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ABSTRACT 1 

Car-following models, which describe the reactions of the driver of a following car to 2 

the changes of the leading car, are essential for the development of traffic flow theory. 3 

A car-following model with a stochastic memory effect is considered to be more 4 

realistic in modeling drivers’ behavior. Because a gamma-distributed memory function 5 

has been shown to outperform other forms according to empirical data, in this study, 6 

we thus focus on a car-following model with a gamma-distributed memory effect; 7 

analytical and numerical studies are then conducted for stability analysis. Accordingly, 8 

the general expression of undamped and stability points is achieved by analytical 9 

study. The numerical results show great agreement with the analytical results: 10 

introducing the effect of the driver’s memory causes the stable regions to weaken 11 

slightly, but the metastable region is obviously enlarged. In addition, a numerical study 12 

is performed to further analyze the variation of the stable and unstable regions with 13 

respect to the different profiles of gamma distribution. 14 

Keywords:  15 

Car-following model; memory effect; gamma distribution; stability analysis; empirical 16 

study 17 

 18 
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1 INTRODUCTION 1 

Car-following models, which describe the following driver’s reaction to the changes 2 

of the leading car, are essential for the development of traffic flow theory. Such 3 

models build a bridge between the microscopic behavior of the following driver and the 4 

macroscopic characteristics of the traffic flow by analysis of the responses of each 5 

following vehicle in a single-lane car-following system. 6 

In the 1950s, Chandler et al. (1958) and Herman et al. (1959) proposed a 7 

mathematical car-following model in which it is assumed that the acceleration of the 8 

following car in each two-vehicle unit is linearly proportional to the cars’ relative 9 

velocities at some earlier time, with a fixed time lag of transmission of the 10 

driver-vehicle system. Herman et al. (1959) also provided a systematic discussion of 11 

the stability. The results accounted for the local stability and corresponding numerical 12 

calculations, and also for the asymptotic stability, car-following control, and 13 

acceleration noise. In addition to the linear car-following model, Reuschel (1950), 14 

Pipes (1953), Gazis et al. (1961), and Newell (1961) developed various nonlinear 15 

models in which other variables are included that may affect the behavior of the 16 

following driver. 17 

In recent decades, improved car-following models have been proposed to better 18 

explain the behavior of drivers and the stability of the traffic flow. Bando et al. (1995) 19 

proposed an optimal velocity model to represent the instability of traffic flow and the 20 

evolution of congestion. Jiang et al. (2001) developed a full velocity difference model 21 

by differentiation of the deceleration and acceleration processes. Ge et al. (2012) 22 

extended the car-following model to consider the effects of a series of leading 23 

vehicles. In concern of memory effect of time-series variations, the traditional model 24 

is developed by incorporating the driver’s memory of speeds at or during a certain 25 

time ahead (Zhang, 2003; Tang et al. 2009; Xin and Xu, 2015). Treiber and Helbing 26 

(2003) concerned memory effect of the subjective level of service dependent on speed, 27 

which represents the adaptation of drivers to the surrounding traffic situation during 28 
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past few minutes, for macroscopic modeling of flow-density data. Yu and Shi (2015a) 1 

adopted empirical data to improve the car-following model by including memory of 2 

headway changes, which was further concerned in cooperative adaptive cruise control 3 

strategy (Yu and Shi, 2015b). Cao (2015) also considered the memory effect of 4 

headway during a sensory time period during a certain past time. In consideration of 5 

the forecast information attributable to ITS techniques, Tang et al. (2010) involved 6 

driver’s forecast effect in car-following model. More recently, with the development 7 

of connected vehicles, an improved car-following model with delayed acceleration 8 

reaction is proposed (Jin and Orosz, 2014). Ngoduy (2013, 2015) and Monteil et al. 9 

(2014) further focus on the stability of traffic flow in concern of car-following model 10 

in a simulated connected vehicle framework.  11 

The time lag, which is related to reaction time, is of great concern in previous 12 

studies on macroscopic and microscopic traffic models (Treiber et al., 2006; Kesting 13 

and Treiber, 2008). Generally speaking, the existing car-following models always 14 

consider the time lag as a fixed parameter that is estimated in terms of the average or 15 

optimal values on the basis of realistic traffic information, even in most memory 16 

effect related research mentioned previously. However, in practice, the reactions of 17 

the following driver are affected not only by the motion of the vehicles at a certain 18 

earlier instant, but also by continuous motions during an earlier period, which can be 19 

reflected in the driver’s memory, i.e., a memory effect. Classic studies have focused 20 

on the memory effects of drivers in the car-following process. Based on the work of 21 

Chandler et al. (1958) and Herman et al. (1959), Lee (1966) introduced the function 22 

of memory into the traditional car-following model to define the manner in which the 23 

following driver processes the information received from the leading car by means of 24 

the memory effect. The proposed memory effect model is considered to be more 25 

realistic in modeling drivers’ behavior. 26 

As shown in Lee’s study, the acceleration of the following car is influenced 27 

only by the relative speeds. The difference here is that the reactions of the following 28 
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car are not determined by the relative speeds at a certain earlier instant, but rather by 1 

the time history. The memory function is added to the model by the introduction of a 2 

stochastic time lag, which may follow a particular distribution over time. Lee (1966) 3 

described the memory effect with several possible memory functions in his study, such 4 

as a Dirac-Delta function (with which the model is reduced to a traditional one), a 5 

decaying exponential function (which is also a special case of the gamma-distributed 6 

function), another special gamma-distributed function with a concave curve, and a 7 

uniform-distributed function. Relevant stability analysis of the local stability and 8 

asymptotic stability were also performed in his study. Unfortunately, without 9 

experimental data, the advantage of the memory effect model is difficult to assess, 10 

although it is considered to be a more realistic means by which to describe the 11 

following driver’s behavior. In addition, the optimal form of memory function could 12 

not be determined. Sipahi et al. (2007) have conducted the stability analysis of 13 

car-following system with gamma distributed time lag. However, they did not validate 14 

the superior performance of gamma distribution, and did not achieve the analytical 15 

solution of critical points in local stability analysis. 16 

In this study, we attempt to reveal the most appropriate distribution for memory 17 

effect with empirical data. Analytical and numerical studies are then conducted for 18 

stability analysis, and the general expression of undamped and stability points is 19 

achieved by analytical study, accordingly. A numerical study is performed to further 20 

analyze the variation of the stable and unstable regions with respect to the different 21 

profiles of memory effect. 22 

The remainder of this paper is organized as follows. In section 2, after the 23 

introduction of the model formulation, several distribution forms of memory effect are 24 

proposed. Based on empirical data collected from car-following field experiments, the 25 

optimal form of memory effect is obtained. In section 3, an analytical study of the local 26 

stability is conducted to explore the demarcations between stability and instability and 27 

between damped oscillation and amplifying oscillation. In section 4, a numerical study 28 
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is carried out to show agreement with the analytical results. Section 5 presents the 1 

concluding remarks and recommendations for future research. 2 

 3 

2 PRELIMINARY STUDY AND EMPIRICAL ANALYSIS 4 

2.1 Model Formulation 5 

According to the study of Chandler et al. (1958), each of the cars in a line of traffic 6 

follows the preceding car by means of velocity control. This control equation of motion 7 

is 8 

ௗమ௫೙శభܯ
ௗ௧మ

ൌ ሺௗ௫೙ߣ
ௗ௧

െ ௗ௫೙శభ
ௗ௧

ሻ௧ି∆， 2-1 

where ܯ  and ߣ  are the mass and sensitivity of each car, respectively, ݔ௡  is the 9 

location of the nth vehicle in the line, and ∆ is the time lag of transmission of the 10 

driver-vehicle system. 11 

Simplifying Equation (2-1) to 12 

ሻݐሷ௡ାଵሺݔ ൌ ݐሶ௡ሺݔሺߙ െ ሻݐ∆ െ ݐሶ௡ାଵሺݔ െ  ሻሻ， 2-2ݐ∆

where ߙ ൌ  ሻ is 13ݐሷ௡ାଵሺݔ ,denotes the sensitivity of the entire driver-vehicle system ,ܯ/ߣ

the acceleration of the 	ሺ݊ ൅ 1ሻth car at time t, and ݔሶ௡ሺݐ െ ݐሶ௡ାଵሺݔ ሻ andݐ∆ െ  ሻ are 14ݐ∆

the velocities of the nth and 	ሺ݊ ൅ 1ሻth cars at time ሺݐ െ  is the 15 ݐ∆ ,ሻ. Obviouslyݐ∆

time lag. 16 

Equation (2-2) shows that the acceleration of the following vehicle at time t is 17 

determined by the difference in the velocities of the lead and following vehicles at time 18 

ሺݐ െ  We notice that the reactions of the following driver are 19 .ߙ ሻ, with a sensitivityݐ∆

affected only by the relative velocities at a certain earlier instant ሺݐ െ ሻݐ∆ . The 20 

information regarding other previous moments has been neglected, even though some 21 

of this information would have a small effect in determining the current acceleration of 22 

the following vehicle. This information does make a contribution and will distract the 23 

weight of the differences in the velocities at a particular time. Therefore, a nonconstant 24 

time lag is incorporated into the traditional car-following model to describe the driver’s 25 

memory effect and to simulate the memory-choice-decision process. 26 
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As in Lee’s model, the improved car-following model with memory effect is 1 

formulated on the basis of Equation (2-2) as: 2 

ሻݐሷ௡ାଵሺݔ ൌ ߙ ׬ ݂ሺ߱ሻሺݔሶ௡ሺݐ െ ߱ሻ െ ݐሶ௡ାଵሺݔ െ ߱ሻሻ݀߱
ାஶ
଴ ， 2-3 

where ߱ሺ൒ 0ሻ is the stochastic time lag with a memory function of ݂ሺ߱ሻ. 3 

Lee (1966) adopted several possible memory functions to describe 	݂ሺ߱ሻ in 4 

his study, such as a Dirac-Delta function (with which the model is reduced to a 5 

traditional one), a decaying exponential function (which is also a special case of the 6 

gamma-distributed function), another special gamma-distributed function with a 7 

concave curve, and a uniform-distributed function. In addition to the four examples of 8 

memory function, alternative memory functions can further be considered with regard 9 

to the characteristics of the human memory. We believe that the probability density 10 

function that can properly describe the driver’s memory effect should be a curve over 11 

time, an approximately concave curve with a point that occupies the greatest 12 

probability as the average or most probable value of the time lag in the traditional 13 

car-following model. When the time lag exceeds that point, the information regarding 14 

the relative velocity is less important and the driver’s dependence on it will decrease. 15 

That is, the driver needs not be concerned about the information stored in his mind 16 

from a long time ago. When the time lag does not reach that point, the information 17 

becomes even more important; however, the driver does not have sufficient time to 18 

think and to react accordingly. The closer the time lag approaches the current time, the 19 

more difficult it is for the driver to react. Hence, the curve of the probability density 20 

function should monotonically increase up to the peak that dominates in the past 21 

information and then declines, forward to infinity with a probability that approaches 22 

zero. Accordingly, several classical distributions, such as gamma distribution, Weibull 23 

distribution, and lognormal distribution, can also be considered for memory function 24 

formulation.  25 

Taking gamma-distributed memory function as an example, ߱~߁ሺ݇,  ሻ, and 26ߣ

݂ሺ߱ሻ	should be the probability density functions of the gamma distribution with 27 
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parameters ݇,  Thus,  1 .ߣ

݂ሺ߱ሻ ൌ
௞߱௞ିଵ݁ିఒఠߣ

ሺ݇ሻ߁
 

ሺ݇ሻ߁ ൌ න ݔ௞ିଵ݁ି௫݀ݔ
ஶ

଴
 

2-4 

where ω ൒ 0, λ ൒ 0, ݇ ൒ 0,. The mean and variance of the distribution are 
௞

ఒ
 and 2 

௞

ఒమ
, respectively. 3 

The car-following model with a memory effect states that the ሺ݊ ൅ 1ሻ th 4 

vehicle’s acceleration at ݐ  is determined by the relative velocities at ݐ െ ߱ , the 5 

sensitivity, and the function of	߱. The driver’s memory effect is taken into account in 6 

terms of the integral term. 7 

2.2 Empirical study of memory function 8 

To identify the optimal form of memory function, we conducted empirical 9 

car-following experiments in which four drivers were asked to follow a leading car for 10 

four trials. The average age of drivers are 41 with S.D. of 20, and the average driving 11 

age is 15 with S.D. of 14. The experiments were conducted at the 1st Yuanbo West Rd 12 

in Beijing, China on Nov. 22, 2014. The survey road is a 4-lane rural road of 1.2 km 13 

length with central divider. There was no other traffic during experiments. The leading 14 

car travelled automatically with a preset speed profile: keeping 45 km/h during the 15 

first 4 s, followed by a sinuous variation between 30-60 km/h. The following car 16 

controlled by the driver just followed the leading car. Fig. 1 illustrates the speed profile 17 

of the leading car (speed 1) and following car (speed 2) during trial 1 by Driver #1. 18 

During the experiments, the velocity, acceleration, location of both cars were recorded 19 

every 0.2 s.  20 
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 1 

Fig. 1. Speed profiles of the leading car (speed 1) and following car 2 

(speed 2) during trial 1-1  3 

On the basis of the experimental data, the acceleration of the following car can 4 

be predicted by the traditional car-following model, and the improved memory effect 5 

models with a memory function based on uniform distribution, gamma distribution, 6 

Weibull distribution, and lognormal distribution, respectively. A RMSE (Root Mean 7 

Squared Error) based goodness-of-fit test is adopted for model calibration. The lower 8 

the value of RMSE, the better the goodness-of-fit of proposed model. The 9 

corresponding RMSE values of each trial among 5 different models are shown in 10 

Table 1. The lowest RMSE value for each trial among all of the models is expressed 11 

in bold font. 12 

Table 1. RMSE Comparison of memory effect models with traditional one 13 

Driver-Tria
l 

Traditional 
model 

Memory effect model with different memory function 

Gamma Lognormal Weibull Uniform 

1-1 0.5708 0.5691 0.5691 0.5694 0.5695 
1-2 0.8516 0.8492 0.8492 0.8499 0.8494 
1-3 0.6649 0.6329 0.6310 0.6344 0.6374 
1-4 0.7481 0.7379 0.7292 0.7413 0.7405 
2-1 0.4451 0.4444 0.4444 0.4447 0.4444 
2-2 0.3738 0.3728 0.3730 0.3729 0.3731 
2-3 0.4798 0.4766 0.4767 0.4767 0.4767 
2-4 0.4190 0.4180 0.4180 0.4180 0.4184 
3-1 0.4323 0.4288 0.4288 0.4294 0.4289 
3-2 0.4587 0.4579 0.4587 0.4580 0.4580 
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Driver-Tria
l 

Traditional 
model 

Memory effect model with different memory function 

Gamma Lognormal Weibull Uniform 

3-3 0.3349 0.3297 0.3297 0.3303 0.3298 
3-4 0.4070 0.4051 0.4051 0.4051 0.4050 
4-1 0.3352 0.3147 0.3133 0.3135 0.3129 
4-2 0.3571 0.3532 0.3532 0.3535 0.3536 
4-3 0.3478 0.3438 0.3438 0.3440 0.3439 
4-4 0.3816 0.3770 0.3770 0.3776 0.3773 

As shown in the result, the improved car-following model with a memory 1 

effect performs better than the traditional model in all 16 trials. In addition, the 2 

gamma-distributed memory function generally performs better in all of trials. 3 

Therefore, in the following discussion, we focus on the gamma-distributed memory 4 

function and its stability, especially the local stability. This is important to understand 5 

the memory effect on car-following behavior and traffic conditions, which has rarely 6 

been studied in the literature. 7 

 8 

3 ANALYTICAL STUDY  9 

3.1 Laplace transform 10 

Assume that before ݐ ൌ 0 each vehicle moves with a speed u. Using a locally moving 11 

coordinate representation, 12 

ሻݐ௡ሺݖ ൌ ሻݐ௡ሺݔ െ ݐݑ െ  ௡ሺ0ሻ. 3-1ݔ

Obviously, when t ൑ ሻݐ௡ሺݖ，0 ൌ ሻݐሶ௡ሺݖ，0 ൌ 0, the Equation (2-3) can be 13 

rewritten as the following formula according to the convolution theorem, 14 

ሻݐሷ௡ାଵሺݖ ൌ නߙ ݂ሺ߱ሻሺݖሶ௡ሺݐ െ ߱ሻ െ ݐሶ௡ାଵሺݖ െ ߱ሻሻ݀߱
௧

଴
 

ൌ ߙ ∙ ݂ሺݐሻ ∗ ൫ݖሶ௡ሺݐሻ െ ሻ൯ݐሶ௡ାଵሺݖ . 
3-2 

Meanwhile, we define the Laplace transform of ݖ௡ሺݐሻ as 15 

ܼ௡ሺݏሻ ൌ ሻ൯ݏ௡ሺݖ൫ܮ ൌ ׬ ݐሻ݁ି௦௧݀ݐ௡ሺݖ
ஶ
଴ . 3-3 

Therefore,  16 

ሻ൯ݐሷ௡ሺݖ൫ܮ ൌ ሻݏଶܼ௡ሺݏ െ ௡ሺ0ሻݖݏ െ ሶ௡ሺ0ሻݖ ൌ  ሻ, 3-4ݏଶܼ௡ሺݏ
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ሻ൯ݐሶ௡ሺݖ൫ܮ ൌ ሻݏ௡ሺܼݏ െ ௡ሺ0ሻݖ ൌ ሻݏ௡ሺܼݏ .  

We then take the Laplace transform on both sides of Equation (2-3), 1 

ሻݏଶܼ௡ାଵሺݏ ൌ ߙ ∙ ሻݏሺܨ ∙ ൫ܼݏ௡ሺݏሻ െ ሻ൯ݏ௡ାଵሺܼݏ , 3-5 

ܼ௡ାଵሺݏሻ ൌ
ఈ∙ிሺ௦ሻ

௦ାఈ∙ிሺ௦ሻ
ܼ௡ሺݏሻ, 3-6 

where ܨሺݏሻ is the Laplace transform of ݂ሺ߱ሻ. We may easily determine via MATLAB 2 

that 3 

ሻݏሺܨ ൌ ఒೖ

ሺఒା௦ሻೖ
 . 3-7 

Therefore, we can obtain the transfer function for stability analysis as 4 

ܼ௡ାଵሺݏሻ ൌ
ఈఒೖ

௦ሺఒା௦ሻೖାఈఒೖ
ܼ௡ሺݏሻ  

ൌ ఈ೙ఒೖ೙

ሺ௦ሺఒା௦ሻೖାఈఒೖሻ೙
ܼଵሺݏሻ. 

3-8 

3.2 Undamped point 5 

The undamped point is the demarcation between damped oscillation and amplifying 6 

oscillation, which is measured by ܥ ൌ  Δt, i.e., the sensitivity multiplied by the time 7ߙ

lag. Because the time lag is not constant in this study, we use the mean of the 8 

gamma-distributed time lag ݇ ⁄ߣ  instead. Thus, ܥ ൌ ߙ ௞

ఒ
. The undamped point is an 9 

important index. If the computational value exceeds that point, it is fairly dangerous 10 

because the spacing change between the two vehicles is unstable and will never tend 11 

toward stability, which may result in a collision. On the basis of this undamped point, 12 

we can control some of the parameters in the car-following system to avoid any 13 

accidents. 14 

According to Equation (3-8), which is the transfer function of the improved 15 

car-following model with a gamma-distributed memory effect, we discuss the 16 

properties of the possible solutions according to the characteristic roots of the 17 

following equation 18 

ߣሺݏ ൅ ሻ௞ݏ ൅ ௞ߣߙ ൌ 0. 3-9 
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Although k can be any positive value in a gamma distribution, we assume that 1 

k is an integer, i.e., with an accuracy of 1, for further derivations, which has been 2 

accepted in practice by the previous empirical analysis and the following numerical 3 

study. 4 

Because the profiles of the gamma distributions of ݇ ൌ 1 and ݇ ൐ 1 and the 5 

corresponding stability solutions are completely different, the following discussion is 6 

be presented separately. 7 

When	݇ ൌ 1, then  8 

Because λ ൒ 0,	α ൒ 0, the roots of Equation (3-10) always have negative real 9 

parts. This implies that regardless of the value of C, the spacing is either 10 

non-oscillatory or oscillatory with a decreasing amplitude. 11 

We then turn to ݇ ൐ 1. Assuming that ݕ ൌ ఒା௦

ఒ
ൌ 1 ൅ ௦

ఒ
, then ݏ ൌ ݕߣ െ  12 .ߣ

Accordingly, Equation (3-9) should be rewritten as 13 

௞ାଵݕߣ െ ௞ݕߣ ൅ ߙ ൌ 0. 3-11 

Let ܿ ൌ ఈ

ఒ
, then ܥ ൌ ߙ ௞

ఒ
ൌ ܿ݇, thus 14 

௞ାଵݕ െ ௞ݕ ൅ ܿ ൌ 0. 3-12 

Let ݕ ൌ ఏ௜݁ݐ ൌ ݐ ∙ cos	ߠ ൅ ݅ ∙ ݐ ∙ sin	ߠ , where ݐ ൐ 0 , 0 ൏ ߠ ൑ ߨ2 , ݇ ൒ 2 , 15 

then 16 

ݏ ൌ ݐሺߣ ∙ cos ߠ െ 1 ൅ ݅ ∙ ݐ ∙ sin  ሻ. 3-13ߠ

Equation (3-12) is rewritten as  17 

ሺ௞ାଵሻఏ௜݁ݐ௞ሺݐ െ ݁௞ఏ௜ሻ ൅ ܿ ൌ 0. 3-14 

Moreover， 18 

ܿ ൌ െݐ௞ൣݐ ∙ cos൫ሺ݇ ൅ 1ሻߠ൯ ൅ ݅ ∙ ݐ ∙ sin൫ሺ݇ ൅ 1ሻߠ൯ െ cosሺ݇ߠሻ െ ݅ ∙ sinሺ݇ߠሻ൧. 3-15 

It is then equal to two equations, 19 

ଶݏ ൅ ݏߣ ൅ ߣߙ ൌ 0. 3-10 
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ݐ ∙ ൫ሺ݇݊݅ݏ ൅ 1ሻߠ൯ െ ሻߠሺ݇݊݅ݏ ൌ 0, 

ݐ௞ሾݐ ∙ ൫ሺ݇ݏ݋ܿ ൅ 1ሻߠ൯ െ ሻሿߠሺ݇ݏ݋ܿ ൅ ܿ ൌ 0. 
3-16 

As for the undamped point, let ݐ ∙ cos ߠ ൌ 1; we then have 1 

ቊ
ሺ1/ cos ሻߠ ∙ sin൫ሺ݇ ൅ 1ሻߠ൯ െ sinሺ݇ߠሻ ൌ 0

ܿ ൌ െݐ௞ሾݐ ∙ cos൫ሺ݇ ൅ 1ሻߠ൯ െ cosሺ݇ߠሻሿ
⇒ ቐ

cosሺ݇ߠሻ ∙ sin ߠ ൌ 0

ܿ ൌ
sinሺ݇ߠሻ ∙ sin	ߠ
ሺcos ሻ௞ାଵߠ

		. 
3-17 

If sin	ߠ ൌ 0, then ܿ ൌ 0, and ܥ ൌ 0. According to Equation (3-13), s is then 2 

a real number. Because of Descartes’ rule of signs, there are no positive real roots for 3 

Equation (3-9). Therefore, s must be negative, and the spacing is non-oscillatory. 4 

If cosሺ݇ߠሻ ൌ 0, namely, 5 

ߠ݇ ൌ
ߨ
2
，
ߨ3
2

，
ߨ5
2
… 3-18 

When ݇ ൌ 2,  6 

ߠ ൌ
ߨ
4
，
ߨ3
4

，
ߨ5
4
… 

ܿ ൌ 2	, 7 

When ݇ ൌ 3,  8 

ߠ ൌ
ߨ
6
，
ߨ3
6

，
ߨ5
6
… 

ܿ ൌ 8/9	, 9 

When ݇ → ∞,  10 

which is consistent with the demarcation between damping and amplification as 11 

identified by Herman et al. (1959). 12 

As a result, 13 

a) If ܥ ൏ ݇ ∗ ୱ୧୬
ሺ௞ఏሻ∙ୱ୧୬ఏ

ሺୡ୭ୱఏሻೖశభ
, the spacing is non-oscillatory, or oscillatory with damped 14 

oscillation; 15 

ܥ ൌ ܿ݇ ൌ 4. 

ܥ ൌ ܿ݇ ൌ 8/3. 

lim	௞→ஶ ܥ ൌ lim	௞→ஶ ݇ ∗
ୱ୧୬ሺ௞ఏሻ∙ୱ୧୬ఏ

ሺୡ୭ୱఏሻೖశభ
ൌ lim ௞→ஶ ݇ ∗ sinቀߨ 2݇ൗ ቁ ൌ గ

ଶ
, 
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b) if ܥ ൌ ݇ ∗ ୱ୧୬ሺ௞ఏሻ∙ୱ୧୬ఏ

ሺୡ୭ୱఏሻೖశభ
, the spacing is oscillatory with undamped oscillation; and 1 

c) if ܥ ൐ ݇ ∗ ୱ୧୬
ሺ௞ఏሻ∙ୱ୧୬ఏ

ሺୡ୭ୱఏሻೖశభ
, the spacing is oscillatory with an increasing amplitude,  2 

where ߠ is given by Equation (3-18). 3 

3.3 Stability point 4 

The stability point is the demarcation between oscillation and stability, which is also 5 

measured by ܥ ൌ ߙ ௞

ఒ
. Likewise, we take Equation (3-9) for consideration. 6 

Identification of the dominant root is essential for the demarcation of oscillation and 7 

stability. 8 

We assume that 9 

݂ሺݏሻ ൌ ߣሺݏ ൅ ሻ௞ݏ ൅  ௞. 3-19ߣߙ

We then explore the curve profile of ݂ሺݏሻ		based on its monotonic feature, 10 

from which the characteristic roots and corresponding stability can be inferred. 11 

The derivative of ݂ሺݏሻ is 12 

݂ ′ሺݏሻ ൌ ሺߣ ൅ ሻ௞ݏ ൅ ߣሺ݇ݏ ൅ ሻ௞ିଵݏ ൌ ሺߣ ൅ ߣሻ௞ିଵሺݏ ൅ ݏ ൅ ሻ݇ݏ

ൌ ሺߣ ൅ ሻ௞ିଵሺሺ݇ݏ ൅ 1ሻݏ ൅  ሻߣ
3-20 

When ݂ ′ሺݏሻ ൌ 0 , the extreme points are 13 

ݏ ൌ െ3-21 ,ߣ 

and 14 

ݏ ൌ െ ఒ

௞ାଵ
. 3-22 

The second derivative of ݂ሺݏሻ is 15 

݂ ′′ሺݏሻ ൌ ሺ݇ െ 1ሻሺߣ ൅ ሻ௞ିଶ൫ሺ݇ݏ ൅ 1ሻݏ ൅ ൯ߣ ൅ ሺߣ ൅ ሻ௞ିଵሺ݇ݏ ൅ 1ሻ

ൌ ሺߣ ൅ ሻ௞ିଶ൫ሺ݇ଶݏ െ 1ሻݏ ൅ ሺ݇ߣ െ 1ሻ ൅ ݇ߣ ൅ ߣ ൅ ݇ݏ ൅ ൯ݏ

ൌ ሺߣ ൅ ሻ௞ିଶሺሺ݇ଶݏ ൅ ݇ሻݏ ൅  ሻ݇ߣ2

3-23 

Substituted by the root of extreme points, it becomes 16 

݂ ′′ሺെߣሻ ൌ 0, and 3-24 
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݂ ′′ ቀെ ఒ

௞ାଵ
ቁ ൌ ቀ ௞ఒ

௞ାଵ
ቁ
௞ିଶ

ሺെ݇ߣ ൅ ሻ݇ߣ2 ൌ ቀ ௞ఒ

௞ାଵ
ቁ
௞ିଶ

݇ߣ ൐ 0. 3-25 

The extreme points are then given by 1 

݂ ቀെ ఒ

௞ାଵ
ቁ ൌ െ ఒ

௞ାଵ
ሺ ௞ఒ
௞ାଵ

ሻ௞ ൅ ௞ߣߙ ൌ ߙ௞ሺߣ െ ௞ೖ

ሺ௞ାଵሻೖశభ
 ሻ, and 3-26ߣ

݂ሺെߣሻ ൌ ௞ߣߙ ൐ 0. 3-27 

which accidentally equals ݂ሺ0ሻ. 2 

According to Equation (3-26), when ݏ ൌ െ ఒ

௞ାଵ
, the function of ݂ሺݏሻ is convex 3 

in the near region, in which it reaches its local minimum. 4 

For ݏ ൏ െߣ, the monotonic feature of ݂ሺݏሻ is related to 5 

݂ ′ሺݏሻ ൌ ሺߣ ൅ ሻ௞ିଵሺሺ݇ݏ ൅ 1ሻݏ ൅  ሻ. 3-28ߣ

Because the sign of ሺߣ ൅ ሻ௞ିଵݏ  is determined by the parity of k, separate 6 

discussions are given accordingly.  7 

(1) k is an even number 8 

When ݏ ൏ െߣ , ሺߣ ൅ ሻ௞ିଵݏ  is negative because k is an even number, and 9 

ሺ݇ ൅ 1ሻݏ ൅ ݂ ,is negative owing to the positive value of k. Therefore ߣ ′ሺݏሻ is positive. 10 

This means that when s ൏ െߣ, the curve of the function monotonically increases. 11 

When s is negative infinity, the function will become 12 

݈݅݉
௦→ିஶ

݂ሺݏሻ ൌ ݈݅݉
௦→ିஶ

ߣሺݏ ൅ ሻ௞ݏ ൅ ௞ߣߙ ൌ െ∞ 3-29 

Thus, when k is an even number, the curve of ݂ሺݏሻ can be roughly plotted as 13 

Fig. 2. 14 
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 1 

Fig. 2. The graph of ࢌሺ࢙ሻ when k is even. 2 

 3 

As demonstrated in Fig. 2, there is always a real root less than –  In addition, 4 .ߣ

the other roots that are real or imaginary depend on the value of ݂ ቀെ ఒ

௞ାଵ
ቁ.  5 

When ݂ ቀെ ఒ

௞ାଵ
ቁ ൌ ௞ߣ ቀߙ െ ௞ೖ

ሺ௞ାଵሻೖశభ
ቁߣ ൏ 0 , namely, ߙ ൏ ௞ೖ

ሺ௞ାଵሻೖశభ
ߣ , the 6 

equation has three real roots, and the maximum real root, which is dominated, is less 7 

than 0 and greater than െ ఒ

௞ାଵ
. We can conclude that the spacing between the lead and 8 

following vehicles is non-oscillatory on the basis of the characteristics of the roots. 9 

When ݂ ቀെ ఒ

௞ାଵ
ቁ ൌ ௞ߣ ቀߙ െ ௞ೖ

ሺ௞ାଵሻೖశభ
ቁߣ ൌ 0 , namely, ߙ ൌ ௞ೖ

ሺ௞ାଵሻೖశభ
ߣ , the 10 

equation also has three real roots, but two repeated roots, and the maximum real root 11 

is െ ఒ

௞ାଵ
, which is dominated. Thus, the spacing between the lead and following 12 

vehicles remains stable. 13 

When ݂ ቀെ ఒ

௞ାଵ
ቁ ൌ ௞ߣ ቀߙ െ ௞ೖ

ሺ௞ାଵሻೖశభ
ቁߣ ൐ 0, namely, ߙ ൐ ௞ೖ

ሺ௞ାଵሻೖశభ
 there is 14 ,ߣ

only one real root. Two imaginary roots become dominated, and the headway trends 15 

toward oscillation. 16 

(2) k is an odd number 17 

Likewise, when ݏ ൏ െߣ , ሺߣ ൅ ሻ௞ିଵݏ  is positive because k is odd, and 18 

ሺ݇ ൅ 1ሻݏ ൅ ݂ is still negative because of the positive value of k ߣ ′ሺݏሻ is negative. It 19 

means that when s ൏ െߣ, the curve of the function decreases monotonically. 20 
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When s is negative infinity, the function will become 1 

݈݅݉
௦→ିஶ

݂ሺݏሻ ൌ ݈݅݉
௦→ିஶ

ߣሺݏ ൅ ሻ௞ݏ ൅ ௞ߣߙ ൌ ൅∞. 3-30 

Thus, the curve of ݂ሺݏሻ can be roughly plotted as Fig. 3. 2 

 3 

Fig. 3. The graph of ࢌሺ࢙ሻ when k is odd. 4 

The two roots are likely influenced by the minimum point ݂ ቀെ ఒ

௞ାଵ
ቁ . 5 

Similarly, we have the classified discussion. 6 

When ݂ ቀെ ఒ

௞ାଵ
ቁ ൌ ௞ߣ ቀߙ െ ௞ೖ

ሺ௞ାଵሻೖశభ
ቁߣ ൏ 0 , namely, ߙ ൏ ௞ೖ

ሺ௞ାଵሻೖశభ
ߣ , there 7 

are two negative real roots. The spacing between the lead and following vehicles is 8 

non-oscillatory. 9 

When ݂ ቀെ ఒ

௞ାଵ
ቁ ൌ ௞ߣ ቀߙ െ ௞ೖ

ሺ௞ାଵሻೖశభ
ቁߣ ൌ 0 , namely, ߙ ൌ ௞ೖ

ሺ௞ାଵሻೖశభ
ߣ , the 10 

equation has two repeated real roots. The headway is still stable. 11 

When ݂ ቀെ ఒ

௞ାଵ
ቁ ൌ ௞ߣ ቀߙ െ ௞ೖ

ሺ௞ାଵሻೖశభ
ቁߣ ൐ 0 , namely, ߙ ൐ ௞ೖ

ሺ௞ାଵሻೖశభ
ߣ , there 12 

are two imaginary roots. The spacing between the two vehicles is oscillatory with 13 

increasing amplitude. 14 

In conclusion, whether k is even or odd, the demarcation point of stability 15 

is ܥ	 ൌ ߙ ௞

ఒ
ൌ ሺ ௞

௞ାଵ
ሻ௞ାଵ . When ܥ	 ൑ ሺ ௞

௞ାଵ
ሻ௞ାଵ , the spacing between the lead and 16 

following vehicles remains stable. When	ܥ ൐ ሺ ௞

௞ାଵ
ሻ௞ାଵ, the headway between the two 17 
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vehicles is oscillatory. In addition, as the value of k in the gamma distribution increases, 1 

the stability point approaches 1/e=0.367879, which is the critical point as calculated by 2 

Herman et al. (1959). 3 

To summarize, according to the results of the stability point as	ߙ ൌ ௞ೖ

ሺ௞ାଵሻೖశభ
 4 ,ߣ

and the undamped point as ߙ ൌ ݇ ∗ ୱ୧୬
ሺ௞ఏሻ∙ୱ୧୬ఏ

ሺ௖௢௦ఏሻೖశభ
, a series of pairs of points with 5 

different values for k is calculated in Table 2. 6 

 7 

Table 2. Stability and undamped points with different values of k. 8 

k 2  3  4  5  6  7  8  9  10  11  12  

Stability 

point 
0.2963  0.3164  0.3277  0.3349 0.3399 0.3436 0.3464 0.3487  0.3505  0.3520 0.3533 

Undamped 

point 
4.0000  2.6667  2.2742  2.0879 1.9794 1.9085 1.8585 1.8214  1.7927  1.7699 1.7514 

 9 

The following figure presents the stable and unstable regions with respect to k.  10 

 11 

Fig. 4. Regions demarcated by stability and undamped points. 12 

The space has been divided into three regions by the stability and undamped 13 

points. The minimal zone below the line of the stability points is the stable region, 14 
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which signifies that the spacing is non-oscillatory. The intermediate region is a 1 

metastable region, indicating that the headway has a trend toward oscillation but 2 

finally stabilizes. Above the line of undamped points is the unstable region, which 3 

indicates that the amplitude of the oscillation will strictly increase and never fade away, 4 

that the system is unstable, and that a collision will definitely occur. 5 

Fig. 4 illustrates the enlargement of the metastable region of damped oscillation 6 

by taking into account the driver’s memory effect, in contrast to the approach of the 7 

traditional car-following model. Meanwhile, the stable region is slightly reduced, 8 

which means that the local stability, with respect to the stability and metastability 9 

situation, of the car-following system is improved by the introduction of the memory 10 

effect. 11 

 12 

4 NUMERICAL STUDY 13 

In this section, a numerical example is presented for stability analysis on the basis of 14 

the car-following model with a stochastic memory effect. 15 

4.1 Numerical example 16 

In a car-following system, the lead and following vehicles are both presumed 17 

to begin traveling at a speed of 10 m/s with spacing of 10 m. Therefore, ݔ௡ሺ0ሻ ൌ 0, 18 

௡ାଵሺ0ሻݔ ൌ െ10, ݔሶ௡ሺ0ሻ ൌ 10 , and ݔሶ௡ାଵሺ0ሻ ൌ 10. The lead vehicle first decelerates 19 

and then accelerates according to the speed trajectory shown in Fig. 5. 20 

 21 

Fig. 5. Speed trajectory of the lead vehicles. 22 

In practice, on the basis of the memory effect car-following model 23 
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ሻݐሷ௡ାଵሺݔ ൌ ߙ ׬ ݂ሺ߱ሻሺݔሶ௡ሺݐ െ ߱ሻ െ ݐሶ௡ାଵሺݔ െ ߱ሻሻ݀߱
ାஶ
଴ ，  

we simplify the integration as the summation of the memory effects of relative 1 

velocity at each moment during 0 to T with time step ߬ ൌ  The acceleration of 2 .ݏ0.1

the following car should be estimated as 3 

ሻݐሷ௡ାଵሺݔ ൌ ߙ ∑ ݂ሺ݉߬ሻሺݔሶ௡ሺݐ െ ݉߬ሻ െ ݐሶ௡ାଵሺݔ െ ݉߬ሻሻ்/ఛ
௠ୀ଴ ߬. 4-1 

Furthermore, the spacing of the two vehicles should be calculated according 4 

the speed and acceleration of each vehicle, which is used to monitor the stability of 5 

the supposed car-following system. 6 

In light of the previous empirical study, the memory effect period T is less than 7 

10 s; above this value, the probability of a gamma distribution is less than 0.01. 8 

4.2 Stability analysis and simulation 9 

As a preliminary analysis, we assume that ݇ ൌ ߣ ൌ 10;	;	, then, ; the mean of 10 

the gamma distribution is then 	Eሺωሻ ൌ ߣ	/݇ ൌ 1 , and the variance is Dሺωሻ ൌ11 

ଶߣ	/݇ ൌ 0.1. Thus, ܥ ൌ ߙ ௞

ఒ
ൌ  in this case. The value of the sensitivity factor 12 ߙ

determines the stability of the supposed car-following system. The undamped and 13 

stability points are discussed and compared with the analytical results for different 14 

values of 15 .ߙ 

  

a) ܥ ൌ ߙ ൌ 0.30 b) ܥ ൌ ߙ ൌ 0.35 c) ܥ ൌ ߙ ൌ 0.40 

No oscillation Stability point Damped oscillation 
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d) ܥ ൌ ߙ ൌ 1.20 eሻ ܥ ൌ ߙ ൌ 1.80 fሻ ܥ ൌ ߙ ൌ 1.90	

Damped oscillation Undamped point Amplifying oscillation 

Fig. 6. Stability analysis and simulation. 1 

 2 

According to the results of the simulation as shown in Fig. 6, the stability 3 

point should be around 0.35 and the undamped point around 1.80, which are 4 

consistent with the analytical results, with corresponding points of 0.3505 and 1.7927, 5 

respectively. 6 

Furthermore, the stability analysis was performed for different gamma 7 

distribution profiles with different values for	݇ and 8 .ߣ 

First, the mean of the gamma distribution is kept constant, i.e. Eሺωሻ ൌ ߣ	/݇ ൌ9 

1, whereas a standard deviation of σ would be different. We obtain the undamped 10 

and stability points as shown in Table 3.  11 

Table 3.  Stability comparison of the analytical and numerical studies with the 12 

same mean. 13 

k λ σ 
Stability point Undamped point 

numerical study analytical study numerical study analytical study 

2 2 0.500 0.332 0.2963 3.91 4.0000 

3 3 0.333 0.330 0.3164 2.65 2.6667 

4 4 0.250 0.334 0.3277 2.27 2.2742 

5 5 0.200 0.338 0.3349 2.09 2.0879 

6 6 0.167 0.342 0.3399 1.98 1.9794 

7 7 0.143 0.345 0.3436 1.91 1.9085 

8 8 0.125 0.348 0.3464 1.86 1.8585 

9 9 0.111 0.350 0.3487 1.82 1.8214 

10 10 0.100 0.352 0.3505 1.79 1.7927 
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11 11 0.091 0.353 0.3520 1.77 1.7699 

12 12 0.083 0.355 0.3533 1.75 1.7514 

 1 

The results of the simulation are consistent with those of the previous 2 

analytical study. We plot the curves of the stability and undamped points, respectively, 3 

for further demonstration. 4 

 5 

Fig. 7. Critical points for different variance. 6 

As shown in Fig. 7, when the variance of the gamma distribution was smaller, 7 

the stability point was closer to 1/e (ൎ 0.367879). Meanwhile, when the variance was 8 

smaller, the undamped point was closer to 2/π	ሺൎ 1.57ሻ. In special cases in which 9 

the variance is zero, the memory effect model reduces to the traditional model with a 10 

fixed time lag. The results of critical point calculation are therefore consistent with 11 

those of the traditional car-following model found by Herman (1959). In addition, we 12 

notice that all of the stability points with a stochastic time lag are less than 1/e 13 

(ൎ 0.367879), whereas the undamped points are more than 2/π	ሺൎ 1.57ሻ	, which 14 

means that the incorporation of the driver’s memory effect weakens the stable region 15 

but reduces the chances of instability or collision. 16 

We also see in Fig. 7 that the stability point slightly decreases with an increase 17 
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in the standard deviation, whereas the undamped point increases. This finding 1 

indicates that it would be slightly more difficult to obtain stability in a following 2 

driver with a wide range of more effective memory of relative velocities; however, 3 

such a driver would be less likely to suffer instability or collision. This conclusion is 4 

reasonable because a driver with good memory should be thoughtful and make 5 

decisions on the basis of greater experience and past information, which is generally 6 

beneficial in terms of car-following behavior.  7 

The variance of the gamma distribution is then maintained as a constant, i.e., 8 

Dሺωሻ ൌ ଶߣ	/݇ ൌ 0.1. We obtain the undamped and stability points as shown in Table 9 

4. 10 

Table 4. Stability comparison of the analytical and numerical studies with same 11 

variance. 12 

k λ Eሺωሻ 

Stability point Undamped point 

numerical study analytical study 
numerical 

study 
analytical study 

2 4.5 0.447 0.300 0.2963 3.77 4.0000 

3 5.5 0.548 0.318 0.3164 2.66 2.6667 

4 6.3 0.632 0.328 0.3277 2.28 2.2742 

5 7.1 0.707 0.336 0.3349 2.09 2.0879 

6 7.7 0.775 0.341 0.3399 1.98 1.9794 

7 8.4 0.837 0.345 0.3436 1.92 1.9085 

8 8.9 0.894 0.347 0.3464 1.86 1.8585 

9 9.5 0.949 0.350 0.3487 1.82 1.8214 

10 10.0 1.000 0.352 0.3505 1.79 1.7927 

11 10.5 1.049 0.353 0.3520 1.77 1.7699 

12 11.0 1.095 0.354 0.3533 1.75 1.7514 

 13 

As a result, the simulated critical points are consistent with the results of the 14 

analytical study. We also plot the curves of the stability and undamped points as 15 

shown in Fig. 8. With an increase in the mean of the time lag, the stability point 16 

slightly increases, whereas the undamped point decreases. As in the traditional 17 
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car-following model, a longer time lag increases the likelihood of an unstable 1 

situation or a collision. 2 

 3 

Fig. 8. Critical points for different means. 4 

 5 

5 CONCLUSIONS 6 

A car-following model with a stochastic memory effect is considered to be 7 

more realistic in modeling drivers’ behavior. In this study, we first identified the 8 

gamma distribution as the optimal form of memory function according to the 9 

empirical data. Analytical and numerical studies are conducted for the stability 10 

analysis of the gamma-distributed memory effect of the car-following model. 11 

On the basis of the transfer function from the Laplace transform, the general 12 

expression of the undamped and stability points is solved in the analytical study. The 13 

results indicate that the stability points slightly decrease by introduction of the 14 

driver’s memory effect, whereas the undamped points obviously increase, which 15 

agrees well with the results of the numerical study. The conclusion therefore is that 16 

the rigid local stability will not be improved if the driver comprehensively considers 17 

the past information, but he or she would have a better chance of handling the spacing 18 

to avoid any collisions. In addition, the stable and unstable regions with respect to the 19 

different profiles of the gamma distribution are found to be different. An agile and 20 
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thoughtful driver with a good memory in terms of a smaller mean and a wide variance 1 

would be less likely to fall into the unstable region. 2 

Because existing studies focus only on the linear model with a memory effect, 3 

it would be worthwhile for a future study to extend the analysis to a nonlinear 4 

memory effect model. We also would like to verify the stability points on the basis of 5 

empirical data. Furthermore, the parameter of memory function and the sensitivity 6 

factor may vary among different drivers over time, which is also an interesting topic 7 

that would help to monitor car-following behavior for safe driving. 8 

 9 
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