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Topological superconducting states in monolayer FeSe/SrTiO3

Ningning Hao and Shun-Qing Shen
Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China

(Received 2 May 2015; published 5 October 2015)

The monolayer FeSe with a thickness of one unit cell grown on a single-crystal SrTiO3 substrate (FeSe/STO)
exhibits striking high-temperature superconductivity with transition temperature Tc over 65 K reported by recent
experimental measurements. In this work, through analyzing the distinctive electronic structure, and providing
systematic classification of the pairing symmetry, we find that both s- and p-wave pairing with odd parity give
rise to topological superconducting states in monolayer FeSe, and the exotic properties of s-wave topological
superconducting states have close relations with the unique nonsymmorphic lattice structure which induces the
orbital-momentum locking. Our results indicate that the monolayer FeSe could be in the topological nontrivial
s-wave superconducting states if the relevant effective pairing interactions are dominant in comparison with other
candidates.
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I. INTRODUCTION

Topological superconductors [1–4] and iron-based super-
conductors [5] have been research focuses of condensed
matter physics in recent years. Topological superconductors
have a full pairing gap in the bulk and gapless surface or
edge Andreev bound states known as Majorana fermions.
Recent scanning tunneling microscopy/spectroscopy (STM/S)
measurements observed a robust zero-energy bound state
at randomly distributed interstitial excess Fe sites in su-
perconducting Fe(Te,Se), and the behavior of zero-energy
bound state resembles the Majorana fermion [6]. Theoret-
ically, one possible scenario accounting for this puzzle is
that Fe(Te,Se) could be in a topological superconducting
(SC) state. If it is the case, we can expect that nontrivial
topology can integrate into the SC states in iron-based
superconductors.

Recently, some studies [7,8] have revealed that the band
structures can be tuned to have nontrivial topological prop-
erties in monolayer Fe(Te,Se) and monolayer FeSe/STO.
Furthermore, in electron-doped monolayer FeSe/STO, the
experimental measurements have observed high temperature
superconductivity with Tc over 65 K [9–16]. In analogy to
the doped topological insulators, which are strongly believed
to be topological superconductors [4,17–19], a natural ques-
tion arises, can the electron-doped monolayer FeSe/STO be
topological superconductors?

In this paper we propose that the electron-doped monolayer
FeSe/STO could be an odd-parity topological superconductor
in the spin-triplet orbital-singlet s-wave pairing channel [20].
To show this exotic state, we first analyze the distinctive
electronic structure of monolayer FeSe/STO, and present a
systematic classification of the pairing symmetry in monolayer
FeSe/STO from the lattice symmetric group. Second, we
discuss the topological properties of such odd-parity SC states,
and extract the minimum effective models to capture the
essential physics. Third, we calculate the phase diagram of
SC states according to different scenarios of effective pairing
interaction. Finally, we discuss the experimental signatures of
the topological SC states.

II. PAIRING SYMMETRY CLASSIFICATIONS

The lattice structure of monolayer FeSe is shown in
Fig. 1(a). The two-Fe unit cell includes two Se and two Fe
labeled by A and B. The space group P 4/nmm governs the
Se-Fe-Se trilayer structure, and belongs to a nonsymmorphic
group [21–24]. Indeed, there exists a n-glide plane described
by the operator {mz| 1

2
1
2 }, which involves a fractional transla-

tion ( 1
2

1
2 ) combining with the ab-plane mirror. Centered on an

Fe atom [see Fig. 1(a)], eight point group operations E, 2S4,
c2(z), c2(x), c2(y), and 2σd form a D2d point group. Together
with an inversion followed by fractional translations ( 1

2
1
2 ), i.e.,

{i| 1
2

1
2 }, they generate all the elements of P 4/nmm. The 16

operations do not form a point group. However, if the fractional
translation ( 1

2
1
2 ) is stripped off, the 16 operations form a point

group, which indeed is D4h. It is convenient to classify the
pairing symmetry with the irreducible representation (IR) of
D4h. For this purpose, one simple way is to recompose the
Bloch wave functions in the one-Fe Brillouin zone (BZ).

The glide plane symmetry {mz| 1
2

1
2 } divides the five d

orbitals into two groups, (dxz,dyz) and (dxy,dx2−y2 ,dz2 ), and
each group is recomposed to be the eigenstates of the glide
plane operation with the definite orbital parities. The tight-
binding Hamiltonian can also be decomposed into two parts
with inverse orbital parities, which allow us to transfer the
two-Fe unit cell picture into a one-Fe unit cell picture [21–23].
In momentum space, the tight-binding Hamiltonian in a one-Fe
unit cell picture can be written as

H0 =
∑
k,σ

ψo†
σ (k)Ao(k)ψo

σ (k) +
∑
k,σ

ψe†
σ (k)Ae(k)ψe

σ (k). (1)

Here the first/second term has odd/even orbital parity under the
glide plane operation. ψo

σ (k) = [dxz,σ (k), dyz,σ (k), dx2−y2,σ (k),
dxy,σ (k), dz2,σ (k)]T with dm,σ (k) denoting the electron anni-
hilation operator at the mth orbital with momentum k and
spin σ . ψe

σ (k) = ψo
σ (k + Q) and Ae(k) = Ao(k + Q) with

Q = (π,π ) (see Appendix A for details). The energy spectra
from Eq. (1) are shown in Fig. 1, in which Fig. 1(e) is con-
sistent with observations of the angle-resolved photoemission
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FIG. 1. (Color online) (a) The Se-Fe-Se trilayer structure. The
black/green balls with deep and light filling label Fe/Se atoms. Here
the deep/light filling Se atoms are above/below the Fe plane. The red/
black dashed squares label the one-Fe/two-Fe unit cells. (b) The Fermi
surface of monolayer FeSe/STO is schematically illustrated. The
red/blue electron pockets have odd/even orbital parity. The red/black
dashed squares label the one-Fe/two-Fe Brillouin zone. The evolution
of the band structure from (c) the free-standing monolayer FeSe to (d)
monolayer FeSe/STO with small tensile strain, and to (e) monolayer
FeSe/STO with large tensile strain. The red/blue color labels the
spectrum with odd/even orbital parity.

spectroscopy (ARPES) [10,11], and the chemical potential
is set to satisfy that 10% electrons is doped per Fe clarified
by experiments [10–12]. The fundamental difference between
Figs. 1(c) and 1(f) is referred to the band-renormalization effect
induced by the strain from the STO substrate, which strongly
modulates the hopping parameters between the (dxz,dyz,dxy)
orbitals and switches the positions of two doubly degenerate
points M1 and M3 at the Mx high symmetric point, where the
M1 point mainly has (dxz,dyz) orbital weight and the M3 point
mainly has dxy orbital weight. This picture is the most natural
and simplest to account for the distinctive electronic structure
of monolayer FeSe/STO compared to other scenarios [25–27].

The SC order parameters should follow the IRs of the
symmetry group of the system. It is safe to use D4h to do so
in the picture of one-Fe unit cell according to our aforemen-
tioned arguments. There exist two kinds of symmetry-allowed
Cooper pairs, i.e., (k,−k) and (k,−k + Q) pairing channels.
Previously, the (k,−k + Q) pairing channels are proposed to
coexist with (k,−k) pairing channels to explain the nodeless
and sign-change gap structures in iron-based superconduc-
tors [21,22]. The price for coexistence of both kinds of pairings
is that the orbital parities are mixed and the spatial inversion
symmetry is broken. Here we focus on an SC state with only
one IR in the (k,−k) pairing channel and leave to discuss
the irrelevant (k,−k + Q) pairing channel in Appendix B.
Moreover, we only need to consider the pairings between the
three t2g orbitals as the orbital weight for Eg orbitals are
neglectable on the Fermi surfaces [28]. Define the Nambu
basis, �(k) = [{d↑(k)},{d↓(k)},{d†

↓(−k)},{−d
†
↑(−k)}]T with

{dσ (k)} = {dxz,σ (k),dyz,σ (k),dxy,σ (k)}. The pairing term in the

TABLE I. The IRs of all the possible on-site superconducting
pairing in (k,−k) channels. Here η1/4 = ∓ 1

3 (λ0 + 2
√

3λ8) and η2/3 =
1
3 (∓λ0 ± √

3λ8 ∓ 3λ3/1).

(k,−k) :
�(k) c2(z) c2(x) σd

{
i
∣∣ 1

2
1
2

}
IR

−iszη1 −isxη2
−i(sx−sy )η3√

2
s0η4

s0λ0 1 1 1 1 A
(1)
1g

s0λ8 1 1 1 1 A1g

s0λ1 1 −1 1 1 B2g

s0(λ4,λ6) (−1,−1) (1,−1) s0(λ6,λ4) (−1,−1) Eu

iszλ2 1 1 1 1 A1g

sz(λ5,λ7) (−1,−1) (−1,1) −sz(λ7,λ5) (−1,−1) E(1)
u

i(sx,sy)λ2 (−1,−1) (−1,1) i(sy,sx)λ2 (1,1) Eg

i(sxλ5,syλ7) (1,1) (1,1) −i(syλ7,sxλ5) (−1,−1) E(2)
u

i(syλ5,sxλ7) (1,1) (−1,−1) −i(sxλ7,syλ5) (−1,−1) E(2′)
u

Bogoliubov–de Gennes (BdG) Hamiltonian can be expressed
as

Hp =
∑

k

�†(k)�(k)τx�(k). (2)

Here τx is one Pauli matrix in Nambu space, and �(k) is a
6 × 6 matrix. Our purpose is to identify the exact form of �(k).
For convenience, we utilize four Pauli matrices (s0,sx,sy,sz) to
span spin space and nine Gell-Mann matrices (λ0, . . . ,λ8) (see
Appendix B for definitions of Gell-Mann matrices) to span
orbital space. In such a way, �(k) can be decomposed into
the product of the Pauli matrices and Gell-Mann matrices, i.e.,
�(k) = f (k)smλn, in which f (k) is the pairing form factor. We
summarize all the possibilities of the (k,−k) on-site pairing
channels according to the IRs of D4h in Table I and non-on-site
pairing channels up to the next-nearest neighbor in Table II.

TABLE II. The IRs of all the possible nearest and next-
nearest neighbor superconducting pairing in (k,−k) channels. Here
f1/2(k) = cos kx ± cos ky ; f4(k) = cos kx cos ky ; [f3(kx),f3(ky)] =
[sin kx, sin ky]; f5(k) = sin kx sin ky .

(k,−k) : �(k) IR

f1/4(k)s0λ0/8,f5(k)s0λ1,f3(kx)s0λ5 + f3(ky)s0λ7 A
(2)
1g

f2(k)s0λ0/8,f3(kx)s0λ5 − f3(ky)s0λ7 B
(1)
1g

f2(k)s0λ1,f3(ky)s0λ5 − f3(kx)s0λ7 A2g

f5(k)s0λ0/8,f1/4(k)s0λ1,f3(ky)s0λ5 + f3(kx)s0λ7 B2g

if1/4(k)szλ2,i
1/0/0[f3(kx)sz/x/yλ4 + if3(ky)sz/y/xλ6] A1g

if2(k)szλ2,i
1/0/0[f3(kx)sz/x/yλ4 − if3(ky)sz/y/xλ6] B1g

i1/0/0[f3(ky)sz/x/yλ4 − f3(kx)sz/y/xλ6] A2g

if5(k)szλ2,i
1/0/0[f3(ky)sz/x/yλ4 + f3(kx)sz/y/xλ6] B2g

if1/2/4/5(k)(sx,sy)λ2 Eg

f3(kx)sx/yλ0 ± f3(ky)sy/xλ0 A
(1)
1u

[f3(kx),f3(ky)]szλ0 E(3)
u
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In both Tables I and II the spin-singlet/spin-triplet pairing
channels are listed in the first/second parts.

III. TOPOLOGICAL SUPERCONDUCTING STATES

To evaluate the pairing channels that could support the
topological SC states, we first impose the nodeless gap
structure restrictions to the pairing channels in Tables I and II
according to ARPES and STM/S experimental results [9–11],
i.e., A

(1)
1g , E(1)

u , E(2)
u , and E(2′)

u in Table I and A
(1)
1g with

f4(k)s0λ0, B
(1)
1g , A

(1)
1u , and E(3)

u in Table II. Second, we focus
on the odd-parity pairing channels based on the proposals
that odd-parity pairings usually support the topological SC
states in doped topological insulators [4]. Finally, we consider
the SC states with the C4 rotation symmetry verified by
both experimental observations [10–13] and our calculations
in Sec. IV. This constraint forces the time-reversal (TR)
symmetry to be broken spontaneously for some Eu states.
With all the above constraints and a turn to the monolayer
FeSe/STO, four possible odd-parity pairing states survive: (1)
E(1)

u , a doubly degenerate TR breaking state with �1(k) =
�0sz(λ5 ± iλ7), (2) E(2)

u , a TR invariant state with �2(k) =
�0i(sxλ5 + syλ7) (note that E(2′)

u is equivalent to E(2)
u ), (3)

E(3)
u , a doubly degenerate TR breaking state with �3(k) =

�0[f3(kx) ± if3(ky)]szλ0, and (4) A
(1)
1u , a TR invariant state

with �4(k) = �0[f3(kx)sxλ0 + f3(ky)syλ0] [note that all
four components in {A(1)

1u : f3(kx)sx/yλ0 ± f3(ky)sy/xλ0} are
equivalent]. Through the bulk-boundary correspondence, we
demonstrate that all these four kinds of odd-parity pair-
ing channels support topological SC states in monolayer
FeSe/STO. The BdG Hamiltonian describing the SC states
can be obtained by combining the tight-binding Hamiltonian
H0 in Eq. (1) and pairing term Hp in Eq. (2), i.e.,

HBdG = H0 + Hp. (3)

Note that HBdG in Eq. (3) includes both odd-orbital-parity
and even-orbital-parity parts. The edge spectra from the
odd-orbital-parity parts of HBdG with �1(k) · · · �4(k) are
presented in Fig. 2. The even-orbital-parity parts of HBdG

give the same spectra if ky is translated to ky + π [see
Fig. 1(b) for comparison]. The edge spectra in Fig. 2 explicitly
support the Andreev bound states which are the identifications
of topological superconductors. Besides, the bulk properties
of topological superconductors are usually characterized by
some topological numbers. Here the pairing channels with
�1(k) and �3(k) break the TR symmetry, and the Chern
number [29] can be introduced to characterize such two
states, i.e., C = i

2π

∑
En<0

∫
BZdk〈∇kun(k)| × |∇kun(k)〉. The

calculations show that both odd-orbital-parity and even-
orbital-parity parts give the Chern numbers Co = Ce = 4 in
the one-Fe BZ for �1(k) and �3(k) pairing channels. Thus,
two such pairing channels are characterized by the total Chern
number C = 1

2 (Co + Ce) = 4 in the two-Fe BZ. The Chern
number C = 4 is equal to the number of edge Andreev bound
states shown in Figs. 2(a) and 2(d). For the TR invariant
�2(k) and �4(k) pairing channels, the total Chern numbers
are zero. However, the spin Chern numbers [30,31] can be
introduced to characterize the bulk topological properties
of SC states in �2(k) or �4(k) pairing channels. Namely,

FIG. 2. (Color online) The edge spectra of odd-orbital-parity
BdG Hamiltonian with �1(k), �2(k), �3(k), and �4(k) in (a), (b),
(d), and (e). In the presence of the orbital-parity-broken perturbation,
i.e., the staggered potential of Fe sublattices, the edge spectra of BdG
Hamiltonian with �2(k) and �4(k) are shown in (c) and (f). Here the
system has a periodic boundary condition along the y direction and
an open boundary condition along the x direction with 51 one-Fe unit
cell lengths. The red/blue colors label the edge states localizing at the
opposite boundaries, and the dashed/solid lines label the edge states
with up/down spin directions. Note that the degenerate edge states on
the same edge are artificially split as a guide for the eye.

Co/e

↑ = 1, Co/e

↓ = −1 in the two-Fe BZ. Correspondingly, two
Z2 topological numbers [32] with opposite orbital parities
defined by vo/e = 1

2 (Co/e

↑ − Co/e

↓ ) = 1 characterize the bulk
topological properties for SC states in �2(k) or �4(k) pairing
channels.

Having confirmed that the topological SC states emerge in
the nodeless odd-parity pairing channels, we notice that the
edge spectra shown in Figs. 2(a) and 2(b) and the edge spectra
shown in Figs. 2(d) and 2(e) are very different. Therefore, it is
necessary to extract the minimum effective models to clarify
the essential physics hidden behind. First, we are aware of the
�3/4(k) pairing channels being in the intraorbital spin-triplet
p-wave pairing channels. Thus, the orbital degree of freedom
is inessential, and the minimum effective Hamiltonian can
be reduced into the single band space, which is the same
Hamiltonian to describe the well-known p ± ip topologi-
cal superconductors/superfluids [1,33,34], and the nontrivial
topology is referred to the p ± ip pairing terms. Therefore, we
omit our discussions for these “trivial” topological SC states.

For �1(k) and �2(k), which are the interorbital spin-triplet
s-wave pairing channels, the three t2g orbitals are involved
and entangled with each other not only in the bands around
the Fermi surface shown in Fig. 3(a), but in the pairing
terms shown in Fig. 3(d). Note that we should have three
bands when we consider three t2g orbitals. It indicates that
the third band mainly with the dxz and dyz weight has to
strongly couple with two eg orbitals and be gapped and pushed
away from the Fermi level. In order to describe the two
bands in an exact three orbital basis, we adopt the angular
momentum representation characterized by the azimuthal
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FIG. 3. (Color online) (a) The weight of three t2g along the Fermi
surface around My with odd-orbital parity. (b) and (c) The effective
band dispersions without/with interorbital coupling from the glide
plane. (d) Three competitive pairing channels with ϕ = π

2 in weak-
coupling limit.

and magnetic quantum numbers l and m. The new electron
creation operators are d

†
(lm=2,±1),σ (k) = ∓ 1√

2
[d†

xz,σ (k) ±
id

†
yz,σ (k)], then we have �̂

†
1(k) ∼ [d†

(2,1),↑(k)d†
xy,↓(−k) +

d
†
(2,1),↓(k)d†

xy,↑(−k)] and �̂
†
2(k) ∼ [d†

(2,−1),↑(k)d†
xy,↑(−k) +

d
†
(2,1),↓(k)d†

xy,↓(−k)]. Now we can only exploit the operators

involved in �̂1/2(k) to construct the basis to write the minimum
effective Hamiltonian, and this approximation is equivalent to
treating dxz and dyz orbitals with equal weights. In the effective
basis, �1/2(k) = [{ψ1/2↑(k)}, {ψ1/2↓(k)}]T with {ψ1/2,σ (k)} =
{d[2,1/−(−1)σ ],σ (k), dxy,σ (k), d†

xy,σ̄ /σ (−k), −d
†
[2,1/−(−1)σ ]σ̄ (−k)},

H (1/2)(k) = H(1/2)
1 (k) ⊕ H(1/2)

2 (k). (4)

Here k is measured from the M point. σ̄ = −σ and (−1)σ =
1/−1 for spin ↓/↑, the orbital parity index is omitted
for simplicity. H(1/2)

1 (k) = τz[d
(1/2)
0 (k) + ∑z

i=x d
(1/2)
i (k)σi] +

τx�0, H(1)
2 (k) = H(1)

1 (k) and H(2)
2 (k) = H(2)∗

1 (−k). The three
Pauli matrices σ1/2/3 are introduced to span the effective
two-band space. d (1/2)

0 (k) = ε1(k)+ε2(k)
2 − μ, d (1/2)

x (k) = ∓Aky ,

d
(1/2)
y (k) = −Akx , and d

(1/2)
z (k) = ε1(k)−ε2(k)

2 . H (1)(k) breaks
TR symmetry, because only m = 1 is involved. H (2)(k)
is TR invariant, and characterized by the T −1H (2)(k)T =
H (2)∗ (−k), where the TR symmetry operator is T = isyτ0σ0K
with K the complex conjugated operator. The disper-
sions ε1/2(k) with definite orbital parity can be read out
from Figs. 1(e) and 3(b). Around My point, we have
εe

1/2(k) = e1/2 − μ + α1/2k
2
x + β1/2k

2
y and εo

1/2(k) = e1/2 −
μ + β1/2k

2
x + α1/2k

2
y . The signs of α/β are crucial to determine

the properties of the topological SC states. In Figs. 3(b)
and 3(c) we schematically illustrate the evolution of the εo

1/2(k)
under the couplings induced by the glide plane around My

point, and we can find e1 < e2, α1 < 0, β1 > 0, α2 > 0, β2 <

0. The effective mass measuring the energy gap EM3 − EM1

shown in Fig. 1(e) or 3 (c) is m = e2−e1
2 > 0. The finite

electron-doped condition μ2 + �2
0 > m2 [35] always supports

topological SC states for H(1/2)
1 (k), where the chemical

potential μ is measured from the middle of the gap. The
remarkable feature of the edge spectra in Figs. 2(a) and 2(b)
is that the edge Andreev bound states have a twist (three times
of crossings) around ky = π and only one crossing around
ky = 0. This difference can be understood with the “orbital
mirror helicity” from the mirror operator in c2(x/y) acting
on three t2g orbitals in analogy to the “spin mirror helicity”
proposed in Ref. [35]. The conservation of mirror helicity
force the nontwisted/twisted feature of the edge Andreev edge
states under the nonband/band-inversion conditions between
ε

e/o

1 (k) and ε
e/o

2 (k) along the x direction, sgn[(e2 − e1)(α2 −
α1)] > 0/sgn[(e2 − e1)(β2 − β1)] < 0 [note that εe

1/2(My +
k) = εo

1/2(Mx + k)]. We are aware of the importance of the
nonsymmorphic lattice symmetry which not only induces
the orbital-momentum locking k × σ · ẑ through the glide
plane, but protects the exotic behaviors of the edge Andreev
bound states. We can verify this point through introducing the
staggered on-site potential, which mixes the orbital parities,
breaks the nonsymmorphic lattice symmetry, and destroys the
twist feature of the edge spectra. The results are shown in
Figs. 2(c) and 2(f). However, the bulk topological properties
are robust against such perturbations.

IV. THE EFFECTIVE PAIRING INTERACTIONS

Although the high temperature interfacial superconductiv-
ity in monolayer FeSe/STO seems to have been established
beyond doubt, the mechanism for superconductivity is still
an open question [36], and the unique features of mono-
layer FeSe/STO further pose a higher barrier to block our
understanding of the superconductivity from some standard
theories. For example, the monolayer FeSe/STO is strictly
two dimensional and has no hole pockets at the BZ center,
while its three-dimensional counterpart bulk FeSe resem-
bles iron-pnictide with hole pockets. The Fermi surface of
monolayer FeSe/STO is similar to that of AxFe2−ySe2 (A =
K, Cs, Rb), except that the small electron pocket around
(0,0,π ) in AxFe2−ySe2 is absent here. In weak coupling limit,
the spin-fluctuation-exchange theory predicts that the {B1g:
f2(k)s0λ0} pairing channel is dominant in AxFe2−ySe2 and
the gap structure has nodes along the kz direction [37,38].
However, the ARPES measurements reported isotropic full
gaps without nodes on all pockets in AxFe2−ySe2 [39,40].
In the strong coupling limit, the phenomenological t-J
model predicts that the {A1g: f4(k)s0λ0} pairing channel is
dominant in AxFe2−ySe2 and the gaps have same sign for all
the pockets [41]. However, the inelastic neutron scattering
measurements on AxFe2−ySe2 reported a resonance with
wave vector Qc = (π,π/2) in the superconducting state [42],
which indicated that there existed a sign change between the
Fermi surfaces connected by Qc. These contradictions strongly
question the standard theories. On the other hand, the studies
of some confirmed systems with interfacial superconductivity
including bilayer lanthanum cuprate [43] and LaAlO3/SrTiO3

heterostructure [44] could provide us some useful insights
to understand the superconductivity in monolayer FeSe/STO.
The studies of the aforementioned systems indicate that surface
phonon plays a key role to drive the superconductivity [45].
A recent ARPES experiment observed the band replication,
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which was attributed to strong coupling between the cross
phonon and electrons [15], and the cooperation between the
cross phonon mode and spin fluctuation is argued to be the
origin to enhance Tc in monolayer FeSe/STO. Therefore,
it is still possible that the superconductivity in monolayer
FeSe/STO is driven by the electron-phonon coupling, and
the surface phonon-mediated SC mechanism in monolayer
FeSe/STO has been proposed in Ref. [46]. Here, without loss
of generality, we consider several possibilities of the effective
interactions that can drive superconductivity in different
pairing channels and focus on the parameter regime missed
previously.

We first assume the multiorbital Hubbard interactions as a
pairing driver,

H
(1)
int = U

∑
i,l

nil↑nil↓ + V
∑
i,l>l′

nilnil′

+ JH

∑
i,l>l′

(
2Sil · Sil′ + 1

2
nilnil′

)

+ J ′ ∑
i,l 
=l′

d
†
i,l↑d

†
i,l↓di,l′↓di,l′↑. (5)

Here U , V , JH , J ′ are the intraorbital, interorbital, Hund’s
coupling, and pairing hopping term. l,l′ ∈ (xz,yz,xy), and
Sil = 1

2d
†
ilσ sσσ ′dilσ . The spin rotation symmetry requires U =

V + 2JH , and JH = J ′ at the atomic level. Since the predic-
tions from the weak-coupling theory [37,38] about H0 + H

(1)
int

were not consistent with the experimental reports [39,40], the
strongly correlative picture with quite large JH is possible and
the strongly correlative effects in iron chalcogenides have been
reported by recent ARPES experiments [47]. Define the pairing
operators

�̂s,ll′ =
∑

k

�̂s,ll′ (k), �̂α
t,ll′ =

∑
k

�̂α
t,ll′ (k),

�̂s,ll′ (k) =
∑
σσ ′

[isy]σσ ′

4
[dlσ (k)dl′σ ′(−k) + dl′σ (k)dlσ ′(−k)],

�̂α
t,ll′ (k) =

∑
σσ ′

[isysα]σσ ′

4
[dlσ (k)dl′σ ′(−k) − dl′σ (k)dlσ ′(−k)].

(6)

The interaction Hamiltonian has the form

H
(1)
int = U

∑
l

�̂
†
s,ll�̂s,ll + JH

∑
l 
=l′

�̂
†
s,ll�̂s,l′l′

+ (V − JH )
∑
ll′α

�̂
α†
t,ll′�̂

α
t,ll′

+ (V + JH )
∑
l 
=l′

�̂
†
s,ll′�̂s,ll′ . (7)

When the Hund’s coupling is strong enough, i.e., JH > U/3,
the third term of Eq. (7) can give rise to the instability in a spin-
triplet channel [48,49], which involves the {A1g: iszλ2}, E(1)

u ,
and E(2)

u IRs in Table I. The detailed discussions about these
pairing channels are merged into the third kind of effective
interaction in the following.

Another standard theory for the superconductivity is the
phenomenological Heisenberg model in the strong coupling

limit, we consider the effectively frustrated Heisenberg
interaction [50] as the pairing force,

H
(2)
int = J1

∑
l,〈i,j〉

Sil · Sj l + J2

∑
l,〈〈i,j〉〉

Sil · Sj l . (8)

Here J1/2 are the nearest and next-nearest neighbor magnetic
exchange couplings. A well-know result of H

(2)
int is that the

magnetic ground state is checkerboard antiferromagnetic when
2J2 < |J1|, and collinear antiferromagnetic when 2J2 > |J1|.
However, no Fermi surface reconstruction induced by spin
density wave was observed in monolayer FeSe/STO but
in mutlilayer FeSe/STO in ARPES experiments [12]. The
recent first-principles calculations proposed that the magnetic
order was strongly frustrated in monolayer FeSe/STO with
2J2 ≈ |J1| [51]. Another issue is the sign of J1. If both J1

and J2 are antiferromagnetic, the �3/4(k) pairing channels are
ruled out, and the SC states fall into {A1g: f4(k)s0λ0} induced
by J2 or {B1g: f2(k)s0λ0} induced by J1. If J1 is ferromagnetic
and J2 are antiferromagnetic, the �3/4(k) pairing channels are
possible from the symmetry point, but these two odd-parity
pairing channels have to compete with the {A1g: f4(k)s0λ0}
induced by J2. The winner is determined by the topology of the
Fermi surface [52]. For the low electron doped at 0.1e/Fe, the
Fermi pockets locating at M points are quite small. Therefore,
the form factor f4(k) has large magnitude, and the SC states
favor the {A1g: f4(k)s0λ0}. If the electron-doped level can
be tuned in monolayer FeSe/STO without suppressing the
superconductivity, we can expect that the SC states in over
electron-doped samples would favor �3/4(k) pairing channels
for ferromagnetic J1, because the Fermi surface locates at
the X points, where the form factors f3(kx/y) have large
magnitudes. We note that such kind of pairing was discussed
in underdoped cuprates [53].

From the aforementioned arguments about the possibly
significant role of surface phonon, we consider the third kind
of phenomenological interaction to induce the interfacial SC
instability in monolayer FeSe/STO,

H
(3)
int =

∑
l,l′,σ,σ ′,k,k′

1

2
V

σ,σ ′
l,l′ (k,k′)d†

k,lσ d
†
−k,l′σ ′d−k′l′σ ′dk′,lσ . (9)

Here we assume V
σ,σ ′
l,l′ (k,k′) = −V0 for l = l′, σ ′ = σ̄ and

V
σ,σ ′
l,l′ (k,k′) = −V1 for l > l′. Note that the third term in Eq. (7)

with JH > U/3 can also be described by H
(3)
int . With the pairing

operators shown in Eq. (6), H
(3)
int takes the form

H
(3)
int = − V0

∑
l

�̂
†
s,ll�̂s,ll − V1

∑
l>l′

�̂
†
s,ll′�̂s,ll′

− V1

∑
l>l′α

�̂
α†
t,ll′�̂

α
t,ll′ . (10)

Under the mean-field approximation �s,ll′ = 〈�̂†
s,ll′ 〉, �α

t,ll′ =
〈�̂α

t,ll′ 〉, the H
(3)
int can be decoupled as follows:

H
(3)
int = − V0

∑
l

�s,ll�̂
†
s,ll − V1

∑
l>l′

�s,ll′�̂
†
s,ll′

− V1

∑
l>l′α

�α
t,ll′�̂

α†
t,ll′ + H.c. + hcon. (11)
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Here hcon = ∑
l V0|�s,ll|2 + V1

∑
l>l′ |�s,ll′ |2 + V1

∑
l>l′,α

|�α
s,ll′ |2. Now we consider the odd-orbital-parity parts of the

normal-state Hamiltonian. The mean-field Hamiltonian takes
the following form:

HMF =
∑

k

1

2
�†(k)HMF(k)�(k) + Hcon, (12)

where �(k) has the same form shown in Eq. (2) except
{dσ (k)} = {dxz,σ (k), dyz,σ (k), dxy,σ (k), dx2−y2,σ (k), dz2,σ (k)}
now. Then HMF(k) = H0(k)τz + �(k)τx , H0(k) =
Ao(k) ⊕ Ao(k), and Hcon = ∑5

k,m=1 Ao,mm(k) + hcon.
Assume the HMF(k) can be diagonalized with matrix Ũk , i.e.,
Ũ

†
k HMF(k)Ũk = Ek,1 ⊕ Ek,2 · · · Ek,20. Then the mean-field

self-consistent equations take the forms

�s,ll′ =
20∑

k,n=1

[Ũ ∗
k,n,lŨk,n,l′+10 + Ũ ∗

k,n,l+5Ũk,n,l′+15]f (Ek,n)

2
,

�x
t,ll′ =

20∑
k,n=1

−[Ũ ∗
k,n,lŨk,n,l′+15 + Ũ ∗

k,n,l+5Ũk,n,l′+10]f (Ek,n)

2
,

�
y

t,ll′ =
20∑

k,n=1

−i[Ũ ∗
k,n,lŨk,n,l′+15 − Ũ ∗

k,n,l+5Ũk,n,l′+10]f (Ek,n)

2
,

�z
t,ll′ =

20∑
k,n=1

−[Ũ ∗
k,n,lŨk,n,l′+10 − Ũ ∗

k,n,l+5Ũk,n,l′+10]f (Ek,n)

2
,

Ne =
20∑

k,n=1

10∑
m=1

|Ũ ∗
k,n,m|2f (Ek,n). (13)

Here f (x) = 1

e
x

kB T +1
is the Fermi distribution func-

tion and Ne is the electron number. In comparison
with Table I and Eq. (11), the relevant IR channels
in Table I can be represented with (13). For exam-
ple, {A(1)

1g : s0λ0} = s0(�s,xz,xz ⊕ �s,yz,yz ⊕ �s,xy,xy), {E(2)
u :

i(sxλ5,syλ7)} = i(�x
t,xz,xysxλ5,�

y
t,xz,xysyλ7). Likewise, other

IR channels can be read out following the same way.
It is possible for �(k) to take the form of linear combina-

tions of several different IR channels, but some symmetries
have to be broken to pay the price for such coexistence. For
example the inverse symmetry is broken for the SC states
proposed in Refs. [21,22]. Likewise, the TR symmetry or
lattice symmetry could also be broken when two different
one-dimensional IRs or two components in a two-dimensional
IR coexist. In order to gain some insight before we perform
the numerical calculations, we note that all the experiments
reported the isotropic Fermi surface and gap structures without
any resolvable distortions, and the monolayer FeSe/STO was
conformed to be the cleanest composition with the simplest
structure [10–12]. These features rule out the possibilities of
some complex orders, such as nematic order found in bulk
FeSe. From Table I we can first eliminate the possibilities
of the {B2g: s0λ1}, {A1g: iszλ2}, {Eg: i(sx,sy)λ2}, and
{A1g: s0λ8} pairing channels, because the leading inter-dxz-dyz

hopping term is proportional to sin kx sin ky , which is nearly
zero around the Fermi surface, and the {A1g: s0λ8} channel
has nodes. Second, it is straightforward to check that two

components in {Eu: s0(λ4,λ6)} or {E(1)
u : sz(λ5,λ7)} give two

degenerate strip SC states with nodes. Thus, the TR-broken
linear combination of two components is optimal to achieve
the isotropic nodeless gap structure and lower the energy. Note
that the coexistence of these two two-dimensional IRs could
raise the energy, because they follow different transformations
under the lattice symmetric operations and suppress the gap
amplitude. Finally, no additionally global symmetries can be
broken for {A(1)

1g : s0λ0} and {E(2)
u : i(sxλ5,syλ7)} to coexist

with each other and with {Eu: s0(λ4,λ6)} or {E(1)
u : sz(λ5,λ7)}

to avoid breaking the isotropic SC gap structure and achieving
lower energy. Therefore, we find that these four IRs, i.e.,
{Eu: s0(λ4,λ6)}, {E(1)

u : sz(λ5,λ7)}, {A(1)
1g : s0λ0}, and {E(2)

u :
i(sxλ5,syλ7)} are independent, and TR symmetry should be
spontaneously broken in the first two IRs. It is straightforward
to verify these arguments through the following numerical
calculations.

Now we perform the numerical calculations to evaluate
which pairing channel governs the ground state of the
system for different V0 and V1. The ground state energy of
Eq. (12) is Gs(T ) = −kBT ln Tre−βHMF , and Gs(T ∼ 0) =
(Hcon − 1

2

∑10
k,n=1 |Ek,n|) at zero temperature. For simplicity

we can evaluate the ground state through the minimum
of the condensed energy density defined as fg = hcon −

1
8π2

∑10
n=1

∫
d2k|Ek,n| − 1

4π2

∑5
n=1

∫
d2k|Eo

k,n| for given elec-
tron number, where Eo

k,n are the energy spectra of normal
state. Solve the self-consistent equations (12) and (13) for
parameters (V0,V1) with respect to the minimum of fg , we
show the evolution of SC order parameters and condensed
energy about (V0,V1) in Fig. 4, and we find topologically
trivial {A(1)

1g : s0λ0} channel and topologically nontrivial

FIG. 4. (Color online) (a) The evolution of three components of
SC order parameters in A

(1)
1g channel about V0. (b) The evolution of

components of SC order parameters in Eu, E(1)
u , and E(2)

u channels
about V1. (c) The evolution of the condensed energy in different SC
states with relevant IRs about V0 and V1. (d) The phase diagram is
plotted in (V0, V1) plane with respect to the lowest energy. We set a
51 × 51 mesh of k, and the electron number to satisfy electron-doped
0.1e/Fe. The energy scale is measured with eV.
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{E(2)
u : i(sxλ5,syλ7)} are dominant in relevant regime of (V0,V1)

parameter plane.

V. DISCUSSION AND SUMMARY

If the superconductivity in monolayer FeSe/STO is driven
by the effective interaction H

(3)
int in Eq. (10), the observed

isotropic and nodeless s-wave gap structures select both
topologically trivial A

(1)
1g (s0λ0) and nontrivial E(2)

u [�2(k)]
as possible candidates. The essential difference lies in that the
former one has even-parity and spin-singlet pairing while the
latter one has odd-parity and spin-triplet pairing. Therefore, it
is unambiguous to adopt the experiments which can directly
distinguish the spin states and parities to pin down the possible
candidate. Particularly, temperature dependence of the nuclear
magnetic relaxation (NMR) rate can be utilized to distinguish
the two different pairings. The well-known result is that the
NMR rate has a Hebel-Slichter peak at the SC transition
temperature for the even-parity and spin-singlet s-wave SC
state [54]. However, the Hebel-Slichter peak could disappear
with the antipeak behavior due to the unique spin, orbital, and
momentum locking effect in topological SC states with odd
parity as shown in Ref. [55]. The parity of the Cooper pair
is characterized by the inverse operator {i| 1

2
1
2 }. It indicates

the odd-parity pairing has a sign change or phase shift of
π between the top Se and and bottom Se layers along the c

axis compared with the even-parity pairing. Thus, the standard
magnetic-flux modulation of dc SC quantum interference
devices (SQUIDS) measurements [4,56,57] provide another
scheme to distinguish the odd- and even-parity pairings. On
the other hand, some transport measurements can also be
applied to detect the topological superconductors, such as
the thermal Hall conductivity [58,59]. The challenge for such
measurements is that the FeSe is very air sensitive, and the
experimental measurements should be performed under the
ultrahigh vacuum condition.

In the aforementioned discussions about the SC pairings,
we assume that the glide plane symmetry is not broken.
Actually, there exist some possible effects to break the glide
plane symmetry. For example, the atomic spin-orbital coupling
could have non-neglectable effect in iron chalcogenides. It is
explicit that the interorbital spin-orbital coupling can mix the
bands with inverse orbital parities, and induce the interorbital
SC pairing in (k,−k + Q) channels. However, the weight of
inter-dxz-dxy spin-orbital coupling is proportional to λso ∼
0.05 eV [38], while the inter-dxz-dxy orbital hopping term with
definite orbital parity is proportional to |2it14

x sin kF | ∼ 0.3 eV
at the Fermi surface. We can estimate that the ratio between
the amplitudes of SC pairing order parameter in (k,−k + Q)
channel and that in (k,−k) channel should be ∼0.025. It
is straightforward to check that the coexistence of the SC
pairings in (k,−k) and (k,−k + Q) channels does not change
the topological natures of the SC states with E(1)

u and E(2)
u IRs

under the condition that the pairings in (k,−k + Q) channels
have the reasonable amplitudes in the physical regime. The
reason lies in that the pairings in the (k,−k + Q) channel
correspond to the interband pairings in the band basis, and
cannot drive the gap-closing-reopening process to achieve the
quantum phase transition. Another issue should be noticed

that the spin quantum number is adopted to label the SC
pairings in the pairing classification, and such an approach
is not exact when atomic spin-orbital coupling is involved.
However, the approximation works well, because the atomic
spin-orbital coupling here is quite small. Indeed, it is shown
that the atomic spin-orbital coupling plays a secondary role
in SC states in AxFe2−ySe2 [38]. Other issues, such as the
coupling between the monolayer FeSe and substrate STO,
could also break the glide plane symmetry. Such couplings
are tunable and strongly affected by the fabrication process
and the substrate materials [13,60]. Here we consider the case
that the strength of coupling between the monolayer FeSe and
substrate is weak in comparison with the relevant hopping
amplitude.

Compared with the general topological materials, in which
the extended s and p orbitals are the bricks to build low-energy
electronic structures, and the spin-orbital coupling plays an
essential role in inducing the strong linear couplings, the linear
couplings in monolayer FeSe/STO is attributed to effective
couplings between 3d orbitals induced by d-p hybridizations
from the unique nonsymmorphic lattice structures. Such
features provide us an alternative route to search for the new
topological materials in strongly correlated electron systems.

In conclusion, we propose that the monolayer FeSe/STO
could support the odd-parity topological SC states with the
nodeless s-wave gap structures. In contrast with other topolog-
ical superconductors [2,4] in which the spin-orbital coupling
plays a key role, such topological SC states have strong
relations with the unique nonsymmorphic lattice symmetry
which induces the orbital-momentum locking. Furthermore,
we calculate the phase diagram and suggest some experimental
schemes to identify such uniquely nontrivial topological SC
states.
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APPENDIX A: THE TIGHT-BINDING HAMILTONIAN
FROM SYMMETRY ANALYSES

In this Appendix we discuss the properties of the tight-
binding Hamiltonian from the symmetric point. The trilayer
structure of the monolayer FeSe is shown in Fig. 1 (see main
text). We focus on the three space group operations including
glide plane symmetry operator ĝz = {mz|r0} with r0 = ( 1

2
1
2 )

and two reflection symmetry operations ĝx = {mx |r0} and
ĝx ′ = {mx ′ |00}. Besides, the lattice has inverse symmetry
denoted by the operator ĝi = {i|r0}. According to the LDA
calculation, we can only focus on Fe atoms, the Bloch wave
functions for the 3d orbitals of Fe are defined as

|αη,k′〉 = 1√
N

∑
n

eik′ ·r′
nηφα(r′ − r′

nη). (A1)

Here r′
nη = R′

n + r′
η with lattice vector R′

n and the position
r′
η of Fe atom η = A,B, and φα denotes the d orbital basis

function (α = xz,yz,x2 − y2,xy,z2). The symmetry operators
acting on the basis function |αη,k′〉 have the following
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properties:

ĝx ′ |αη,k′〉 =
∑

β

mx ′,αβ |βη,mx ′k′〉,

ĝz|αη,k′〉 =
∑

β

e−i(m̂zk′)·r0mz,αβ |βη̄,m̂zk′〉, (A2)

ĝx |αη,k′〉 =
∑

β

e−i(m̂xk′)·r0mx,αβ |βη̄,m̂xk′〉.

The relevant tight-binding (TB) Hamiltonian can be expressed
as

H0 =
∑

k′
�†(k′)H (k′)�(k′), (A3)

with

�†(k′) = [ψ†
A(k′),ψ†

B(k′)],

ψ†
η(k′) = [d†

η,xz(k
′),d†

η,yz(k
′),d†

η,x2−y2 (k′),d†
η,xy(k′),d†

η,z2 (k′)].

(A4)

In the basis �(�k′), the corresponding transformation matrices
for the three operations ĝα have the following forms:

U (ĝx ′) =
[
mx ′ 0

0 mx ′

]
,

U (ĝz) =
[

0 e−i(mzk′)·r0mz

e−i(mzk′)·r0mz 0

]
, (A5)

U (ĝx) =
[

0 e−i(mxk′)·r0mx

e−i(mzk′)·r0mx 0

]
,

where

mx ′ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0

1 0 0 0 0

0 0 −1 0 0

0 0 0 1 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

mz =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0

0 −1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (A6)

mx =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 −1 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The symmetry of the Hamiltonian requires

H0(k′) = U (k′)H0(Uk′)U †(k′). (A7)

Define

H0(k′) =
[

HA(k′) HAB(k′)

HBA(k′) HB(k′)

]
. (A8)

We can get

HA/B(kx ′ ,ky ′ ) = mx ′HA/B(−kx ′ ,ky ′ )mx ′ ,
(A9)

HAB(kx ′ ,ky ′ ) = mx ′HAB(−kx ′ ,ky ′ )mx ′ ,

HA(kx ′ ,ky ′ ) = mzHB(kx ′ ,ky ′ )mz,
(A10)

HAB(kx ′ ,ky ′ ) = mzHBA(kx ′ ,ky ′ )mz,

HA(kx ′ ,ky ′ ) = mxHB(−ky ′ ,−kx ′ )mx,
(A11)

HAB(kx ′ ,ky ′ ) = mxHBA(−ky ′ ,−kx ′ )mx.

Moreover, since |αη,k′ + G′〉 = eiG′ ·r′
η |αη,k′〉,

HA/B(k′ + G′) = HA/B(k′),
(A12)

HAB(k′ + G′) = eiG′ ·r′
0HAB(k′),

r′
0 = r′

B − r′
A = ( 1

2 , 1
2 ). Considering the operator ĝz, we can

find in the entire BZ[[
0 mz

mz 0

]
,

[
HA(k′) HAB(k′)

HBA(k′) HB(k′)

]]
= 0. (A13)

We have

V †

[
0 mz

mz 0

]
V =

[
−I5×5 0

0 I5×5

]
, (A14)

V = 1√
2

[
A A

B −B

]
, (A15)

with A = I5×5,B = −mz. It is straightforward to check that
H0(k′) can also be block diagonalized, i.e.,

V †H0(k′)V = H11(k′) ⊕ H22(k′), (A16)

with H11(k′)=HA(k′) − HAB(k′)mz and H22(k′) = HA(k′) +
HAB(k′)mz. From Eq. (A12), we can get HA/B(kx ′ + 2πnx ′ ,

kx ′ + 2πny ′ ) = HA/B(kx ′+2πnx ′ ,kx ′+2πny ′ ) and HAB(kx ′ +
2πnx ′ ,kx ′ + 2πny ′ ) = ei(2πnx′ 1

2 + 2πny′ 1
2 )HAB(kx ′+2πnx ′ ,kx ′ +

2πny ′ ). When (nx ′ ,ny ′ ) = (0,1), H11(k′) = HA(k′) −
HAB(k′)mz and H22(k′) = HA(k′ + Q′) − HAB(k′ + Q′)mz,
with Q′ = (0,2π ). Furthermore, the momentum defined in
the one-Fe BZ is kx = (kx ′ + ky ′ )/2, ky = (−kx ′ + ky ′ )/2 and
Q = (π,π ).

Under the basis, �†(k) = [ψ†(k),ψ†(k + Q)], with
ψ†(k) = [d†

xz(k),d†
yz(k),d†

x2−y2 (k),d†
xy(k),d†

z2 (k)], dl(k) = 1√
2

[dA,l(k′) + dB,l(k′)], and dl(k + Q) = 1√
2
[dA,l(k′) − dB,l(k′)]

for l = xz,yz, dl(k) = 1√
2
[dA,l(k′) − dB,l(k′)] and dl(k +

Q) = 1√
2
[dA,l(k′) + dB,l(k′)] for l = xy,x2 − y2,z2, the TB

Hamiltonian in the one-Fe BZ takes the following form:

H0 =
∑

k

�†(k)H0(k)�(k). (A17)

Then,

H0(k) = Ho(k) ⊕ He(k). (A18)

Here He(k) = Ho(k + Q).
The TB Hamiltonian in one-Fe BZ Eq. (A18) have block-

diagonal forms, and each block has definitive orbital parity
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with respect to the glide plane symmetry. Besides, the inversion
symmetry ĝi = {i|r0} indicates that the inversion center of
monolayer FeSe is at the midpoint of the Fe-Fe link. Thus we
can find that dxz/yz(k)/dxy/x2−y2/z2 (k) are inversion even/odd,
and dxz/yz(k + Q)/dxy/x2−y2/z2 (k + Q) are inversion odd/even.
In other words, dxz/yz orbitals and dxy/x2−y2/z2 orbitals have
opposite parities in the subspace with definitive orbital parity.
The TB Hamiltonian in the one-Fe BZ is

Ho(�k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 A14 A15

A22 A23 A24 A25

A33 A34 A35

A44 A45

A55

⎤
⎥⎥⎥⎥⎥⎥⎦

. (A19)

The nonzero terms in A(k) are listed as follows:

A11/22(k) = ε1 + 2t11
x/y cos kx + 2t11

y/x cos ky

+ 4t11
xy cos kx cos ky + 2t11

xx/yy cos 2kx

+ 2t11
yy/xx cos 2ky + 4t11

xxy/yyx cos 2kx cos ky

+ 4t11
xyy/xxy cos kx cos 2ky

+ 4t11
xxyy cos 2kx cos 2ky,

A33(k) = ε3 + 2t33
x (cos kx + cos ky) + 4t33

xy cos kx cos ky,

A44(k) = ε4 + 2t44
x (cos kx + cos ky) + 4t44

xy cos kx cos ky

+ 4t44
xxy(cos 2kx cos ky + cos kx cos 2ky)

+ 4t44
xxyy cos 2kx cos 2ky,

A55(k) = ε5,

A12(k) = −4t12
xy sin kx sin ky,

A13/23(k) = ±2it13
x sin ky/x ± 4it13

xy sin ky/x cos kx/y,

A14/24(k) = −2it14
x sin kx/y + 4it14

xy sin kx/y cos ky/x,

A15/25(k) = 2it15
x sin ky/x + 4it15

xy sin ky/x cos kx/y,

A35(k) = 2t35
x (cos kx − cos ky),

A45(k) = −4t45
xy sin kx sin ky.

The on-site orbital energy is ε1 = ε2 = 0.02,ε3 =
−0.539,ε4 = 0.014,ε5 = −0.581, and the hopping pa-
rameters for the free-standing monolayer FeSe are
listed as follows [61]: t11

x/y = −0.08/ − 0.311, t11
xy = 0.232,

t11
xx/yy = 0.009/ − 0.045, t11

xxy/yyx = −0.016/0.019, t11
xxyy =

0.02, t33
x = 0.412, t33

xy = −0.066, t44
x = 0.063, t44

xy = 0.086,
t44
xxy = −0.017, t44

xxyy = −0.028, t12
xy = 0.099, t13

x = 0.3, t13
xy =

−0.089, t14
x = 0.305, t13

xy = −0.056, t15
x = −0.18, t15

xy =
0.146, t35

x = 0.338, t45
xy = −0.109. The renormalized parame-

ters corresponding to Fig. 1(d) in the main text are t44
xy = 0.066,

t14
x = 0.405, t11

x = −0.12. The renormalized parameters cor-
responding to Fig. 1(e) in the main text are t44

xy = 0.076,
t44
x = 0.183, t14

x = 0.405, t11
x = −0.311, t11

xy = 0.19.

TABLE III. The IRs of all the possible on-site superconducting
pairing in (k,−k + Q) channels.

(k,−k + Q) :
�′(k) c2(z) c2(x) σd

{
i
∣∣ 1

2
1
2

}′
IR

s0λ0 1 1 1 −1 A1u

s0λ8 1 1 1 −1 A1u

s0λ1 1 −1 1 −1 B2u

s0(λ4, λ6) (−1,−1) (1,−1) s0(λ6,λ4) (1,1) Eg

iszλ2 1 1 1 −1 A1u

sz(λ5,λ7) (−1,−1) (−1,1) −sz(λ7,λ5) (1,1) Eg

i(sx,sy)λ2 (−1,−1) (−1,1) i(sy,sx)λ2 (−1,−1) Eu

i(sxλ5,syλ7) (1,1) (1,1) −i(syλ7,sxλ5) (1,1) Eg

i(syλ5,sxλ7) (1,1) (−1,−1) −i(sxλ7,syλ5) (1,1) Eg

APPENDIX B: THE CLASSIFICATIONS FOR THE
(k,−k + Q) PAIRING CHANNELS FROM

SYMMETRY ANALYSES

The nine GellMann matrices λ0–λ8 in the main text are
listed as follows:

λ0 =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦, λ1 =

⎡
⎣0 1 0

1 0 0
0 0 0

⎤
⎦,

λ2 =
⎡
⎣0 −i 0

i 0 0
0 0 0

⎤
⎦, λ3 =

⎡
⎣1 0 0

0 −1 0
0 0 0

⎤
⎦,

λ4 =
⎡
⎣0 0 1

0 0 0
1 0 0

⎤
⎦, λ5 =

⎡
⎣0 0 −i

0 0 0
i 0 0

⎤
⎦, (B1)

λ6 =
⎡
⎣0 0 0

0 0 1
0 1 0

⎤
⎦, λ7 =

⎡
⎣0 0 0

0 0 −i

0 i 0

⎤
⎦,

λ8 = 1√
3

⎡
⎣1 0 0

0 1 0
0 0 −2

⎤
⎦.

TABLE IV. The IRs of all the possible non-on-site superconduct-
ing pairing in (k,−k + Q) channels.

(k,−k + Q) : �′(k) IR

f4,ks0λ0/8,f5,ks0λ1,f3,kx
s0λ5 + f3,ky

s0λ7 A1u

f2,ks0λ0/8,f3,kx
s0λ5 − f3,ky

s0λ7 B1u

f2,ks0λ1,f3,ky
s0λ5 − f3,kx

s0λ7 A2u

f5,ks0λ0/8,f1/4,ks0λ1,f3,ky
s0λ5 + f3,kx

s0λ7 B2u

if1/4,kszλ2,i
1/0/0[f3,kx

sz/x/yλ4 + f3,ky
sz/y/xλ6] A1u

if2,kszλ2,i
1/0/0[f3,kx

sz/x/yλ4 − f3,ky
sz/y/xλ6] B1u

i1/0/0[f3,ky
sz/x/yλ4 − f3,kx

sz/y/xλ6] A2u

if5,kszλ2,i
1/0/0[f3,ky

sz/x/yλ4 + f3,kx
sz/y/xλ6] B2u

if1/2/4/5,k(sx,sy)λ2 Eu
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The monolayer FeSe has inversion symmetry, thus
every IR in Table I should have a counterpart with an
inverse parity. In other words, (k,−k + Q) pairing channels
should be possible from the symmetry point. For the
(k,−k + Q) pairing, we define the Nambu basis, � ′(k) =
[{ψm↑(k)}, {ψm↓(k)}, {ψ†

m↓(−k + Q)},−{ψ†
m↑(−k + Q)}]t ,

with {ψmσ (k)} = [dxzσ (k),dyzσ (k),dxyσ (k)]. The IRs for the
on-site (k,−k + Q) pairings are summarized in Table III.

Here the matrix for {i| 1
2

1
2 }′ is g′

4 = s0η
′
4 and η′

4 = 1 ⊕
−1 ⊕ (−1)α with α = 1 for dxz-dxy pairing and α = −1
for dyz-dxy pairing. The IRs for the non-on-site (k,−k +
Q) pairings are summarized in Table IV. We can check
that all the (k,−k + Q) pairing channels correspond to
the interband pairings, and such kinds of pairings cannot
individually give an overall full gap around the Fermi
surface.
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