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ABSTRACT 

 

This paper presents results from Japanese intonation 

modelling using PENTAtrainer2, an articulatory 

synthesiser. Our first aim is to show that PENTA, on 

which PENTAtrainer2 is based, can achieve high 

accuracy in predictive synthesis of varying 

intonation contours. We trained the synthesiser on a 

6251-sentence functionally annotated corpus and 

generated F0 contours for each communicative 

condition. The accuracy of speaker-dependent and 

independent synthesis, together with naturalness 

ratings, show that PENTA is effective in modelling 

Japanese intonation. This suggests that once 

contextual variability is incorporated into a model, 

multi-functional targets alone would suffice as the 

prosodic representation even in a sizeable corpus. 
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1. INTRODUCTION 

Analysis-by-synthesis is a robust way of showing 

how capable a model is in capturing variability in 

intonation. Through the accuracy of synthesis, one 

can compare various models using the same dataset. 

This approach, especially when the synthesis is 

predictive, is a big step toward solving the ‘lack of 

reference problem’ [1] in prosodic research. 

The modeling of Japanese sentential prosody 

dates back at least to 1960s. To date, many models 

have been introduced, of which AM [2–4] and the 

Fujisaki Model [5] are among the most influential. 

AM models intonation by interpolating sparsely 

distributed tones (H and L), whereas Fujisaki Model 

superimposes the output of two second-order linear 

filters with a base frequency value. Here we test a 

third approach - Parallel Encoding and Target 

Approximation (PENTA) model [6, 7], and assess 

whether it can synthesize Japanese intonation with 

satisfactory accuracy, like it can for other languages 

[7, 8], or in Japanese word prosody [9]. 

PENTA takes a different set of assumptions 

from both AM and Fujisaki Model. It differs from 

the former in treating variation of F0 alignment as 

contextual variation rather than as a part of 

phonology or phonetic implementation rules; and 

from the latter in that it has no stipulation on how 

many tiers a language can use at once to encode 

communicative information. A detailed explanation 

of PENTA, as well as its comparison with [2, 4], can 

be found in [10]. See also Figure 1 for an example of 

PENTA-style functional annotation. 

Two issues will be addressed in this paper: (1) 

whether PENTA can predictively synthesize 

accurate F0 contours for a speaker who is not part of 

the training corpus; and (2) whether the accuracy 

metrics employed by PENTA reflect its 

effectiveness in reality. These issues will be 

elaborated in the methodology below.    

2. METHODS 

2.1. The corpus 

Table 1: Corpus used in the present study. ‘A’ stands for 

‘accented’ and ‘U’ for ‘unaccented’. 

 Word I 
 

Word II 
 

Word III 
 

S
h
o
rt

 A 

‘mei-ga 

× 

‘momo 

× 

-o ‘mita 

× 

? Mayが 腿 を見た 

May-NOM thigh -ACC saw 

U 

mei-ga momo -ni nita 

。 姪が 桃 に似た 

Niece-NOM peach -DAT resembled 

L
o
n
g
 A 

‘muumin-ga 

× 

‘budou 

× 

-o ‘mita 

× 

? 
ムーミンが 武道 を見た 

Moomin-NOM 
martial 
arts 

-ACC saw 

U 

noumin-ga budou -ni nita 

。 農民が 葡萄 に似た 

Farmer-NOM grapes -DAT resembled 
 

We collected a corpus of Japanese sentences for this 

study. There are 6,400 utterances (2 sentence lengths 

× 8 accented conditions × 2 sentence types × 4 focus 

conditions × 5 repetitions × 10 speakers). For each 

target sentence there are four possible focus 

conditions, namely, initial, medial, final, and neutral. 

The sentence types are yes/no questions vs. 

statements. Each sentence is either eight or 11 morae 

in length. Focus was elicited by having the speaker 

produce the question and the (corrective) statement 

in pair. Of the 6,400 utterances collected, 149 had to 

be discarded due to mis-production of the accent 

condition. A total of 6251 sentences were retained. 

2.2. PENTAtrainer2 

We used PENTAtrainer2 [7] to obtain pitch targets 

which were then used to synthesise F0 contours. 

PENTAtrainer2 is a software package for semi-

automatic analysis and synthesis of speech melody 

based on PENTA [6, 11]. It was written in Java 



controlled by a set of Praat [12] scripts. The basic 

idea of PENTAtrainer2 is to extract the underlying 

pitch targets defined in terms of height (b), slope 

(m), and strength (λ) by means of stochastic 

analysis-by-synthesis based on quantitative Target 

Approximation (qTA) [13].  

The analysis-by-synthesis in PENTAtrainer2 

was controlled by simulated annealing, a machine 

learning algorithm [14]. To apply PENTAtrainer2, 

users first use the Annotation script to divide into 

layers the functions to be modelled, and label all the 

function-internal intervals, as illustrated in Figure 1. 

They then apply the learning script to extract 

globally optimal values of b, m and λ for each of the 
functional combinations. The performance of the 

modelling is assessed numerically by root-mean-

square error (RMSE) and Pearson’s r. RMSE 

indicates the average mismatch of the synthetic and 

original contours while correlation indicates the 

mismatch between the shape and the alignment of 

the contours [7]. Other things being equal, an 

accurate synthesis would yield small RMSE and 

large r values. 

2.2. Annotation 

In this study, the raw sound data were first chunked 

into individual utterances, and then alternatively 

segmented by mora and by syllable in Praat. Under 

moraic segmentation, a heavy syllable is segmented 

into two intervals equal in duration. Then, the 

segmented data were functionally labelled like in 

Figure 1. 

 

Figure 1. Functional annotation in PENTAtrainer2. 

The labeled functions are Tone, Sentence Type, 

Demarcation and Focus. 

 
 

On the Tone tier each interval is marked H, M, or L, 

following [9]. In the case of syllabic segmentation 

an accented heavy syllable is labelled F. H 

represents the high target in an accented word (cf. 

H* in [15]), whereas M stands for the high target 

elsewhere (cf. H- in [15]). The low target in an 

accented word is marked L. Under syllable 

segmentation, pitch accent as hosted in a heavy 

syllable is hypothesised as bearing a falling target, 

thus the F label. Sentence Type is either Q (uestions) 

or S (tatements). Note that these labels provided no 

phonetic guidance to PENTAtrainer2, as they are 

treated simply as category identifiers.  On the Focus 

tier, intervals in a focussed sentence are labeled as 

on-focus, pre-focus, or post-focus [16], and those in 

a neutral sentence are all labelled N (neutral). The 

The Demarcative tier contains information of the 

position of an interval in the sentence, comprising 

five categories – left/right edge of word, middle of 

word, and left/right edge of sentence. These four 

tiers combined give rise to 72 unique communicative 

conditions for the corpus, which means that the 

entire corpus will be synthesised using 72 sets of 

qTA parameters (b, m, λ). 

During learning, globally optimal parametric 

values were obtained after 1,000 reiterations of 

target optimization. Section 3.1 reports the accuracy 

of speaker-dependent synthesis – synthesis of the F0 

contours of a given speaker using the global 

parameters learned from his/her own utterances. In 

Section 3.2, the results of predictive synthesis 

accuracy is presented. Here we adopted the 

Jackknife procedure [17], where the global 

parametric values of all speakers save one are 

averaged and used to predict the F0 contours of the 

speaker being left out. The procedure is repeated ten 

times such that all ten speakers’ data are assessed. 

2.4. Naturalness judgment 

The synthesis quality was also assessed perceptually 

in a naturalness judgment test. Sixteen monolingual 

native Japanese listeners (3 male) were recruited as 

subjects. They were all born and raised in the 

Greater Tokyo area (Tokyo, Saitama, Kanagawa, 

and Chiba), and aged between 23 and 37 years old 

(mean age = 27.9). Most subjects had arrived in the 

UK for less than a year, except one who had arrived 

for 12 months, and another who had spent two years 

in the USA. None reported any (history of) speech 

or hearing impairment. 

The listening test took place in a quiet room in 

University College London. Subjects were seated in 

front of a laptop computer, which displayed the 

Praat [12] ExperimentMFC interface, and wearing 

circumaural headphones. They listened to each 

stimulus and rated the naturalness on a 1~5 scale, 

with 5 being the most natural. Each stimulus could 

be replayed up to three times. 

3. RESULTS 

3.1 Partial acoustic analysis 

Figure 2 shows averaged F0 contours of an accented 

sentence spoken in different sentence types and 

focus conditions. Visual inspection suggests that 

there is on-focus raising of F0 peak as well as post-

focus compression of F0 range. There is also a 

sentence-final rise, which is typical of questions in 

Japanese [3, 4]. We then compared each focus 



condition*sentence type with its neutral focus 

counterpart, and ran repeated-measures ANOVA on 

each subset (N=6) of the results. For statements 

under initial focus, for example, there is significant 

on-focus raising of maximum F0 (F(1,9)=61.9 

p<0.001), echoing with [18], as well as significant 

interaction between focus and the accent condition 

of the focused item on post-focus mean F0 

(F(1,9)=32.9 p<0.001), among other effects. All 

these focus markers are in line with those reported in 

other studies on Japanese prosodic focus [4], [19].  

 
Figure 2. F0 contours each averaged from 50 repetitions 

(mei-ga momo-o mita). The left panel is yes-no questions, 

and the right panel statements. Colour of the curves 

represents focus conditions. Y axis shows F0 in Hz. 

 

 

3.2. Speaker-dependent synthesis accuracy 

Table 2: Accuracy of speaker-dependent synthesis.   

Sentence 
type 

Focus 
Mora Syllable 

RMSE r RMSE r 

Q
u
e
s
ti
o

n
 Final 1.495 0.915 1.514 0.913 

Initial 1.662 0.917 1.776 0.900 

Medial 1.555 0.921 1.644 0.902 

Neutral 1.603 0.908 1.711 0.890 

Sub-avg 1.579 0.915 1.662 0.901 

S
ta

te
m

e
n
t Final 1.416 0.911 1.391 0.910 

Initial 1.725 0.928 1.823 0.915 

Medial 1.513 0.923 1.625 0.906 

Neutral 1.657 0.891 1.678 0.876 

Sub-avg 1.578 0.913 1.630 0.901 

Grand average 1.578 0.914 1.646 0.901 
 

Table 2 shows the respective mean synthesis 

accuracy under moraic and syllabic segmentation in 

terms of RMSE and r. Here the articulatory 

parameters used to synthesise the F0 contours of a 

given speaker is obtained through training on the 

utterances of the same speaker. Across sentence 

types and focus conditions, synthesis accuracy is 

high with r > 0.9 and RMSE < 1.8 in most cases. 

Although r appears to be greater in certain contexts, 

those cases do not see a smaller RMSE at the same 

time, suggesting that no particular condition is more 

accurately modelled than the others. We also carried 

out visual inspections as illustrated in Figure 3, and 

found that the resynthesized contours were highly 

similar to their original counterpart.  
 

Figure 3. An interface of PENTAtrainer2 for visual 

inspection of synthesis accuracy. The blue curve is the F0 

contour of a natural utterance whereas the red dotted 

curve represents the corresponding resynthesis. The 

target sentence is muumin-ga budou-o mita ‘Moomin 

watched martial arts’, with focus on the first word.   

  

3.3. Speaker-independent synthesis accuracy 

Table 3 shows mean predictive synthesis accuracy 

under the Jackknife procedure, where the speaker 

being modelled was excluded from training. The 

resynthesis deviated more from natural utterances 

(cf. 3.2 above). The overall accuracy is RMSE = 

2.733 and r = 0.8 for moraic segmentation, and 

RMSE = 3.024 and r = 0.702 for syllabic 

segmentation. The advantage of the mora 

segmentation is greater here than in 3.2. 
 
Table 3. Synthesis accuracy of PENTAtrainer2 

under Jackknife procedure by sentence type and 

focus condition. 
Sentence  
type 

Focus 
Mora Syllable 

RMSE r RMSE r 

Q
u
e
s
ti
o

n
 Final 2.468 0.849 2.658 0.769 

Initial 2.940 0.787 3.130 0.736 

Medial 2.639 0.804 2.947 0.721 

Neutral 2.554 0.842 2.979 0.732 

Sub avg 2.650 0.821 2.929 0.739 

S
ta

te
m

e
n
t Final 2.766 0.739 3.018 0.663 

Initial 3.242 0.793 3.327 0.751 

Medial 2.687 0.800 2.975 0.662 

Neutral 2.578 0.785 3.154 0.581 

Sub avg 2.817 0.779 3.118 0.664 

Grand average 2.733 0.800 3.024 0.702 

3.4. Naturalness judgment results 

Results of the naturalness judgment test are found in 

Table 4. We are interested in whether Type of 

stimuli (original vs. synthesised) affects how a 

listener rates the naturalness of stimuli, or whether 

its interaction with other effects reaches statistical 

significance. Result of a repeated measures ANOVA 

shows that Type of stimuli has no significant main 

effect on naturalness judgment rating. This suggests 

that the two types of stimuli sounded equally natural 

to the native listeners. The grand mean rating of 

natural stimuli is 3.688, which is close to that of 

synthesised stimuli (3.658, out of a 1~5 scale). 



Incidentally, on the whole, statements (mean=3.817) 

were judged to sound more natural than questions 

(mean=3.528). 
 

Table 4: Mean naturalness ratings by focus 

condition and sentence type. 
Sentence 
type 

Focus Original Synthesis Average 

Q
u
e
s
ti
o

n
 Final 3.397 3.441 3.419 

Initial 3.588 3.691 3.64 

Medial 3.566 3.456 3.511 

Neutral 3.507 3.581 3.544 

Sub-avg 3.515 3.542 3.528 

S
ta

te
m

e
n
t Final 3.816 3.809 3.813 

Initial 3.772 3.669 3.721 

Medial 3.801 3.743 3.772 

Neutral 4.051 3.875 3.963 

Sub-avg 3.860 3.774 3.817 

Grand average 3.688 3.658 3.673 
 

4. DISCUSSION 

The present study has shown that Japanese sentential 

prosody can be modelled with parametric 

representations based on PENTA, an articulatory-

functional model. Compared to a previous study on 

lexical prosody [9] (Speaker dependent [mora] 

RMSE = 1.088, r = 0.914; [syllable] RMSE = 1.092 

r = 0.896), results in Table 2 are very similar. On the 

other hand, synthesis accuracy is much lower under 

Jackknife procedure (Table 3), compared to [9] 

where [mora] RMSE = 1.739, r = 0.853; [syllable] 

RMSE = 2.227, r = 0.796, suggesting that there is 

more cross-speaker variability in sentential prosody 

than in lexical prosody. This observation echoes 

with [18] where some focus cues like pre-focus F0 

lowering was found to be optionally used by some 

speakers, whereas other cues like post-focus 

compression were consistently used by all; for word 

prosody, such freedom is less common owing to the 

need to mark lexical contrasts. 

Our results agree with [9] where moraic 

segmentation yielded better synthesis accuracy. This 

may seem to suggest that the mora is the true tone-

bearing unit in Japanese for tonal target 

approximation, contra other languages like 

Mandarin and English where tonal targets are hosted 

in the syllable. However, we are hesitant to come to 

such a conclusion because a heavy syllable under 

moraic segmentation comprises two intervals, but 

one interval under syllabic segmentation. This 

means that by nature the former involves more 

degrees of freedom, leading to better ability to 

capture variability. Thus these results cannot be 

taken as an answer to what the domain of target 

approximation of Japanese is; the question needs to 

be tackled through better controlled experiments, 

which take into account confounds from degrees of 

freedom. A follow-up study is under way to address 

this issue. 

The high synthesis accuracy is supported by 

naturalness judgment ratings by native listeners. 

This means that the synthetic stimuli do not sound 

different from the natural ones to our participants. 

By extension, the remaining errors not captured by 

PENTAtrainer2 do not make the resynthesis any less 

natural-sounding. This means that the key 

information has been successfully encoded in the 

learned parameters.  Therefore, PENTAtrainer2 can 

offer, for purposes like perception tests, natural 

sounding stimuli which are free of cross-repetition 

inconsistency common in natural stimuli.  

A further implication of our results is that the 

PENTA model as well as its prosodic representation 

are well suited for Japanese. Syllable-by-syllable 

target specification, as we have shown, is adequate 

for a corpus with numerous non-contextual (i.e. 

functional) variations. The encoding schemes of all 

functions jointly determine a unique articulatory 

target of each syllable. Then, by incorporating 

articulatory factors [20], there is no need to specify 

temporal alignment of tone. Whether our approach is 

superior to other frameworks is still an open 

question, but we have shown that PENTA 

representation is at least as suitable for Japanese as 

for other languages like Mandarin and English [7, 

8]. 

On a side note, the training process of 

PENTAtrainer2 is also reminiscent of child language 

acquisition. The development of infant speech relies 

on audition – deaf children cannot learn to speak by 

themselves [22, 23]. Over the course of repetitions 

PENTAtrainer2 refines its articulatory parameters in 

order to generate F0 contours that are more similar to 

the original, just as infants gradually refine their 

articulation over time by listening to themselves 

during practice.  

The present study is but a first step. To fully 

understand the nature of Japanese prosody, future 

research could compare different theories through 

their modelling performances using the present data 

set. A number of tools are being developed to 

compare PENTA and other models in a fair manner. 

5. CONCLUSION 

Compared to a previous study on Japanese lexical 

prosody, the synthesis accuracy of PENTAtrainer2 

was highly comparable. Our naturalness judgment 

test showed that resynthesis did not sound different 

from the natural stimuli to the native listeners, 

confirming that the accuracy measurements were 

effective. These results pave the way for future 

efforts on model comparison, which is necessary for 

a thorough understanding of Japanese prosody.   
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