siRNAs 
and miRNAs has been demonstrated in the treatment of many 
different diseases including cancers2–4 and infections.5–7 Com-
pared with conventional small therapeutic molecules, siRNAs 
and miRNAs offer the advantages of being highly potent and 
able to act on “non-druggable” targets (for example, proteins 
which lack an enzymatic function or have a conformation that 
is inaccessible to traditional drug molecules),8 as they can be 
designed to affect virtually any gene of interest.

Therapeutic approaches based on siRNA involve the intro-
duction of a synthetic siRNA into the target cells to elicit RNA 
interference (RNAi), thereby inhibiting the expression of a 
specific messenger RNA (mRNA) to produce a gene silenc-
ing effect.9 By contrast, miRNA-based therapeutics comprise 
two approaches: miRNA inhibition and miRNA replacement. 
The former approach resembles antisense therapy,10 with 
synthetic single stranded RNAs acting as miRNA antagonists 
(also known as antagomirs or anti-miRs) to inhibit the action 
of the endogenous miRNAs. In the replacement approach, 
synthetic miRNAs (also known as miRNA mimics) are used to 
mimic the function of the endogenous miRNAs.11 It thus leads 
to mRNA degradation/inhibition, and produces a gene silenc-
ing effect. This review focuses on the therapeutic approach 

achieved by gene silencing, and so only the miRNA replace-
ment approach is discussed and compared with siRNA. The 
therapeutic potentials and applications of the miRNA inhibi-
tion approach have been reviewed previously.12–14

siRNAs and miRNAs have similar physicochemical prop-
erties but distinct functions (Table 1). Both are short RNA 
duplexes that target mRNA(s) to produce a gene silenc-
ing effect, yet their mechanisms of action are distinct. As a 
result, the requirements for sequence design and therapeu-
tic applications of siRNAs and miRNAs are different. On the 
other hand, for clinical development, the two types of small 
RNA molecules face a similar set of barriers: poor stability 
in vivo, delivery challenges and off-target effects15; and so, 
the same strategies can be employed to improve their in vivo 
efficacy.

Gene silencing mechanism of siRNA and miRNA

RNA interference and siRNA
RNAi is a natural cellular process that silences gene expres-
sion by promoting the degradation of mRNA. It plays an 
important role in gene regulation and innate defense against 
invading viruses.16 RNAi was first described by Fire and Mello 
based on their Nobel prize winning study investigating the 
mechanisms for effective gene inhibition by exogenous RNA 
in C. elegans.17 According to their observations, long double-
stranded RNA (dsRNA) mediates potent and specific silenc-
ing of homologous genes. It appeared later that a similar 
process also occurs in mammals.18 After years of investiga-
tion, the mechanism underlying RNAi is better understood 
(Figure 1). In general, the dsRNA (either transcribed from 
cellular genes or infecting pathogens, or artificially introduced 
into the cells) is processed by a specialized ribonuclease 
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(RNase) III-like enzyme named Dicer in the cytoplasm into 
a smaller dsRNA molecule. This short dsRNA molecule is 
known as the siRNA, which has 21–23 nucleotides with 3′ 
two-nucleotide overhangs. The siRNA interacts with and 
activates the RNA-induced silencing complex (RISC). The 
endonuclease argonaute 2 (AGO2) component of the RISC 
cleaves the passenger strand (sense strand) of the siRNA 
while the guide strand (antisense strand) remains associated 
with the RISC. Subsequently, the guide strand guides the 
active RISC to its target mRNA for cleavage by AGO2. As the 
guide strand only binds to mRNA that is fully complementary 
to it, siRNA causes specific gene silencing.16,19

Since the discovery of RNAi, dsRNAs have been used as 
research tools to study the gene functions of different cell 
types. However, in mammalian cells, the delivery of exoge-
nous, long dsRNAs (over 30 nucleotides) is associated with 
the activation of the interferon (IFN) pathway,20 which is part 
of the defense mechanism against viral infection. The long 
dsRNAs bind and activate protein kinase R (PKR), which 
in turn stimulate a plethora of genes belonging to the IFN 
pathway, resulting in nonspecific mRNA degradation and 
apoptosis.21 An in vitro study in mammalian cells, including 
human cell cultures, showed that the direct introduction of 
synthetic siRNAs, instead of the long dsRNAs (thus skipping 
the step of Dicer processing), leads to effective RNAi without 
the complication of activating the IFN response.18 In view of 
this finding, siRNAs have become useful tools to inactivate 
target gene expression. However, later studies suggest that 
synthetic siRNAs may also induce partial IFN response and 
innate immune responses.22,23 As this effect can be either 
sequence-dependent or -independent, special care must be 
taken when designing siRNA therapeutics. Alternatively, short 
hairpin RNAs (shRNAs) can be used to achieve a specific 
gene silencing effect via the RNAi mechanism.24 shRNAs are 
stem-loop RNAs, which are expressed in the nucleus, typi-
cally through the delivery of viral vectors. Once expressed, 
they are transported to the cytoplasm for further process-
ing, and subsequently loaded into the RISC for specific gene 
silencing activity in the same manner as synthetic siRNAs. 
However, the requirement of viral vectors for shRNA expres-
sion poses safety concerns in therapeutic applications, which 
are discussed in section “Viral vectors”.

Gene silencing mediated by miRNA
Similarly to siRNAs, miRNAs also inhibit gene expression in 
a post-transcriptional manner. Although the gene silencing 
effects of siRNAs and miRNAs are distinct, the distinction has 
been obscured because they are associated with common 
enzymes (e.g., Dicer and RISC) and their functions over-
lap with each other to a certain extent. The major difference 
between siRNAs and miRNAs is that the former inhibit the 
expression of one specific target mRNA while the latter regu-
late the expression of multiple mRNAs. A considerable body 
of literature now classifies miRNAs as RNAi molecules.15,25–27

The first miRNA was discovered in 1993 in a study exam-
ining developmental regulatory genes in C. elegans.28 Soon 
after its discovery, miRNA was quickly found to be a class of 
small RNA molecules that negatively regulate gene expres-
sion (Figure 1). miRNA gene transcription is carried out by 
RNA polymerase II in the nucleus to give primary miRNA 
(pri-miRNA), which is 5′ capped, 3′ polyadenylated RNA with 
double-stranded stem-loop structure. The pri-miRNA is then 
cleaved by a microprocessor complex (comprising Drosha 
and microprocessor complex subunit DCGR8) to form pre-
cursor miRNA (pre-miRNA), which is a duplex that contains 
70–100 nucleotides with interspersed mismatches and 
adopts a loop structure. The pre-miRNA is subsequently 
transported by Exportin 5 from the nucleus to the cytoplasm, 
where it is further processed by Dicer into a miRNA duplex 
of 18–25 nucleotides. The miRNA duplex then associates 
with the RISC forming a complex called miRISC. The miRNA 
duplex is unwound, releasing and discarding the passenger 
strand (sense strand)—unlike in the processing of siRNA, in 
which the AGO2 of the RISC causes the cleavage of the pas-
senger strand of siRNA. The mature single-stranded miRNA 
guides the miRISC to the target mRNAs. The miRNA binds 
to the target mRNAs through partial complementary base 
pairing with the consequence that the target gene silenc-
ing occurs via translational repression, degradation, and/or 
cleavage.25,29

Recognition of mRNA targets by siRNA and miRNA
To elicit RNAi, the siRNA must be fully complementary to its 
target mRNA (Figure 2). The complementary binding acti-
vates the AGO2, which then cleaves the phosphodiester 

Table 1  Comparison of general properties between siRNA and miRNA

siRNA miRNA

Prior to Dicer processing Double-stranded RNA that contains  
30 to over 100 nucleotides

Precursor miRNA (pre-miRNA) that contains 70–100 nucle-
otides with interspersed mismatches and hairpin structure

Structure 21–23 nucleotide RNA duplex with 
2 nucleotides 3’overhang

19–25 nucleotide RNA duplex with 2 nucleotides 3’overhang

Complementary Fully complementary to mRNA Partially complementary to mRNA, typically targeting the 3’ 
untranslated region of mRNA

mRNA target One Multiple (could be over 100 at the same time)

Mechanism of gene regulation Endonucleolytic cleavage of mRNA Translational repression

Degradation of mRNA

Endonucleolytic cleavage of mRNA (rare, only when there is 
a high level of complementary between miRNA and mRNA)

Clinical applications Therapeutic agent Drug target

Therapeutic agent

Diagnostic and biomarker tool
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backbone of the mRNA between bases 10 and 11 relative to 
the 5′end of the guide strand.30 The mRNA fragments gener-
ated are subsequently degraded by different exonucleases.31 
By contrast, the target recognition of miRNA is more complex, 
as different binding sites and different degree of complemen-
tarity between the miRNA and the target RNA exist. This is a 
consequence of imperfect base pairing; miRNA only needs 

to be partially complementary to its target mRNA. The com-
plementary pairing between mRNA and the mature miRNA 
typically occurs at the 3′ untranslated region (UTR) of the for-
mer and the seed region (nucleotides 2–7 from the 5′ end) of 
the latter (Figure 2).32,33 Other miRNA binding sites, such as 
the centered sites, 3′ supplementary sites and bulged sites, 
are considered to be atypical.32,34,35 Since miRNA-mRNA 

Figure 1   Gene silencing mechanisms of siRNA and miRNA. siRNA: dsRNA (either transcribed or artificially introduced) is processed 
by Dicer into siRNA which is loaded into the RISC. AGO2, which is a component of RISC, cleaves the passenger strand of siRNA. The guide 
strand then guides the active RISC to the target mRNA. The full complementary binding between the guide strand of siRNA and the target 
mRNA leads to the cleavage of mRNA. miRNA: Transcription of miRNA gene is carried out by RNA polymerase II in the nucleus to give 
pri-miRNA, which is then cleaved by Drosha to form pre-miRNA. The pre-miRNA is transported by Exportin 5 to the cytoplasm where it is 
processed by Dicer into miRNA. The miRNA is loaded into the RISC where the passenger strand is discarded, and the miRISC is guided 
by the remaining guide strand to the target mRNA through partially complementary binding. The target mRNA is inhibited via translational 
repression, degradation or cleavage.
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recognition does not require perfect pairing, one miRNA 
strand can recognize an array of mRNAs, and hence miRNA 
has the characteristic of having multiple targets. For example, 
a microarray analysis showed that miRNA-124, which is pref-
erentially expressed in brain tissues, can downregulate 174 
annotated genes.33 Due to the partially complementary base 
pairing between mRNA and miRNA, AGO2 of the miRISC 
is not activated. Instead, the silencing of the mRNA targets 
of miRNA occurs through translation repression, or degrada-
tion by deadenylation, decapping or exonuclease action.36 In 
rare cases, high level of complementary between mRNA and 
miRNA leads to the endonucleolytic cleavage of mRNA by 
AGO protein, a mechanism that is similar to siRNA-mediated 
gene silencing.37

siRNA and miRNA as therapeutic agents

The specific gene silencing effect of siRNAs makes them 
useful tools for target identification and validation in drug 
discovery and development.38,39 Since miRNAs have multiple 
mRNA targets and the disruption of their functions contrib-
utes to the development of many diseases including cancers, 
neurodegenerative disorders and cardiovascular diseases, 
their clinical use as biomarkers and in diagnostics is rapidly 
developing.40 Furthermore, both siRNAs and miRNAs have 
huge potential as therapeutic agents. They can overcome 

the major limitation of traditional small drug molecules, which 
can only target certain classes of proteins. Even for protein-
based drugs including monoclonal antibodies that are highly 
specific, their targets are mainly limited to cell-surface recep-
tors or circulating proteins. By contrast, siRNAs and miRNAs 
can downregulate the expression of virtually all genes and 
their mRNA transcripts. Since many diseases result from the 
expression of undesired or mutated genes, or from overex-
pression of certain normal genes, the discovery of siRNA and 
miRNA opens up a whole new therapeutic approach for the 
treatment of diseases by targeting genes that are involved 
causally in the pathological process. A comparison between 
conventional small molecules, protein-based therapeutic 
agents and siRNA/miRNA-based drugs is summarized in 
Table 2. Although the therapeutic potential of siRNAs and 
miRNAs is promising, different sets of hurdles retard their 
development into clinical use. Some of these challenges, 
such as problems regarding stability and poor efficiency of 
delivery, are similar for both RNA molecules.

Design of therapeutic siRNA
The first essential step for successful siRNA therapy is the 
design of a siRNA sequence that is potent and specific to the 
intended mRNA to minimize any off-target effect. A conven-
tional siRNA consists of 19–21 nucleotides with two nucleo-
tide overhangs at the 3′ end, usually TT and UU, which are 
important for recognition by the RNAi machinery.41 Increasing 
the length of the dsRNA may enhance its potency, as dem-
onstrated by an in vitro study that dsRNAs with 27 nucleo-
tides were up to 100 times more potent than the conventional 
siRNAs with 21 nucleotides.42 The long dsRNAs require 
processing by Dicer into the shorter siRNAs (hence they 
are termed as “Dicer-ready” or “Dicer-substrate” siRNAs), 
which are more efficiently loaded into the RISC, thus facili-
tating the subsequent gene silencing mechanism.21,42–44 On 
the other hand, dsRNAs longer than 30 nucleotides can acti-
vate the IFN pathway20 and should be avoided for therapeutic 
applications.

The gene silencing efficiency of the siRNA varies greatly, 
depending on the region of the mRNA to which they are com-
plementary. An understanding of this relationship can permit 
the design of a siRNA sequence with optimal efficacy, and 
hence the rational design of effective siRNA sequences has 
been a focus of research. While many siRNA design algo-
rithms have emerged in recent years to predict efficacy,45,46 
it is nevertheless essential to validate the gene silencing 
efficiency of siRNA experimentally. Some commonly used 

Figure 2  Target recognition by siRNA and miRNA. (a) siRNA 
is usually fully complementary to the coding region of its target 
mRNA; (b) miRNA is partially complementary to its target miRNA. 
Complementary binding usually occurs at the seed region 
(nucleotides (nt) 2–7 of the 5’ end) of miRNA and the 3’ UTR of the 
target mRNA.
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Table 2  A comparison between small molecules, protein-based drugs (including monoclonal antibodies) and siRNA/miRNA-based drugs

Properties Small molecules Protein-based drugs siRNA/miRNA-based drugs

Nature of action Activation or inhibition of targets Activation or inhibition of targets Inhibition of targets

Site of target proteins Extracellular and Intracellular Mainly extracellular Virtually any sites

Selectivity and  
potency

Variable (depending on binding-site and  
ligand specificity, their affinity and efficacy etc.)

Highly specific and potent Highly specific and potent

Lead optimization Slow Slow Rapid

Manufacture Easy Difficult Easy

Stability Stable Unstable Unstable

Delivery Easy Difficult Difficult

Data taken from ref. 201.
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strategies for the design of therapeutic siRNAs are summa-
rized in Table 3.

Strand selection. To ensure effective gene silencing, the 
siRNA must be correctly orientated and loaded into the AGO 
of the RISC in order for the passenger strand to be cleaved 
and discarded, so that the guide strand that is complemen-
tary to the target mRNA remains bound to the active RISC 
and directs it to the target mRNA. The guide strand of the 
RNA duplex is determined during the AGO loading step.47 
However, both strands in the RNA duplex could potentially 
be loaded into the AGO as the guide strand. An incorrect 
loading orientation results in the intended guide strand being 
discarded and off-target effects are produced as the remain-
ing strand (the intended passenger strand) base-pairs to the 
nonintended mRNA. Since this phenomenon can occur with 
both siRNA and miRNA,48–50 the RNA duplex needs to be 
carefully designed to warrant correct guide strand selection 
by the RISC. Two major sequence parameters are known to 
determine the guide strand selection: (i) the asymmetry rule 
and (ii) 5′ nucleotide preference; both of which can be applied 
to siRNA as well as miRNA design.

The asymmetry rule is based on the finding that the rela-
tive thermodynamic stability of the two ends of the duplex 
contributes to the selection of the strand to be loaded into 
AGO.48,51 The strand with a relatively unstable 5′ end (i.e., 
higher A/U content) is selected as guide strand while the 
strand with a more stable 5′ end is discarded as the pas-
senger strand. For this reason, RNA duplexes should always 
be designed with the intended guide strand having the less 
stable 5′ end. In addition to the asymmetry rule, the 5′ nucle-
otide preference is also important in correct AGO loading. 
AGO proteins appear to have a preference for the strand with 
a U, or less favorably, an A at position one at the 5′ end as 
the guide strand. Therefore, the guide strand should ideally 
contain a U or A at the 5′end, whereas the passenger strand 
should always contain C and G at the 5′ end to minimize the 
risk of being incorrectly selected as a guide strand.52

Efficiency affected by G/C content. The overall G/C content 
of the siRNA influences the siRNA activity,53 although the 

importance of this influence is still debated. The G/C content 
affects the overall duplex thermodynamic stability as well as 
target site accessibility; siRNAs with very high G/C content 
appear to be less functional.54 Some studies suggest that 
the optimal G/C content of siRNA is around 30–50%, while 
others show that siRNAs with G/C contents of about 60% 
are highly efficient.55,56 As a general guideline, the G/C con-
tent of siRNA is ideally between 30 and 64%.57 Furthermore, 
sequences with G/C stretches of nine or more nucleotides 
should be avoided as this may reduce the gene silencing effi-
ciency of siRNA.58

Minimizing off-target effect. Although one of the distinctive 
features that differentiate siRNA from miRNA is that siRNA is 
designed to silence the expression of a specific target mRNA, 
siRNA may lead to the downregulation of unintended, unpre-
dicted targets, resulting in off-target effects. Indeed, one of 
the major challenges of siRNA therapy is to reduce off-target 
effects, as these compromise the therapeutic effect, specific-
ity and can even lead to cell death.59

The most common type of off-target effect of siRNA is 
the miRNA-like effect.60–63 This occurs when the 5′ end of 
the guide strand of siRNA is complementary to the 3′UTR 
of the mRNA (reminiscent of the target recognition by the 
seed region of miRNA).64 In some situations, this off-target 
effect occurs simply due to the poor design of the siRNA, as 
siRNA can tolerate several mismatches at the mRNA (imper-
fect complementarity) without losing gene silencing ability.65 
Under these circumstances, siRNA behaves like a miRNA 
molecule: it enters the natural miRNA pathway leading to the 
inhibition or degradation of multiple mRNAs. In certain cases, 
this type of off-target effect is nearly as efficient as the on-
target effect in reducing the protein levels.66 Another type of 
off-target effect is not sequence-dependent, but due to the 
saturation of the RNAi machinery.61 When synthetic siRNAs 
(or miRNAs) are introduced into the cells, they compete 
with the endogenous miRNAs for common proteins such 
as RISC and other factors. As a result, gene regulation by 
endogenous miRNAs is perturbed, leading to unpredictable 
off-target effects.67

Table 3  A summary of commonly employed strategies to enhance the efficacy and specificity of siRNAs, and to reduce the off-target effects

siRNA feature Strategy Description

Strand selection Apply asymmetry rule Strand with a relatively unstable 5’ end is selected as guide strand

Utilize 5′ nucleotide preference Strand with U or A at position one at the 5’ end is preferentially 
selected as guide strand

Activity Manipulate G/C content G/C content is ideally between 30–64%

G/C stretches of >9 nucleotides should be avoided

Off-target Reduce siRNA concentration Lowest possible siRNA concentration to achieve a therapeutic ef-
fect is used

Use multiple siRNAs siRNAs with different sequences for targeting the same mRNA are 
pooled for therapeutic effect

miRNA-like effect Avoid sequences similar to 
miRNA

Avoid seed sequences of miRNA that have already been identified

Immune stimulation Avoid immune stimulatory motifs Avoid U-rich sequences and motifs that contain:

GUCCUUCAA

UGUGU

UGU

UGGC
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Reduction of siRNA off-target effects is one of the research 
priorities in siRNA therapeutics development. Several strate-
gies have been proposed to mitigate such off-target effects. 
One approach is to use the lowest possible siRNA concentra-
tions, as the off-target effects due to the miRNA-like effect and 
RNAi machinery saturation are concentration-dependent.60,67 
Pooling of multiple siRNAs targeting the same mRNA is 
another strategy, which allows the gene silencing effect to be 
achieved at low concentrations of each siRNA in the pool. As 
each siRNA has a unique off-target signature, the off-target 
effects can be selectively reduced.61,68 However, there is also 
a risk that siRNA pool may cause more off-target effects than 
the beneficial effects from on-target activity.52

To avoid miRNA-like off-target effect, the logical approach 
is to reduce complementarity between the seed region (2–7 
nucleotides of 5′ end) of siRNA and the 3′UTR of mRNA. 
Clearly, the seed sequences of miRNA (identified with miRNA 
databases) should be avoided in siRNA design.69 In addition, 
the siRNA should have a low thermodynamic stability of the 
duplex between the seed region of the guide strand of siRNA 
and its target mRNA, since a low seed-target duplex stability 
reduces the capability of siRNA to induce seed-dependent 
off-target effects.58,70

Although the seed region of siRNA is implicated in the 
miRNA-like off-target effect, only some mRNAs, with this type 
of sequence complementarity, are silenced by siRNA. By 
analogy, miRNAs regulate the expression of multiple mRNAs 
through binding of the seed region to the target 3′UTR, but 
not all mRNAs with the same degree of sequence comple-
mentarity are the targets of a given miRNA.61 Therefore, it is 
speculated that several characteristics, other than sequence 
complementarity of the mRNA, are involved in defining the 
mRNA as a siRNA and/or miRNA target. However, these char-
acteristics are still poorly understood and the identification of 
these features could contribute to the design of siRNA with 
minimal off-target effects. Another way to avoid the occur-
rence of off-target effects is by chemical modification, which is 
discussed in more details in section “Chemical modification”.

Avoidance of immune response. Initial studies suggested 
that long dsRNAs (over 30 nucleotides) could trigger an 
immune response by activating the IFN pathway.20 This led 
to the development of synthetic siRNAs (with smaller num-
ber of nucleotides), in the hope to generate therapeutic gene 
silencing without immunogenic adverse effect.18 However, it 
was soon discovered that siRNAs could also activate innate 
immunity71,72; this complication creates another major hurdle 
to the development of siRNAs as therapeutic agents.

Indeed, siRNAs can cause immune responses in a 
sequence-independent and sequence-dependent manner. 
The former involves the PKR and toll-like receptor (TLR) 
3 signaling pathways, although they may play only minor 
roles.73 The latter is mediated by TLR 7 and TLR 8 on den-
dritic cells and monocytes, respectively.74 These receptors 
are transmembrane receptors present in the endosomes of 
immune cells. Several immune-stimulatory sequence motifs 
have been reported. They include (5′ to 3′) “GUCCUUCAA”, 
“UGUGU”, “UGU”, and “UGGC”.59,71 Moreover, the pres-
ence of U-rich sequences correlates with TLR 7/8 activa-
tion.75 While avoiding these immune-stimulatory sequence 

motifs could reduce the siRNA immunogenicity, it may be 
impractical to exclude U from the primary siRNA sequence. 
Alternatively, stimulation of the TLR 7/8 mediated-immune 
response could be minimized by the use of delivery agents 
that exclude siRNA endosomal delivery (e.g., electropora-
tion) or by chemical modification of the immune-stimulatory 
sequences to render them unrecognizable by TLR.76 At pres-
ent, the rules of sequence-dependent immune activation are 
still poorly understood. Therefore, all therapeutic siRNAs 
must be carefully tested for any possible immunostimulatory 
adverse effects.

Design of therapeutic miRNA
Compared with siRNAs, miRNAs have a broader therapeutic 
application. Over 2,500 human miRNAs have been recorded 
in the miRBase (version 20 accessed June 2015), a search-
able online miRNA database. Since more than 60% of the 
human protein-coding genes contain at least one conserved 
miRNA-binding site, together with the presence of numerous 
nonconserved sites, the majority of protein-coding genes are 
under the control of miRNAs.29 The extensive involvement of 
miRNAs across many human diseases makes them attrac-
tive targets for therapeutic strategies, as well as prognostic 
and predictive biomarkers.77

The goal of miRNA replacement therapy using synthetic 
miRNAs (or miRNA mimics) is to achieve the same biologi-
cal functions as the endogenous miRNAs. Therefore the 
synthetic miRNAs should possess the ability to be loaded 
to RISC and silence the target mRNAs through the natural 
miRNA signaling pathway. In theory, a single-stranded RNA 
molecule containing the sequence that is identical to the 
guide strand of the mature miRNA could be functioned as 
miRNA mimic. However, the double stranded miRNA con-
taining both guide and passenger strands was found to be 
100 to 1,000 times more potent than the single stranded 
one.4,14 The double stranded structure can facilitate the 
proper loading of the RNA molecule into the RISC, thereby 
enhancing the gene silencing effect. Therefore, designing 
miRNA mimics with a duplex structure has become the 
direction of therapeutic development. Synthetic miRNA pre-
cursors with longer sequences (from a few extra nucleo-
tides to a full-length pri-miRNA) have also been proposed 
as therapeutic agents.78 Since pri-miRNAs require pro-
cessing in the nucleus, whereas pre-miRNAs and miRNAs 
do not, different strategies are required for the delivery of 
different types of miRNA mimics to their cellular targets.79 
Similarly to shRNAs, viral vectors can be used to express 
miRNAs inside the cells. This review only discusses exog-
enously delivered, synthetic miRNAs.

The design of therapeutic miRNA is more straightforward 
than that of siRNA, as the sequence of the former should 
be almost, if not entirely, identical to the endogenous miRNA 
of interest. Nevertheless, the development of miRNA thera-
peutics faces similar hurdles that are encountered by siR-
NAs. In vivo administration of miRNAs can activate the innate 
immune system via TLR,80 leading to significant undesirable 
effects. As the sequence variation for therapeutic miRNA 
is limited, chemical modification is the major approach to 
tackle this problem. Furthermore, therapeutic miRNAs also 
face the barriers of poor stability and inefficient delivery. The 
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strategies to overcome these barriers are discussed in the 
following sections.

Chemical modification
RNAs are extremely vulnerable to serum nucleases. Although 
double-stranded RNA is more resistant to nuclease degrada-
tion than single-stranded RNA, naked RNAs in their unmodi-
fied forms are degraded rapidly following administration by 
the abundant nuclease present in the bloodstream, which 
contributes to a short half-life in vivo.81 Poor stability is one 
of the major obstacles toward the successful application of 
siRNAs and miRNAs as therapeutic agents. Chemical modifi-
cations of RNA were developed initially to address this issue. 
In addition, chemical modification of the RNA duplexes can 
minimize immunogenicity and reduce off-target effects.82

A wide variety of RNA modification approaches have been 
investigated since the development of antisense therapies in 
the 1980s. The techniques have matured over the years and 
some are also applicable to siRNAs and miRNAs. Success-
ful chemical modification should not compromise the gene 
silencing efficiency of these RNA molecules. In order for the 
modified siRNAs or miRNAs to be compatible with the endog-
enous silencing pathways and be loaded into the RISC in the 
correct orientation, a number of factors, including the position 
and the type of modification, and its effect on the charge of 
the RNA duplex, needs to be considered.76 Since the 5′ phos-
phate, the 5′ proximal part, and the central positions of the 
guide strand mirror the important areas of the RNA duplex for 
the interaction with and the action of the RISC and AGO pro-
teins,83,84 RNA duplexes are less tolerant to chemical modifi-
cations at these sites. By contrast, chemical modifications at 
the entire passenger strand and the 3′ proximal part and 3′ 
overhang of the guide strand would have the least influence 
on the specificity and/or function of the RNA.85

The major types of chemical modification that are com-
monly investigated in siRNA and miRNA design include: (i) 
ribose 2′- OH group modification; (ii) locked and unlocked 
nucleic acids; and (iii) phosphorothioate (PS) modification 
(Figure 3). Different RNA modification approach may be 
employed to serve different functions. Combinations of differ-
ent modification strategies are also commonly used.

Ribose 2′-OH group modification. Modification of the ribose 
2′-OH group is the most diverse and also the most popu-
lar type of modification in RNA duplex design, as the gene 
silencing activity of siRNAs or miRNAs does not depend on 
this group.86 This strategy involves the substitution of the 
ribose 2′-OH group with other chemical groups, including 
2′-O-methyl (2′-O-Me), 2′-fluoro (2′-F) and 2′-methoxyethyl 
(2′-O-MOE) (Figure 3), and can effectively enhance the sta-
bility of the RNA duplex in serum. In particular, substitutions 
with 2′-O-Me and 2′-F are the two most extensively studied 
modifications in siRNA. Although these modifications are 
generally well-tolerated at most siRNA positions, extensive 
or full modification may lead to significant loss of silencing 
efficiency.60 By alternating 2′-O-Me and 2′-F substitutions 
in a fully substituted siRNA, nuclease-resistant and highly 
potent modified siRNA can be produced.87 Bulky substitution 
such as 2′-O-MOE may enhance nuclease resistance, but is 
poorly tolerated in terms of activity.85,88–90

Apart from enhancing nuclease stability, ribose 2′-OH 
modifications also reduce immune activation of the RNA 
duplex.91 The substitution of the 2′-OH at only the U sites with 
either 2′-O-Me or 2′-F can abrogate immune responses with-
out affecting siRNA potency.92 Such modification is believed 
to render the RNA duplex unrecognizable by TLR 7/8, which 
is responsible for siRNA-mediated immune response, as 
U-rich RNA sequences are associated with TLR 7/8 activa-
tion.75 Another approach proposed to reduce TLR 7 activation 
is to alternate 2′-O-Me modification of the passenger strand 
thereby preserving the gene silencing potency of the guide 
strand of the siRNA.93

LNA and UNA modifications. Locked nucleic acid (LNA) is a 
type of chemically modified nucleic acid containing a methy-
lene bridge between the 2′-O and the 4′-C of the sugar to 
create a stable “locked” ring conformation94 (Figure 3). This 
modification improves RNA duplex stability by increasing 
its resistance against nuclease degradation.95,96 However, 
multiple LNA modifications may lead to decreased efficacy 
in vitro and in vivo.95,97,98 In order to function properly, siRNA 
or miRNA must be designed in a way that favors the selec-
tion of the intended guide strand by the RISC to minimize 
off-target effects resulting from the passenger strand being 
wrongly selected. LNA modification can avoid this type of off-
target effect as the modification of the passenger strand at 
the 5′ end precludes its incorporation into the RISC.95 More-
over, LNA modification in general can reduce RNA duplex-
induced immunogenicity by preventing the immunogenic 
sequence-motifs from being recognized by TLR 7/8, without 
affecting its silencing activity.99

In recent years, unlocked nucleic acid (UNA) modifica-
tion has been introduced to siRNA100,101 (Figure 3). UNA 
monomers are acyclic derivatives of RNA, lacking the C2′ 
and C3′-bond of the RNA ribose ring, but structurally similar 
to unmodified RNA upon incorporation into RNA duplexes. 
Single UNA modifications are well-tolerated at most tested 
positions in the passenger and guide strands, exhibiting effi-
cient gene silencing and improved performance and stability 
both in vitro and in vivo.100 However, additional UNA modifica-
tion, especially in the guide strand, results in reduced silenc-
ing efficiency, possibly by destabilizing the siRNA duplex 
or by interactions with the target mRNA.100 Furthermore, 
UNA modification in the seed region of the guide strand can 
prevent miRNA-like off-target effect without compromising 
siRNA activity.101 Overall, results from various studies sug-
gested that UNA modification represent an important modifi-
cation with potential for future therapeutic RNA design.

Backbone modification. Backbone modifications are com-
monly used to improve the stability of nucleic acids against 
nuclease resistance by substituting the phosphodiester 
backbone linkages with other types of linkage. Among those, 
phosphorothioate (PS) modification is the most widely used 
strategy, in which one of the nonbridging phosphate oxy-
gen atoms is replaced with a sulfur atom (Figure 3).102 This 
approach was first described in the development of antisense 
oligonucleotides, and is very efficient in increasing exonucle-
ase resistance following parenteral administration.103 The PS 
modification also promotes plasma protein binding, thereby 
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reducing clearance by glomerular filtration and urinary excre-
tion, and hence improving the pharmacokinetic profile of 
nucleotides.103 This technique was successfully employed in 
antisense PS drug fomivirsen, which was approved by the 
Food and Drug Administration in the late 90s.104

When this approach was applied to siRNAs, the stability of 
the modified siRNA was successfully enhanced in vivo.105,106 
However, increased toxicity and reduction of gene silencing 
was also observed.86,89,105,106 This is probably because siR-
NAs, unlike antisense oligonucleotides, tolerate only lim-
ited modifications to remain RISC-compatible. It has been 
suggested that PS modification at the center of the duplex, 
especially at the scissile phosphate position, impairs the 
activity of the RISC.49 Therefore, partial PS modification was 

recommended, together with other types of modifications to 
enhance exonuclease resistance of siRNAs.107 This strat-
egy has not been popular due to the limitations mentioned 
above. However, by carefully controlling the stereochemis-
try of phosphorothioate siRNA during synthesis, nuclease 
resistance could be improved without compromising biologi-
cal activity.108 Alternatively, boranophosphate modification, 
which involves the replacement of nonbridging phosphate 
oxygen atoms with an isoelectronic borane (BH3) moiety 
(Figure 3),109 is more nuclease-resistant and less toxic com-
pared to its PS counterparts. Whether or not this modifica-
tion can retain the biological activity of siRNAs remains to be 
determined, and the application of this modification in miRNA 
therapeutics is yet to be studied.

Figure 3  Structures of chemically modified RNA. (i) In the ribose 2’ –OH group modification, the 2’ –OH group is modified with 2’ –O-methyl 
(2’ O-Me), 2’ –fluoro (2’ –F) or 2’ –methoxyethyl (3’ –O-MOE). (ii) In locked nucleic acid (LNA) modification, the ribose is locked in a C3’ endo 
conformation by introducing a 2’-O and 4’-C methylene bridge; In unlocked nucleic acid (UNA), the ribose ring is cleaved between 2’ -C and 
3’ -C. (iii) In backbone modification, the phosphodiester backbone linkage is being substituted. The nonbridging phosphate atom is replaced 
with a sulfur atom to give a phosphorothioate modification, or replaced with a borane (BH3) moiety to give a boranophosphate modification.

(i) Ribose 2′ –OH group modification

(ii) Locked nucleic acid and unlocked nucleic acid modification

(iii) Backbone modification

Phosphodiester Phosphorothioate Boranophosphate

LNA

2′-OH 2′–O-Me 2′–O-MOE2′–F

UNA
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Delivery of siRNA and miRNA Therapeutics

While chemical modification can improve the stability and 
reduce off-target effects of siRNAs and miRNAs, poor deliv-
ery is still a major challenge in translating therapeutic siRNAs 
and miRNAs into the clinic. Both types of RNA molecules 
have an intracellular site of action, but their intrinsic proper-
ties, including hydrophilic nature, negative charge and high 
molecular weight (~14–15 kDa), render them poorly perme-
able across biological membranes. The primary role of a 
delivery system is to facilitate the cellular uptake of siRNAs 
or miRNAs to their target sites.110 A delivery system can also 
protect the nucleic acids from premature nuclease degrada-
tion, thereby reducing the need for chemically modifications, 
which may affect the specificity and functionality of the RNA 
molecules. Since siRNAs and miRNAs have similar physi-
cochemical properties (double-stranded RNAs with 21–23 
nucleotides) and the same intracellular site of actions (both 
require enzymatic functions of the RISC to be active against 
the target mRNAs), similar delivery technologies can be 
applied to both types of RNA molecules.

Viral vectors
Viral vectors encoding shRNAs or miRNAs have been used to 
trigger RNAi and gene silencing effects.111 Viruses that are com-
monly employed for this purpose include lentiviruses,112–114 ade-
noviruses,115–117 and adeno-associated viruses (AAVs).118–120  
They are extremely efficient in transferring the RNA-encoding 
vectors into the nucleus of mammalian cells to ensure high 
expression of RNA. Almost 70% of all gene therapy clinical tri-
als have involved the use of viral vectors to deliver nucleic acids 
because of their high transduction efficiency.110 Viruses that are 
used to carry therapeutic RNA are genetically engineered to 
remove their virulence, and their tropism can be altered by 
genetic manipulation of the viral capsid for targeting to specific 
cell types.27 In addition, long-term expression can be achieved 
by using viruses, such as lentiviruses, that can integrate into 
the host genome. However, there are serious safety concerns 
associated with the use of viral vectors, including high immu-
nogenicity (especially in adenoviruses)121 and the risk of inser-
tional mutagenesis (especially in lentiviruses).122,123 In addition, 
low packaging capacity (especially in AAVs)118 and high pro-
duction cost have also limited their clinical applications.124 
Therefore, despite their inferior transfection efficiency, nonviral 
vectors have become attractive alternatives in delivering syn-
thetic siRNAs and miRNAs due to their better safety profile and 
lower production cost.

Nonviral vectors
Most of the nonviral vectors that have been investigated for 
RNA delivery are also used to deliver other types of nucleic 
acids including plasmid DNA and antisense oligonucleotides. 
Since the development of nonviral vectors has been exten-
sively reviewed, readers who are interested in the design and 
structure of different types of nonviral delivery systems are 
referred to a number of recent articles.79,110,125–127 Polymer-
based and lipid-based systems are the two main categories 
of RNA delivery systems. Apart from the advantages men-
tioned above (i.e., relatively good safety profile and low pro-
duction cost), nonviral vectors are highly versatile. They can 

be easily modified to improve their delivery efficiency, e.g., 
to achieve site-specific delivery by incorporating targeting 
ligands, or to improve serum stability and extend the circu-
lation time by PEGylation (attachment of polyethylene gly-
col (PEG) polymer chains).110 Despite the effort to develop 
suitable RNA delivery systems for clinical use, a lack of cor-
relation between in vitro and in vivo efficacies is observed. 
It is often reported that a delivery system worked efficiently 
in vitro but failed in vivo either due to toxicity problems, poor 
pharmacokinetic profiles, nonspecific uptake or immune 
responses.128 The success of therapeutic siRNAs and miR-
NAs is highly dependent on the availability of a safe and effi-
cient delivery system. Selected examples of nonviral delivery 
systems that have been investigated to deliver therapeutic 
siRNAs and miRNAs in animal and preclinical studies are 
summarized in Table 4.

Polymer-based delivery systems. Cationic polymers can form 
polyplexes with the negatively charged RNA through electro-
static interactions. The preparation of polyplexes is simple, 
and the nanosized polyplexes can facilitate cellular uptake 
through endocytosis. In addition, polymers that exhibit high 
proton buffering capacity can promote endosomal escape, 
thereby avoiding endosomal-lysosomal RNA degradation. 
Synthetic polyethylenimine (PEI), which has an extensive pH 
buffering capacity, is one of the early generation polymers 
studied for nucleic acid delivery.129 It is the most widely inves-
tigated polymer for siRNA and miRNA delivery in vivo.130,131 
Because of its high transfection efficiency, PEI is regarded 
as the gold standard among the nonviral vectors. Apart from 
PEI, dendrimers, which are highly branched synthetic poly-
mers with well-defined molecular architecture, are also fre-
quently studied for nucleic acid delivery.132,133 Polyplexes that 
are formed between dendrimers and nucleic acids are also 
known as dendriplexes. Poly(amidoamine) (PAMAM)134–136 
and polypropylenimine137 are cationic dendrimers that have 
been evaluated for delivering RNA in vivo. However, because 
of their high charge density, cationic PEI and dendrimers are 
often associated with high toxicity which has limited their clini-
cal use. Therefore, modified versions of PEI or dendrimers 
are developed to address this issue and to further improve 
their delivery efficiency.138–140 Alternatively, natural cationic 
polymers such as chitosan, which is derived from chitin (com-
monly found in the exoskeleton of crustaceans), and atelocol-
lagen, which is highly purified protein derived from calf dermis, 
are considered to be safer options for RNA delivery.141–145

Cyclodextrins, the cyclic oligomers of glucose, have been 
used in pharmaceutical formulations and their long-term effects 
in humans are well-established.146 Due to their low toxicity, high 
stability and lack of immune stimulation, cyclodextrin-based 
nanoparticles were investigated as a carrier of siRNA.147,148 
Poly(lactic-co-glycolic acid) (PLGA) is a Food and Drug Adminis-
tration-approved synthetic biodegradable polymer that is widely 
studied for delivering various types of therapeutic molecules 
including RNA due to its low toxicity and good safety profile.126 
The rate of drug release can be controlled by the molecular 
weight and composition of PLGA. Since PLGA is a neutral poly-
mer, it does not form polyplexes with nucleic acids. Instead, RNA 
can be loaded in PLGA nanoparticles or microparticles.126 Due 
to the hydrophilic nature of RNA and the hydrophobic nature of 
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Table 4  A summary of selected examples of nonviral vectors investigated for delivery of therapeutic siRNAs and miRNAs in animal and preclinical studies in 
recent years

Delivery system Disease miRNA/siRNA Animal model
Route of  
administration Reference

Unmodified PEI

PEI Asthma siRNA targeting IL-13 Mouse sensitized and challenged 
with ovalbumin

Intravenous 202

Sepsis siRNA targeting IL-6 and TNFα Mouse with polymicrobial sepsis  
induced by cecal ligation and puncture

Intravenous;  
intraperitoneal

203

Colon cancer miRNA-145; miRNA-33a Mouse xenograft tumor Intratumoral;  
intraperitoneal

204

Modified PEI

SA-PEI-CNT Melanoma siRNA targeting Braf In situ mouse melanoma model Topical 138

PU-PEI Lung cancer miRNA-145 Mouse xenograft tumor Intratumoral 139

Gliobastoma miRNA-145 Mouse xenograft tumor Intratumoral 140

Dendrimers

PAMAM Ovarian cancer siRNA targeting Akt Mouse xenograft tumor Intratumoral 134

Drug-resistant 
prostate cancer

siRNA targeting Hsp27 Mouse xenograft tumor Intratumoral 135

PAMAM-folic acid Glioma miRNA-7 Mouse xenograft tumor Intratumoral; 
intravenous

136

Ovarian cancer siRNA targeting CD44 Mouse xenograft tumor Intraperitoneal 137

Natural polymers

Glycol chitosan Drug-resistant 
breast cancer

siRNA targeting P-glycoprotein Mouse xenograft tumor Intravenous 141

Hyaluronic acid-chitosan Breast cancer miRNA-34a Mouse xenograft tumor Intravenous 142

Atelocollagen Prostate cancer siRNA targeting Bcl-xL Mouse xenograft tumor Intravenous 143

Muscular dys-
trophy

siRNA targeting Mst Genetically modified mouse with 
limb-girdle muscular dystrophy

Intramuscular 144

Metastatic pros-
tate cancer

miRNA-16 Mouse xenograft tumor Intravenous 145

PLGA

PLGA microspheres with PEI Sarcoma siRNA targeting VEGF Mouse xenograft tumor Intratumoral 149

Joint inflammation siRNA targeting FcγRIII Rat with temporomandibular in-
flammation induced by Complete 
Freund’s Adjuvant injection

Intra-articular 150

PLGA nanoparticles with PEI Lung cancer siRNA targeting STAT3 Mouse with lung cancer induced by 
carcinogen

Intraperitoneal 151

Other nanoparticles

Tf-targeted nanoparticles of 
CDP

Subcutaneous 
tumor

siRNA targeting RRM2 Mouse with subcutaneous tumor of 
murine neuroblastoma cells

Intravenous 147

Mesoporous silica nanopar-
ticles with pDMAEMA

Cervical cancer siRNA targeting PLK1 Mouse xenograft tumor Intravenous 205

Mesoporous silica nanopar-
ticles with KALA peptide-
PEG-PEI

Ovarian cancer siRNA targeting VEGF Mouse xenograft tumor Intravenous 154

Porous silica nanoparticles 
with GD2 antibody

Neuroblastoma miRNA-34a Mouse xenograft tumor Intravenous 155

Lipoplexes

Cationic liposomes Melanoma with 
lung metastasis

siRNA targeting Mcl1 Mouse with lung cancer induced by 
intravenous injection of murine mela-
noma or lung carcinoma cells

Intrapulmonary 206

PEG-cationic liposomes Prostate and pan-
creatic cancer

siRNA targeting PKN3 Mouse xenograft tumor Intravenous 190

Drug-resistant 
renal cancer

siRNA targeting PLK1 Mouse xenograft tumor Intravenous 207

RGD peptide -PEG-cationic 
liposomes

Melanoma with 
lung metastasis

siRNA targeting c-Myc, MDM2 
and VEGF

Mouse with lung cancer induced by 
intravenous injection of murine mela-
noma cells

Intravenous 162

Peptides-modified  
PEG-cationic liposomes

Glioma siRNA targeting VEGF Mouse xenograft tumor Intratumoral; 
Intravenous

163

Table 4  Continued on next page
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PLGA, it is always a challenge to obtain a high loading efficiency. 
Moreover, the neutral PLGA particles do not promote cellular 
uptake as effectively as cationic polyplexes. Incorporating 
small amount of cationic polymers such as PEI into the PLGA 
nanoparticles can enhance the encapsulation and transfection 
efficiency. This can also lower the toxicity when compared to the 
use of cationic polymers alone.149–151 Silica-based nanoparticles 
are biocompatible, biodegradable with low toxicity, and have 
wide biomedical applications.152 Their high internal pore volume 
and high capacity for functionalization make them attractive 
materials for drug delivery,153 and they have been investigated 
in recent years for RNA delivery in vivo.154–156

Lipid-based delivery systems. Similarly to cationic polymers, 
cationic lipids and liposomes can form lipoplexes with RNA 
through electrostatic interactions.157 In general, lipids used for 
nucleic acid delivery are composed of a cationic head group 
and a hydrophobic chain. The choice of the head group and 
the hydrophobic chain may dramatically affect the transfec-
tion efficiency and toxicity level of the lipoplexes. Examples of 
commonly used cationic lipids for nucleic acid delivery include 
1,2-dioleoyloxy-3-trimethylammonium propane (DOTAP) 
and 1,2-di-O-octadecenyl-3-trimethylammonium propane 
(DOTMA), which are often used in combination with neutral 
lipids such as dioleoylphosphatidylethanolamine (DOPE) 
and cholesterol to enhance transfection efficiency.157–159 

Many of the commercial available transfection reagents such 
as Lipofectamine, Oligofectamine, DharmaFECT, siPORT, 
and TransIT-TKO are lipid-based systems and have been 
frequently used for RNA delivery. Despite their high trans-
fection efficiency in vitro, the in vivo performance of most 
lipid-based delivery systems is not satisfactory due to tox-
icity, nonspecific uptake, and unwanted inflammatory and 
immune responses.128,158 Incorporation of PEG is a commonly 
employed strategy to reduce immunogenicity as well as pro-
long circulation following systemic delivery, but PEGylation 
may lead to reduction of cellular uptake. The incorporation of 
D-α-tocopheryl polyethylene glycol succinate into the deliv-
ery system has been reported to overcome this problem. 
D-α-tocopheryl polyethylene glycol succinate is a water-solu-
ble derivative of natural vitamin E, which is formed by esterifi-
cation of vitamin E succinate with PEG. It has the advantages 
of PEG, but also promotes cellular uptake.160,161 To improve 
specificity, targeting moieties such as antibodies and small 
peptides can be employed.162,163

Lipid-based nanoparticles with low toxicity and high effi-
ciency are developed to produce a more sophisticated 
delivery system for RNA. For example, “stabilized nucleic 
acid lipid particles” in which RNA is encapsulated inside 
the highly PEGylated liposomes prepared by ethanol dilu-
tion method have been proposed.164 In some studies, 
RNA is loaded into the cationic solid lipid nanoparticles for 

Cationic liposomes  
(Lipofectamine™)

Colon cancer miRNA-143 Mouse xenograft tumor Intratumoral; 
Intravenous

208

Cationic liposomes  
DOTMA/cholesterol/TPGS

Non–small-cell 
lung cancer

miRNA-29b Mouse xenograft tumor Intravenous 160

Neutral lipid emulsion 
(RNALancerII)

Non–small-cell 
lung cancer

miRNA-34a, let-7 Mouse xenograft tumor Intravenous 209

Lipid-based nanoparticles (SNALPs, SLNs and LPH nanoparticles)

SNALP Ebola infection siRNA targeting polymerase of 
Ebola virus

Guinea pigs infected with Ebola virus Intraperitoneal 210

SLN Lung cancer miRNA-34a Mouse xenograft tumor Intravenous 211

Melanoma with 
lung metastasis

miRNA-34a Mouse with lung cancer induced 
by intravenously injection of murine 
melanoma cells

Intravenous 165

LPH with single chain anti-
body fragment

Melanoma with 
lung metastasis

Combined miRNA-34a and 
siRNA targeting MDM2, c-myc 
and VEGF

Mouse with lung cancer induced 
by intravenously injection of murine 
melanoma cells

Intravenous 167

Lipopolymer

StA-PEI Melanoma siRNA targeting STAT3 Mouse xenograft tumor Intratumoral 171

DA-PEI Colorectal cancer siRNA targeting XIAP Mouse xenograft tumor Intratumoral 172

Myocardial infarc-
tion

siRNA targeting RAGE Rat subjected to ischemic- 
reperfusion injury by transient  
coronary artery ligation

Intra-myocardial 173

Cholesterol-PEI Prostate cancer siRNA targeting VEGF Mouse xenograft tumor Intratumoral 25

Akt, protein kinase B; Bcl-xL, B-cell lymphoma extra large; Braf, v-raf murine sarcoma viral oncogene homolog B; c-Myc, v-myc avian myelocytomatosis viral 
oncogene homolog, CDP, cyclodextrin-containing polycations; CNT, carbon nanotube; DA, deoxycholic acid; DOTMA, 1,2-di-O-octadecenyl-3-trimethylam-
monium propane; FcγRIII, immunoglobulin type G cell surface Fc receptor; GD2, disialoganglioside; Hsp27, heat shock protein 27; IL, interleukin; LPH, lipid 
protamine hyaluronic; Mcl1, myeloid cell leukemia sequence 1; MDM2, mouse double minute 2 homolog; Mst, myostatin; PAMAM Poly(amidoamine);  
pDMAEMA, poly-(2-dimethyl-aminoethyl-methacrylate); PEG, polyethylene glycol; PEI, polyethylenimine; PKN3, protein kinase N3; PLGA, poly(lactic-co-glycolic 
acid); PLK-1, polo-like kinase 1; PU, polyurethane; RAGE, receptor for advanced glycation end-products; RRM2, ribonucleotide reductase subunit M2; SA-PEI, 
succinated PEI; SLN, solid lipid nanoparticle; SNALP, stabilized nucleic acid lipid particles; STAT3, signal transducer and activator of transcription 3; StA, stearic 
acid; Tf, transferrin; TGPS, D-α-tocopheryl polyethylene glycol succinate, TNFα, tumor necrosis factor alpha; VEGF, vascular endothelial growth factor; XIAP, 
X-linked inhibitor of apoptosis protein.

Table 4  Continued

Delivery system Disease miRNA/siRNA Animal model
Route of  
administration Reference
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Table 5  A summary of siRNA therapeutics in clinical trials (registered with clinicaltrials.gov, last accessed 13 June 2015)

Name Indications siRNA target Phase Delivery system
Route of  

administration
Trial ID  

(reference)

Cancer

ALN-VSP02 Advanced solid tumors with 
liver involvement

KSP and VEGF 1, completed Lipid nanoparticles Intravenous NCT01158079; 
NCT008821802

Atu027 Advanced solid tumor PKN3 1, ongoing Liposomal particles (AtuPLEX®) Intravenous NCT009385743

Pancreatic ductal carcinoma 1/2, ongoing NCT01808638

CALAA-01 Solid tumor RRM2 1, terminated Polymer-based targeted  
nanoparticles

Intravenous NCT00689065185

DCR-MYC  
(Dicer-substrate 
siRNA)

Solid tumor, multiple  
myeloma, non-Hodgkin’s 
lymphomas

MYC oncogene 1, ongoing Lipid nanoparticles (EnCore) Intravenous NCT02110563

Hepatocellular carcinoma 1/2, ongoing NCT02314052

siG12D LODER Advanced pancreatic cancer mutated KRAS  
oncogene

1, completed;  
2, ongoing

Biodegradable polymer-based 
scaffold

Local implanta-
tion

NCT01188785; 
NCT01676259

siRNA-EphA2-
DOPC

Advanced cancers EphA2 1, ongoing Neutral liposomes Intravenous NCT01591356

TKM-080301 
(TKM-PLK1)

Primary or secondary liver 
cancer

PLK1 1, completed Lipid nanoparticles Intravenous NCT01437007

Neuroendocrine tumors and 
adrenocortical carcinoma

1/2 ongoing NCT01262235

Infectious Diseases

ALN-RSV01 RSV infection RSV  
nucleocapsid

2, completed Naked Intranasal NCT004968215,212

RSV infection in lung  
transplant patients

2, completed Nebulization NCT00658086; 
NCT01065935199

ARC-520 Chronic HBV infection conserved  
regions of HBV

1, completed;  
2, ongoing

DPC (membrane lytic  
peptides with cholesterol  
conjugated siRNA

Intravenous NCT01872065; 
NCT02065336; 
NCT02349126

TKM-100201 Ebola virus infection Ebola L  
polymerase, VP24 
and VP35

1, terminated Lipid nanoparticles Intravenous NCT01518881

TKM-100802 1, ongoing NCT02041715

Ocular Conditions

AGN211745 
(Sirna-027)

CNV, AMD VEGF  
receptor 1

1/2, completed;  
II, terminated

Naked Intravitreal NCT00363714; 
NCT00395057

Bamosiran 
(SYL040012)

Ocular hypertension,  
glaucoma

ADRB2 1, completed;  
1/2 completed

Naked Topical ocular NCT00990743; 
NCT01227291

Ocular hypertension,  
open-angle glaucoma

2, completed;  
2, ongoing

NCT01739244; 
NCT02250612

Bevasiranib 
(Cand5)

Wet AMD VEGF 2, completed Naked Intravitreal NCT00722384; 
NCT00259753

Diabetic macular edema 
VEGF

NCT00306904

Wet AMD 3, terminated NCT00499590

AMD 3, withdrawn NCT00557791

PF-04523655 
(PF-655)

AMD RTP801  
(hypoxia-inducible 
factor 1 responsive 
gene)

1, 2 completed Naked Intravitreal NCT00725686213; 
NCT00713518214

CNV, diabetic retinopathy, 
diabetic macular edema

2, completed NCT01445899

Diabetic retinopathy,  
diabetic complications

2, terminated NCT00701181215

QPI-1007 Optic atrophy, nonarteritic 
anterior ischemic optic  
neuropathy

CASP2 1, completed Naked Intravitreal NCT01064505

SYL1001 Ocular pain, dry eye  
syndrome

Capsaicin receptor 
TRPV1

1, completed;  
1/2, completed

Naked Topical ocular NCT01438281; 
NCT01776658

Cardiovascular and metabolic diseases

ALN-PCS02 Hypercholesterolemia PCSK9 1, complete Lipid nanoparticles Intravenous NCT01437059216

ALN-PCSsc 1, ongoing GalNAc-siRNA conjugation Subcutaneous NCT02314442

PRO-040201 
(TKM-ApoB)

Hypercholesterolemia ApoB 1, terminated Lipid nanoparticles Intravenous NCT00927459

Table 5  Continued on next page
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sustained release.165,166 The low toxic liposome-polycation (or 
protamine)-hyaluronic acid nanoparticles, in which the nega-
tively charged RNA and hyaluronic acid are complexed with 
the cationic protamine to form the core of the liposomes, are 
also being developed for RNA delivery.167,168

Lipolyplexes. In recent years, lipolyplexes have emerged as 
a new generation delivery system for nucleic acids. Typically, 
such a system is composed of both polymers and lipids in 
an attempt to address the limitations of polymer-based and 
lipid-based delivery systems by combining the advanta-
geous characteristics of both.126,169,170 This approach has 
been employed for the delivery of RNA in vivo. For example, 
stearic acid was incorporated into the backbone of PEI for 
siRNA delivery.171 Modification of PEI with stearic acid led to 
better transfection efficiency in vivo compared to unmodified 
PEI. Similarly, cholesterol and deoxycholic acid-modified PEI 
improved the transfection efficiency of siRNA in vivo.172–174

siRNA AND miRNA therapeutics in clinical studies

The first clinical trial of siRNA therapeutics was initiated in 
2004,175 merely 6 years after the discovery of RNAi. The rapid 
progress of siRNA advancing into clinical trials is perhaps 
due to the experience gained during the development of 
antisense and other nucleic acid-based therapies. To date, 
around 30 siRNA candidates have reached various stages of 

clinical trials for the treatment of different diseases (Table 5). 
In comparison, the clinical development of miRNA as thera-
peutics is lagging behind, with only two miRNA therapeutics, 
both of which are indicated for the treatment of cancers, 
being registered in clinical trial to date (Table 6). The first 
miRNA therapeutic trial began in 2013 with the second one 
starting in early 2015. Although siRNAs share many simi-
larities with miRNAs, the relatively slow progress of miRNA 
therapeutics could be due to their uncertain mechanism of 
action and specificity. The diverse potential applications of 
miRNAs (e.g., as drug target and biomarkers) may also have 
distracted from their development as therapeutic agents.

However, miRNAs have an advantage over siRNAs as the 
therapeutics for complex multigenic diseases such as can-
cers and neurodegenerative disorders, which require modu-
lation of multiple pathways for effective treatment. With the 
ability to inhibit the expression of a number of target genes, 
which often work together as a network within the same cel-
lular pathway, a whole disease phenotype can potentially 
be changed by a single miRNA sequence.176,177 By contrast, 
the therapeutic potential of siRNAs is limited by its ability to 
target only one specific gene. It will be challenging to use 
siRNAs to modulate complex diseases, although the strategy 
of employing multiple siRNA sequences in a single formula-
tion has been reported in clinical studies for the treatment of 
cancers and viral infections.178 On the other hand, siRNAs 
are extremely useful for targeting single gene disorders such 

Genetic Disorders

ALN-AT3sc Hemophilia A and B AT 1, ongoing GalNAc-siRNA conjugation Subcutaneous NCT02035605180

ALN-CC5 PNH complement  
component C5

1/2, ongoing GalNAc-siRNA conjugation Subcutaneous NCT02352493

ALN-TTR01 TTR-mediated amyloidosis 
(FAP)

TTR 1, completed Lipid nanoparticles Intravenous NCT01148953217

Patisiran  
(ALN-TTR02)

TTR-mediated amyloidosis 
(FAP)

TTR 1, 2 completed Lipid nanoparticles Intravenous NCT01559077217; 
NCT01617967; 
NCT02053454

2, 3 ongoing NCT01961921; 
NCT01960348

Revusiran  
(ALN-TTRsc)

TTR-mediated amyloidosis 
(FAC)

TTR 2, completed GalNAc-siRNA conjugation Subcutaneous NCT01981837

1, 2, 3, ongoing NCT01814839; 
NCT02292186; 
NCT02319005

TD101 Pachyonychia Congenita Keratin 6a (N171k 
mutant)

1, completed Naked siRNA Intradermal NCT00716014218

Other diseases

ND-L02-s0201 Hepatic fibrosis HSP47 1, completed;  
1/2, ongoing

Vitamin A-coupled liposomes Intravenous NCT01858935; 
NCT02227459

QPI-1002 (I5NP) Acute renal failure, Injury of 
kidney

p53 1, completed; 1,  
terminated

Naked siRNA Intravenous NCT00554359; 
NCT00683553

Prevention of delayed  
graft function in kidney  
transplantation

1/2, completed NCT00802347

ADRB, β-2 adrenergic receptor; AMD, age-related macular degeneration; ApoB, apolipoprotein B; AT, antithrombin; CASP2, Caspase-2; CNV, chloroidal neovas-
cularization; DPC, dynamic polyconjugate; EphA2, ephrin type-A receptor 2; FAC, familial amyloidotic cardiomyopathy; FAP, familial amyloidotic polyneuropathy; 
GalNac, N,Acetylgalactosamine; HBV, hepatitis B virus; HSP47, heat shock protein 47; KRAS, Kirsten rat sarcoma viral oncogene homolog; KSP, kinesin spindle 
protein; LDL, Low density lipoprotein; MYC, v-myc avian myelocytomatosis viral oncogene homolog, PCSK9, proprotein convertase subtilisin/kexin type 9; PKN3, 
protein kinase N3; PLK1, polo-like-1; PNH, paroxysmal nocturnal hemoglobinuria; RRM2, ribonucleotide reductase subunit M2; RSV, respiratory syncytial virus; 
TRPV1, transient receptor potential cation channel subfamily V member 1; TTR, Transthyretin; VEGF, vascular endothelial growth factor; VP, viral protein.

Table 5  Continued

Name Indications siRNA target Phase Delivery system
Route of  

administration
Trial ID  

(reference)
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as hemophilia and hereditary amyloidosis.179,180 Clinical tri-
als of siRNA and miRNA therapeutics that have been regis-
tered with clinicaltrials.gov are summarized in Tables 5 and 
6, respectively. The proportion of conditions addressed by 
siRNA and miRNA therapeutics in clinical trials is illustrated 
in Figure 4. Since cancer is the only intensively researched 
condition for which both siRNA and miRNA therapeutics have 
reached the clinical trial stage, special attention is paid to the 
discussion of their use in oncology.

Cancer
Cancer is a leading cause of death worldwide. Almost one-
third of the siRNA and miRNA based therapeutics in clinical 
trials are targeted at cancer. Both siRNAs and miRNAs aim 
to silence cancer-related gene(s) in order to inhibit tumor cell 
growth, angiogenesis, metastasis and/or drug resistance. 
Oncogenes, mutated tumor suppressor genes and other 
genes that contribute to tumor progression are potential tar-
gets for gene silencing. The specificity of siRNAs makes them 
possible to serve as a platform for personalized medicine in 
cancer therapy.8 On the other hand, since miRNA therapeu-
tics can target multiple genes, typically in the context of a 
network, they are efficient in regulating distinct biological cell 
processes relevant to malignant cell biology. This character-
istic makes them particularly attractive in cancer treatment,77 
and may explain why the two miRNA clinical trials to date aim 
at cancer therapy.

By targeting the mRNA of cell-cycle proteins, tumor cell 
growth can be inhibited. An overexpression of polo-like 
kinase 1 (PLK1), a cell-cycle protein that is important in mito-
sis and cytokinese, is observed in many human tumors, and 
the inhibition of its activity induces apoptosis and tumor cell 
death.181,182 A lipid nanoparticle-based delivery system con-
taining therapeutic siRNA targeting PLK1, TKM-080301, has 
been developed. It is currently in phase 1/2 clinical trial for 
the treatment of neuroendocrine and adrenocortical can-
cers. Ribonucleotide reductase is an enzyme involved in 

DNA replication. The M2 subunit of ribonucleotide reductase 
(RRM2) is an established anticancer target.183,184 Inhibition 
of RRM2 by siRNAs reduces the growth potential of cancer 
cells in vitro and in vivo.184 CALAA-01 is a siRNA therapeu-
tic targeting RRM2 for the treatment of solid tumors. Adopt-
ing a transferrin-receptor targeting cyclodextrin nanoparticle 
delivery system, CALAA-01 prevents the proliferation of 
transferrin receptor-expressing tumor cells. A phase 1 study 
showed that CALAA-01, following systemic administration, 
silenced the cancer-associated gene by RNAi mechanism 
in targeted tumor cells.185 However two patients experienced 
dose-limiting toxic events in a later trial, possibly due to the 
formulation problems (mis-folded, aggregated or degraded 
transferrin); this outcome thus underlines the significance of 
quality control assays of protein-targeted nanoparticle-based 
therapeutics.186

Other siRNA therapeutics currently undergoing clinical tri-
als include siG12D LODER, which targets the mutated KRAS 
oncogene for the treatment of locally advanced pancreatic 
cancer and is delivered by a biodegradable polymer matrix 
for sustained release; siRNA-EphA2-DOPC, which targets 
cancer-related EphA2 gene using liposomal delivery for 
the treatment of advanced solid tumors; and DCR-MYC, a 
Dicer-substrate siRNA that targets the MYC oncogene car-
ried by lipid nanoparticles for the treatment of various types 
of cancer.

Angiogenesis is a key process that promotes tumor growth 
and survival. One of the major regulators of this process is 
vascular endothelial growth factor (VEGF), which thus is an 
attractive target for inhibiting tumor angiogenesis.187 ALN-
VSP02 is a dual targeted siRNA therapeutics carried by lipid 
nanoparticles that suppresses not only the cell-cycle protein 
kinesin spindle protein (KSP) to promote cell-cycle arrest 
and eventually cell death,188 but also VEGF.2 It is indicated 
for advanced solid tumors with liver metastasis, and the initial 
data from a completed phase I trial showed that ALN-VSP02 
possessed antitumor activity while being well-tolerated by 
patients.2 The siRNA was detected in tumor biopsies follow-
ing intravenous administration of loaded lipid nanoparticles. 
Moreover, siRNA-mediated mRNA cleavage in the liver and 
complete regression of liver metastases was observed in 
patients with endometrial cancer. Protein kinase N3 (PKN3), 
a downstream effector of phosphoinositide 3-kinase (PI3K) 
signaling, is another validated target in cancer. PI3K is only 
transiently activated after growth factor stimulation in normal 
cells. Excessive and/or chronic activation of this pathway 
occurs in many cancer types, and is believed to be involved 
in the process of metastasis.189 Inhibition of PKN3 resulted 
in the significant inhibition of tumor growth and the reduc-
tion of lymph node metastases in vivo.190,191 Atu027, a liposo-
mal siRNA targeting PKN3, is currently undergoing a phase 
1/2 clinical trial for the treatment of advanced or metastatic 

Figure 4  Therapeutic indications of siRNA and miRNA 
therapeutics.
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Table 6  A summary of miRNA therapeutics in clinical trials (registered with clinicaltrials.gov, last accessed 13 June 2015)

Name Indications miRNA Phase Delivery system
Route of  
administration Trial ID

MRX34 Primary liver cancer or liver 
metastasis from other cancers

miRNA-34a 1, ongoing Liposomes (SMARTICLES) Intravenous NCT01829971

TargomiRs Malignant pleural mesothelio-
ma; non–small-cell lung cancer

miRNA-16 1, ongoing Nanoparticles (nonliving 
bacterial minicells)

Intravenous NCT02369198
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pancreatic tumor. Early results showed that Atu027 was safe 
in patients with advanced solid tumors, with 41% of patients 
showed no further progression of tumors after 8 weeks of 
treatment.3

The role of miRNA in cancer has been a focus of research 
in recent years, evidenced by the number of registered clini-
cal trials evaluating the use of miRNA as biomarkers for 
patient diagnosis, prognosis, and response to treatment.40,192 
Several miRNAs are upregulated or downregulated in vari-
ous tumors. They can act either as oncogenes (also known 
as oncomiRs) or tumor suppressors (tumor suppressor miR-
NAs),116 and the latter are employed in miRNA replacement 
therapy for the treatment of cancer.

MRX34 is a first-in-class cancer therapy and the first syn-
thetic miRNA to enter clinical trials.193 MRX34 was designed 
to deliver miRNA-34 mimic by liposomal formulation. Indeed, 
miRNA-34 is a well-characterized, naturally occurring regula-
tor of tumor suppression,194 and it is downregulated in many 
cancers. It inhibits a series of signaling molecules that con-
tribute to cancer processes including cell proliferation, anti-
apoptosis, metastasis, and chemoresistance.194 Currently, in 
phase 1 study, MRX34 is indicated for primary liver cancer 
or liver metastasis from other solid tumors, and the study 
is expected to be completed in late 2015. The other miRNA 
therapeutic that has also reached the clinical trial stage is 
TargomiRs, which is indicated for malignant pleural mesothe-
lioma and non–small-cell lung cancer. TargomiRs consists of 
three components, namely a miRNA-16 mimic, a nanopar-
ticle drug delivery system using nonliving bacterial minicells, 
and an antiepidermal growth factor receptor antibody as a 
targeting moiety. miRNA-16 is another tumor suppressor.195 
Restoration of miRNA-16 leads to inhibition of tumor-pro-
moting gene transcription and hence tumor growth, as well 
as sensitization of tumor cells to certain chemotherapeutic 
agents. The phase 1 clinical study of TargomiRs is expected 
to be completed in mid-2016.

Although only two miRNA replacement therapies have 
reached clinical trials, many tumor suppressor miRNAs, such 
as miRNA-7, miRNA-126, miRNA-143/145, miRNA-200, 
miRNA-355, and the members of the let-7 families,40,192 have 
been identified with the ability to downregulate oncogenes. 
Some of these tumor suppressor miRNAs are currently in 
the preclinical stage and ready to enter phase 1 clinical tri-
als very soon. In terms of safety profile, clinical trials have 
demonstrated that siRNA therapeutics are generally well-
tolerated by the patients. By contrast, the clinical study of 
miRNA therapeutics is still in its infancy. The potential for any 
adverse effects may only become apparent after more clini-
cal trials have been carried out. Since a single miRNA can 
affect multiple target genes, it is also difficult to predict its 
long-term systemic effect.

Conditions for local treatment
Apart from cancer therapy, clinical trials of siRNA therapeu-
tics against other diseases have also been initiated, includ-
ing ocular diseases, viral infections, cardiovascular and 
metabolic diseases, genetic disorders, as well as kidney and 
renal conditions (Table 5). In particular, the use of siRNAs 
against ocular disease has enjoyed considerable success: 
around one-fifth of siRNA-based therapeutics in clinical trials 

are indicated for the treatment of macular degeneration and 
related eye disorders. The relatively high proportion of siRNA 
therapeutics indicated for ocular diseases is largely due to the 
ease of delivery to the target site.196 The eyes are one of the 
few organs in the body where successful gene silencing can 
be achieved by local administration of naked siRNA, thereby 
minimizing systemic effects, and avoiding toxicity associated 
with the use of delivery vectors. The most common deliv-
ery method is by intravitreal injection of naked siRNA to the 
posterior segment of the eye, bypassing the corneoscleral 
barriers. The siRNA can also be topically administered to 
the ocular surface to treat conditions affecting the anterior 
segment of the eyes.196 Despite the promising progress of 
siRNA therapeutics, miRNAs have yet to enter clinical trials 
for the treatment of eye disorders, probably due to the uncer-
tainty of the roles of miRNAs in the retina and other ocu-
lar tissues.136,197 With the improvement of knowledge in the 
field, there is no doubt that the benefits of ocular delivery of 
siRNAs can be applied to miRNAs for the treatment of other 
ocular diseases in the future.

Apart from the eyes, the lung is another site in the body 
where successful RNAi has been achieved in animal stud-
ies by local administration of naked siRNA.198 This effect 
was also demonstrated clinically by ALN-RSV01, which is a 
naked siRNA formulation targeting the nucleocapsid of the 
respiratory syncytial virus (RSV). There is no vaccine for 
RSV and the only approved therapy (ribavirin) is rarely used 
due to the risk of teratogenicity and limited antiviral effects. 
Two phase 2 clinical studies of ALN-RSV01 were completed. 
ALN-RSV01 was delivered to the lungs of subjects by either 
intranasal administration or nebulization, and the results of 
the studies showed that ALN-RSV01 was well-tolerated by 
patients with promising antiviral effect.5,199 Although the stud-
ies narrowly missed the primary endpoint, they established a 
unique proof-of-concept for RNAi therapeutics for lung infec-
tions by local administration of naked siNRA. However, the 
cellular uptake mechanism of naked siRNA in the airways is 
unclear; the presence of lung surfactants along the airways 
may act as natural carriers that mediate the cellular uptake of 
siRNA.200 It is believed that pulmonary delivery could also be 
applied to other siRNA and miRNA therapeutics for the treat-
ment of other lung diseases.

Conclusions and future prospects

Synthetic siRNAs and miRNAs hold great promises as new 
classes of therapeutic agents by silencing the gene(s) of 
interest. They have been studied for the treatment of various 
human diseases including cancers, viral infections, ocular 
conditions, genetic disorders, and cardiovascular diseases. 
The most attractive aspect of siRNA and miRNA therapeu-
tics is their ability to target virtually any gene(s), which may 
not be possible with small molecules or protein-based drugs. 
While the therapeutic efficacy of siRNAs and miRNAs has 
been successfully demonstrated in vivo, several technical 
barriers still need to be overcome in order for these RNA mol-
ecules to be used clinically. The experience from antisense 
and gene therapy has contributed to the rapid progress of 
siRNAs and miRNAs into clinical studies. In particular, the 
technologies of chemical modification and delivery of nucleic 
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acids developed previously can be applied to both siRNAs 
and miRNAs. While the former possess a high specificity 
by targeting one single gene, the latter can target multiple 
related genes, often in the same cellular pathway or process, 
to generate pronounced therapeutic effect. Currently, the 
development of siRNAs is advancing ahead of miRNAs, with 
a larger number of candidates already entered clinical trials, 
possibly due to the uncertainties of the complex roles of miR-
NAs during the early years of their discovery. With the recent 
surge in intensive research concerning miRNAs, it can be 
expected that significant advance will be made for their future 
role in therapeutics.

For proper therapeutic use, the sequences of RNA must 
be carefully designed to avoid any specific or nonspecific 
unwanted effects and immune responses. The transition from 
bench to bedside of RNA-based therapy also depends heav-
ily on the availability of a safe, clinically relevant delivery sys-
tem that can facilitate cellular uptake of the RNA into target 
tissues/cells and offer protection against nuclease degrada-
tion. The use of nonviral vectors including polymer-based or 
lipid-based delivery systems offer the advantages of better 
safety profile and lower production cost over viral vectors 
despite the inferior delivery efficiency.

Among the various diseases being investigated, cancer is 
currently the major target of siRNA and miRNA therapeutics. 
While a large number of cancer-related genes have been 
identified with therapeutic potential, the duration of silenc-
ing effect has not been properly investigated or reported, 
and it may affect the dose interval and length of treatment. 
The duration of silencing effect after a single dose of siR-
NAs or miRNAs depends on a number of factors. These 
include the stability of the RNA molecules, the rate of RNA 
release from the delivery system, the type of target tissues, 
as well as the half-life and turnover rate of the target proteins.  
A good understanding of this area can contribute to the ratio-
nal design of treatment strategy to improve clinical outcome 
of siRNA and miRNA therapeutics. PEGylated nanoparticles 
incorporated with targeting ligands are frequently employed 
to prolong circulation time and achieve specific targeting to 
tumor sites following systemic administration. However, the 
potential toxicity and immunogenicity effects associated with 
the delivery agents need to be carefully monitored.

Efficient gene silencing can also be achieved with naked 
RNA, but this may be limited to local administration to organs 
such as the eyes and the lungs. Nevertheless, chemical modifi-
cation of the RNA molecule may be required to improve its sta-
bility against nuclease activity in the vitreous humor of the eye 
or in the airway fluid of the lungs. It is expected that by overcom-
ing the delivery barrier, and better understanding of the effects 
and the duration of gene silencing, siRNAs and miRNAs will 
become practical therapeutics in the clinic in the near future.
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