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ABSTRACT

This paper proposes a novel Pearson-type quasi maximum likelihood estimator (QMLE) of

GARCH(p, q) models. Unlike the existing Gaussian QMLE, Laplacian QMLE, generalized non-

Gaussian QMLE, or LAD estimator, our Pearsonian QMLE (PQMLE) captures not just the

heavy-tailed but also the skewed innovations. Under strict stationarity and some weak moment 15

conditions, the strong consistency and asymptotic normality of the PQMLE are obtained. With

no further efforts, the PQMLE can be applied to other conditionally heteroskedastic models. A

simulation study is carried out to assess the performance of the PQMLE. Two applications to

four major stock indexes and two exchange rates further highlight the importance of our new

method. Heavy-tailed and skewed innovations are often observed together in practice, and the 20

PQMLE now gives us a systematical way to capture these two co-existing features.

Some key words: Asymmetric innovation; Conditionally heteroskedastic model; Exchange rates; GARCH model;

Leptokurtic innovation; Non-Gaussian QMLE; Pearson’s Type IV distribution; Pearsonian QMLE; Stock indexes.
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1. INTRODUCTION

After the seminal work of Engle (1982) and Bollerslev (1986), numerous volatility models25

have been widely used to capture the feature of conditional heteroscedasticity in economic and

financial data sets; see, e.g., Bollerslev, Chou, and Kroner (1992), Bera and Higgins (1993), and

Francq and Zakoı̈an (2010). Among them, the most influential model in empirical studies is the

GARCH(p, q) model given by

yt = σtεt, (1)30

σ2
t = ω +

p∑

i=1

αiy
2
t−i +

q∑

j=1

βjσ
2
t−j , (2)

where ω > 0, αi ≥ 0 (i = 1, · · · , p), βj ≥ 0 (j = 1, · · · , q), and εt is a sequence of i.i.d. random

variables. Traditional inference for the GARCH model is based on the Gaussian quasi maximum

likelihood estimator (GQMLE), which is proposed by assuming that εt follows a standard normal

distribution. Berkes, Horváth, and Kokoszka (2003) showed that when εt has a finite fourth mo-35

ment with Eε2
t = 1 (the identification condition), the GQMLE is consistent and asymptotically

normal. However, the GQMLE can not capture the heavy-tailedness and skewness of εt, which

are two well-observed features of financial data in GARCH model applications; see, e.g., Engle

and González-Rivera (1991), Christoffersen, Heston, and Jacobs (2006), and Grigoletto and Lisi

(2009). Motivated by this, the MLE, based on a user-chosen heavy-tailed or skewed likelihood40

function, so far has been largely considered. For instance, εt can be the Student’s t distribution in

Bollerslev (1987), the gamma distribution in Engle and González-Rivera (1991), the generalized

error distribution in Nelson (1991), the skewed t distribution in Hansen (1994), the stable distri-

bution in Liu and Brorsen (1995), the noncentral t distribution in Harvey and Siddique (1999),

the Pearson’s Type IV distribution in Premaratne and Bera (2001), the Gram-Charlier distribu-45

tion in Leon, Rubio, and Serna (2005) and Cheng et al. (2011), the mixture normal distribution in

Bai, Russell, and Tiao (2003) and many others. However, the true distribution of εt is unknown

a priori in practice, and as shown in White (1982) and Newey and Steigerwald (1997), the MLE

may lead to inconsistent estimates of models (1)-(2) if the distribution of εt is misspecified.

In order to obtain a consistent estimator without knowing the true distribution of εt, peo-50

ple prefer to use the non-Gaussian QMLE (NGQMLE), which has an efficiency advantage over

GQMLE when εt is heavy-tailed. Generally, there are two ways to obtain a consistent NGQMLE.
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First, one can assume a different identification condition other than Eε2
t = 1. For instance, Peng

and Yao (2003) proposed the least absolute deviation estimator (LADE) under the identification

condition that median(ε2
t ) = 1, and the consistency and asymptotic normality of the LADE was 55

proved in Chen and Zhu (2014) under only a finite fractional moment of εt. By assuming that

εt follows a standard Laplace distribution, Berkes and Horváth (2004) considered the Laplacian

QMLE (LQMLE) under the identification condition that E|εt| = 1, and they showed that the

LQMLE is consistent and asymptotically normal when εt has a finite second moment; see also

Li and Li (2008) and Zhu and Ling (2011) for more discussions in this context. Second, one can 60

retain the identification condition Eε2
t = 1 for the NGQMLE by re-parameterizing models (1)-

(2). This method has been used for the semi-parametric estimator in Drost and Klaassen (1997),

the rank-based estimator in Andrews (2012), and the generalized NGQMLE (GNGQMLE) in

Fan, Qi, and Xiu (2014). By introducing a scale adjustment parameter, the GNGQMLE is con-

sistent and asymptotical normal when εt has a finite second moment, while the semi-parametric 65

and rank-based estimators can only estimate the heteroscedastic parameters αi and βj under the

same re-parameterized GARCH(p, q) model. Morevoer, it is worth noting that when εt has an

infinite fourth moment, all of LADE, LQMLE, and GNGQMLE achieve root-n convergency,

while the GQMLE suffers a slower convergence rate as shown in Hall and Yao (2003).

In this paper, we propose a Pearsonian QMLE (PQMLE) of models (1)-(2) by assuming that 70

εt follows a Pearson’s Type IV distribution. Like the LADE and LQMLE, the PQMLE requires

a specified identification condition rather than Eε2
t = 1. Under strict stationarity and a finite

fractional moment of εt, the strong consistency and asymptotic normality of the PQMLE are

obtained. Therefore, the PQMLE is applicable to all of the aforementioned non-Gaussian distri-

butions used in the MLE method. Furthermore, we show that the PQMLE can be easily applied 75

to other conditionally heteroskedastic models. A simulation study is carried out to assess the

performance of the PQMLE, and two applications to four major stock indexes and two exchange

rates further highlight the importance of our new method. Compared to the existing NGQMLEs,

the PQMLE captures not only the heavy-tailed but also the skewed innovations. Heavy-tailed and

skewed innovations are often observed together in practice, but none of the existing QMLE meth- 80

ods has focused on these co-existing features in the literature. The PQMLE method, which can
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capture a very large range of the asymmetry and leptokurtosis of εt, now gives us a systematical

way to achieve this goal.

This paper is organized as follows. Section 2 proposes our PQMLE and studies its asymptotic

properties. Simulation results are reported in Section 3. Applications are given in Section 4. Con-85

cluding remarks are offered in Section 5. The proofs are provided in the Appendix. Throughout

the paper, A′ is the transpose of matrix A, ‖A‖ = (tr(A′A))1/2 is the Euclidean norm of a matrix

A, ‖A‖ becomes |A| when A is a scalar, O(1) denotes a bounded generic constant, and “→d”

denotes the convergence in distribution.

2. THE PQMLE AND ASYMPTOTIC THEORY90

2·1. Some basic assumptions

Let θ = (ω, α1, · · · , αp, β1, · · · , βq)′ be the unknown parameter of the model given by (1)-(2)

and its true value be θ0. Denote the parameter space by Θ, where Θ is a subset of R1+p+q
0 with

R0 = [0,∞). Then, we need the following assumptions:

Assumption 1. yt is strictly stationary.95

Assumption 2. (i) Θ is compact; (ii) for each θ ∈ Θ, α(z) and β(z) have no common

root, α(1) 6= 0, αp + βq 6= 0 and
∑q

j=1 βj < 1, where α(z) =
∑p

i=1 αiz
i and β(z) = 1−

∑q
j=1 βjz

j .

Assumption 3. (i) ε2
t is a nondegenerate random variable; (ii) lims→0 s−µP (ε2

t ≤ s) = 0 for

some µ > 0; (iii) E|εt|2κ < ∞ for some κ > 0.100

Assumption 1 is a basic set-up for models (1)-(2), and its necessary and sufficient conditions

are given in Bougerol and Picard (1992). Assumption 2 and Assumption 3(i) are the identifi-

ability conditions for models (1)-(2) as shown in Berkes, Horváth, and Kokoszka (2003). As-

sumptions 3(ii)-(iii) from Berkes and Horváth (2004) are the technical conditions for proving

our asymptotic theory. Note that only a finite fractional moment of εt is required in this case, and105

so our method applies to very heavy-tailed innovations.
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2·2. The Pearson’s Type IV distribution

We briefly review the Pearson’s Type IV distribution in Nagahara (1999) and Heinrich (2004).

The Pearson’s Type IV (PIV) distribution, as one of the asymmetric and leptokurtic distributions,

has the following pdf: 110

f(x;λ, a, ν, m) = K

[
1 +

(
x− λ

a

)2
]−m

exp
[
−ν tan−1

(
x− λ

a

)]
, (3)

where x ∈ RwithR = (−∞,∞), and (λ, a, ν, m) are real parameters with m > 1/2 and a > 0.

Here, K is the normalizing constant given by

K =
22m−2 |Γ(m + iν/2)|2

aπΓ(2m− 1)
,

where i =
√−1 is the imaginary number and Γ(·) is the complex Gamma function. From Naga-

hara (1999), we know that if εt ∼ PIV(λ, a, ν, m), the mean, variance, skewness, and kurtosis of

εt are

mean(εt) = λ− aν

r
for m > 1, 115

var(εt) =
a2(r2 + ν2)
r2(r − 1)

for m > 1.5,

skew(εt) =
−4ν

r − 2

√
r − 1

r2 + ν2
for m > 2,

kurt(εt) =
3(r − 1)

[
(r + 6)(r2 + ν2)− 8r2

]

(r − 2)(r − 3)(r2 + ν2)
for m > 2.5,

respectively, where r = 2(m− 1). It is easy to see that f(x;λ, a, ν, m) = f(x− λ; 0, a, ν, m)

and f(x; 0, a, ν, m) = a−1f(x/a; 0, 1, ν, m). Thus, as in the conventional way, we treat λ and 120

a as the location and the scale parameters, respectively. Meanwhile, it is straightforward to see

that the parameter ν is related to the asymmetry of the distribution, and a positive (or negative) ν

stands for a negatively (or positively) skewed distribution; the parameter m captures the leptokur-

tosis of the distribution, and a smaller value of m represents a heavier tail of the distribution. To

further illustrate this, Figure 1 plots four different f(x; 0, 1, ν, m) densities. From Figure 1, we 125

can find that PIV distribution has a heavier left tail or right tail than the N(0, 1) distribution. This

is reasonable since the j-th moment of PIV distribution exists only when j < r + 1, while all the

moments of the N(0, 1) distribution are finite. Moreover, when we draw the 3-dimensional plots

of {(ν,m, skew(εt))} and {(ν,m, kurt(εt))} (not displayed here and available from us), we can
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Fig. 1. The plot of four different densities f(x; 0, 1, ν, m) for the Pearson’s Type IV distribution (the solid star line is

the density of the N(0, 1) distribution).

see that when |ν| (or m) increases, the absolute value of skew(εt) increases (or decreases) for130

fixed m (or ν); and the same conclusion holds for kurt(εt). Hence, we know that the PIV distri-

bution can capture a very large range of the asymmetry and leptokurtosis of the innovation. For

more discussions on the PIV distribution, we refer to Bauwens and Laurent (2005), Yan (2005),

and Grigoletto and Lisi (2009).

Next, we are interested in the case when εt in models (1)-(2) follows the PIV distribution.135

Figure 2 plots one realization for each pair of (ν,m) from the following GARCH(1, 1) model:

yt = εtσt and σ2
t = 0.01 + 0.01y2

t−1 + 0.9σ2
t−1, (4)

where εt ∼ PIV(0, 1, ν, m) with (ν,m) = (±2, 2), (0, 2), (±2, 4), and (0, 4). From Figure 2, we

find that no matter how heavy-tailed εt is, yt has a higher probability to be positive (or negative)

when ν < 0 (or > 0), and this asymmetric phenomena disappears when ν = 0. Moreover, when140

m becomes smaller, the absolute value of yt tends to be larger, especially for its extreme val-

ues. All of these findings indicate that the GARCH model with PIV(0, 1, ν, m) innovations can

capture a very large range of asymmetry and leptokurtosis in the data set.
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Fig. 2. One realization {yt}1000t=1 from model (4), when εt ∼ PIV(0, 1, ν, m).

2·3. The PQMLE

Given the observations {yn, · · · , y1} and the initial values Y0 := {yi; i ≤ 0}, we first rewrite 145

the parametric models (1)-(2) as

εt(θ) = yt/
√

ht(θ) and

ht(θ) = c0(θ) +
∞∑

i=1

ci(θ)y2
t−i,

where all expressions for ci(θ) (i ≥ 0) are given in Berkes and Horváth (2004, pages 635-636).

Clearly, εt(θ0) = εt and ht(θ0) = σ2
t . In practice, since the values of Y0 are unobservable, we 150

can replace them by zeros, and then use h̃t(θ) instead of ht(θ) to calculate our estimator, where

h̃t(θ) = c0(θ) +
t−1∑

i=1

ci(θ)y2
t−i for t = 2, · · · , n, (5)
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and h̃1(θ) = c0(θ). For given (ν,m) ∈ Γ, when εt follows the PIV(0, 1, ν, m) distribution, the

log-likelihood function (ignoring some constants) can be written as

L̃n(θ) = −
n∑

t=1



log

√
h̃t(θ) + m log

[
1 +

y2
t

h̃t(θ)

]
+ ν tan−1


 yt√

h̃t(θ)






 , (6)155

where Γ = R× (1/2,∞). We look for the maximizer of L̃n(θ) on Θ, that is,

θ̃n = arg max
θ∈Θ

L̃n(θ). (7)

Because we do not assume that εt follows the PIV(0, 1, ν, m) distribution, θ̃n is called the Pear-

sonian quasi-maximum likelihood estimator (PQMLE) of θ0. Note that equation (6) depends on

the tuning parameters (ν,m), and so we should specify them before the calculation of L̃n(θ).160

Particularly, when ν = 0, the log-likelihood function L̃n(θ) is symmetric. The detailed proce-

dure to select (ν,m) is discussed in Remark 3.

Next, let f̄(x) = f(x; 0, 1, ν, m)/K, g(y, s) = log
[
sf̄(ys)

]
, and w(s) = E [g(εt, s)], where

y ∈ R and s > 0. Then, it is straightforward to see that

L̃n(θ) =
n∑

t=1

g

(
yt, 1/

√
h̃t(θ)

)
.

In order to derive the asymptotic properties of θ̃n, we need one more assumption below:

Assumption 4. The equation u(c) = 1 has a unique positive solution at c = 1, where

u(c) = E

[
2m(cεt)2 + νcεt

1 + (cεt)2

]
for c > 0.

Assumption 4 is the identification condition for the PQMLE. From Assumption 4, we know that165

E

[
2mε2

t + νεt

1 + ε2
t

]
= 1, (8)

under which the conditional variance of yt is σ2
t var(εt), provided that Eε2

t < ∞. It is easy to see

that the condition in (8) is the identifiability condition appeared in Berkes and Horváth (2004),

and hence our identifiability condition is not exactly the same as theirs. When ν = 0, we know

that Assumption 4 and the condition in (8) are equivalent. However, when ν 6= 0, the condition

in (8) alone can not guarantee the identification of the PQMLE. To see the reason, we rewrite
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models (1)-(2) as

yt = σ∗t ε
∗
t and (σ∗t )

2 = ω∗ +
p∑

i=1

α∗i y
2
t−i +

q∑

j=1

βj(σ∗t−j)
2,

where c > 0, σ∗t = σt/c, ε∗t = cεt, ω∗ = ω/c2, α∗i = αi/c2, and εt satisfies the condition in (8).

Then, if there exists a c 6= 1 such that ε∗t satisfies the condition in (8) (i.e., u(c) = 1 for some

positive c 6= 1), the PQMLE can not be identified under (8). Thus, we need Assumption 4 to

rule out this un-desirable situation. Note that for given (ν,m) ∈ Γ, the condition in (8) does not 170

directly hold for many often used distributions of εt. We now give a sufficient condition below

for the standardization of εt:

Condition 1. For given (ν,m) ∈ Γ, (i) u(c) is a continuous function on {c : c > 0}; and (ii)

there exists a constant c > 0 such that u(c) < 1 on {c : c < c}, and u(c) is a strictly increasing

function on {c : c ≥ c}. 175

Note that Condition 1(i) holds when εt has a continuous density function, and then Condition

1(ii) holds when u(c) is a strictly increasing function on {c : c > 0}. Because limc→∞ u(c) =

2m > 1 for any given (ν,m) ∈ Γ, there must exist a unique c0 > 0 such that u(c0) = 1 un-

der Condition 1. This means that we can always standardize εt into ε∗t , where ε∗t = c0εt, and

ε∗t satisfies Assumption 4. For (ν,m) = (±2, 4), Figure 3 plots the function u(c) for N(0, 1),

Laplace(0, 1), t3, t4, STB(1.77, 0.2, 0.9,−0.02), STB(1.82,−0.15, 1.1,−0.02), PIV(0, 1, 2, 4),

or PIV(0.02, 0.9,−2, 4) distribution. Here, the STB(α̌, β̌, č, µ̌) distribution [see, e.g., Nolan

(1997) and Andrews, Calder, and Davis (2009)] has the following characteristic function:

ψ(t; α̌, β̌, č, µ̌) = exp
[
itµ̌− |čt|α̌(1− iβ̌sgn(t)Φ)

]
,

where α̌ ∈ (0, 2], β̌ ∈ [−1, 1], č ∈ (0,∞), µ̌ ∈ (−∞,∞), and

Φ =
{

tan(πα̌/2) if α̌ 6= 1,
−(2/π) log |t| if α̌ = 1.

From Figure 3, we find that although u(c) is not a strictly increasing function on {c : c >

0} when εt ∼ PIV(0, 1, 2, 4) for (ν,m) = (2, 4) or εt ∼ PIV(0.02, 0.9,−2, 4) for (ν,m) =

(−2, 4), each u(c) satisfies Condition 1, and hence all of these distributions can be standard- 180

ized to satisfy Assumption 4. Thus, for each (ν,m) ∈ Γ, we conjecture that Assumption 4 holds

for a large enough family of innovation distributions. In application (see, e.g., Section 4), we
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can always easily check the validation of this assumption by plotting ũn(c) [i.e., the sample

counterparts of u(c)], where

ũn(c) =
1
n

n∑

t=1

2m(cε̃t)2 + νcε̃t

1 + (cε̃t)2
(9)185

for c > 0, and ε̃t = yt/
√

h̃t(θ̃n) being the residual of models (1)-(2).
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Fig. 3. The plots of u(c) for N(0, 1) (solid line), Laplace(0, 1) (dashed line), t3 (dotted line), t4 (dash-dot line), STB(1.77, 0.2, 0.9,

−0.02) (star line), STB(1.82,−0.15, 1.1,−0.02) (plus line), PIV(0, 1, 2, 4) (circle line), and PIV(0.02, 0.9,−2, 4) (cross line).

Denote the first and second derivatives of g(y, s) with respective to s by g1(y, s) and g2(y, s),

respectively. We are now ready to give our main results:

THEOREM 1. Suppose that Assumptions 1-4 hold. Then, as n →∞, (i) θ̃n → θ0 a.s.; and (ii)
√

n
(
θ̃n − θ0

)
→d N(0, 4τ2A−1), where

τ2 =
Eg2

1(εt, 1)
[Eg2(εt, 1)]2

and A = E

[
1

h2
t (θ0)

∂ht(θ0)
∂θ

∂ht(θ0)
∂θ′

]
.
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Remark 1. The PQMLE only needs a finite fractional moment of εt for its asymptotic normal-190

ity, which is weaker than the moment condition Eε4
t < ∞ for the GQMLE in Berkes, Horváth,

and Kokoszka (2003) and Francq and Zakoı̈an (2004), or the moment condition Eε2
t < ∞ for

the LQMLE in Berkes and Horváth (2004) and the GNGQMLE in Fan, Qi, and Xiu (2014). Note

that as shown in Chen and Zhu (2014), the LADE in Peng and Yao (2003) also only needs a finite

fractional moment of εt for its asymptotic normality. 195

Remark 2. The identification condition for the PQMLE in Assumption 4 is different from the

identification condition Eε2
t = 1 for the GQMLE and the GNGQMLE, the identification condi-

tion E|εt| = 1 for the LQMLE, or the identification condition median(ε2
t ) = 1 for the LADE.

Thus, it is not straightforward to compare the efficiency of the PQMLE with that of other esti-

mators formally, and the simulation comparison in Section 3 is necessary. 200

Remark 3. To calculate the PQMLE in (7), we need to first select the tuning parameters ν and

m. This can be simply done by using the maximum likelihood estimation method; see Premaratne

and Bera (2001), Verhoeven and McAleer (2004), Bhattacharyya, Chaudhary, and Yadav (2008),

and Bhattacharyya, Mirsa, and Kodase (2009). Assume that εt ∼ PIV(0, 1, ν, m). Then, we can

estimate (ν,m, θ) jointly by maximizing the full log-likelihood function LLFP (ν,m, θ), where 205

LLFP (ν,m, θ) = L̃n(θ) + n log K. (10)

Now, we can choose (ν,m) to be the corresponding estimators from this MLE method. Although

the parameters ν and m selected by the MLE method may not be optimal, the practical usefulness

of this method will be illustrated by simulation studies in Section 3 and some empirical examples

in Section 4. 210

Remark 4. In the construction of (6), we set the location parameter λ = 0 and scale parameter

a = 1. The reason is that when λ 6= 0, we need to modify g(y, s) as

g(y, s) = log s−m log

[
1 +

(
ys− λ

a

)2
]
− ν tan−1

(
ys− λ

a

)
,

and then we can not verify conditions (1.14), (1.17), and (1.19) in Berkes and Horváth (2004).

Thus, it is convenient to set λ = 0, since there is no theoretical result to guarantee that Theorem

1 holds when λ 6= 0. Moreover, when λ = 0 and εt ∼ PIV(0, a, ν, m), model (1) can be written

as yt = σ∗t ε∗t , where σ∗t = aσt and ε∗t = εt/a such that ε∗t ∼ PIV(0, 1, ν, m). Thus, based on
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εt ∼ PIV(0, a, ν, m) and ε∗t ∼ PIV(0, 1, ν, m), the full log-likelihood functions as in (10) are 215

the same. In view of this, we can set a = 1 for simplicity.

Remark 5. Note that the value of (ν,m) can be anywhere in Γ, and a different value of

(ν,m) will imply a different stationarity region of yt. To see this, Figure 4 plots the strict sta-

tionarity region of the GARCH(1, 1) model: yt = εtσt and σ2
t = ω + αy2

t−1 + βσ2
t−1, where

εt ∼ PIV(0, 1, ν, m) with (ν,m) = (1, 2), (2, 2), (1, 4), and (2, 4). As a comparison, the station-220

arity regions for the cases that εt ∼ N(0, 1) in Nelson (1990) and εt ∼ Laplace(0, 1) in Zhu and

Ling (2011) are also re-plotted in Figure 4. Here, we do not normalize εt in each case to sat-

isfy the identifiability condition of one estimation method, since the stationarity region of yt is

invariant to the normalization of εt. From Figure 4, we find that the parameter region for strict sta-

tionarity is much larger than that for Ey2
t < ∞. Moreover, a smaller value of ν or a larger value225

of m will give a larger strict stationarity region. Particularly, except for εt ∼ PIV(0, 1, 2, 2), each

strict stationarity region for other PIV distributions is much larger than that for εt ∼ N(0, 1) or

that for εt ∼ Laplace(0, 1). Therefore, our PQMLE can have a much larger admissible parameter

region than the GQMLE, the GNGQMLE, or the LQMLE.

2·4. Extension to conditionally heteroskedastic models230

In this subsection, we study the PQMLE for the following conditionally heteroskedastic mod-

els:

yt = σtεt and σt = σ(yt−1, yt−2, · · · ; θ0), (11)

where εt being independent of {yj ; j < t} is a sequence of i.i.d. random variables, the parameter

space Θ is a subset ofRl, the true value θ0 is an interior point in Θ, and σ : R∞ ×Θ → (0,∞).235

Many existing models, such as the GARCH model in (1)-(2), the asymmetric power GARCH

model in Ding, Granger, and Engle (1993), and the asymmetric log-GARCH model in Geweke

(1986), can be embedded into model (11); see, e.g., Bollerslev, Chou, and Kroner (1992), Tsay

(2005), and Francq and Zakoı̈an (2010) for more discussions in this context.

As for (5), let ht(θ) = [σ(yt−1, yt−2, · · · ; θ)]2 and define h̃t(θ) in the same way as ht(θ) by240

replacing Y0 by zeros. Then, based on {h̃t(θ)}, we can define the PQMLE for model (11) as in

(7). To derive the asymptotic properties of the PQMLE, three more assumptions are needed.
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Fig. 4. The regions bounded by the solid and dashed curves are for the strict stationarity (i.e., E[log(αε2
t + β)] < 0) and for

Ey2
t < ∞ (i.e., Eε2

t α + β < 1), respectively.

Assumption 5. (i) ht(θ) ≥ w (a.s.) for some w > 0 and all θ ∈ Θ. Moreover, ht(θ) = ht(θ0)

(a.s.) if and only if θ = θ0; (ii) if x′(∂ht(θ)/∂θi)i=1···l = 0 (a.s.) for any x ∈ Rl, then x = 0.

Assumption 6. (i) E[supθ∈Θ | log ht(θ)|] < ∞;

(ii) E

[
sup
θ∈Θ

∥∥∥∥
1

ht(θ)
∂ht(θ)

∂θ

∥∥∥∥
]2

< ∞ and E

[
sup
θ∈Θ

∥∥∥∥
1

ht(θ)
∂2ht(θ)
∂θ∂θ′

∥∥∥∥
]

< ∞.

245
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Assumption 7. (i) h̃t(θ) ≥ z (a.s.) for some z > 0 and all θ ∈ Θ;

(ii) sup
θ∈Θ

|h̃t(θ)− ht(θ)| ≤ O(ρt)Rt,

(iii) sup
θ∈Θ

∥∥∥∥∥
1

h̃t(θ)
∂h̃t(θ)

∂θ
− 1

ht(θ)
∂ht(θ)

∂θ

∥∥∥∥∥ ≤ O(ρt)Rt,

(iv) sup
θ∈Θ

∥∥∥∥∥
1

h̃t(θ)
∂2h̃t(θ)
∂θ∂θ′

− 1
ht(θ)

∂2ht(θ)
∂θ∂θ′

∥∥∥∥∥ ≤ O(ρt)Rt

for some constant ρ ∈ (0, 1), where Rt is a positive random variable such that ER2κ1
t = O(t)250

for some κ1 ∈ (0, 1).

Assumption 5 imposes some basic requirements on the function ht(θ), and they are satisfied by

most of the conditionally heteroskedastic models; see, e.g., Francq and Zakoı̈an (2004, 2013).

Assumption 6 gives some technical moment conditions for our proofs, and Assumption 7 makes

the initial values Y0 ignorable. Both assumptions have been verified for GARCH models in Ling255

(2007), asymmetric power GARCH models in Hamadeh and Zakoı̈an (2011), and asymmetric

log-GARCH models in Francq, Wintenberger, and Zakoı̈an (2013). Corollary 1 below gives the

strong consistency and asymptotic normality the PQMLE for model (11), and its proof is omitted

because it follows the same ones as for Theorems 1.1-1.2 in Berkes and Horváth (2004).

COROLLARY 1. Assume that yt follows model (11). If Assumptions 1, 2(i), and 3-7 hold, then260

the conclusions in Theorem 1 hold.

3. SIMULATION STUDY

In this section, we compare the performance of the PQMLE with those of the GQMLE, the

LQMLE, the LADE, and the GNGQMLE in finite samples. We generate 1000 replications of

sample size n = 1000 from the following model:265

yt = σtεt and σ2
t = ω0 + α0y

2
t−1 + β0σ

2
t−1, (12)

where we choose (ω0, α0, β0) = (0.25, 0.15, 0.3) as in Fan, Qi, and Xiu (2014), and εt is chosen

to be the PIV distributions, the STB distributions, and the Student’s t distributions, respectively.

Particularly, for the STB distribution, the parameters (α̌, β̌, µ̌) are set as those for the British

pound and the Japanese Yen in Table III of Liu and Brorsen (1995).270
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In order to implement the PQMLE for each replication, we choose (ν,m) as in Remark 3, and

then the PQMLE θ̃∗n is the estimator of (ω0/c2
0, α0/c2

0, β0), where c0 is the unique solution of the

function u(c) = 1 on {c : c > 0}, and u(c) is defined as in Assumption 4. Consequently, we let

θ̃n = (c2
0ω̃

∗
n, c2

0α̃
∗
n, β̃∗n)

be the PQMLE of (ω0, α0, β0), where c0 is chosen to be the numerical solution of ûn(c) = 1

on {c : c > 0}, and ûn(c) is defined in the same way as ũn(c) in (9) with εt replacing ε̃t. Here,

we have assumed that εt can be standardized for each replication. Similarly, since the other

four estimation methods require different identification conditions for model (12), the GQMLE

(θ̄∗1n), LQMLE (θ̄∗2n), LADE (θ̄∗3n), and GNGQMLE (θ̄∗4n) are estimators of (c1ω0, c1α0, β0) with 275

c1 = Eε2
t , (E|εt|)2, median(ε2

t ) and Eε2
t respectively, and then we let

θ̄1n =
(

ω̄∗1n

Eε2
t

,
ᾱ∗1n

Eε2
t

, β̄∗1n

)
, θ̄2n =

(
ω̄∗2n

(E|εt|)2 ,
ᾱ∗2n

(E|εt|)2 , β̄∗2n

)
,

θ̄3n =
(

ω̄∗3n

median(ε2
t )

,
ᾱ∗3n

median(ε2
t )

, β̄∗3n

)
, and θ̄4n =

(
ω̄∗4n

Eε2
t

,
ᾱ∗4n

Eε2
t

, β̄∗4n

)

be the GQMLE, LQMLE, LADE, and GNGQMLE of (ω0, α0, β0), respectively. The estimated

asymptotic standard deviations of all estimators are derived in a similar way. In all calculations, 280

we use the true values of Eε2
t , (E|εt|)2, and median(ε2

t ), and the GNGQMLE is constructed in

the same way as in Section 7.2 of Fan, Qi, and Xiu (2014). Note that the PQMLE and LADE

are applicable for all innovations, but the GQMLE is only applicable when Eε4
t < ∞, and the

LQMLE and GNGQMLE are only applicable when Eε2
t < ∞.

Table 1 reports the bias and root mean square error (RMSE) of all estimators for model (12). 285

From Table 1, we find that all estimators have very small bias. Thus, we compare the performance

of all estimators in terms of the minimized RMSE. When εt ∼ PIV(0, 1, 2, 4), the PQMLE has

the smallest RMSE. This is not surprising since it is the efficient estimator due to the fact that the

selected value of (ν,m) is close to the optimal value (2, 4). When ηt ∼ PIV(0.02, 0.9,−2, 4),

the PQMLE still has the smallest RMSE even when the location parameter λ and scale parameter 290

a deviate from 0 and 1, respectively. For both cases of PIV distributions, the GNGQMLE has the

second smallest RMSE, and the GQMLE or LADE has the largest RMSE. Next, when εt follows

the STB distribution, only the PQMLE and LADE are applicable, and the PQMLE has smaller

RMSE than the LADE in both examined cases. Thirdly, when εt follows the t distribution, the
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Table 1. The bias and RMSE of all estimators for model (12)
εt ∼ PIV(0, 1, 2, 4)

PQMLE GQMLE LQMLE LADE GNGQMLE
ω α β ω α β ω α β ω α β ω α β

Bias 0.0013-0.0012-0.0032 -0.0051-0.00180.0139 0.0025-0.0021-0.0050 0.0066 0.0233-0.0216 -0.0029-0.0022 0.0076
RMSE 0.1070 0.1016 0.2875 0.1152 0.12040.3116 0.1132 0.1078 0.3040 0.1161 0.1497 0.3083 0.1089 0.1057 0.2937

εt ∼ PIV(0.02, 0.9,−2, 4)

PQMLE GQMLE LQMLE LADE GNGQMLE
ω α β ω α β ω α β ω α β ω α β

Bias -0.0018 0.0069 0.0030 -0.0018 0.01700.0003 0.0049 0.0146-0.0158 0.0104 0.0414-0.0363 -0.0050 0.0093 0.0101
RMSE 0.1079 0.1177 0.2921 0.1146 0.13680.3108 0.1127 0.1258 0.3039 0.1191 0.1713 0.3184 0.1107 0.1238 0.3013

εt ∼ STB(1.77, 0.2, 0.9,−0.02)

PQMLE GQMLE LQMLE LADE GNGQMLE
ω α β ω α β ω α β ω α β ω α β

Bias 0.0069-0.0009-0.0085 N.A. N.A. 0.0079 0.0001-0.0101 N.A.
RMSE 0.0463 0.0306 0.0927 N.A. N.A. 0.0607 0.0417 0.1255 N.A.

εt ∼ STB(1.82,−0.15, 1.1,−0.02)

PQMLE GQMLE LQMLE LADE GNGQMLE
ω α β ω α β ω α β ω α β ω α β

Bias 0.0075-0.0010-0.0070 N.A. N.A. 0.0075-0.0010-0.0058 N.A.
RMSE 0.0429 0.0236 0.0745 N.A. N.A. 0.0572 0.0334 0.1003 N.A.

εt ∼ t4
PQMLE GQMLE LQMLE LADE GNGQMLE

ω α β ω α β ω α β ω α β ω α β

Bias 0.0063 0.0009-0.0123 N.A. 0.0078 0.0016-0.0149 0.0045 0.0014-0.0061 0.0047 0.0001-0.0138
RMSE 0.0555 0.0377 0.1211 N.A. 0.0574 0.0393 0.1250 0.0720 0.0490 0.1567 0.0549 0.0374 0.1210

εt ∼ t3
PQMLE GQMLE LQMLE LADE GNGQMLE

ω α β ω α β ω α β ω α β ω α β

Bias 0.0061 0.0007-0.0095 N.A. 0.0074 0.0010-0.0118 0.0074 0.0033-0.0134 -0.0004-0.0032-0.0105
RMSE 0.0495 0.0337 0.0980 N.A. 0.0550 0.0397 0.1115 0.0625 0.0413 0.1242 0.0506 0.0350 0.1019

† The invalid estimation results are labeled as “Not Available (N.A.)”.

‡ The smallest RMSE for each case is in boldface.

performance of all estimation methods is mixed. Specifically, when εt ∼ t4, the GNGQMLE295

has the smallest RMSE due to its adaptive property under symmetry, but the PQMLE follows

closely behind by a negligible margin; while when εt ∼ t3, the tail of εt becomes heavier, and the

PQMLE has the smallest RMSE among all estimators. Overall, the simulation study shows that

the PQMLE together with the selection procedure of (ν,m) in Remark 3 has a good performance

in finite samples, especially for the heavy-tailed and skewed innovations.300
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4. APPLICATION

4·1. Application to stock indexes

In this subsection, we apply the PQMLE estimation method to four major stock indexes in

the world. The data sets we considered are the daily DJIA, FTSE, HSI, and NASDAQ indexes

from January 3, 2000 to December 27, 2007. We denote the log-return (×100) of each data 305

set by {yt}n
t=1, and the summary statistics for each yt is given in Table 2. From this table, we

find that each yt is skewed and has a heavier tail than the N(0, 1) distribution. Hence, we use

a GARCH(1, 1) model with the PQMLE estimation method to fit each return series. As a com-

parison, we also apply the GQMLE, LQMLE, or GNGQMLE estimation method to obtain the

fitted GARCH(1, 1) model for each return series. For the PQMLE method, ν and m are chosen 310

as in Remark 3. For the GNGQMLE method, the auxiliary likelihood function is based on the

standardized t3, t5, or t7 distribution such that it has a variance equal to one, and then the corre-

sponding estimator is denoted by GNGQMLE1, GNGQMLE2, or GNGQMLE3, respectively.

The detailed estimation results for each return series are given in Table 3, in which the full

log-likelihood function of the PQMLE is defined as in (10), and the full log-likelihood functions 315

of the GQMLE (LLFG), LQMLE (LLFL), and GNGQMLE (LLFGNG) are defined as follows:

LLFG = −
n∑

t=1

[
log

√
h̃t(θ̄1n) +

y2
t

2h̃t(θ̄1n)

]
+ n log

(
1√
2π

)
,

LLFL = −
n∑

t=1


log

√
h̃t(θ̄2n) +

|yt|√
h̃t(θ̄2n)


 + n log

(
1
2

)
,

LLFGNG = −
n∑

t=1

[
log

(
η̂k

√
h̃t(θ̄4n)

)
+

k + 1
2

log

(
1 +

y2
t

(k − 2)η̂2
kh̃t(θ̄4n)

)]

+ n log

(
Γ{(k + 1)/2}√
(k − 2)πΓ{k/2}

)
for k = 3 (or 5, 7), 320

where θ̄1n, θ̄2n, and θ̄4n are the GQMLE, LQMLE, and GNGQMLE, respectively, and

η̂k = arg max
η

n∑

t=1

[
− log(η)− k + 1

2
log

(
1 +

y2
t

(k − 2)η2h̃t(θ̄1n)

)]
.

Here, η̂k measures the discrepancy between the correct likelihood function and the given auxil-

iary likelihood function. Specifically, when η̂k > 1(or < 1), the given auxiliary innovation tk is

heavier (or lighter) tailed than the true innovation. Furthermore, Table 3 also reports the estimated

values of the identification condition c1 for each estimation method, that is, c1 is the sample mean
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of (2mε2
t + νεt)/(1 + ε2

t ), ε2
t , or |εt| for the PQMLE, GQMLE (and GNGQMLE), or LQMLE325

estimation method, respectively. Meanwhile, it is worth mentioning that (i) all fitted models are

adequate by looking at the ACF and PACF plots (not displayed here) of the squared and absolute

residuals; (ii) the plots of ũn(c) in Figure 5 indicate that Assumption 4 holds for the PQMLE in

each return series, where ũn(c) is defined as in (9).

Table 2. Summary statistics of four major stock indexes
yt n mean standard deviation skewness kurtosis

DJIA 2009 0.0081 1.0951 -0.0907 7.4136
FTSE 2017 -0.0012 1.1297 -0.1749 5.8796
HSI 1982 0.0238 1.3533 -0.3596 6.5512
NASDAQ 2007 -0.0216 1.8461 0.1848 7.2060
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Fig. 5. The plots of ũn(c) for DJIA (solid line), FTSE (dashed line), HSI (dotted line), and NASDAQ (dash-dot line).

From Table 3, we find that (i) all the values of c1 are close to 1 as expected; (ii) for each330

return series, the PQMLE always has the best fitting in terms of the maximized LLF among all

estimation methods; (iii) the GNGQMLE estimation with a t5 or t7 likelihood gives the second

best fitted models for the DJIA and HSI return series in which the values of m are smaller,

while the GQMLE estimation gives the second best fitted models for the FTSE and NASDAQ

return series in which the values of m are larger; this is not surprising as a smaller m implies335

a heavier tail of the innovation and vice versa; (iv) the LQMLE has the worst fitting for FTSE

and NASDAQ return series with larger m (thinner tail), and the GQMLE has the worst fitting for

DJIA and HSI return series with smaller m (heavier tail); (v) the GNGQMLE estimation with a

t3 likelihood always has the largest value of η̂k among all GNGQMLE estimations, and hence
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Table 3. Summary of all estimations for four major stock indexes
yt PQMLE GQMLE LQMLE GNGQMLE1 GNGQMLE2 GNGQMLE3

DJIA ω 0.0698 0.0261 0.0075 0.0112 0.0123 0.0128
(0.0241) (0.0115) (0.0027) (0.0031) (0.0034) (0.0035)

α 0.4584 0.0847 0.0453 0.0801 0.0834 0.0845
(0.0719) (0.0246) (0.0078) (0.0005) (0.0005) (0.0006)

β 0.9094 0.8934 0.9120 0.9150 0.9109 0.9094
(0.0132) (0.0287) (0.0140) (0.0186) (0.0202) (0.0211)

ν -0.0379
m 4.2961
η̂k 1.2666 1.0331 0.9909
c1 0.9995 0.9995 0.9995 1.0086 1.0078 1.0077
LLF -2726.4 -2794.5 -2764.7 -2759.0 -2732.1 -2727.6

FTSE ω 0.5639 0.0152 0.0091 0.0138 0.0138 0.0138
(0.1743) (0.0046) (0.0029) (0.0018) (0.0018) (0.0019)

α 4.4984 0.1175 0.0699 0.1112 0.1136 0.1148
(0.6032) (0.0158) (0.0099) (0.0004) (0.0004) (0.0004)

β 0.8728 0.8721 0.8774 0.8794 0.8774 0.8762
(0.0157) (0.0159) (0.0161) (0.0125) (0.0130) (0.0134)

ν -0.0028
m 20.676
η̂k 1.3533 1.0933 1.0430
c1 0.9995 0.9996 0.9996 0.9996 0.9996 0.9995
LLF -2722.0 -2725.2 -2801.6 -2789.3 -2748.9 -2735.9

HSI ω 0.0318 0.0414 0.0055 0.0048 0.0073 0.0087
(0.0192) (0.0260) (0.0036) (0.0055) (0.0066) (0.0071)

α 0.2192 0.1436 0.0378 0.0497 0.0534 0.0559
(0.0410) (0.0446) (0.0079) (0.0005) (0.0007) (0.0008)

β 0.9463 0.8517 0.9319 0.9529 0.9477 0.9445
(0.0098) (0.0437) (0.0138) (0.0253) (0.0283) (0.0302)

ν -0.0741
m 3.5529
η̂k 1.2321 1.0163 0.9795
c1 0.9995 1.0005 1.0002 1.1053 1.0938 1.0873
LLF -3174.6 -3272.3 -3191.4 -3195.3 -3177.3 -3176.7

NASDAQ ω 0.1702 0.0104 0.0037 0.0043 0.0053 0.0059
(0.0872) (0.0047) (0.0025) (0.0014) (0.0016) (0.0017)

α 1.3844 0.0650 0.0392 0.0620 0.0628 0.0634
(0.2184) (0.0112) (0.0064) (0.0002) (0.0002) (0.0002)

β 0.9336 0.9319 0.9364 0.9387 0.9373 0.9363
(0.0099) (0.0110) (0.0099) (0.0080) (0.0085) (0.0089)

ν -0.0114
m 12.195
η̂k 1.3511 1.0917 1.0411
c1 0.9995 0.9995 0.9995 1.0019 1.0014 1.0010
LLF -3576.9 -3583.7 -3652.9 -3643.0 -3602.6 -3589.5

† The standard deviations are in parentheses.

‡ The largest LLF for each case is in boldface.
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it implies that the auxiliary t3 innovation is heavier tailed than the true innovation, while the340

auxiliary t5 or t7 innovation has the similar tail as the true innovation because the values of η̂k

in these two cases are close to 1; (vi) the values of m are all larger than 2.5, and it may suggest

that the innovation for each return series has finite fourth moment. Overall, we know that all

estimation methods are applicable, and the PQMLE estimation method taking into account both

asymmetry and leptokurtosis of the innovation gives the best fitted models for all return series in345

terms of the maximized LLF.

Next, we use the conditional coverage test LRcc in Christoffersen (1998, page 847) to exam-

ine whether each of the estimation methods can provide us with a good interval forecast for its

one-step-ahead prediction. For each return series, the out-of-sample data set we used is a realiza-

tion of n0 consecutive observations starting after the last observation of the in-sample data set.350

Following Christoffersen (1998), the upper-tail predictive interval (UPI) and lower-tail predictive

interval (LPI) for each out-of-sample data yt at the significance level p̄ are defined as

UPIt|t−1(p̄) =
(
F−1(1− p̄)σ̄t,∞

)
and LPIt|t−1(p̄) =

(−∞, F−1(p̄)σ̄t

)
,

respectively, where σ̄t is the one-step-ahead prediction of σt from each estimation method, and

F (·) is the cdf of the PIV(0, 1, ν, m), N(0, 1), Laplace(0, 1), or standardized ti (for i = 3, 5, 7)355

distribution for the PQMLE, GQMLE, LQMLE, or GNGQMLEi estimation method, respec-

tively. Table 4 reports all the results of LRcc with p̄ = 0.95, which examine whether the UPI or

LPI from each estimation method gives us a good conditional coverage rate (CR). From Table

4, we find that (i) the p-value of LRcc based on the LQMLE or GNGQMLE1 method is always

close to zero, and hence the CR constructed from these two methods is not satisfactory; (ii) for360

the DJIA or HSI return series, the CR based on the PQMLE or GNGQMLE3 method is sat-

isfactory in both directions, while the LPI based on the GQMLE method for the DJIA or HSI

return series and the UPI based on the GNGQMLE2 method for the DJIA return series are not

satisfactory; (iii) the PQMLE and GQMLE methods indicate that only the LPI is satisfactory for

the FTSE return series, and this can not be indicated by all of the GNGQMLE methods; actually,365

UPI of PQMLE or GQMLE is much closer to the nominal one than the others; (iv) all PQMLE,

GQMLE, GNGQMLE2, and GNGQMLE3 methods indicate that only the LPI is satisfactory for

the NASDAQ return series. Overall, the CRs of PQMLE are closest to the nominal 0.95 in 5 out
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Table 4. The results of LRcc and out-of-sample CR with p̄ = 0.95 for four major stock indexes.
yt n0 PQMLE GQMLE LQMLE GNGQMLE1 GNGQMLE2 GNGQMLE3

DJIA 1487 UPI 5.9593 4.3344 30.276 33.411 8.5153 5.9593
(0.0508) (0.1145) (0.0000) (0.0000) (0.0142) (0.0508)
[0.9381] [0.9401] [0.9771] [0.9153] [0.9354] [0.9381]

LPI 2.9401 7.2116 61.514 34.740 3.4362 2.7723
(0.2299) (0.0272) (0.0000) (0.0000) (0.1794) (0.2500)
[0.9509] [0.9549] [0.9872] [0.9159] [0.9489] [0.9523]

FTSE 1493 UPI 8.3814 8.3814 44.653 55.661 17.443 12.717
(0.0151) (0.0151) (0.0000) (0.0000) (0.0002) (0.0017)
[0.9330] [0.9330] [0.9826] [0.9029] [0.9257] [0.9297]

LPI 5.1764 5.1764 73.956 38.891 13.370 8.5952
(0.0752) (0.0752) (0.0000) (0.0000) (0.0012) (0.0136)
[0.9451] [0.9451] [0.9900] [0.9149] [0.9357] [0.9404]

HSI 1490 UPI 0.1211 3.1785 38.049 20.341 1.6155 0.1405
(0.9412) (0.2041) (0.0000) (0.0000) (0.4459) (0.9322)
[0.9497] [0.9443] [0.9805] [0.9228] [0.9430] [0.9490]

LPI 1.7182 7.6223 56.443 13.132 0.9994 1.1968
(0.4235) (0.0221) (0.0000) (0.0014) (0.6067) (0.5497)
[0.9564] [0.9577] [0.9859] [0.9302] [0.9517] [0.9544]

NASDAQ 1489 UPI 11.414 11.931 35.262 39.303 18.612 14.280
(0.0033) (0.0026) (0.0000) (0.0000) (0.0001) (0.0008)
[0.9436] [0.9429] [0.9792] [0.9174] [0.9362] [0.9402]

LPI 4.3780 4.3780 84.023 36.208 3.6488 2.9362
(0.1120) (0.1120) (0.0000) (0.0000) (0.1613) (0.2304)
[0.9597] [0.9597] [0.9919] [0.9174] [0.9483] [0.9510]

† The p-values of LRcc are in open brackets, and the values of CR are in square brackets.

‡ The p-values of LRcc larger than (1− p̄) are in boldface.

of 8 cases (including ties), while GQMLE is 3 out of 8, and GNGQMLE2 or GNGQMLE3 is

1 out of 8. Hence, the PQMLE method is applicable in giving us a good prediction interval for 370

each side with respect to a wide range of tail thickness of the innovation, but without relying on

the selection of the auxiliary likelihood function.

4·2. Application to exchange rates

In this subsection, we apply the PQMLE estimation method to HKD/USD and TWD/USD

exchange rates. For each exchange rate series, the period of the data we considered is listed 375

in the second column of Table 5. Since the log-return (×100) of each exchange rates exhibits

some correlations in its conditional mean, it is first fitted by an ARMA(2, 2) model with the

weighted LADE method in Zhu and Ling (2014). Consequently, we denote the residuals from

each fitted ARMA(2, 2) model by yt. Table 5 gives the summary statistics for each yt, from
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which we find that each yt is skewed and has a heavier tail than the N(0, 1) distribution. Hence,380

as in Subsection 4.1, we use a GARCH(1, 1) model with the PQMLE, GQMLE, LQMLE, and

GNGQMLE estimation methods to fit each yt. All of the estimation results are summarized in

Table 6, and the plots of ũn(c) in Figure 6 imply that Assumption 4 holds for the PQMLE in

each return series.

Table 5. Summary statistics of two exchange rates
yt Time Period n mean standard deviation skewness kurtosis

HKD/USD Jan 24, 1996–Jan 08, 2004 2000 0.0000 0.0268 -4.3767 98.122
TWD/USD Jan 19, 1996–Jan 10, 2000 1000 0.0116 0.4504 1.4054 28.731

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2
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3

c

ũ n
(c)

Fig. 6. The plots of ũn(c) for HKD/USD (solid line) and TWD/USD (dashed line).

From Table 6, we find that (i) the GQMLE has the worst performance for both return series in385

terms of maximized LLF, and this may be because the GQMLE is not applicable when the values

of m are smaller than 2.5, which implies a very heavy tail of the innovation; (ii) for HKD/USD

return series, the values of c1 deviate significantly from one in all GNGQMLE methods, meaning

that all GNGQMLEs are not well identified in this case; (iii) the TWD/USD return series has a

very heavy tail because the value of m is smaller than 1.5, from which we may conclude that the390

innovation has infinite variance, and hence only the PQMLE method is valid; (iv) for both cases,

the PQMLE has the best fit in terms of the maximized LLF among all estimation methods, and

this advantage of PQMLE over LQMLE or GNGQMLE may be explained by its ability to take

into account both asymmetric and leptokurtic effects.
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Table 6. Summary of all estimations for two exchange rates
yt PQMLE GQMLE LQMLE GNGQMLE1 GNGQMLE2 GNGQMLE3

HKD/USD ω 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

α 0.4529 0.2464 0.2718 1.2262 1.0586 0.9734
(0.0431) (0.2333) (0.0544) (0.0000) (0.0000) (0.0000)

β 0.6526 0.7837 0.6599 0.6795 0.6893 0.6975
(0.0190) (0.1265) (0.0398) (0.1108) (0.1126) (0.1125)

ν -0.0248
m 1.6612
η̂k 0.6952 0.6004 0.5977
c1 0.9956 0.9923 0.9956 1.3948 1.3786 1.3966
LLF 6525.1 5356.8 6389.7 6518.7 6469.4 6421.8

TWD/USD ω 0.0000 0.0001 0.0017 0.0002 0.0007 0.0008
(0.0000) (0.0005) (0.0001) (0.0001) (0.0003) (0.0004)

α 0.4274 1.0917 0.2539 1.1664 1.0186 0.9788
(0.0615) (0.6140) (0.0636) (0.0003) (0.0007) (0.0008)

β 0.5154 0.6908 0.6843 0.6797 0.6931 0.6958
(0.0302) (0.1067) (0.0482) (0.0736) (0.0821) (0.0848)

ν -0.0223
m 1.4076
η̂k 0.6887 0.6003 0.5996
c1 0.9987 0.9975 0.9972 1.0011 0.9949 1.0044
LLF 294.9 -219.2 247.2 265.2 225.6 193.8

† The standard deviations are in parentheses.

‡ The largest LLF for each case is in boldface.

Next, as in Subsection 4.1, we use the conditional coverage test LRcc to examine whether 395

each of the estimation methods can provide us with a good interval forecast for its one-step-

ahead prediction. Table 7 reports all the results of LRcc and CR with p̄ = 0.95. From this table,

we find that for the HKD/USD and TWD/USD return series, only the PQMLE method gives us

a satisfactory CR in both directions, although the GQMLE can also give us a satisfactory CR

for UPI. Particularly, the CRs of the PQMLE are always within one percent from the 95% value 400

for both return series, while this is not the case in other methods. Overall, compared with other

methods, the performance of PI constructed from the PQMLE method is often satisfactory, and

it is not affected by the selection of the auxiliary likelihood function. This advantage of PQMLE

becomes more significant when the return series has a smaller value of m.
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Table 7. The results of LRcc and out-of-sample CR with p̄ = 0.95 for two exchange rates series.
yt n0 PQMLE GQMLE LQMLE GNGQMLE1 GNGQMLE2 GNGQMLE3

HKD/USD 2000 UPI 0.9936 3.0993 20.664 33.411 34.606 34.606
(0.6085) (0.2123) (0.0000) (0.0000) (0.0000) (0.0000)
[0.9525] [0.9575] [0.9685] [0.9685] [0.9750] [0.9750]

LPI 3.9696 6.4482 55.627 49.185 63.514 65.891
(0.1374) (0.0398) (0.0000) (0.0000) (0.0000) (0.0000)
[0.9520] [0.9585] [0.9800] [0.9785] [0.9835] [0.9840]

TWD/USD 1000 UPI 1.1373 23.754 15.057 10.989 21.803 23.754
(0.5663) (0.0000) (0.0000) (0.0041) (0.0000) (0.0000)
[0.9550] [0.9780] [0.9730] [0.9700] [0.9770] [0.9780]

LPI 1.0623 21.660 13.516 14.773 19.437 23.386
(0.5879) (0.0000) (0.0012) (0.0006) (0.0001) (0.0000)
[0.9450] [0.9770] [0.9720] [0.9690] [0.9770] [0.9790]

† The p-values of LRcc are in open brackets, and the values of CR are in square brackets.

‡ The p-values of LRcc larger than (1− p̄) are in boldface.

5. CONCLUDING REMARKS 405

In this paper, we propose a PQMLE for GARCH models. Under strict stationarity and some

weak moment conditions, the strong consistency and asymptotic normality of the PQMLE are

obtained. Meanwhile, the PQMLE can be applied to other conditionally heteroskedastic models

with no further efforts. Simulation study demonstrates that the PQMLE can achieve better ef-

ficiency than other estimators, especially when the innovation is heavy-tailed and skewed. Two410

applications to stock indexes and exchange rates further highlight the importance of the PQMLE

method with respect to in-sample fit and out-of-sample predictions.

As is well known, the asymmetry and leptokurtosis of the innovation are two often observed

co-existing features in financial and economic data sets. How to capture these two features of the

innovation has attracted considerable interest in the literature. The old way to do this is using the415

MLE method by pre-assuming an asymmetric and leptokurtic distribution of the innovation. A

plausible and well-known example is the GARCH-stable model in Liu and Brorsen (1995), who

fitted the innovation of GARCH model by a stable distribution STB(α̌, β̌, č, µ̌). Specifically, they

fitted yt by the following model:

yt = σtεt, (13)420

σδ
t = ω + α|yt−1|δ + βσδ

t−1, (14)
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where ω > 0, α ≥ 0, β ≥ 0, δ > 0, and εt ∼ STB(α̌, β̌, 1, µ̌) is a sequence of i.i.d. random vari-

ables. Although models (13)-(14) can well handle the heavy-tailed and skewed innovation, it has

three disadvantages. First, according to Lemma 2.1 in Zhang and Ling (2014), the tail index of

yt in models (13)-(14), denoted by α∗, is the solution of the following equation:

E
[
α|εt|δ + β

]α∗/δ
= 1 for α∗ > 0.

Since E|εt|α̌ = ∞, it follows that α∗ < α̌. Hence, models (13)-(14) only apply for the case

that E|yt|α̌ = ∞, while our PQMLE method is suitable as long as yt is strictly stationary. See

also Rachev and Mittnik (2000, p.284). Second, the GARCH-stable method used in (13)-(14)

has a large chance in getting inconsistent estimates with incorrect standard errors for GARCH 425

models if the true distribution of εt is not STB(α̌, β̌, 1, µ̌); see, e.g., White (1982) and Newey

and Steigerwald (1997) for the discussions of MLE when the true distribution of εt is misspec-

ified. This is the disadvantage for all of the MLE methods, but not for our PQMLE method.

Third, the GARCH-stable method is computationally expensive in getting estimates and stan-

dard deviations (e.g., the objective function and its gradients involve complex integrals when the 430

characteristic exponent α̌ > 1, and all of them even do not have a closed form when α̌ ≤ 1; see

Liu and Brorsen (1995, pages 275-277)), but this is not the case for our PQMLE method, which

can be calculated as fast as the GQMLE. Overall, although the PQMLE method is not the first try

in the literature to take into account both asymmetry and leptokurtosis of the innovation, it is the

first try for this problem in the context of QMLE, and compared to the existing MLE methods, it 435

has desirable properties to be used in practice.
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APPENDIX: PROOF OF THEOREM 1

Recall that the first, second and third derivatives of g(y, s) with respective to s are g1(y, s), g2(y, s)445

and g3(y, s), respectively. By some simple algebra, we can show that

g1(y, s) =
1
s
− 2my2s

1 + y2s2
− νy

1 + y2s2
,

g2(y, s) = − 1
s2
− 2my2

1 + y2s2
+

2y2s(2my2s + νy)
[1 + y2s2]2

,

g3(y, s) =
2
s3

+
12my4s + 2νy3

[1 + y2s2]2
− 16my6s3 + 8νy5s2

[1 + y2s2]3
,

where s > 0. Next, it is straightforward to see that450

|g1(y, s)| ≤ 1
s

+
2m

s
+
|ν||y|
2s|y| =

1 + 2m + |ν|/2
s

,

|g2(y, s)| ≤ 1
s2

+
2m

s2
+

4ms2y4

y4s4
+

2s|ν||y|3
[1 + y2s2]3/2

≤ 1 + 6m

s2
+

2s|ν||y|3
s3|y|3 =

1 + 6m + 2|ν|
s2

,

|g3(y, s)| ≤ 2
s3

+
12m

s3
+

2|ν||y|3
[1 + y2s2]3/2

+
16m

s3
+

8|ν||y|5s2

[1 + y2s2]5/2

≤ 2 + 28m

s3
+

2|ν||y|3
s3|y|3 +

8|ν||y|5s2

s5|y|5 =
2 + 28m + 10|ν|

s3
.455

Thirdly, for some κ0 ∈ (0, κ), by Assumption 3(iii) and Jensen’s inequality, we have

E| log f̄(εts)| = E|m log(1 + ε2
t s

2) + ν tan−1(εts)|

≤ m

κ0
E log(1 + ε2

t s
2)κ0 +

π

2
|ν|

≤ O(1) log[1 + E|εt|2κ0s2κ0 ] + O(1)

≤ O(1)(s2κ0 + 1).460

Fourth, it is straightforward to see that w1(s) := ∂w(s)/∂s = E[g1(εt, s)], and then by Assumption 4, we

know that w1(s) = 0 has a unique solution at s = 1. Meanwhile, it is not hard to see that lims→0 w(s) =

−∞ and lims→∞ w(s) = −∞. By the continuity of w1(s), it follows that for s > 0, w(s) is a strictly

concave function with a unique maximum at s = 1.

Therefore, under Assumptions 1-4, we have verified all the conditions for Theorems 1.1-1.2 in Berkes465

and Horváth (2004). Hence, the conclusions in Theorem 1 hold. This completes the proof.
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