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Berry Phase Modification to the Energy Spectrum of Excitons
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By quantizing the semiclassical motion of excitons, we show that the Berry curvature can cause an
energy splitting between exciton states with opposite angular momentum. This splitting is determined by
the Berry curvature flux through the k-space area spanned by the relative motion of the electron-hole pair in
the exciton wave function. Using the gapped two-dimensional Dirac equation as a model, we show that this
splitting can be understood as an effective spin-orbit coupling effect. In addition, there is also an energy shift
caused by other “relativistic” terms. Our result reveals the limitation of the venerable hydrogenic model of
excitons, and it highlights the importance of the Berry curvature in the effective mass approximation.
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The effective mass approximation provides a simple yet
extremely useful tool to understand a wide variety of
electronic properties of semiconductors [1]. Within this
approximation, electrons behave almost like free particles
in response to external fields, provided that one replaces the
bare electron mass with an effective mass derived from the
band dispersion. Much of our intuition on electron transport
is based on this semiclassical picture. However, it has been
shown that such a picture is actually incomplete, and one
must include the Berry curvature of the Bloch states [2].
Essentially, the Berry curvature modifies the electron
dynamics through an anomalous term in the group velocity
of the Bloch electrons [3,4], i.e.,

"‘ . lagl’l(k)
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where €,(k) is the band energy, V(r) is the external
potential, and Q,(k) = i(Viui| X |Viui) is the Berry
curvature defined in terms of the periodic part u,(r) of
the Bloch function. The importance of the Berry curvature
has been well established in a number of transport
phenomena such as the anomalous Hall effect [5-7] and
the spin Hall effect [8—10].

In this Letter we consider another type of problem for
which the effective mass approximation must be modified
to include the Berry curvature, namely, the bound-state
problem of Bloch electrons. To be specific, we will
consider the energy spectrum of an exciton, even though
our result should be equally applicable to other problems
such as shallow impurity states. Our motivation is twofold.
First, giant exciton binding energies (about a few hundred
meV) have recently been observed in monolayers of
transition metal dichalcogenides [11-20], in which the
low-energy carriers behave like massive Dirac fermions
with nonzero Berry curvature [21]. Thus, the detailed
experimental study of excitons in the presence of the
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Berry curvature appears to be feasible. Second, there have
been a few calculations of the exciton energy spectrum in
these materials [18,22-27], but the role of the Berry
curvature is not explicitly discussed. We will show that,
at the level of the effective mass approximation, the Berry
curvature is essential to understand the exciton energy
spectrum.

Our main results are summarized below. We show that,
quite generally, the Berry curvature modifies the effective
Hamiltonian for excitons and causes an energy splitting
between exciton states with opposite angular momentum.
This splitting is determined by the Berry curvature flux
through the k-space area spanned by the relative motion of
the electron-hole pair in the exciton wave function. We
confirm this result by a detailed study of the massive Dirac
fermion model in two dimensions, and we show that the
energy splitting can be understood as an effective spin-orbit
coupling effect. In addition, we also find a shift of the
energy levels due to other “relativistic” terms. Finally, the
effective Hamiltonian approach is compared with a k-space
Hatree-Fock calculation, where the gauge dependence of
the angular momentum number is discussed. Our study
provides a clear explanation of the previously calculated
exciton energy splitting [18,26,27]. It reveals the impor-
tance of the Berry phase in exciton physics and calls
for a thorough investigation of its effect on interacting
phenomena.

An exciton is a bound state of a conduction band electron
and a valence band hole attracted to each other via the
Coulomb interaction. Within the effective mass approxi-
mation, the motion of an exciton can be decomposed into a
center-of-mass motion and a relative motion. The latter is
governed by the following effective Hamiltonian [28,29]:

H=L"1v@), 2)
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where y~! = m;! + m; ! is the reduced mass,r =r, —r), is
the relative coordinate, p is the canonical momentum of r,
and V(r) is the screened Coulomb interaction. For two-
dimensional (2D) systems with a central potential V(r), the
eigenstates (n, m) can be labeled with the radial quantum
number n and the angular momentum m. For definitive-
ness, in the following we set V(r) = —k/r, and the
Hamiltonian then describes a 2D hydrogen problem. Our
result, however, is independent of the detailed form of
V(r). The exciton binding energy of the 2D hydrogen
model is given by

. R
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where R = ux?/2h? is the Rydberg energy. We can see
that the states (n, £m) with opposite angular momentum
are degenerate, a general consequence of time-reversal
symmetry.

The above picture is modified in the presence of the
Berry curvature. According to the semiclassical equation of
motion (1), the electron and the hole will acquire an
anomalous velocity perpendicular to the radial direction
in a central potential (Fig. 1). Obviously, this anomalous
term breaks time-reversal symmetry and should lead to an
energy difference between the left- and right-rotating states.

To obtain a quantitative theory of the energy spectrum,
we need to quantize the semiclassical motion of the exciton.
This can be done using the canonical quantization pro-
cedure [2,30]. It has been shown that in the presence of the
Berry curvature, the position operators become noncom-
mutative and satisfy [5,8,31]

[?a, ?ﬂ] = l.Eaﬂ},Q},. (4)

For the relative motion of the electron-hole pair, Q =
Q, + €, should be understood as the sum of the Berry
curvatures of the electron and the hole [32]. In general, Q is
a function of k. However, if the exciton wave function is
sharply localized in the k space, then we can approximate Q

VIxQ
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FIG. 1. With finite Berry curvature (€2, and €,), the electron
and the hole acquire an anomalous velocity VV x Q in a central
potential V(r), resulting in a lift of the degeneracy between the
left- and right-rotating states.

with its value at the band edge. To derive the effective
Hamiltonian, we introduce the canonical coordinates [30]

o R 1 R

R=7+ P Qxp. (5)
Equation (5) can be viewed as the k-space counterpart of
the Peierls substitution. One can verify that, to first order,
R, IA?/;} = 0. Inserting Eq. (5) back into Eq. (2) and
expanding to the first order in Q, we obtain the effective
Hamiltonian casted in the canonical variables,

H= +V(ie)+isz-(vap). (6)
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Clearly, the extra term proportional to the Berry curvature
will split the exciton states with opposite angular
momentum.

Equation (6) is the main result of our Letter. To gain
some physical intuition, we apply our theory to the 2D
hydrogen model. The energy splitting between the exciton
states (0, +1) is found to be

L 64Q

AE = ——
81 a(z)

R, (7)

where a, = h%>/ku is the Bohr radius of the exciton
envelope function. Since aj? is roughly the k-space spread
of the envelope function, one can interpret the energy
splitting (7) as proportional to the k-space Berry phase flux
penetrating the area occupied by the exciton. In 2D systems
the screened Coulomb interaction V(r) has a rather
complicated » dependence, which leads to a nonhydrogenic
Rydberg series of exciton states [17,18]. Nonetheless,
the energy splitting and its interpretation in terms of the
Berry phase flux are independent of the detailed form
of V(r).

To further demonstrate the above physics, in the follow-
ing we turn to a concrete model, i.e., the gapped 2D Dirac
equation,

Hy=ak -6+ Ao, (8)

where k = (k. k) is the 2D wave vector and 2A is the
band gap. This Hamiltonian describes the low-energy
carriers in a number of materials, including topological
surface states [33,34] where o refers to the electron spin,
and gapped graphene [35] and semiconducting dichalco-
genides [21] where o refers to the orbital index. The energy
dispersion is given by &, = +& = £VA? + a?k* with
the corresponding eigenstates
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where the subscripts ¢ and v label the conduction and
valance bands, respectively, and the angular variables 6,
and ¢ are defined as 6 =cos™'(A/e;) and ¢y =
tan~'(k,/k,). The Berry curvature is given by [21,35]

a?A

Note that the Berry curvature of holes should be the
opposite of that of the valence band electrons. The fact
that Q, = Q,, is a specific feature of the two-band model. In
general Q, and €, are different. In the following we are
going to approximate the Berry curvature with its k =0
value, and we will define the joint Berry curvature
Q=Q,(0) +Q,(0) = —a?/A? (assuming A > 0).

We now estimate the energy splitting of excitons in
transition metal dichalcogenides. The band structure
parameters a and A have been calculated in Ref. [21].
For all four compounds MX, (M = Mo, Wand X = S, Se),
Q is about 15 A”. The Bohr radius of the s-state exciton is
ag ~ 20 A [18]. Hence, the energy splitting AE between
the two p states is roughly 4% of the exciton binding
energy, or a few tens of meV. This is consistent with
previous calculations based on solving the Bethe-Salpeter
equation [18,26]. In dichalcogenides, the band structure
consists of two valleys located at the two inequivalent
corners of the hexagonal Brillouin zone with opposite
Berry curvature. Therefore, the energy splitting in the two
valleys are opposite, restoring the overall time-reversal
symmetry of the system.

Since the 2D Dirac equation (8) also describes relativistic
spin-1/2 particles, it is interesting to explore the connection
between our result and relativistic quantum mechanics. In
the latter case, the effective Hamiltonian, also known as the
Schrodinger-Pauli equation, is usually obtained using the
Foldy-Wouthuysen transformation [36]. The application to
the 2D Dirac equation parallels exactly its 3D counterpart.
After adopting the center of mass and the relative coor-
dinates [37], we find the effective Hamiltonian for the
positive energy branch is

P

H o =
eff Z,u

1 1
+ V(R) +ﬁ9' (VV x p) +ZQV2V, (11)

where u = h2A/2a? is the reduced mass and Q = Qe_. It is
now clear that the Berry-curvature caused splitting stems
from an effective spin-orbit coupling term (the third term).
We also note that there is an extra term proportional to V>V,
known as the Darwin term [38]. This term does not appear
in the semiclassical quantization scheme because the
semiclassical formalism is only accurate to the first order
of VV [30]. The Darwin term will lead to an energy shift
depending on the radial quantum number n [39]. However,
given the central symmetry of V(r), the energy shift of
states (n, ==m) is the same. Therefore, the energy splitting

between these two states is entirely due to the Berry-
curvature effect discussed above. One can also carry out the
Foldy-Wouthuysen transformation to higher orders, which
only leads to quantitative changes.

It is useful to compare the effective Hamiltonian
approach to the k-space formalism based on the Bethe-
Salpeter equation. An exciton at rest can be written as
|Pex) = D xS (k)ala,|Py), where | D) is the ground state
in which all valence bands are filled and all conduction
bands are empty, and a, and a,, are the annihilation
operators for the conduction and valence band electrons,
respectively. Following the standard procedure [26,33],
the exciton Hamiltonian for the envelope function f(k) is
given by

(26 +Z)f (k) = Y Uk f(K) = Ef(k), (12)
=

where X, is the self-energy, which we shall absorb into the
definition of the optical gap and which will not be written
explicitly hereafter, and U (k, k') is the Coulomb interaction
between the electron and the hole,

Uk.K') = V(k — ') (ck|ck') (ok'|0k),  (13)

with V(k — k') being the Fourier transform of the Coulomb
interaction V(r). We note that (ck|ck’) can be written as
|(ck|ck')|e’A?, where A¢ = Im log(ck|ck’) is the discre-
tized Berry phase [40]. It is through this term that the Berry
curvature enters the picture.

For the isotropic system considered here, we can
decompose the envelope function into different angular
momentum channels, i.e., f,,(k) = [37(d¢/2x)f(k)e™ .
The corresponding equation is

o k' dk’
2eifal0) = [T Unk ) K) = Efu () (14)

where the Coulomb interaction for the mth channel is
given by U, (k. k') = [¢"(dp/2x)e™U(k — k'), and ¢ =
¢ — ¢y is the relative angle between k and k'.

Before moving on, we comment on the physical meaning
of m. Note that the matrix element U(k — k') is actually
gauge dependent. Different choices of the basic function
|ck) and |vk) will not change the energy spectrum, but will
lead to an integer shift of m. Specifically, if we perform a
gauge transform |Ak) — e%:®)|)k), then the Coulomb
interaction becomes

Uk, k') — el9®)=b ) o=ild. &)=,y (k k'), (15)

Consequently, the Coulomb interaction in the mth channel
will be shifted to the (m + n)th channel in the transformed
basis, where n is the winding number of ¢, (k). Therefore,
one should be careful when labeling the exciton states using
m. There seems to be some confusion over this fact in the
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FIG. 2 (color online).  (a) Exciton energy spectrum as a function
of the interband coupling strength x. The insert shows all four
states: (0, 0), (1, 0), and (0, +1). (b) Exciton wave function
atx = 1.

literature [41]. We have chosen the basis function (9) such
that in the limit of vanishing Berry curvature, the labeling
of m returns to that of the 2D hydrogen model.

We can now expand the Coulomb interaction to the
leading order of a/A and obtain

a*kk'

Un(k k) = Vi (k =K') + =5 Vi (k= K). - (16)

Clearly, U,, and U_,, differ by a term proportional to
a?/A?, which is nothing but the joint Berry curvature Q.
We also note that the energy shift of the £m states is
asymmetric. This is caused by an overall shift of both +m
states, as mentioned earlier.

Finally, to demonstrate the essential role of the Berry
curvature, we consider a modified Hamiltonian

H = xak -6 + (A + K)o, (17)
where 8, = (1 — x?)a?/2A. Here, the parameter x can be

regarded as a measure of the interband coupling strength.
One can verify that as x changes from O to 1, the effective

mass stays the same, m* = h?A”/a?, whereas the Berry
curvature gradually increases from O to its value given
in Eq. (10).

We numerically solve Eq. (14) with V(r) = —x/r using
the modified Gauss-Legendre quadrature method with a
constant scaling [33,42]. Figure 2(a) shows the calculated
exciton energy spectrum as a function of x. At x = 0, the
Berry curvature is zero, and the three states (0, +1) and
(1, 0) are degenerate, as indicated by Eq. (3). As x
increases, the energy difference between (0, £1) starts
increasing and reaches its maximum at x = 1, when the
Berry curvature is also maximal. The asymmetric splitting
is obvious. Figure 2(b) shows the k-space exciton wave
functions, which clearly display the characteristic shape for
s and p states, respectively. This confirms our choice of the
basis function. We can see that there is a slight difference
between the (0, 1) states as a result of the Berry curvature.
The nonmonotonic behavior of the m = O states is due to
the competition between the Darwin term and a higher
order term proportional to p* in the Foldy-Wouthuysen
transformation [36].

In summary, we have demonstrated that in the presence
of the Berry curvature, the effective mass approximation
must be modified through a k-space Peierls substitution.
This results in a Berry-curvature induced energy splitting of
exciton states with opposite angular momentum, which can
be understood as an effective spin-obit coupling effect. The
method outlined in this Letter is quite general and can be
easily transferred to other bound-state problems, such as
shallow impurity states.
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Note added.—Recently, we became aware of Ref. [43], in
which the relation between exciton energy splitting and the
Berry phase is discussed using the k-space formulation.
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