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Abstract

Background: Recently mixed linear models are used to address the issue of “missing" heritability in traditional
Genome-wide association studies (GWAS). The models assume that all single-nucleotide polymorphisms (SNPs) are
associated with the phenotypes of interest. However, it is more common that only a small proportion of SNPs have
significant effects on the phenotypes, while most SNPs have no or very small effects. To incorporate this feature, we
propose an efficient Hierarchical Bayesian Model (HBM) that extends the existing mixed models to enforce automatic
selection of significant SNPs. The HBM models the SNP effects using a mixture distribution of a point mass at zero and
a normal distribution, where the point mass corresponds to those non-associative SNPs.

Results: We estimate the HBM using Gibbs sampling. The estimation performance of our method is first
demonstrated through two simulation studies. We make the simulation setups realistic by using parameters fitted on
the Framingham Heart Study (FHS) data. The simulation studies show that our method can accurately estimate the
proportion of SNPs associated with the simulated phenotype and identify these SNPs, as well as adapt to certain
model mis-specification than the standard mixed models. In addition, we analyze data from the FHS and the Health
and Retirement Study (HRS) to study the association between Body Mass Index (BMI) and SNPs on Chromosome 16,
and replicate the identified genetic associations. The analysis of the FHS data identifies 0.3% SNPs on Chromosome 16
that affect BMI, including rs9939609 and rs9939973 on the FTO gene. These two SNPs are in strong linkage
disequilibrium with rs1558902 (Rsq=0.901 for rs9939609 and Rsq=0.905 for rs9939973), which has been reported to
be linked with obesity in previous GWAS. We then replicate the findings using the HRS data: the analysis finds 0.4% of
SNPs associated with BMI on Chromosome 16. Furthermore, around 25% of the genes that are identified to be
associated with BMI are common between the two studies.

Conclusions: The results demonstrate that the HBM and the associated estimation algorithm offer a powerful tool
for identifying significant genetic associations with phenotypes of interest, among a large number of SNPs that are
common in modern genetics studies.
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Background
Genome-wide association studies (GWAS) have success-
fully identified genetic loci association with complex
diseases and other traits. SNPs identified by traditional
GWAS can only explain a small fraction of the heri-
tability, due to the strict multiple-comparison significance
requirement when testing each SNP individually. For
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example, Vissher [1] discussed 54 loci associated with
height which only explained 5% heritability; [2] described
32 loci associated with Body Mass Index (BMI) which
explained 1.45% of the variance in BMI. More recently, [3]
used mixed linear models (MLM) to simultaneously take
into account all the SNPs, which is shown to alleviate the
missing-heritability issue.
In this study, we extend the work of [3] to identify the

subset of SNPs that are significantly associated with the
phenotype of interest, instead of assuming all the SNPs
are associative, through a Hierarchical Bayesian model
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(HBM). Similar to [3], all SNPs are considered simulta-
neously to estimate the heritability, instead of one by one
as in the traditional GWAS, hence our HBM also helps
to capture missing heritability. Different from the authors
in [3], we assume that the SNP effects are distributed as
themixture of a point mass at zero, for those non-effective
SNPs, 6 and a normal distribution for those associative
SNPs.
Our proposed Hierarchical Bayesian model (HBM) can

be represented using the following set of Eqs. 1 and (2).
Eq. 1 follows the same set-up as [3]: Y is the n × 1
response vector which corresponds to the individuals’
phenotype in our study, X is the design matrix for the
fixed effects, W is the standardized genotype matrix,
and the vector b contains the N SNP random effects,
where the jth element is the random effect corresponding
to the jth SNP and is assumed to follow the mixture dis-
tribution as in (2), depending on the latent indicator Ij,
j = 1, . . . ,N :

Y = Xβ + Wb + ε, (1)

where

bj

{
= 0, if Ij = 0,
∼ N (

0,σb2
)
, if Ij = 1,

and Pr(Ij=1) = p, j=1, . . . ,N .

(2)

One key contribution of our HBM is its capability of
automatically selecting significant SNPs while simultane-
ously incorporating all the SNPs. Eq. 2 is the technical rea-
son behind the selection feature, which can be intuitively
understood as follows. Imagine that each SNP is coupled
with one Bernoulli indicator Ij with success probability p,
and all the N Bernoulli indicators are independent. The
SNPs then fall into two categories, where the first category
contains those with Ij = 1, which are the 100 × p% asso-
ciative SNPs with effects following a normal distribution,
while the second group includes the remaining SNPs with
Ij = 0, who have zero effects. The selection of the associa-
tive SNPs is achieved through identifying the SNPs with
Ij = 1, which are chosen to be those with the largest pos-
terior probability of being 1, through the HBM algorithm
as described below:

The HBMAlgorithm
Initialize Choose starting values of[
β(0), b(0), I(0), p(0), σ 2

e
(0), σ 2

b
(0)

]
.

Iterate

1. Draw β(t) from P
(
β(t)|Y , b(t−1), σ 2

b
(t−1), σ 2

e
(t−1)

)
.

P
(
β|Y , b, σ 2

b , σ
2
e
) ∝ exp

{
− 1

2σ 2
e
(y − Xβ − Wb)t

(y − Xβ − Wb)
}
exp

{
− 1

2β t�−1
k β

}
, where �k is a

k × k matrix with σ 2
a on the main diagonal and 0

everywhere else, with k being the dimension of β .
2. Draw b(t) from

P
(
b(t)|Y , β(t−1), I(t−1)

j = 1, σ 2
b

(t−1), σ 2
e

(t−1)
)
and bj is

set to zero if I(t−1)
j = 0.

P
(
b|Y , β , Ij = 1, σ 2

b , σ
2
e
) ∝

exp
{
− 1

2σ 2
e
(y − Xβ − WIb)t(y − Xβ − WIb)

}
×

exp
{
− 1

2b
t
(
D−2
q

)
b
}
, whereWI are the columns ofW

corresponding to I(t−1)
j = 1, and D is the diagonal

matrix with the main diagonal as σ 2
b and the dimension

as q = ∑
j

(
I(t−1)
j = 1

)
3. Draw I(t)j from P

(
I(t)j |Y , β(t), b(t)

j , σ 2
b

(t−1), σ 2
e

(t−1)
)
.

P
(
Ij|Y , β , bj, σ 2

b , σ
2
e
) = p×φ(bj,σb)

p×φ(bj,σb)+(1−p)×φ(bj,σ)
, where

φ stands for the standard normal density.
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b
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e
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)
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7. Repeat from Step 1 to Step 6 until convergence.

Several Bayesian variable selection algorithms have
been proposed through hierarchical modeling, with appli-
cations in genomic studies [4]. Considered a variational
Bayes algorithm for GWAS. This method approximates
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the joint posterior density of the hierarchical regres-
sion model with a factorized form and minimizes the
Kullback-Liebler distance between the factorized form
and the full posterior distribution. Although this method
is fast to compute, the accuracy of prediction depends
on how well the factorized form approximates the poste-
rior distribution of the hierarchical model [5]. Developed
a Bayesian variable selection regression algorithm to solve
the hierarchical model. They adopted several strategies
to improve computational performance, for example, they
used marginal associations of the SNPs on the traits as the
initial screen step for the latent indicator Ij in (2) [6]. This
indicates that the distribution of the random effect bj is
similar to the marginal estimates of the SNP effects on the
traits.
In this study, we modify the standard MCMC algo-

rithm based on the stochastic search algorithm proposed
by [7]. The algorithm directly samples the parameters
from their posterior distributions and obtain the infer-
ences for the parameters. Because the number of SNPs
is large, each iteration of the algorithm involves matrix
inversion with the dimension being the number of SNPs.
To reduce computation time, we modify the algorithm
by sampling the random effects bj conditional on the
indicator Ij. The modified algorithm significantly reduces
computation time, especially when the number of SNPs
is large and the mixture probability p is small, while is
still able to identify the significant predictors accurately.
Detailed description of the algorithm will be stated in
Section “Methods”: Method. We also implement several
computing tricks so that the algorithm can be used to esti-
mate models with the number of SNPs in the order of
100,000 (Section “Example 2”).
Our HBM is first applied to analyze simulated data sets

in Section “Simulation studies” to show that the proposed
algorithm is able to identify the SNPs that are significantly
associated with the phenotype and correctly estimate the
model parameters as well as PVE, which is defined as the
proportion of total genetic variance over total phenotypic
variance:

PVE = σ 2
g

σ 2
g + σ 2

ε

(3)

where σ 2
g is the total genetic variance which equals σ 2

b in
(2) times the number of SNPs. The total phenotypic vari-
ance is the sum of the genetic variance σ 2

g and the variance
of the error terms of ε in (2), denoted as σ 2

ε .

We also compare HBM with the Genome-wide Com-
plex Trait Analysis (GCTA) proposed by [3]. The basic
concept of GCTA is to fit the effects of all the SNPs as
random effects using a mixed linear model (MLM). Note
that the MLM is a special case of our HBM when p =
1. It is shown in our studies that if a large number of
SNPs have small/noisy effects on the phenotype, theMLM
tends to over-estimate the PVE while the HBM is still
able to correctly estimate it. We present in Section “Real
data set results” two real data applications through the
Framingham Heart Study [8] and the Health and Retire-
ment Study [9], where we study the association between
the SNPs on Chromosome 16 and the phenotype body
mass index (BMI).We are able to identify associative SNPs
on the FTO gene which are consistent with earlier find-
ings in the literature and replicate the results in the two
studies.

Results and discussion
Simulation studies
The performance of the HBM and MLM is illustrated
using two simulated examples with the identical simu-
lation settings but different number of random effects.
Example 1 (Section “Example 1”) considers 10,000 ran-
dom effects, while Example 2 (Section “Example 2”) has
100,000 random effects and is closer to the scale of real
GWAS. Each example also consists of two simulation
cases: in Case 1 the random effects follow amixture distri-
bution of a point mass at zero and a normal distribution,
while in Case 2, the random effects follow amixture of two
normal distribution with one of the two has a very small
variance, trying tomimic scenarios with a large number of
small/noisy effects on the phenotype.
For both simulated examples, genotype information

of the individuals from the Framingham Heart Study
(FHS) is used as input matrix. Detailed description of the
FHS data is provided in Section “The Framingham heart
study”.

Example 1
In this example, we randomly select 10,000 SNPs on Chro-
mosome 16 of the FHS data and use them as the input
genotype matrix,W. The trait Y is then simulated accord-
ing to the following model:

Y = β0 + Wb + ε, (4)

whereW is the standardized genotype matrix and b is the
allelic effect of the SNPs that will be simulated. The resid-
ual effect (ε) is generated from a normal distribution with
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a mean of zero and variance of σ 2
ε . As discussed above,

two simulation cases are generated as follows.

• Simulation Case 1: The random effect b follows a
mixture distribution of a point mass at zero plus a
normal distribution. In this situation, the SNPs are
either associated with the phenotype (whose random
effects are distributed as a normal distribution) or not
associated with the phenotype (whose random effects
will be zero);

• Simulation Case 2: The random effect b follows a
mixture of two normal distributions with one of the
two distributions has a very small variance. In
practice, many SNPs might have very small/noisy
effects on the complex traits [10]; hence, we are
simulating those scenarios with letting some of the
SNPs have noisy effects on the phenotype that are
normally distributed with a very small variance.

For Simulation Case 1, we randomly select 100 × p%
of the SNPs as the ones associated with the pheno-
type (namely, the association SNPs), and draw their ran-
dom effects b from the distribution N (

0, σ 2
b
)
, and treat

the remaining SNPs as non-association SNPs with zero
effects. We then fix the PVE at the predetermined value,
and simulate the residual ε from the distributionN (

0, σ 2
ε

)
where σ 2

ε = ∑
j Var(bj)(1/PVE − 1). Phenotype y is gen-

erated usingW , b and ε according to Eq. 4. For Simulation
Case 2, the data set is generated in a similar way as in
Case 1, with the only difference being that the random
effects for the non-association SNPs are simulated from
N (

0, σ 2) where σ is a very small number (e.g. σ =0.01)
instead of zero.
Table 1 shows the estimation results from the simulated

data sets using the HBM and MLM along with the true
model parameters. The estimated mixture probability p̂

and the random effect variance σ̂b by the HBM are close
to their corresponding true values, 0.01 and 0.1, respec-
tively. This demonstrates the good performance of our
estimation method. In both simulation cases, the MLM
severely underestimates σ 2

b , as it divides the total genetic
variance onto all the SNPs, instead of just the 1% associ-
ation SNPs (p = 0.01), which results in underestimation
of the genetic effects. In addition, in Simulation Case 2,
the estimated PVE from the MLM is much larger than
the true value while the HBM gives a closer PVE esti-
mate. The reason is that the MLM can not distinguish
the “significant” SNP effects versus those “noisy” effects
due to its assumption that all random effects follow the
same distribution. Therefore, σ̂ 2

g obtained by MLMwould
include both “significant” and “noisy” effects and thus lead
to overestimation of PVE according to (3). We comment
that the simulation model in this case is different from the
underlying models assumed by our HBM and theMLM of
GCTA. As the results indicate, the HBM is rather robust
against such model misspecification.

Example 2
This simulation example is used to demonstrate the per-
formance of the HBM algorithm when the number of
SNPs is large (i.e. 100,000), in the order of real GWAS.
We have to implement several computational optimizing
strategies in order to speed up the computation on such
a large number of SNPs as well as to efficiently use the
computer memory.
First, in each iteration of theHBM algorithm, we need to

invert a square matrix with the rank the same as the num-
ber of SNPs. Instead of inverting this matrix directly, we
employ the Sherman-Morrison-Woodbury formula [12],
to change the matrix inversion to one that only has the
same rank as the number of observations, which usu-
ally is much smaller than the number of SNPs in genetic

Table 1 Example 1 - estimation results

Simulation Case 1 Simulation Case 2

Parameters True value Estimates from Estimates from True value Estimates from Estimates from
HBM (s.e)a MLM (s.e)a HBM (s.e)a MLM (s.e)a

β̂0 0 0.01 (0.06) 0.03 (0.06) 0 0.02 (0.02) 0.02 (0.02)

σ̂b 0.1 0.11 (0.06) 0.011 (0.006) 0.1 0.11 (0.05) 0.012 (0.004)

σ̂e 1 0.94 (0.24) 1.12(0.04) 1 1.03 (0.03) 1.04 (0.05)

σ̂ 2
g

b 1 1.21 (0.13) 1.19 (0.20) 1 1.13 (0.35) 1.62 (0.65)

p̂ 0.01 0.007 (0.003) - 0.01 0.008 (0.002) -

PVE c 0.5 0.53 (0.12) 0.52 (0.21) 0.5 0.52 (0.15) 0.61 (0.13)b

Number of Random Effects 10,000

aValues in parenthesis are standard errors. bGenetic Variance σ̂g
2 is defined in the same way in [11] which equals to σ̂b

2 × N. N is the number of SNPs whose effect bj

follows theN (0,σ b
2) distribution. cPVE is calculated as

σ̂ 2g(
σ̂ 2g +σ̂ 2e

) .
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studies. Secondly, computation using a large number of
SNPs is intensive. Analyzing large datasets of SNPs seems
to be impractical on uniprocessor machines. Thus, we
carry out the analysis in parallel on UNC-CH’s multi-core
Linux-based cluster computing server. We write scripts to
distribute the computation among multiple cores/CPUs
and run multiple computing analyses simultaneously. Our
study shows that parallel computing can speed up the
computation by a factor of 20 on a 10-core computing
node on the cluster. It takes 668.5 minutes and 158GB
memory to finish the calculation for the simulated data set
with 100,000 SNPs. To consider whole genome data with
evenmore SNPs, the amount of memory and computation
power of the server will be the main bottleneck.
Similar to Example 1 in Section “Example 1”, we consider

the same two simulation cases. The estimation results are
summarized in Table 2. Even for the larger number of
SNPs, our HBM still performs well in both cases, while the
same drawbacks exist for the MLM.
For Example 2 (with 100,000 SNPs), Table 3 reports the

cross table results of the association SNPs identified by
HBM against the truth. As one can see, the HBM can cor-
rectly detect 76% and 82% of the true association SNPs
for the two simulation cases respectively, and more than
99.9% of the true non-association SNPs. This suggests that
the HBM works very well at detecting association SNPs
with the false positive rate as low as 0.062% and 0.041%,
respectively.

Real data set results
The Framinghamheart study
We further apply HBM and MLM to data from the Fram-
ingham Heart Study [8] to study genetic associations with
the body mass index (BMI). The FHS is a community-
based, prospective, longitudinal study following three
generations of participants.

Genotyping for FHS participants was performed using
the Affymetrix 500K GeneChip array. Genotypes on the
Y chromosome are not included in our analysis. A stan-
dard quality control filter is applied to the genotype data.
Individuals with 5% or more missing genotype data were
excluded from analysis. SNPs that are on the X chro-
mosomes and have a call rate ≤ 99% or a minor allele
frequency ≤ 0.01 were also eliminated from the analysis.
The application of the quality control procedures resulted
in 8,738 individuals with 287,525 SNPs from the 500,000
genotype data. Genotype data were converted to minor
allele frequencies for the analysis. One individual of a pair
is deleted if the genetic relationship is greater than 0.025.
Note that the genetic relationship between individual j
and individual k is defined as in [3]:

Ajk = 1
N

N∑
i=1

(xij − 2pi)(xik − 2pi)
2pi(1 − pi)

, (5)

where xij/xik is the number of copies of the reference
allele for the ith SNP of the jth/kth individual and pi is
the frequency of the reference allele. After the above pre-
processing, there are 1,915 unrelated individuals in the
analysis.
Because the total number of SNPs in the FHS data is

close to 300,000, computation is limited by the memory
of the UNC server if we include all SNPs in the anal-
ysis. Therefore, as a proof of concept, the 13,764 SNPs
on Chromosome 16 are used in the analysis. Another
reason for considering this chromosome is that it con-
tains an enzyme fat mass and obesity associated protein
also known as FTO. We would like to see whether the
HBM can identify the SNPs that are significantly corre-
lated with BMI on Chromosome 16, especially those SNPs
on the FTO gene. We include the first seven Principle

Table 2 Example 2 - estimation results

Simulation Case 1 Simulation Case 2

Parameters True value Estimates from Estimates from True value Estimates from Estimates from
HBM (s.e)a MLM (s.e)a HBM (s.e)a MLM (s.e)a

β̂0 0 0.12 (0.08) 0.12 (0.13) 0 0.09 (0.09) 0.12 (0.07)

σ̂b 0.1 0.13 (0.01) 0.005 (0.002) 0.1 0.13 (0.05) 0.009 (0.002)

σ̂e 3 2.86 (1.05) 3.15 (1.45) 3 3.67 (1.13) 3.18 (1.05)

σ̂ 2
g 3 2.37 (1.34) 2.53 (2.01) 3 3.17 (2.13) 8.1 (3.25)

p̂ 0.003 0.0024 (0.001) - 0.003 0.0025 (0.001) -

PVE 0.5 0.45 (0.24) 0.44 (0.23) 0.5 0.46 (0.25) 0.72 (0.33)b

Number of Random Effects 100,000

aValues in the parenthesis are standard errors. bThe PVE estimated by MLM is higher than the true values in both simulation cases.
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Table 3 Example 2 - detection results from HBM

Simulation Case 1 Simulation Case 2

Association SNPs Non-association SNPs Association SNPs Non-association SNPs
identified by HBM identified by HBM identified by HBM identified by HBM

Association SNPs 76% 24% 82% 18%

Non-Association SNPs 0.062% 99.938% 0.041% 99.959%

Components (PCs) for BMI as fixed effects in the model
to eliminate genotype correlation induced by biological
ancestry.
The estimation results are shown in the left panel of

Table 4. We see that the estimated mixture probability p̂
from HBM is around 0.3%, which indicates only 0.3 per-
cent of the SNPs on Chromosome 16 are associated with
BMI.
The top panel of Table 5 lists the 43 SNPs that are iden-

tified by HBM as associated with BMI, which are ordered
according to their names, along with the corresponding
genes if available. Among these identified SNPs, the SNP
rs9939609 variant has been found to be associated with
obesity risk among children and adolescents of Beijing,
China by [13], and with BMI and waist circumference
among European- and African-American youth by [14].
The SNP rs9939973 on the FTO gene has also been found

to be related with overweight of children in Korean by
[15]. These two SNPs are in strong linkage disequilib-
rium (LD) with SNP rs1558902 (Rsq=0.901 for rs9939609
and Rsq=0.905 for rs9939973), which had been previously
reported in a well-knownGWAS [2]. The detection results
can also be replicated to some extent: the three SNPs
highlighted in red and the genes indicated in blue are
also detected in the HRS analysis to be reported below in
Section “The health and retirement study”.
The predicted allele effects on BMI (kg/m2 per allele)

by HBM and MLM are compared in Table 5, which are
calculated as the posterior mean of the random effects
under each model. The allele effect predicted by HBM
is closer to the findings in the previous GWAS. As an
example, we compare SNP rs9939973’s effect on BMI with
rs1558902’s, both of which are on the FTO gene and are
highly correlated [2], found that the per allele change in

Table 4 Real data estimation results using HBM andMLM

The Framingham heart studya The health and retirement studyb

Estimates from Estimates from Estimates from Estimates from
Parameter HBM (s.e)b MLM (s.e)b HBM (s.e)b MLM (s.e)b

β̂(Intercept) 26.42 (0.29) 26.46 (0.28) 27.47 (0.07) 27.47 (0.05)

σ̂b 0.20 (0.09) 0.014 (0.005) 0.014 (0.009) 0.0001 (0.00002)

σ̂e 24.68 (0.38) 22.64 (0.41) 22.32 (0.23) 27.29 (0.41)

σ̂ 2
g 1.49 (0.40) 3.49 (0.35) 0.6678 (0.4) 0.95 (0.38)

p̂ 0.0034 (0.0005)c - 0.0042 (0.0004 )c -

PVE 0.06 ( 0.01)d 0.13 (0.01)d 0.026 (0.01) 0.04 (0.01)

PC1 -19.01 (44.72) -10.90 (44.15) 82.75 (33.56) 91.66 (20.10)

PC2 -18.00 (24.41) -18.27 (24.90) -15.54 (8.52) -18.41 (10.49)

PC3 2.63 (8.91) 5.65 (10.25) 26.01 (9.32) 23.01 (6.91)

PC4 -10.13 (9.11) -10.05 (9.45) 3.52 (3.24) 2.24 (6.83)

PC5 18.55 (9.44) 19.80 (9.89) 14.43 (11.14) 8.49 (6.79)

PC6 -4.75 (12.17) -4.49 (12.02) -9.77 (14.34) -19.81 (6.77)

PC7 16.06 (12.46) 13.09 (12.48) -1.21 (11.95) -2.39 (6.74)

aThe analysis is based on 1,915 unrelated persons in the Framingham Heart data set using 13,764 SNPs on Chromosome 16 to predict BMI. bThe analysis is based on
12,237 unrelated persons in the Health and Retirement Study using 11,925 SNPs on Chromosome 16 to predict BMI. cValues in the parenthesis are standard errors.
dPVE estimated by MLM is higher than that estimated by HBM.
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Table 5 Per allele change in BMI for association SNPs identifiedby HBM

The Framinghamheart study

Genea SNPsb Per allele change Per allele change Genea SNPsb Per allele change Per allele change

in BMI by HBM in BMI by MLM in BMI by HBM in BMI by MLM

CDH13 rs4508407 0.249 0.009 NAA60 rs12448488 0.209 0.013

CMIP rs2966097 0.187 0.011 PRMT7 rs3785114 0.201 0.006

FTO rs9939609 0.149 0.01 RABEP2 rs7184597 0.016 0.006

FTO rs9939973 0.224 0.014 SDR42E1 rs11443 0.204 0.011

RBFOX1 rs11641750 0.225 0.012 SHISA9 rs149917 0.228 0.009

RBFOX1 rs17137899 0.245 0.01 WDR59 rs4888320 0.105 0.012

RBFOX1 rs17140501 0.039 0 ZNF423 rs4785325 0.214 0.014

SLC38A8 rs12716746 0.128 0.007 rs11860830 0.252 0.008

SLC38A8 rs4782578 0.167 0.009 rs12325385 0.201 0.009

WWOX rs17711186 0.197 0.013 rs12447727 0.108 0.011

ATP2C2 rs962877 0.05 0.003 rs1318275 0.06 0

CACNG3 rs11648890 0.075 0.007 rs16947390 0.064 0.005

CENPN rs1048194 0.082 0.002 rs17503512 0.004 0.001

CKLF-CMTM1 rs896086 0.099 0.01 rs2626640 0.148 0.007

KLHDC4 rs4843689 0.23 0.008 rs2631530 0.264 0.011

LOC101927676 rs1103775 0.17 0.009 rs30121 0.161 0.001

LOC101927998 rs328345 0.057 0.007 rs4784621 0.023 0.001

LOC102723396 rs4399544 0.078 0.008 rs7201071 0.109 0.009

MEFV rs11466045 0.157 0.011 rs7202145 0.029 0.001

MGRN1 rs841224 0.094 0.008 rs8048671 0.239 0.018

MIR138-2 rs1529930 0.165 0.009 rs9921866 0.2 0.009

MKL2 rs4267326 0.264 0.008

The Health and Retirement Study

Genea SNPsb Per allele change Per allele change Genea SNPsb Per allele change Per allele change
in BMI by HBM in BMI by MLM in BMI by HBM in BMI by MLM

CDH13 rs7199677 0.14 0.005 KIAA0513 rs8045387 0.112 0.001

CMIP rs10514518 0.123 0.002 LOC102724927 rs2601773 0.112 0.002

FTO rs9939609 0.143 0.003 MPHOSPH6 rs2303267 0.183 0.007

FTO rs9940128 0.163 0.009 NDRG4 rs11076243 0.133 0.002

RBFOX1 rs11076998 0.162 0.004 PAPD5 rs7191151 0.129 0.003

RBFOX1 rs11647425 0.104 0.001 PSKH1 rs2136648 0.141 0.005

RBFOX1 rs12448747 0.173 0.004 RP11-488I20.3 rs13332284 0.202 0.011

RBFOX1 rs1473145 0.132 0.003 URAHP rs9921920 0.121 0.008

RBFOX1 rs17562548 0.211 0.02 VAT1L rs13330130 0.11 0.001

RBFOX1 rs1860304 0.174 0.006 rs11075417 0.147 0.003

SLC38A8 rs4782578 0.137 0.009 rs1362441 0.122 0.002

WWOX rs16948787 0.111 0.004 rs154554 0.16 0.002

WWOX rs4888855 0.223 0.019 rs16960867 0.151 0.005

BCAR1 rs4261573 0.118 0.001 rs4023915 0.155 0.006

CDH11 rs1520229 0.183 0.009 rs4467088 0.113 0.002

CLEC16A rs767019 0.115 0.002 rs4784621 0.106 0.001

CMC2 rs2549855 0.111 0.002 rs7187990 0.104 0
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Table 5 Per allele change in BMI for association SNPs identifiedby HBM Continued

CNGB1 rs7184838 0.172 0.012 rs8045580 0.126 0.005

CNTNAP4 rs4888514 0.178 0.008 rs964933 0.114 0.001

GPR139 rs868554 0.14 0.002 rs9925215 0.119 0.005

aThe same genes are identified associated with BMI using both FHS and HRS data are shown in blue. bSNPs identified to be associated with BMI in both FHS and HRS
data are shown in red.

BMI for SNP rs1558902 is 0.39 (kg/m2) based on a total of
249,796 individuals of European ancestry using a GWAS
method. It is much closer to the estimate obtained by
HBM (0.224 kg/m2), rather than the much-lower estimate
given by MLM (0.014 kg/m2). This comparison indicates
that the MLM, assuming that every SNP has an effect on
the phenotype, underestimates the SNP effects.
One can also see from Table 5 that the estimated PVEs

are different (5.6% vs. 13.3%). In Section “Simulation
studies”, we have shown that the MLM tends to over-
estimate PVE if there exist many SNPs with small/noisy
effects on the phenotype, which we think is also the case
for the FHS data here. To demonstrate that there exist
SNPs with small effects on BMI, we perform the follow-
ing multi-scale analysis by varying the amount of SNPs
on Chromosome 16 to be included in MLM and show-
ing how the corresponding estimated PVE changes. We
first regress BMI on every single SNP and obtain the cor-
responding p-value. Then we consider a range of varying
thresholds on the p-values, and only include those SNPs
with a p-value below the threshold in the MLMwhen esti-
mating the PVE. We systematically increase the p-value
threshold so that more and more SNPs that are “less” sig-
nificant will be included. The idea is that as the p-value
threshold increases, more SNPs with small effects on BMI
will be included when estimating PVE, which will result
in higher PVEs. The estimation results are presented in
Table 6. The estimated PVE decreases from 18% to 1% as a
decreasing number of SNPs with smaller p-values (below
the thresholds from 10−1 to 10−7) are included in the
analysis. The results indicate that when estimating PVE
using MLM, the more SNPs with small effects on BMI are
included, the higher the estimated PVE is.
In summary, the analysis of the Framingham data

reveals several important empirical findings: (1) Among
all the SNPs on Chromosome 16, only 0.3% of them are
significantly associated with BMI according to HBM; (2)
Several association SNPs identified by HBM have also
been reported to be significantly related with BMI in pre-
vious studies; (3) The MLM tends to underestimate the
allele effect on the phenotype while the HBM estimates
much closer to previous GWA study results; (4) Because
the MLM includes SNPs with small effects on BMI, the
estimated PVE by MLM is much higher than the estimate
from HBM.

The health and retirement study
In this section, we try to replicate the results in Section
“The Framingham heart study” using data from theHealth
and Retirement Study [9]. The HRS is a longitudinal study
of Americans over age 50, conducted every two years from
1992 to 2012; it collects information on economic, health,
social, and other factors relevant to aging and retirement.
DNA samples were collected in 2006 and 2008. Out of the
collected samples, 13,129 individuals were put into geno-
typing production and 12,507 passed the University of
Washington Genetics Coordinating Center’s standardized
quality control process.
The HRS analysis was performed on 12,237 unrelated

individuals and the 11,925 SNPs on Chromosome 16 that
are common to those SNPs used in the FHS analysis of
Section “The Framingham heart study”.
The estimation results are shown in the right panel of

Table 3 and Table 4. We first note that the HBM esti-
mates of the proportion of association SNPs are very close
in the two studies: 0.34% and 0.42% for FHS and HRS
respectively. Both data sets identified the same set of six
genes for BMI including the well-known FTO gene. These
genes account for about 25% of the genes identified in our
analysis.
Forty SNPs are identified to be associated with BMI by

the HBM using HRS data set, which are listed in the bot-
tom panel of Table 6. Between the two studies, the HBM
identifies three common SNPs to be associated with BMI:
rs4782578, rs4784621 and rs9939606 (shown in red), as
well as a few common genes (shown in blue). Furthermore,
SNP rs9940128 identified using the HRS data is also on
the FTO gene, and has been found before to be correlated
with BMI by [16,17] and [18].

Conclusion
In this paper, we propose a Hierarchical Bayesian Model
(HBM) that extends the MLM of [3]. Our model allows
SNP effects on phenotypes of interest to follow a mix-
ture distribution of a point mass at zero and a nor-
mal distribution. Our approach addresses the challenge
of high-dimensionality in GWAS data by incorporat-
ing simultaneous selection of genetics variables that are
jointly significant in predicting the phenotype.We employ
several computing tricks that enable us to analyze a large
number of SNPs (in the order of 100,000).
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Table 6 The FraminghamHeart Study: PVE EstimationUsing Proportion of SNPs Based on P-value Threshold a

P-value< 0.1bc P-value< 0.01bc P-value< 0.001bc P-value< 0.0001bc

(s.e.) (s.e.) (s.e.) (s.e.)

Number of SNPs 2690 561 145 45

Genetic Variance 4.45 (0.34) 3.34 (0.37) 2.08 (0.38) 0.86 (0.31)

Error Variance 20.66 (0.34) 22.31 (0.35) 24.06 (0.38) 25.25 (0.39)

Total Variance 25.11 (0.45) 25.65 (0.50) 26.14 (0.53) 26.11 (0.50)

PVE 0.18d (0.06) 0.13d (0.04) 0.08d (0.03) 0.03d (0.01)

P-value<0.00001bc P-value<0.000001bc P-value<0.0000001bc

(s.e.) (s.e.) (s.e.)

Number of SNPs 21 10 7

Genetic Variance 0.43 (0.21) 0.43 (0.28) 0.25 (0.22)

Error Variance 25.48 (0.40) 25.60 (0.40) 25.73 (0.40)

Total Variance 25.91 (0.45) 26.03 (0.49) 25.97 (0.46)

PVE 0.02d (0.01) 0.02d (0.01) 0.01d (0.01)

aThe analysis in the table is carried out using the GCTA software developed by [3]. bP-value is obtained by regressing BMI on each single SNP. cValues in the
parenthesis are standard errors. dPVE decreases from 18% to 1% as a smaller group of SNPs are included in the analysis.

We demonstrate the applicability of our approach using
both simulated and real data. The simulations are first
used to show the accuracy and robustness of the estima-
tion algorithm. We then analyze real data from the FHS
and the HRS to identify SNPs on Chromosome 16 that are
associated with the bodymass index (BMI). The identified
SNPs are consistent with earlier findings in the literature,
and the results can be replicated across the two studies.
The results from both the simulations and the real appli-
cations suggest that the MLM tends to over-estimate the
proportion of total genetic variance over total phenotypic
variance, i.e. PVE. The reason is that the MLM assumes
that all the SNPs have effect on the phenotype, including
those SNPs with small or noisy effects.
Our work offers a flexible framework that can be

extended in several aspects. We now offer some discus-
sion regarding potential future work directions. To ana-
lyze the whole-genome data, we can follow [19] and [20]
to analyze each chromosome separately. We believe that
more work is needed to rigorously study how to aggregate
the results, and leave that for future work. The current
assumption on the mixture distribution, i.e. a point mass
at zero plus a normal distribution, may not be flexible
enough to capture genetic effects in certain situations.
We intend to relax the distributional assumption to a
mixture of a point mass at zero plus a nonparametric
distribution as in [21]. One challenge is that the computa-
tional short cut we used in this study for Gibbs Sampling
might not remain effective for more flexible distribu-
tions; hence alternative algorithm have to be considered.
Another direction of extension is to relax the indepen-
dence assumption to allow potential dependence among

SNPs within LD blocks. One difficulty then is the estima-
tion of (potentially arbitrary) correlation structure among
the SNPs. We are experimenting with adapting the prin-
cipal factor approximation idea of [22] into our current
framework.

Methods
All research involving human subjects, human material,
and human data in this paper has been performed in
accordance with the Declaration of Helsinki, and with
approval from the University of North Carolina-Chapel
Hill Institutional Review Board.
The statistical setup of our model is closely related to

that of [7,23], and [24]. Our estimation algorithm com-
bines the good features of the three methods, and is the
fastest to compute, which is crucial for analyzing GWAS
data [7]. First proposed a stochastic search algorithm in
order to identify the subset of “promising” subsets pre-
dictors through multiple regression. The key feature of
the study assumes that the slope of each regressor comes
from a mixture of two normal distributions with differ-
ent variances. The set of slopes with the smaller variance
can be considered as being equal to 0. By employing a
mixture normal distribution, [7] avoided discontinuity of
the mixture between point mass and a normal distribu-
tion. However, each step of the iteration would involve
all the regressors which is time-consuming, especially
when the number of the regressors is large. In another
closely related study, [23] explicitly considered the situ-
ation in which the regressors’ slopes are distributed as
zero plus a continuous distribution [23], also allowed sign
constraints on the continuous part of the distribution.
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Although Geweke’s approach incorporates more realis-
tic assumptions compared with [7], one shortcoming is
its slow computation, which makes it unrealistic for large
scale genetic studies [24], also tackled the problem of
gene selection using the Bayesian variable selection frame-
work. Their algorithm is similar to ours in that both use
computational shortcuts to derive the posterior distri-
bution of the random effects conditional on the signifi-
cant ones in each iteration. However, the proportion of
the significant random effects p is pre-specified in their
research, while we can estimate it in the process. We relax
the known p assumption in our analysis by assuming a
prior distribution for p and estimate it using its posterior
distribution.
Automatic relevance determination (ARD) is a popular

Bayesian variable selection approach [25]. ARD assumes
that each random regressor slope follows a normal distri-
bution with mean 0 and a (potentially) distinct variance.
The hyperparameters, i.e. the variances, are estimated
throughmaximizing themarginal likelihood, and the vari-
ables with zero variance estimates are pruned from the
model. The flexibility of the hyperparameters and the esti-
mation algorithmmake it difficult to apply ARD toGWAS
with a large number of SNPs, which is our primary inter-
est. Our HBM can be viewed as a special case of ARD
with only two choices for the hyper parameters: 0 for those
non-associative SNPs and σ 2

b for those associative SNPs,
and our model is estimated via Gibbs sampling instead of
direct likelihoodmaximization. Similar to the setup in [7],
we use a latent variable Ij such that when Ij = 1, the ran-
dom effect of the jth SNP, bj, follows N(0, σ 2

b ) and when
Ij = 0, bj = 0. In addition, Ij follows a Bernoulli distribu-
tion with Pr(Ij = 1) = p, the mixture probability. We seek
to estimate the parameters, p, β , σ 2

b and σ 2
e in (1) and (2),

as well as predict the random effects b.
Because of the large number of random effects, which

equals the number of SNPs in this study, a faster algo-
rithm is employed in our approach based on (1) and
(2). The algorithm first modifies the prior distribution
of the random effects b to the following mixture normal
distribution:

bj

{
∼ N (

0, σ 2) , if Ij = 0,
∼ N (

0, σ 2
b
)
, if Ij = 1,

and Pr(Ij = 1) = p. (6)

When σ is a really small number (e.g. σ =0.01), the
above mixture normal distribution is approximately a
mixture distribution of a normal distribution plus a point
mass at zero. Secondly, rather than drawing from the
posterior distribution of all the random effects b as a vec-
tor, we modify the algorithm to draw bj component wise
conditional on the indicator Ij. Specifically, if Ij = 1,
bj is drawn from the marginal conditional distribution

f (bj|Ij = 1), and for Ij = 0, bj is set to zero in each iter-
ation. Thus in each iteration of the Gibbs sampling, the
conditional distribution, f (bj|Ij = 1), would only involve
the columns of W that correspond to Ij = 1. In practice,
this algorithm speeds up the computation considerably
especially in the case when the random effects b have a
high dimension and the truemixture probability p is small.
For example, it takes 21,727 and 2,004 seconds respec-
tively using the stochastic search algorithm of [7] and our
algorithm on a simulated data set with 5,000 SNPs and
5,000 individuals and the true mixture probability p as 0.1.
To complete the hierarchical model, we make the

following prior assumptions: p ∼ Beta(1, 1); σ 2
e ∼

InverseGamma(a1, b1) and σ 2
b ∼ InverseGamma(a2, b2)

where a1 = b1 = a2 = b2 = 0.001; βi ∼ N (
0, σ 2

a
)
where

σa = 105.
The Gibbs sampling algorithm for estimating

the HBM is provided in Table 1. After a burn-
in period of 5,000 iterations, the MCMC samples[
β(t), b(t), I(t), p(t), σ 2

e
(t), σ 2

b
(t)

]
, t = 5, 000, . . . , 7, 000, are

obtained. Statistical inference and prediction can then
be made based on the posterior distribution of these
parameters.
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