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Abstract

The development and strategic application of effective anticancer therapies have turned out to be
one of the most critical approaches of managing human cancers. Nevertheless, drug resistance is
the major obstacle for clinical management of these diseases especially ovarian cancer. In the
past years, substantial studies have been carried out with the aim of exploring alternative therapeutic
approaches to enhance efficacy of current chemotherapeutic regimes and reduce the side effects
caused in order to produce significant advantages in overall survival and to improve patients’ quality
of life. Targeting cancer cell metabolism by the application of AMP-activated protein kinase (AMPK)-
activating agents is believed to be one of the most plausible attempts. AMPK activators such as 5-
aminoimidazole-4-carboxamide 1-B-D-ribofuranoside, A23187, metformin, and bitter melon extract
not only prevent cancer progression and metastasis but can also be applied as a supplement to en-
hance the efficacy of cisplatin-based chemotherapy in human cancers such as ovarian cancer. How-
ever, because of the undesirable outcomes along with the frequent toxic side effects of most
pharmaceutical AMPK activators that have been utilized in clinical trials, attentions of current studies
have been aimed at the identification of replaceable reagents from nutraceuticals or traditional med-
icines. However, the underlying molecular mechanisms of many nutraceuticals in anticancer still re-
main obscure. Therefore, better understanding of the functional characterization and regulatory
mechanism of natural AMPK activators would help pharmaceutical development in opening an
area to intervene ovarian cancer and other human cancers.
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Introduction: Ovarian Carcinoma at a Glance

(0).€10):80)

Ovarian cancer is the gynecological malignance that evolves from tis-
sues of the ovary. About 90% of all ovarian neoplasms are derived
from the coelomic surface epithelium cells of the ovary and categor-
ized as the epithelial ovarian carcinoma. The remaining 10% is either
the malignant germ cell tumors developed from the germ cells or the
mesenchyme tumors arose from the sex cords and stroma of the ovary
[1-6]. Ovarian cancer indeed is very subtle as it is relatively asymp-
tomatic. In contradistinction to other gynecologic disorders, ovarian
cancer surprisingly is the most lethal gynecological malignance
accounting for more deaths than the sum of both endometrial and cer-
vical carcinomas [7]. The reason for this high mortality is probably
due to the lack of specific screening tools and early detection methods

for early-stage disease. Ovarian cancer, therefore, has been notorious-
ly renowned as ‘silent killer’ and most patients (~65%) are poorly
diagnosed until late stages (IIl or IV) while the cancer has already
metastasized beyond the confines of the ovary [4,7-12].

Ovarian cancer is found generally in postmenopausal women in
50s and 60s; however, it is comparatively rare in women of reproduct-
ive age [13]. Although 70%-80% of patients in the beginning respond
well to treatment, but recurrence due to chemotherapeutic resistance
always tends to occur in most patients (~60%) within 5 years, and
when this does, it is usually fatal [1,3,4,9,14]. In recent years, multi-
modality approaches with aggressive cytoreductive surgery and
platinum-based chemotherapy, most frequently the combination of
paclitaxel and carboplatin, have been applied as the mainstay of
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regimen in patients with advanced ovarian cancer [1,4,9,14-17].
Nevertheless, conventional therapy is still not very satisfactory since
it pays little attention to the aspects of tumor biology [4]. Understand-
ing the biological mechanisms underlying recurrence of ovarian can-
cer and addressing chemoresistance is, therefore, of the utmost
significance for better treatment and outcome of the disease.

Chemoresistance Is the Major Hurdle in Successful
Treatment and Prognosis in Ovarian Carcinoma

Ovarian carcinoma has long been a surgically treated malignance [12].
The standard initial management of primary ovarian cancer among
most women involves specific surgical staging procedures, optimal
surgical debulking with improved patient outcomes typically defined
as reduction of residual tumor deposits of <1 cm in size, and eventu-
ally followed by administration of six cycles of intravenous platinum-
based chemotherapy with carboplatin and paclitaxel [1,12,18].

The survival advantage of cytoreduction, in particular for patients
with late-stage disease, has been reported retrospectively in studies
since 1934. With reference to a meta-analysis of 53 studies involving
6885 patients with late-stage malignance (Stage Il or IV), Bristow and
colleagues had demonstrated that each 10% increase in surgical
debulking was correlated with a 5.5% improvement in median
survival [19]. Therefore, after surgery and subsequent adjuvant
chemotherapy in women with ovarian carcinoma, it seems that the
duration of survival has somewhat extended. Nonetheless, the overall
5-year survival rate for patients is still as low as 45% at present. The
prognosis of this disease is poor because nearly 80% of patients
presented at advanced stage have already metastasized. Despite the
majority of these patients are responsive to the first-line treatment,
most of them acquire resistance to conventional chemotherapeutics
and experience more aggressive tumor recurrence at a median of 15
months from diagnosis [18-20]. Even if second-line therapies have
recently been suggested to increase survival and quality of life, they
are just palliative. Thus, there is a compelling need to further advance
our knowledge in ovarian tumor biology and explore novel therapeutic
interventions for this disease.

Current Complementary Therapeutic Approaches

In view of the limitations of current cancer therapies like chemother-
apy, radiotherapy, and surgery in treating ovarian carcinoma, many
alternative therapeutic approaches have been evolved in recent years
with the aim of improving prognosis and overall survival rates. Such
kinds of alternative therapies sometimes act as a complementary char-
acter and therefore are given in addition to the primary treatments.
Among multiple complementary treatments, targeted cancer therap-
ies, immunotherapy, and nutraceutical medication are somewhat
believed to lessen the side effects and show benefits in a proportion
of cancer patients.

Many of the targeted cancer therapies nowadays are pharmaceuti-
cals that halt the growth and metastasis of cancer through blocking or
intervening with specific protein molecules involved in tumor growth
and progression. By blocking the essential cellular signal transductions
critical for tumor growth, targeted cancer therapies either, on one
hand, directly cause cancer cell death by inducing apoptosis or, on
the other hand, activate the immune system to distinguish and then
eliminate the malignant cells. Identification of ‘good targets’, which
should be proven to play a key role in malignant cells’ growth and
survival, is therefore with the utmost importance for the effectiveness
of targeted cancer therapy development.

Once a target has been recognized, targeted cancer therapies can
be subsequently developed. In fact, most of the targeted cancer therap-
ies using today are either small-molecule inhibitors or monoclonal
antibodies. For the small-molecule inhibitors, they are able to target
cancer cells specifically. On the contrary, the monoclonal antibodies
usually cannot infiltrate the plasma membrane of intact cells and are
hence directed against their targets, which are normally located out-
side cells or on the surface of the cancer cells. Targeted cancer therap-
ies are more specific than conventional therapies and are less likely to
exert side effects to normal cells. Nevertheless, targeted cancer therap-
ies are comparable in higher cost and they usually can only address one
target at a time. In cancer treatment, fixing one molecular or cellular
target may be effective for some cancer patients; however, it is under-
stood that multiple molecular and cellular abnormalities should actu-
ally be involved in many cases, and thus, other patients may need
treatments that address more than one target.

Apart from targeted cancer therapies, immunotherapy is regarded
as biological therapy, which makes use of the host’s immune system to
fight against cancer with little side effects. Almost a century ago, Paul
Ehrlich hypothesized the theory of immune surveillance that cancer
cells are rapidly eradicated by the immune system on a daily basis
[21]. At that time, his hypothesis could not be proven due to lack of
appropriate models and in vitro systems. Today, it is understood
that malignant tumors are immunogenic in certain cancer sites, includ-
ing ovarian cancer [21]. Accumulating evidence associating with the
linkage between antitumor immunity and carcinoma has also been
found in ovarian cancer [22-25]. Understanding how the immune sys-
tem is stimulated and responded in ovarian carcinoma is consequently
a prerequisite for scheming clinically meaningful immunologic ap-
proaches against this malignance.

The hypothesis of immunotherapy as a potential strategy for the
treatment of ovarian cancer is indeed based on the several points of
evidence. First of all, many tumor-associated antigens such as
HER2/neu [26,27], MUC1 [28], OA3 [29], membrane folate receptor
[30], TAG-72 [31], mesothelin [32], NY-ESO-1 [33], and sialyl-Tn
[34] are commonly expressed in ovarian cancer and can serve as tar-
gets for cellular immune responses. Secondly, the presence of tumor-
infiltrating lymphocytes was strongly and positively correlated with
patient survival [22]. Thirdly, it has been reported that peptide/
MHC complexes that can be recognized by CD8" T lymphocytes
are always expressed in ovarian cancer [21]. Finally and most import-
antly, the dynamic interaction between immune response of the host
and cancer implies that the equilibrium between the two parties can
be prone to favor the host immunity, with the ever enhancing arsenals
of the immunological nature [21]. Collectively, it has been recom-
mended that immunotherapy can be an innovative and useful comple-
mentary therapy for ovarian cancer.

When employing immunotherapy for cancer treatment, the in-
volvement of biological response modifiers (BRMs) is very important.
BRMs can alter the interaction between the cancer cells and the body’s
immune defenses that direct body’s immune system to specifically
tackle the malignancies. BRMs, therefore, act as the key executioner,
which include a wide variety of biological compounds such as anti-
bodies, cytokines, and other biological substances of the immune sys-
tem. Many BRMs have already been developed as a standard part of
medication for certain kinds of carcinomas, whereas some of them are
still undergoing clinical trials. Besides being used in addition to the
conventional treatments, BRMs can be applied singly or in combin-
ation with each other.

Cancer vaccines, on the other hand, are another contemporary im-
munotherapy presently under intense investigation. They are available
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for both cancer patients and healthy individuals because two different
groups of cancer vaccines have been developed so far, including the
therapeutic vaccines for treatment of existing cancers and the prophy-
lactic vaccines for prevention of cancer development. In brief, thera-
peutic vaccines are usually given to patients after cancer is
diagnosed with the aim of terminating the growth of existing tumors,
precluding recurrence of cancer, and eliminating cancer cells not fully
killed by previous conventional treatments. In contrast, prophylactic
vaccines are administrated in healthy people prior to the development
of diseases. Such kinds of vaccines are intended to activate the body’s
immune system to fight against viruses, which may induce cancer. It is
hoped that the development of certain kinds of cancers can be pre-
vented by targeting these cancer-inducing viruses.

Early cancer vaccine clinical trials involved mainly patients with
melanoma. Therapeutic vaccines are now being investigated in the
treatment of numerous carcinomas, including ovarian cancer. Add-
itionally, studies on prophylactic vaccines are also continued in an at-
tempt to prevent cervical and liver cancers worldwide. Besides these,
researchers are finding ways to combine cancer vaccines with other
BRMs.

Although different modalities of immunotherapy have already
been developed and entered the clinic, most of them have demon-
strated limited efficacy. The genomic instability plus intrinsic hetero-
geneity of the tumor, together with immune suppression triggered
by both the tumor and its microenvironment, remain the key obstacles
to the success of the immunotherapy [35]. Similar to other kinds of
cancer treatments, multiple side effects may also arise during immuno-
therapy. Usually rashes or swellings may occur at the site where the
BRMs are given. Several types of BRMs, involving cytokines like inter-
ferons and interleukins, may bring along some flu-like symptoms such
as fever, chills, nausea, fatigue, vomiting, and loss of appetite. In ser-
ious cases, blood pressure of the patients may also be influenced. In
view of these negative drawbacks, patients should better consult
their physicians and think twice to strike a right balance between
the pros and cons of immunotherapy before choosing it in their
medication.

Last but not least, nutraceutical medication by either folk medicine
or food supplements has been claimed to possess physiological bene-
fits and provide protection against chronic diseases, including cancer
[36]. Traditional medicine has a very long history and it involves the
use of herbal medicines, animal parts, and minerals. Among these
three, herbal medicines are the most commonly used, which include
herbs, herbal materials, herbal preparations, and finished herbal pro-
ducts. The application of herbal medicines predates written human
history, and a number of the earliest written records from China,
Egypt, and Sumeria deal with this topic. Although herbal medicines
are generally acknowledged to be safe and effective, they are not al-
ways appreciated by national authorities and by international agen-
cies. However, considerable benefits are believed to be possible
when the traditional herbal medicines are subject to scientific methods
of validation of conventional use and quality control. In fact, many
pharmacological classes of drugs also include a natural product proto-
type. Artimesinin, atropine, digoxin, morphine, quinine, physostig-
mine, pilocarpine, reserpine, taxol, vincristine, and vinblastine are
some of the examples of what medicinal plants have given us in the
past. Contemporary medicine is now, therefore, beginning to accept
the use of botanicals once they are scientifically validated. Garlic, gink-
go, ginseng, and in particular bitter melon are some instances of bota-
nicals that are gaining more and more popularities in modern cancer
medications. Yet, the number of plants that have not been examined
for content of biologically active components is vast. It is estimated

that only 3%-5% of terrestrial botanicals have been reasonably well
studied, and thus, there is great potential on research using medicinal
plants as cancer therapy in the near future[37,38].

AMP-activated Protein Kinase in Human Cancer
and its Significance in Cancer Metabolism

In the 1920s, Warburg was the first to suggest the idea that cancer is in
part a metabolic disorder. Today, emerging evidence confirmed that
targeting cancer cell metabolism is a promising therapeutic approach
in human cancers. AMP-activated protein kinase (AMPK) is a known
cellular metabolic sensor that plays a significant role in the control of
energy homeostasis in response to external stresses [39-42]. Recent
studies have revealed that activation of AMPK by pharmaceuticals
or natural compounds, e.g. bitter melon extract (BME), is able to
block the malignant cell growth in numerous human cancers
[42-46]. Indeed, previous studies reported by our team showed
that pharmaceutical AMPK activators such as S-aminoimidazole-
4-carboxamide 1-B-D-ribofuranoside (AICAR) (ATP-dependent) and
A23187 (ATP-independent) could be used to suppress cervical cancer
cell growth harboring with or without LKB1, an upstream kinase of
AMPK [44]. Our group also proposed mechanistic evidence showing
that metformin, AICAR, and A23187 suppress cell growth of cervical
cancer through reducing AKT/FOXO3a/FOXMI1 signaling [47] and
DVL3, a positive effector of Wnt/B-catenin signaling cascade, has
been shown to be activated constitutively in cervical cancer develop-
ment [48]. More importantly, our latest study of the molecular mech-
anism revealed that BME acts as a natural AMPK activator through
CaMKKS signaling in an AMP-independent manner, which in turn
represses both mTOR/p70S6K and AKT/ERK/FOXM1 signals
in ovarian cancer cells (Fig. 1). Yet, it is still possible that there are
other molecular mechanisms altered by these AMPK activators in
suppressing the growth of cancer cells. The understanding of these
uncharted mechanisms will assist in exploring better therapeutic re-
gimes when using these activators to treat malignance, in particular,
gynecological cancers.

Structure and properties of AMPK

AMPK was first identified in 1987 [49,50]. It is a universal heterotri-
meric serine/threonine protein kinase composed of a catalytic subunit
o and two regulatory subunits  and y. Each subunit has different iso-
forms such as a1, a2, B1, B2, y1, y2, and y3 encoded by distinct genes,
which enables the yielding of 12 possible heterotrimeric combinations
(Fig. 2) [39,51,52]. The predominant variants in the majority of cells
are a1, B1, and y1, while cardiac and skeletal muscle cells also express
02, B2, 72, and y3 [53]. The o, B, and y subunits of AMPK have their
distinctive structural components. This property not only allows their
differential roles in the regulation of AMPK activity but also facilitates
the physiological functions of AMPK in mammalian cells. Encoded
by the gene PRKAA1, AMPKol is a 63-kDa protein with 548-
amino-acid residues, whereas AMPKa2 is a 552-amino-acid protein
with the same molecular weight as o1 variant encoded by the gene
PRKAA2. Both variants possess a highly conserved catalytic domain
at the N terminus (residues 1-312) that contains the activating phos-
phorylation site (Thr172) immediately followed by an autoinhibitory
domain and a C terminus that possesses a divergent C terminal regu-
latory domain (residues 313-548 and residues 313-552 for a1 and a2
subunits, respectively) implicated in the interaction with the p and y
subunits [39,52,54]. Interestingly, both AMPK o1 and a2 catalytic
subunits are found to have a differential subcellular localization

310

320

325

330

335

340

345

350

355

360



370

375

380

385

390

395

400

405

410

415

420

425

4 Targeting AMPK signaling in combating ovarian cancers
AMPK activators
I |
Nutraceuticals & Pharmaceuticals
sesessss novel chemicals such such as metformin &
: as BME & A23187 AICAR
9y : : ert2t1 12111
I “HEH:H::5n{EEH‘;M"'Uiﬂ”“’ﬂnhnu“‘ Tl

Glycolysis Cytoplasm

@ < !

AKT/ERK

-mTOR FOXMI Cleavage of \
, Xlx%x Death Substrates

| \ I Nucleus )

Apoptosis
Cell Proliferation
Cell Survival
Protein  Differentiation, Development
Fatty Acid Synthesis ~ Translation Cell Cycle Control
1 Cell Motility, Tumourigenesis

Cell Growth

Figure 1. Proposed mechanisms summarizing pharmaceutical and natural AMPK activators mediated by cell growth inhibition and apoptosis in ovarian cancer
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Figure 2. Schematic diagram of domain structures of mammalian AMPK is a highly conserved heterotrimeric complex composed of catalytic o, regulatory g and y
subunitsina1:1:1ratio The C terminal domain (CTD) of B subunit forms the core of the heterotrimers, interacting with the o-CTD and the N terminus of the y
subunit prior to CBS1. AID stands for the autoinhibitory domain, CBM stands for the carbohydrate-binding module, and CBS1 to CBS4 stand for the CBS repeats in
the y subunit [52].
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pattern in eukaryotic cells. For instance, o1 subunit appears to be
largely enriched in the cytoplasm and excluded from the nucleus,
but 02 subunit is localized in both the nucleus and cytoplasm [53].
With regard to tissue distribution, o1 subunit is found to be universal-
ly expressed; however, o2 subunit is highly expressed in specific tissues
such as skeletal and cardiac muscle, and is not present in blood cells or
endothelial cell lineages [51]. Similarly, AMPKa2 was found to be
widely repressed in human breast cancer tissues, whereas AMPKa1
subunit was not [55]. Functional study characterized that re-
expression of AMPKa2 in the estrogen-dependent breast cancer
MCF-7 cells displayed lesser proliferation and underwent apoptosis
more readily than control cells both i vitro and in vivo [55], implicat-
ing the tumor suppressor-like contribution of AMPKo:2 in human car-
cinogenesis.

On the other hand, two isoforms of AMPKR have been identified
so far, which are B1 and B2. Encoded by the gene PRKAB1, AMPKp1
is a 38-kDa protein with 270-amino-acid residues, whereas AMPKB2
is a 271-amino-acid protein with a molecular weight of 34 kDa and
encoded by the gene PRKAB2. The AMPKp family members are
highly similar, and they are 71% identical with only slight difference
at the N terminus [51,56]. Via the o and y subunits’ binding domain at
the C terminus, both AMPKB1 and AMPK B2 act as scaffold/docking
subunits and interact at the same efficiency with AMPKo and AMPKy
subunits, so as to facilitate the formation of stable AMPK heterotri-
meric complex [39,54,57]. In addition, the central carbohydrate-
binding module (CBM), also called the internal glycogen-binding do-
main of AMPKSB subunit, has high affinity for glycogen particles and
may bring about abnormal glycogen containing inclusions when the
AMPK heterotrimers are overexpressed. However, the functional im-
portance of such binding remains uncertain because the truncated B
isoforms without an intact glycogen-binding domain still form active
and functional heterotrimeric complex with AMPKa and AMPKy, in-
dicating that glycogen-binding domain is not necessary for the enzym-
atic activity of AMPK [51,54]. Moreover, AMPKB subunit has
multiple regulatory phosphorylation sites such as Ser24/25 (only in
AMPKPB1), Ser108, and Ser182. With the participation of AMPKa1,
autophosphorylation at Ser24, Ser25, and Ser108 is successfully ac-
complished; while through the action of the upstream AMPK kinase,
phosphorylation at Ser182 is effectively achieved. Although none of
the mutations in these reported AMPKB1 phosphorylation sites influ-
ence the rate of phosphorylation at Thr172 on AMPKal1 subunit,
phosphorylation at Ser24, Ser25, and Ser182 residues is critical for
the nuclear exclusion of AMPKp1 subunit, and phosphorylation at
Ser108 is necessary for the regulation of AMPK catalytic activity.
Consistent with this finding, AMPKB subunits appear to be confined
in both the nuclear and the nonnuclear cell fractions [39,54]. Our re-
cent study reported that AMPKR1 is consistent with the amount of
AMPK heterotrimeric complexes and the AMPK activity in advanced
ovarian cancers [58]. Both functional and mechanistic studies showed
that the reduced AMPKB1 expression leads to decreased AMPK activity,
but enhanced oncogenic capacities of ovarian cancer cells via modulating
the AKT/ERK and JNK signaling pathways [59]. These findings under-
score the significance of AMPKR subunit in carcinogenesis by means of
its competence to modulate AMPK activity and other oncogenic path-
ways throughout the progression of ovarian cancer.

Apart from o and B subunits, there are three kinds of AMPKy
isoforms that have been identified in mammalian cells. AMPKy1 is
a 37-kDa protein with 331-amino-acid residues, AMPKy2 is a
569-amino-acid protein with a molecular weight of 63 kDa, and
AMPKY3 is a protein of 492-amino-acid residues (55 kDa). They are
encoded by three alternate genes PRKAG1-3, respectively. They differ

at the N-terminal region followed by four highly conserved cy-
stathione B-synthase (CBS) repeats. In pairs, the CBS tandem repeats
form two functional structures known as Bateman domains 1 and 2
that are involved in binding of adenosine-containing ligands such as
AMP, ADP, and ATP. Among the three v isoforms, Y1 is ubiquitously
expressed, while y2 and y3 appear to be most abundant in muscle
with less preferential nuclear localization than y1 variant [39,54,60,61].

Regulation of AMPK

AMPK is a well-known cellular and whole-body energy balancing sen-
sor that is implicated in the regulation of multiple cellular metabolic
pathways [42,44,62-64]. It is believed that in the inactivated
AMPK, the kinase catalytic domain of the o subunit interacts with
its autoinhibitory region located adjacent to the C-terminal regulatory
domain. However, AMPK is activated in response to depletion of
intracellular ATP levels by environmental, physiological, or patho-
logical stress factors such as exercise, heat shock, hypoxia, ischemia,
nutrient deprivation, redox imbalance, and changes in cellular pH,
which all induce a concomitant elevation of cellular AMP : ATP
ratio. The accumulation of cellular AMP due to the rise in the ratio
of AMP : ATP not only favors the allosteric regulation of AMPK by
the binding of AMP to the Bateman domains of AMPK y subunit
but also prevents association of the autoinhibitory segment of the o
subunit with its kinase domain. As a result, a conformational change
in the AMPK heterotrimer is induced to expose the active site Thr172
on the o subunit. An increase in the activity of AMPK is eventually
facilitated by subsequent phosphorylation at the exposed active site
Thr172 [39-41,65,66] (Fig. 3). Contrary to the effect of AMP, studies
have shown that high concentration of ATP antagonizes the binding of
AMP to the y subunit and leads to a decrease in AMPK activity [39].

In addition to the AMP allosteric regulation, increase in the cellular
AMP : ATP ratio can also induce phosphorylation of AMPK by
upstream AMPK kinase, and such activation causes at least a 50- to
100-fold increase in the AMPK activity [49,64]. For example, in the
presence of high concentration of AMP, dephosphorylation of
AMPKao catalytic subunit by protein phosphatases is prevented and
at the same time net activating phosphorylation of Thr172 residue
on AMPKao: is potentiated by its upstream kinase, LKB1, which is a
tumor suppressor gene responsible for the inherited disease called
Peutz-Jeghers Syndrome [40,41,43,44,62,65,67]. However, a low
basal activity of AMPK and phosphorylation of Thr172 residue on
the o catalytic domain can still be detected in cells lacking functional
LKB1 (e.g. HeLa cells), suggesting that kinases other than LKB1 might
be involved in upstream activation of AMPK [68-70].

Recently, it has been revealed that elevation of intracellular
calcium concentration in cells lacking LKB1 but expressing calcium/
calmodulin-dependent protein kinase kinase o and B (CaMKKa
and B) can activate AMPK activity by phosphorylating AMPKa. at resi-
due Thr172, independent of changes in concentration of AMP
[39,41,68,69]. Subsequent experimentations by means of pharmaco-
logical inhibitors and short interfering RNAs directed against the
CaMKXKs confirmed that CaMKKs, in particular the B isoform, are ac-
countable for the activation of AMPK by phosphorylation of AMPKa:
at Thr172 under these circumstances [68,71]. These results imply that
there are two converging pathways of AMPK regulation. One is direc-
ted by LKB1, which is regulated by alterations in AMP concentration
upon cellular stresses, whereas the other one is directed by CaMKKs,
which is dependent on changes in intracellular calcium level [54].

Besides the action of LKB1 and CaMKKs, transforming growth
factor-B-activated kinase-1 (TAK1), also known as MAPKK kinase-7
(MAP3K?7), has been proposed to be another upstream kinase of
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Inactive state

AMP binding

Active state

Figure 3. Allosteric regulation of AMPK In order to have an optimal AMPK activity, a functional AMPK complex is a must. When AMPK is in the inactive state, the
catalytic domain of o subunit is suppressed by interactions with the autoinhibitory domain on the same subunit. However, in the presence of elevated AMP : ATP
ratio upon stimuli, AMP molecules bind to the two Bateman domains on the y subunit and induce a conformational change in the AMPK complex which thereafter
exposes the kinase active site Thr172 of the o subunit. Ultimately, AMPK kinase is activated by phosphorylation on the active site Thr172 [66].

AMPK [72-74]. TAK1 is a serine/threonine protein kinase, which is
activated by numerous cytokines, for example, transforming growth
factor B and tumor necrosis factor o in mammalian cells, and it is fre-
quently associated with human cancer progression including ovarian
cancer [75]. Activation of endogenous TAK1 has been demonstrated in
experiments using chemical AMPK activators such as AICAR and met-
formin, which directly affect or imitate changes in cellular AMP : ATP
ratio. Subsequent experiments revealed that TAK1 is capable of phos-
phorylating AMPKa: at Thr172 residue as LKB1 and CaMKKs do. In
addition, coexpression of TAK1 with its binding partner TAK-1-binding
protein 1 in HeLa cells or treatment of HeLa cells with cytokines in-
duced phosphorylation of AMPKa: at residue Thr172 [39,54,73]. How-
ever, the physiological relevance of some of these findings remains
uncertain, and therefore, more investigations are required to find out
the significance of this upstream kinase in cellular physiology.

Importance of LKB1/AMPK signaling and carcinogenesis
The discovery of LKB1, which is a well-known upstream kinase of
AMPK and also an important tumor suppressor, provided the first evi-
dence of an association between AMPK and cancer [76]. In cells with
functional LKB1/AMPK signaling pathway, energy depletion general-
ly causes an inhibition of cell growth or induces a p53-dependent cell
cycle arrest until levels of ATP are restored [43,70,77]. Whereas in cells
lacking intact LKB1 signaling, retardation of cell proliferation would
not happen even during the time of reduced energy production, and
this facilitates dysregulated cellular proliferation which is a hallmark
of the malignant phenotype [43]. Nevertheless, when energy depletion
was serious, cancer cells without LKB1 would undergo apoptosis ra-
ther than growth arrest. These phenomena were supported by a recent
study showing that cells lacking intact tuberous sclerosis complex
(TSC), a downstream target of AMPK, increased their cellular size
upon glucose deprivation and died while glucose was completely re-
moved. On the contrary, cells bearing wild-type TSC decreased in
size under low-glucose conditions but continued to survive upon glu-
cose withdrawal [78].

Activation of AMPK suppresses the growth of malignant
cells

Although functional LKB1/AMPK signaling pathway in ordinary tis-
sues may protect against cancer development, in transformed cells, ac-
tivation of AMPK has been reported to be considerably cytotoxic to
different kinds of human carcinoma cell lines such as breast [79,80],
glial, liver [81], lung [82], stomach [83], prostate [79,84], and ovary
[85]. Moreover, tumor growth in both rat Cé glioma allograft [79]
and MDA-MB-231 human breast cancer xenografts [80] was signifi-
cantly reduced after AICAR treatment. The detailed mechanism
whereby activation of AMPK induces cell growth arrest or apoptosis
in malignant cells is very complicated and its understanding is still not
comprehensive enough. Yet, a scenario is currently emerging that
intervention of cancer cell metabolism by activation of AMPK may
be mainly mediated via the oncogene AKT.

In general, two common metabolic phenotypes including aerobic
glycolysis [86] and lipogenesis [87] are always expressed in human
cancers. In normal human tissues, the integration of aerobic glycolysis
as well as enhanced de novo fatty acid synthesis is not often, but it is
extensively unique to malignant cells instead. Activation of the onco-
gene AKT is perhaps in large part accounts for this metabolic profile.
In the energy-surfeit state, the levels of ATP are usually far more than
necessary so that both the LKB1 and AMPK are in their inactive state.
However, AKT is constitutively activated in energy-surplus cancer
cells, and it drives glycolysis by translocating hexokinase from the
cytoplasm to the place close to the mitochondria [43,88]. On the
other hand, phosphorylated AKT strengthens mTOR signaling
through the inactivation of TSC1/TSC2 [43]. As a result of the in-
creased mTOR activity, transcription of glycolytic enzymes [89,90],
protein translation via phosphorylation of S6K and 4EBP1, and cell
proliferation [78] are all subsequently enhanced.

In addition to augmented glycolysis, the upsurge of fatty acid syn-
thesis is promoted by the AKT-activated phosphorylation on ATP cit-
rate lyase [91], while nucleic acid synthesis is increased as a secondary
consequence of enhanced flux through glycolysis [43]. Taken together,
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activation of AKT triggers a series of anabolic processes including aer-
obic glycolysis and increased syntheses of fatty acid, protein, and nu-
cleic acid, but with reduced fatty acid oxidation.

When cancer continues to grow and proliferate, regions of the
tumor may perhaps extend beyond the capacity of its vasculature to
supply adequate nutrients. Accordingly, cellular energy homeostasis
is dysregulated, and as a result, AMPK is phosphorylated and acti-
vated by upstream kinase LKB1. It is understood that activation of
AMPK promotes catabolism and inhibits anabolism in order to con-
serve cellular energy [53,92]. To curb anabolism during the period of
energy deprivation, catabolic AKT signaling is interfered by the acti-
vated AMPK through a two-prong approach involving direct inhib-
ition [79] on one hand, and activation of the TSC on the other
hand, which in turn suppresses the activity of mTOR [78]. On
the whole, a net reduction of glycolysis occurs by restricting the
hexokinase activity and the transcription of glycolytic enzymes.
Such decline in glycolysis and the decline in the carbon flux result in
less citrate available for fatty acid synthesis and less carbon available
for nucleic acid synthesis. In addition, fatty acid synthesis is even
further inhibited by the AMPK-suppressive phosphorylation on
acetyl-CoA carboxylase (ACC). Besides the inhibition of fatty acid
synthesis and nucleic acid synthesis, new protein synthesis is also re-
duced due to the resultant inhibition of mTOR signaling. Importantly,
pS53 is also activated by AMPK, which leads to growth arrest so as to
save energy and avoid the onset of cell division with insufficient energy
capacity [43].

With reference to this scenario, physiological activation of
AMPK is likely to be antiapoptotic, protecting the integrities of cancer
cells during energy depletion. When there is an increase in nutrient
supply again, the AMP : ATP ratio decreases, and so does the activity
of AMPK. Whereas AKT is believed to be reactivated under this
energy-surplus condition, and macromolecular synthesis as well as
tumor cell growth can be resumed with relief of the cell cycle blockage.
Nevertheless, prompt induction of AMPK by pharmaceuticals seems
to attenuate cancer cell growth more when it is compared with mere
physiological AMPK activation. For example, pharmaceutical activa-
tion of AMPK could give rise to a rapid decrease in fatty acid synthesis
with intensified levels of citrate and malonyl-CoA. It is known that
high concentrations of cellular citrate can repress glycolysis by inhibit-
ing phosphofructo-kinase-1, while high level of malonyl-CoA sup-
presses oxidation of fatty acid. The combination of repressed fatty
acid synthesis and repressed glycolysis severely compromise the cellu-
lar AMP : ATP ratio and the normal cellular metabolism resulting in
cell fatality [43]. Determined by the metabolic stage and cell cycle pos-
ition of the cancer cells, any rapid intervention in the synthesis of nu-
cleic acid, protein, and fatty acid through pharmacological AMPK
activation is believed to provide the coup de grace for cancer.

AMPK activation—a two-edged sword?

Although mounting evidence has documented that enforced activation
of AMPK could not only induce a cytostatic effect in cancer cells but
also inhibit tumor growth and metastasis, emerging findings have re-
ported that physiological activation of AMPK in malignant cells might
promote their survival especially at the initial stages of tumor develop-
ment [93,94]. It is well known that most malignant cells are subject to
both limited nutrient and oxygen supplies on account of the insuffi-
cient vascularization in early stage of tumor formation [95]. Tolerance
to nutrient deprivation and angiogenesis may, therefore, be critical in
those malignancies. To this end, activation of AMPK could provide a
window-of-opportunity to keep the cancer cells alive by mediating a

metabolic adaptation among them. Using an established model of
glioblastoma, it was shown that AMPK is highly activated at the
early stages of tumorigenesis [94,96], and LKB1/AMPK signaling cas-
cade is essential for glioma cell survival and spheroid migration under
low-glucose conditions [94,97]. Consistently, it has been demon-
strated in another study that silencing of AMPK severely impaired
the anchorage-independent growth manner and the iz vivo tumor for-
mation ability on human pancreatic carcinoma [95]. The significance
of AMPK activation for cell growth and survival of cancer has also
been revealed in lung carcinoma [98]. Re-expression of LKB1 on
LKB1-deficient human lung adenocarcinoma (A549) cells protected
the cancer cells against cell death triggered by glucose deprivation
via suppression of fatty acid synthesis by AMPK and subsequent spar-
ing of NADPH, which could be exploited to safeguard against oxida-
tive stress induced by glucose starvation [93,98]. Owning to the
emergence of such a tumor-promoting paradox in AMPK, it is be-
lieved that a better understanding of AMPK activation and its role
in various pathological conditions could enable the development of
strategies to use it as a therapeutic target.

Biochemical activation of AMPK

AMPK is emerging as a potentially attractive therapeutic target for the
treatment of cancer. Understanding of the physiological role of AMPK
in cells is, therefore, of the utmost importance, and the approaches can
be greatly enhanced by the application of different pharmacological
AMPK activators. In fact, the majority of these activators are novel
chemicals [99,100] or drugs in clinical use in conventional medicines,
while others are some natural compounds found in traditional medi-
cines, food, and drink derivatives [51,101-103]. The mechanisms of
most activators can be briefly classified into two categories—those
that stimulate AMPK through the major upstream activating kinase
LKB1 by increasing the cellular AMP : ATP ratio and those that acti-
vate AMPK through alternative pathways, independent of the AMP :
ATP ratio [54] (Tables 1 and 2).

Activators of AMPK that interfere cellular energy
homeostasis

AICAR

AICAR is one of the best characterized activators of AMPK. It is a cell
permeable adenosine analog actively transported into cells by adeno-
sine transporters and phosphorylated by the enzyme adenosine
kinase into the equivalent ribotide, 5-aminoimidazole-4-carboxamide
1-B-D-ribofuranosyl monophosphate (ZMP) (Fig. 4). ZMP is an AMP
mimic that activates AMPK by binding to the Bateman domains of the
AMPKy subunit and inducing allosteric activation, as well as by pro-
moting its phosphorylation via upstream kinases [39,51,54,104].
Although ZMP, as an activator of AMPK, is only ~2% as potent
as AMP, activation of AMPK can be detected in cells just after 30-60 min
exposure to AICAR because ZMP can accumulate to millimolar concen-
trations inside the cells [51,116]. Besides i vitro experiments, AICAR is
also effective i vivo that has been applied to examine physiological pro-
cesses associated with AMPK in animal models [51,117].

The critical mediator of AICAR-induced AMPK activation in cells
is believed to be LKB1, because experiments performed utilizing LKB1
wild-type and LKB1-deficient murine embryonic fibroblasts showed
that AICAR-stimulated AMPK phosphorylation was significantly at-
tenuated in the absence of LKB1 [104,118]. Furthermore, AMPK ac-
tivation by AICAR also suppresses the mTOR signaling cascade both
in vitro [119] and in vivo [120]. Collectively, these findings provided
the preliminary link between AICAR and cancer treatment. In
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Table 1. Differential behaviors of AMPK-activating compounds in stimulating AMPK

Compounds Mediation of AMPK activation

Reference

Activators interfere cellular energy homeostasis

AICAR AMP mimic that induces allosteric activation and promoting phosphorylation through upstream kinase [39,51,54,104]
LKB1

Metformin Biguanide derivative that is an inhibitor of complex I of the mitochondrial respiratory chain [105,106]

2-DG Non-hydrolysable d-glucose that impedes glycolysis and results in depletion of intracellular ATP [51,78,107,108]

Mitochondrial toxins ~ Possessing a remarkable increase in AMP : ATP ratio by defeating the proton gradient across the inner [39]

(DNP) mitochondrial membrane

Oxidative stress Hydrogen peroxide reduces ATP production and concomitantly rise in the level of AMP [109,110]

Compound 14 Accumulation of endogenous ZMP through suppressing the homodimerization of aminoimidazole [99]
carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase (ATIC)

R419 Similar to metformin that modulates mitochondrial function via inhibiting respiratory complex I [100]

Activators without interrupting cellular energy homeostasis

A-769662 Thienopyridone induces allosteric activation and interacts with uncharacterized site(s) of AMPK instead ~ [39,51,111]
of displacing AMP from the Bateman domains

A23187 Calcium ionophores that target CaMKKSB, the upstream kinase of AMPK [68]

The manners of AMPK activation can be categorized into two groups—most of them interfere cellular energy homeostasis by altering the AMP : ATP ratio and the

others trigger initiation of AMPK without affecting cellular energy homeostasis.

Table 2. Natural AMPK activators

Compounds Mediation of AMPK activation Reference
Nutraceuticals and traditional medicines—novel natural AMPK activators
Resveratrol A molecule produced by a variety of plants especially grapes. It inhibits mitochondrial F1 ATPase [101,112]
(3,5,4’-trihydroxystilbene) resulting in increase of AMP : ATP ratio
Red ginseng extract (RGE) Activates the AMPK-ACC pathway in cells via activation of LKB1 [113]
Curcumin A phytochemical isolated from the rhizome of turmeric. It possesses change in cellular AMP : ATP [114]
ratio, resulting in activation of AMPK and its downstream mTOR and STAT-3 signaling
Puerarin Activates AMPK signaling through CaMKII [102]
o-Lipoic acid Activation of AMPK is through the CaMKKp-mediated phosphorylation of Thr172 [101,103]
BME BME and its active ingredients activate AMPK via CaMKKS@ signaling in an AMP-independent manner  [115]

Many natural activators of AMPK are nutraceuticals, traditional medicines, or unexplored secondary plant metabolites that not only inhibit mitochondria but also

mediate activation of AMPK by other novel manners.

addition, the capability of AICAR to inhibit cancer cell proliferation
has been assessed both i vitro and in vivo [79]. Research conducted
in a panel of cancer cell lines revealed that AICAR-induced activation
of AMPK suppressed cell proliferation dose dependently and arrested
cell cycle progression in S phase [79,104]. In addition, after activating
AMPK with AICAR in Cé6 glioma cell xenografts, tumor growth in
rats from the experimental group decreased by >50% when compared
with untreated control [79].

Although preclinical studies have demonstrated that AICAR plays
an important role in AMPK activation, its use is still very limited. One
may expect that the rise in the level of ZMP when AICAR is continu-
ously metabolized by the adenosine kinase would lead to more activa-
tion of AMPK, but in fact the opposite result occurs. The main reason
is that a triply phosphorylated form (ZTP) may also accumulate and
serve as an antagonist of ATP, hence inhibiting AMPK in the long
term. Additionally, some AMP sensitive enzymes like fructose-1,6-
bisphosphatase and glycogen phosphorylase can be influenced by
the AMP-mimetic effect of ZMP. In terms of clinical use, AICAR like-
wise is a lukewarm participant. On one hand, the pharmacokinetic of
AICAR is very poor, and on the other hand, its toxicity in patients is
rather high. Patients with AICAR orally or intravenously admini-
strated during clinical trials revealed that the bioavailability of
AICAR is <5% and its half-life is just ~2 h [121]. More importantly,
patients treated with AICAR have adverse side effects that they

exhibit significant increases in the production of lactic and uric acid
[121-123]. Although AICAR is an important research tool for inves-
tigating the effects of AMPK activation and mTOR inhibition on
tumorigenesis, it is obviously not suitable for clinical use yet. In any
case, off target effects do seem likely to occur as aforementioned,
and therefore, alternative means for activating AMPK should always
be included to confirm that the observed result is AMPK dependent.

Metformin

In fact, the most clinically developed activator of AMPK is metformin
(N,N-dimethylimidodicarbonimidic diamide), which is a first-line pre-
scribed drug commonly utilized for the treatment of Type II diabetes
[62,117,124]. The very high prevalence of Type II diabetes mellitus is
reaching epidemic proportions and it is estimated that >1% of the
world population (i.e. ~100 million people) have been prescribed
for this drug [51,62]. Metformin is a biguanide derivative originally
derived from guanidine and galegine, which can be naturally obtained
in the plant Galega officinalis also known as Goat’s Rue, French lilac,
and Italian fitch [125,126]. As early as in the 18th century, Goat’s
Rue was used as an herbal medicine to cure symptoms like thirst
and intense urination [51,125]. In the 1920s, metformin was chem-
ically synthesized and demonstrated to be useful in reducing blood glu-
cose in animals [127]. Unfortunately, further investigations of the
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Figure 4. Structural similarity between AMPK-activating compounds AICAR, ZMP, and AMP

biguanide drugs have been put on hold since the successful develop-
ment of insulin as the main therapy for diabetes. Until the late
1950s, by the time the discrimination between Type I and Type II dia-
betes had been made, metformin and its sister drugs buformin and
phenformin were eventually introduced into clinical application
[125,126]. Nevertheless, because of a rare but life-threatening side ef-
fect of frequent lactic acidosis, the use of phenformin was discontinued
in the US market in 1978. Whereas impressive outcomes of metformin
were always reported after 20 years of use in Europe especially in the
UK Prospective Diabetic Study, it was even approved for use in US in
1995 [51,125,128].

Although biguanide drugs have been in clinical practice for dec-
ades and their major effect is known to exert a significant decrease
in the rate of hepatic glucose production in Type II diabetic patients
[129], their precise mode of action still remains obscure until recent
studies [124,130,131] demonstrated that metformin activated
AMPK both in vitro and in vivo. Activation appears soon after treat-
ment for 30-60 min and causes a phosphorylation of both AMPKa1
and o2 subunits at the catalytic site Thr172 in a time-dependent man-
ner [54,124]. Although metformin has been demonstrated to activate
AMPK, the site(s) of action plus the biochemical mechanism by which
metformin stimulates AMPK remains controversial. Earlier studies
[105,106] have indicated that metformin is an inhibitor of Complex
I of the mitochondrial respiratory chain, which may activate AMPK
by inhibiting the generation of cellular ATP energy and hence increas-
ing the AMP : ATP ratio inside the living cells. Intriguingly, a number
of latest investigations [124,126,132] argued against this notion
because in these studies, metformin was found to stimulate AMPK
without affecting the AMP : ATP ratio. For example, Zou et al.
[124] have demonstrated that reactive nitrogen species generated with-
in mitochondria by metformin lead to activation of AMPK through
the ¢-Src/PI3 kinase pathway without a noticeable change in the intra-
cellular AMP or ATP contents. Consequently, up to this time, it is
sorry to tell that none of these investigations have fully elucidated
the mechanism by which metformin activates AMPK.

Recently, increasing evidence has suggested that metformin lowers
the risk of cancer via the activation of AMPK [62,133]. In unison with
this association, it has been reported that diabetic patients who re-
ceived metformin treatment in general got a lower incidence of cancer
than those who had other medications [70,134]. Further confirmation
on this correlation has also been done in different retrospective studies.
For instance, diabetic patients with breast cancer who had already
taken metformin apparently showed a better response to chemother-
apy than nondiabetics and diabetics without metformin treatment
[135]. In fact, activation of AMPK by metformin per se may be re-
quired, but not adequate, to suppress tumor growth. Research con-
ducted employing a panel of breast carcinoma cell lines revealed
that treatment with metformin remarkably repressed cancer cell pro-
liferation, which was associated with inhibition of S6K and phosphor-
ylation of S6 by mTOR in these cells [136]. Such effects of metformin
were AMPK dependent, since AMPK knockdown mediated by siRNA
approach in breast cancer cells prevented metformin-induced inhibition
of the mTOR signaling and rescued cells from metformin-induced
growth inhibition [136]. In addition, cap-dependent translation in
breast cancer cells was also inhibited by metformin through an
AMPK- and mTOR-dependent mechanism [137]. Taken together,
these findings indicate that metformin suppress cancer cell growth by
inhibiting protein synthesis.

Indeed, in vivo study has also been performed to assess the efficacy
of metformin as an anticancer drug in mouse model expressing mod-
erately reduced LKB1 and deficient PTEN (LKB1*PTEN*") [138]. It
is understood that both LKB1 and PTEN are constituents of signaling
pathways that regulate mTOR, and therefore, tissues from these mice
are usually characterized by hyperactivity of the mTOR signaling. Re-
sults from such experiment showed that administration of metformin
to LKB1Y*PTEN*~ mice did stimulate AMPK in various kinds of tis-
sues; however, tumorigenesis was only modestly inhibited. In general,
it just delayed the onset of tumors by 1 month, but did nothing in the
tumor incidence or morphology. It is really a wonder that the cancer
cells can ultimately run away from the cytostatic effects of metformin.
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One possible explanation is that additional mutation has been
acquired among the tumor cells to prevent or reduce continued activa-
tion of AMPK. In some respects, loss of LKB1 may be involved
because it has been estimated to appear in up to 20% of cervical
carcinomas [139] and 30% of non-small cell lung carcinomas
[70,140,141]. Further investigations are, therefore, required to better
determine which molecular contexts would be predictive in response
to biguanide derivatives.

Thus far, the majority of cancer research has been focused on the
signaling effects of biguanide derivatives and AMPK activation,
whereas little investigations have been directed to the massive meta-
bolic alterations, which are correlated with AMPK activation. By vir-
tue of the metabolic regulatory role of AMPK, both adipogenesis and
lipolysis should be properly regulated, making AMPK as a potential
candidate to modulate the adipocytes generating microenvironmental
milieu for the malignant cells [142-144]. Given that ovarian cancer
cells exploit omental adipocytes as their primary repository to derive
energy for proliferation and metastasis [142,145], while biguanide
AMPK activators such as metformin have been reported to restrain
adipogenesis and the stimulant effects on ovarian cancer cells driven
by adipocytes at a time [142], implying a conceivable therapeutic
option of applying biguanide derivatives for ovarian carcinoma.

2-Deoxy-D-glucose

2-Deoxy-D-glucose (2-DG) is another major representative of AMPK
activator. 2-DG actually is a non-hydrolyzable D-glucose analog that
is actively taken up into living cells by glucose transporters and subse-
quently catalyzed by hexokinase into 2-deoxglucose-6-phosphate
[51]. This catalysis impedes glycolysis and as a result stimulates
AMPK in part by depleting intracellular level of ATP but increasing
AMP : ATP ratio in cells [51,78,107,108]. It is believed that 2-DG
stimulates AMPK and represses mTOR via LKB1-dependent mechan-
ism since these consequences of 2-DG are significantly reduced in
LKB1-deficient murine embryonic fibroblasts and in LKB1 mutant
cancer cells [107,146]. The moderate level of AMPK activation de-
tected in LKB1 mutant cancer cells (i.e. HeLa and A549) with regard
to 2-DG is probably mediated by CaMKKB, as pretreatment of LKB1
mutant cancer cells with the CaMKXK-specific inhibitor, STO-609, at-
tenuates 2-DG-induced activation of AMPK [147]. Unlike AICAR,
2-DG may possess higher clinical potential since oral administration
of 2-DG is excellently tolerant among cancer patients and can also gen-
erate plasma concentrations as high as 5 mM. Moreover, medication
with 2-DG may lead to a higher therapeutic index in patients with can-
cer because cancer cells that have increased glycolytic activity preferen-
tially take up 2-DG. Phase I/II clinical trials in the treatment of solid
tumors with the use of 2-DG are recently being undertaken [108].

Mitochondrial toxins

Besides 2-DG, it has been demonstrated that high concentration of
mitochondrial toxins such as 2,4-dinitrophenol (DNP) (0.5 mM)
can stimulate AMPK in a number of cell types, especially in adipocytes
and skeletal muscle cells through a mechanism possessing a remark-
able increase in AMP : ATP ratio and phosphorylation on Thr172 of
the AMPKo subunit [132,148,149]. From the 1930s, DNP was exten-
sively used as a dieting aid in the treatment of nutritional disorders
[150], but it is considered too harmful for that application nowadays.
DNP actually is a cell permeable and benzene-based chemical com-
pound, which generally behaves as a proton ionophore in biological
membranes and particularly defeats the proton gradient across the
inner mitochondrial membrane. This gives rise to a less effective
ATP energy production because the proton motive force that living

cells use to generate most of their ATP is collapsed, and in effect
some of the cellular energy that is normally generated from respiration
is lost as heat production [39].

Oxidative stress

In addition to the elevation of AMPK activity with respect to DNP
treatment, oxidative stress induced by hydrogen peroxide was also
found to stimulate AMPK. The mechanism involves both a significant
reduction in ATP and a concomitant rise in AMP [109,110]. Activa-
tion is again tightly associated with the increased phosphorylation of
AMPKal at Thr172 [110].

Activators of AMPK independent of AMP : ATP ratio
A-769662

In order to have a better understanding about the mechanisms of action
of AMPK and the regulatory functions of AMPK in cellular metabol-
ism, scientists have kept on pursuing the discovery and development
of more potent activators of AMPK. By a high-throughput screening
in a chemical library having >700,000 chemical compounds, Abbott
Laboratories have currently identified a thienopyridone compound
known as A-769662 that functions as a reversible small-molecule acti-
vator of AMPK both in cell-free assay and in intact cells like primary rat
hepatocytes [39,51,138,151].

In cell-free assay, A-769662 not only directly activated partially
purified AMPK from rat hepatocytes with half-maximal effect (ECs)
of 0.8 uM, a concentration much lower than that needed for AMP
(ECso of 112 uM), but it also significantly generated a higher activation
(4.1£0.5 versus 3.1 0.5 folds) than AMP [111,151]. Whereas in
animal experiments, both wild-type and LKB1*PTEN*" mice orally
administered with A-769662 over 2 weeks had remarkably enhanced
levels of AMPK activity and phosphorylation in their livers, spleens,
and intestines [138]. On the other hand, when A-769662 was admini-
strated intraperitoneally, it possessed metabolic effects similar to other
common AMPK activators that it not only enhanced fatty acid oxida-
tion, inhibited de novo fatty acid synthesis, and decreased weight gain in
normal rats, but it also reduced plasma glucose and triglycerides levels
and the hepatic triglycerides among obese mice [151]. Alternatively,
A-769662 seems likewise to have the potential as an anticancer agent
as it apparently improved latency of tumor and reduced incidence of
tumor in LKB1*PTEN"" mice [104,138].

The mechanism by which A-769662 stimulates AMPK was un-
clear, until recent studies demonstrated that it allosterically activates
AMPK without altering the cellular AMP : ATP ratio and protects
against dephosphorylation of AMPKa subunit at residue Thr172 by
inhibiting the activity of the protein phosphatases. Although allosteric
activation is involved, a scintillation proximity assay carried out by
Goransson and colleagues revealed that A-769662 elicits its effects
by interacting with some currently uncharacterized site(s) instead of
displacing AMP from the y subunit Bateman domains [39,51,111].
In addition, it was quite interesting to find out that A-769662 did
not stimulate AMPK heterotrimers having B2 subunit or heterotrimers
in which the g1 subunit had an S108 A mutation, while both of them
yet stay highly sensitive to activation by AMP [51,152,153]. Despite
recent progress, many unknowns in the mode of action of A-769662
in stimulating AMPK remain to be explicated. Nevertheless, the fact
that A-769662 directly interacts with and activates AMPK is very en-
couraging, and it may be useful for researchers attempting to further
elucidate the role of AMPK in the regulation of cellular metabolism.

A23187
As aforementioned, frequent mutations and deletions of LKB1 found
in some cancer cells limit the application of various well-known
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AMPK activators such as AICAR and 2-DG as efficient therapeutic
drugs. Alternative class of pharmacological AMPK activator, the
Ca* jonophores including A23187 and ionomycin, which target
Ca?*/CaMKKpB may help activating AMPK in those LKB1-deficient
cells [68].

Since CaMKKB is a Ca**/calmodulin-activated AMPK upstream
kinase, a sudden increase in concentration of cytosolic calcium ions
by Ca®* ionophore would probably induce phosphorylation and acti-
vation of AMPK. In favor of this idea, cells lacking functional LKB1
such as HeLa cells, which therefore cannot respond to the phosphor-
ylation of Thr172 of the AMPKa: subunit, showed a maximal activa-
tion of AMPK upon Ca** ionophore A23187 treatment at 10 uM and
a half-maximal effect at 1-2 uM without affecting the cellular AMP:
ATP ratio. The effect of either concentration was fully blocked by
STO-609, an inhibitor of CaMKKa and CaMKKp. Similar effects
also occur when another Ca®* ionophore, ionomycin, was used
[68,154]. Collectively, these findings suggested that CaMKKs, in
particular B isoform, might be responsible for the A23187-stimulated
activation of AMPK. Consistent with this study, it had been demon-
strated by our group that A23187 was able to inhibit cervical cancer
cell growth through activation of CaMKKp [44]. Using cervical cancer
cell models, it was found that LKB1-deficient cell line HeLa responded
less to the antiproliferative effect exerted by AICAR treatment
(P <0.001) when compared with LKB1-expressing cervical cancer cell
lines CaSki and C41. Conversely, under the treatment of A23187 (P <
0.001), the antiproliferative effect was increased significantly in HeLa
cells, but not in CaSki and C41 cells. Moreover, cotreatment of
AICAR and A23187 was able to further enhance the inhibitory effect
on cell growth of HeLa, CaSki, and C41 cells. Notably, both AICAR
and A23187 exerted inhibitory effect on cell growth of cervical cancer
cells by suppressing AMPK/mTOR signaling pathway. These findings
suggested that A23187 could be a potential alternative therapeutic
drug for antiproliferation in LKB-deficient cancer cells. More important-
ly, AMPK can be activated by multiple means and may become a poten-
tial target for gynecological cancer therapy.

Nutraceuticals and traditional medicines

Among the numerous pharmacological AMPK activators available
today, there are very few that deserve more attention of the public
than many currently described natural plant products with
AMPK-activating activity in intact cells. Actually, many of these nat-
ural plant products are found in foods and beverages consumed in our
diets. Since most of them are supposed to be beneficial for human
health, they are often being touted as nutraceuticals in the markets.
Aside from this, some xenobiotic compounds, which are components
of traditional herbal medicines, are also reported to have the ability in
activating AMPK. These plant products include salicylate convention-
ally purified from willow bark [155,156], berberine extracted from
Chinese Goldthread [157], resveratrol found in grapes and red wine
[112,133], epigallocatechin-3-gallate found in green tea [158,159],
hispidulin taken from Snow Lotus [160], the aflavins obtained from
black tea [161], genistein derived from soybean [159], capsaicin that
exists in Chili peppers [159], caffeic acid phenethyl ester present in
honeybee propolis [162], curcumin present in turmeric Curcuma
longa [114], garlic oil present in Allium sativum [163], extracts of Kor-
ean red ginseng (RGE) [113], and last but not least the extracts from
bitter melon (BME) [164].

Although in most cases the mechanism of action of these natural
substances in activating AMPK is still not completely understood,
pilot studies have already been started in recent times to examine the
effects of these dietary compounds and their potential application as a

cotherapy together with standard therapeutics in malignancies espe-
cially ovarian cancer. For example, berberine has been reported to sig-
nificantly sensitize cisplatin-resistant ovarian cancer cells to cisplatin
treatment through miR-21/PDCD4 axis [165]. On the other hand,
Opipari et al. presented the first evidence that resveratrol promotes
cell death via autophagy in five ovarian cancer cell lines, which implied
resveratrol as a promising regime in treating apoptosis-resistant cancer
cells [166]. In addition, quercetin has antitumorigenic effects linked to
its capacity for targeting key tumorigenic pathways such as mTOR/
elF4E-BP1/P70S6K signaling in ovarian cancer [167]. All the evidence
demonstrates that many phytochemical compounds present in diets
not only are inherently lesser toxicity but may also give novel thera-
peutic strategies in the treatment of ovarian cancer.

BME as a capable natural activator of AMPK in cancer treatment. Be-
sides the above encouraging contributions by others in recognizing
novel natural AMPK activators on cancer treatment, our group has re-
cently reported that BME significantly inhibits tumorigenicity and
overcomes cisplatin resistance in ovarian cancer cells through target-
ing AMPK signaling cascade [115]. Over the years, BME has already
drawn global attention due to its increasing and valuable medicinal
values. Apart from its amazing hypoglycemia action, previous findings
from independent laboratories have revealed that constituents of bitter
melon can have analgesic, antioxidant, anticancer, antiviral, antimu-
tagenic, abortifacient, cytotoxic, and immunomodulating properties
[168-170]. Lots of BME dietary supplement products are currently
available and marketed in numerous health food stores worldwide.
Nowadays, the antitumor activity of BME has even become one of
the most attractive research areas, since the anticancer property of the
extract against a wide variety of human cancers such as breast carcin-
oma, melanoma, myeloma tumor, skin tumor, prostatic carcinoma,
colorectal carcinoma, epidermoid carcinoma, hepatoblastoma, brain
glioblastoma, bladder cancer, cervical carcinoma, and ovarian carcin-
oma has been gradually discovered [115,168,169,171-173]. BME is
potent in its antitumor activity against different cancer cells probably
due to the presence of some of its active components including triterpe-
noids like cucurbitacin B (cucB) and kuguacin J, flavonoids like rutin
and naringin, and phenolic acids.

Triterpenoids from a wide range of botanicals have already been
confirmed to possess antiproliferative [174-176] and anti-invasive
[177,178] features. More than 50 triterpenoids have been extracted
from bitter melon; however, their biological functions have yet to be
investigated in detail. Recently, it has been reported that cucB, a triter-
penoid from Cucurbitaceae vegetables, exists in the seeds of bitter
melon as well, which can induce cell cycle arrest and apoptosis in
human colon adenocarcinoma cancer cells [176]. Another triterpen-
oid, kuguacin J, which accounts for only ~1.6% of bitter melon
leave extract, has been shown to significantly inhibit cancer and/or car-
cinogenesis by causing cell cycle arrest at G1 phase and inducing apop-
tosis in preinitiated or initiated tumor cells. Whereas in more advanced
tumors, kuguacin J not only has the ability to sensitize chemoresistant
cancer cells to anticancer drug-induced cell death, but it also success-
fully blocks tumor progression and metastasis, implying that natural
compounds from BME might bear the scientific potential in the devel-
opment of useful chemopreventive and chemotherapeutic agents. Ex-
cept for triterpenoids, flavonoid rutin has also been reported to
effectively inhibit the growth of both leukemia and ovarian carcinoma,
with anti-invasive effects on melanoma [179-183].

The fact that BME appears to bear both the hypoglycemic and an-
ticarcinogenic responses is reminiscent of the pharmaceutical AMPK
activator metformin, which is originally an insulin-sensitizing and
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antihyperglycemic agent used in the treatment of Type II diabetes mel-
litus [184]. Recently, the antidiabetic efficacy and the anticancer effect
of metformin have been traced to its capability to stimulate AMPK
[85,130,131]. It is rational to hypothesize that BME may contain at
least one natural activator of AMPK and such hypothesis is in unison
with some of the findings between the biological effects of bitter melon
and metformin [185]. For example, bitter melon has been reported to
have the ability to reduce both weight gain and body fat accumulation
in rats fed with diets containing high fat content [186]. Similar effects
have been reported in metformin for its tendency to promote body
weight loss instead of weight gain [184,187,188]. Moreover, elevated
levels of serum cholesterol and triglycerides in hyperlipidemic, diabet-
ic, or insulin-resistant rodents were shown to be suppressed by BME
[189-192], which is consistent with the clinical hyperlipidemic impact
of metformin [193-196]. On the other hand, BME was demonstrated
to possess an antipromotional effect on cancer induction in rodent
models of either spontaneous or carcinogen-induced carcinoma
[170,197,198]. Coincidently, metformin’s fellow biguanide, phenfor-
min, has also been revealed to exert similar effects by downregulating
IGFI activity [185,199]. With reference to these concomitant similar-
ities between BME and metformin, the presence of a nutraceutical
activator of AMPK in BME would be of great likelihood. Aforemen-
tioned, our recent report in fact has confirmed the activity of BME to
suppress proliferation, migration, and invasion of ovarian cancer cells
[115]. Notably, BME showed no obvious toxicity in normal ovarian
epithelial cells (HOSEs) or nude mice, but enhanced the cytotoxicity of
cisplatin in ovarian cancer cells, both iz vitro and in vivo. Importantly,
our mechanistic studies are the first to show that BME differs from
other xenobiotic AMPK activators in that it activates AMPK in an
AMP-independent manner through CaMKKp signaling. Such BME-
mediated AMPK activation significantly inhibits ovarian cancer cell
growth by repressing both mTOR/P70S6K and AKT/ERK/FOXM1
cascades [115]. This is definitely of practical importance, as modulat-
ing cellular metabolism by well-tolerated AMPK activators will have
substantial therapeutic value especially for cancer treatment.

Conclusion

Recent studies have suggested that targeting cancer cell metabolism is
an alternative therapeutic approach in cancer treatment. AMPK is the
pivotal energy sensor governing normal and cancer cell metabolism.
Pharmaceutical AMPK activators are able to repress cervical cancer
cell growth through targeting DVL3 in Wnt/B-catenin signaling and
FOXM1 in AKT/FOX03a/FOXM1 signaling cascade. The reduction
of FOXM1 by AMPK/AKT/ERK signaling axis is attributed to afore-
mentioned AMPK-mediated ovarian cancer cell growth retardation.
AMPK activated by either pharmaceutical or natural AMPK activa-
tors could reduce FOXM1 expression through suppressing the AKT/
ERK signaling pathway, which thereby impairs ovarian cancer cell
growth. Additionally, AMPK activation in response to natural
AMPK activators such as BME has been shown to attenuate mTOR
and its corresponding P70S6K activities, validating that BME has
the ability to inhibit cell growth in ovarian cancer cells via suppressing
mTOR-mediated protein translation process. This result is consistent
with other findings using pharmaceutical AMPK activators in suppres-
sion of cancer cell growth through activation of AMPK, blocking of
mTOR signaling and its downstream regulators p70S6 kinase, and
4E-BP1 activity. Therefore, nutraceuticals and traditional medicines
in particular BME act as natural AMPK activators governing AMPK
activity through an AMP-independent mechanism. These natural
AMPK activators may directly activate AMPK via a mechanism

closely related to A769662 or behave as Ca** ionophore A23187 to
stimulate CaMKKP or function as osmotic stress and quercetin to
have more than one of these mechanisms in AMPK activation.
Hence, it is worth to input more endeavors onto this topic to test
these recommended hypotheses so as to have a better understanding
of the multifaceted mechanism of AMPK activation and it is hoped
that discussions herein would shed light on the application of natural
AMPK activators in human ovarian cancer treatment.
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