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Abstract

Background: Influenza infection does not always cause clinical illnesses, so serological surveillance has been used to
determine the true burden of influenza outbreaks. This study investigates the accuracy of measuring cumulative
incidence of influenza infection using different serological survey designs.

Methods: We used a simple transmission model to simulate a typical influenza epidemic and obtained the
seroprevalence over time. We also constructed four illustrative scenarios for baseline levels of antibodies prior and
levels of boosting following infection in the simulated studies. Although illustrative, three of the four scenarios were
based on the most detailed empirical data available. We used standard analytical methods to calculate estimated
seroprevalence and associated confidence intervals for each of the four scenarios for both cross-sectional and
longitudinal study designs. We tested the sensitivity of our results to changes in the sampled size and in our ability to
detect small changes in antibody levels.

Results: There were substantial differences between the background antibody titres and levels of boosting within
three of our illustrative scenarios which were based on empirical data. These differences propagated through to
different and substantial patterns of bias for all scenarios other than those with very low background titre and high
levels of boosting. The two survey designs result in similar seroprevalence estimates in general under these scenarios,
but when background immunity was high, simulated cross-sectional studies had higher biases. Sensitivity analyses
indicated that an ability to accurately detect low levels of antibody boosting within paired sera would substantially
improve the performance of serological surveys, even under difficult conditions.

Conclusions: Levels of boosting and background immunity significantly affect the accuracy of seroprevalence
estimations, and depending on these levels of immunity responses, different survey designs should be used to
estimate seroprevalences. These results suggest that under current measurement criteria, cumulative incidence
measured by serological surveys might have been substantially underestimated by failing to include all infections,
including mild and asymptomatic infections, in certain scenarios. Dilution protocols more highly resolved than serial
2-fold dilution should be considered for serological surveys.
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Background
Influenza infection does not always cause clinical illnesses
and the rate of non-clinical infection most likely varies
from strain to strain [1]. Therefore, with the majority of
surveillance systems based on clinical episodes, uncer-
tainty regarding the number of unobserved infections
dominated other epidemiological uncertainties during the
2009 pandemic [2].
Serological studies provide one option with which to

resolve these uncertainties and a number were conducted
(or at least initiated) during the 2009 H1N1 pandemic
[3-5]. The rationale for conducting serological studies is
straightforward as complimentary surveillance activity to
traditional symptom-based and laboratory-based surveil-
lance. Serological studies provide the alternative approach
of monitoring immunity levels in a population and do not
need to test people during a short period of time when
they are symptomatic. In cross sectional serological stud-
ies, a single blood sample is drawn from members of the
population and tested for the presence of high levels of
antibodies to the virus of interest. In longitudinal serolog-
ical studies, two or more samples are taken frommembers
of the population and are tested for significant rises in
antibodies.
In contrast to serology-based community studies, the

measurement of influenza incidence in the commu-
nity using PCR-based assays is not feasible because of
the short time during which infected individuals shed
virus. The intensity of sampling and testing would be
prohibitively expensive. Serological studies also have
advantages over symptom-based surveillance. Not all
influenza-like-illnesses (ILI) are caused by influenza infec-
tion, nor does every influenza infection result in an
influenza-like-illness. Despite the fact that not every
infection results in increased antibody titres, it might
be expected that assay-measured increases in effective
antibody concentration are considerably less biased than
symptom-based definitions such as ILI.
Despite these advantages of some alternative survey

designs, serological surveys do suffer from a number of
limitations. In particular, intuitively, two features of the
population and strain affect the likely accuracy of a sero-
logical survey: levels of pre-existing antibodies to the
strain of interest (most likely caused by cross-reactivity to
prior circulating strains) and an inability of the virus to
generate high levels of antibody boosting. Here, we inves-
tigate the impact of these two ecological features on the
ability of two different study designs to estimate accu-
rately the cumulative incidence of infection. Cumulative
incidence based on seroepidemiological study is a mea-
surement of seroprevalence, which quantifies the propor-
tion of individuals whose serological specimens indicate
seropositive against an infective pathogen. Unlike case
prevalence that quantifies disease occurrences during a

study period, seroprevalence quantifies antibody preva-
lence based on serological test that reflects the cumulative
experience, past and recent infection, with an infectious
agent.

Methods
We used a parsimonious disease-dynamic model to make
a deterministic prediction of seroprevalence at a given
number of days after the introduction of a novel respi-
ratory pathogen. From this, we simulated estimates of
seroprevalence from the appropriate statistical model for
either a cross-sectional or a longitudinal study, based on
four illustrative scenarios for the baseline level of anti-
bodies in the population and the degree of boosting after
infection.

Disease-dynamic model
The transmission process was modeled as a determinis-
tic density-dependent susceptible-infected-recovery (SIR)
model: A SIR model involves only three health states,
namely, susceptible, infected, and recovered, in which the
number of infected individuals (either at a specific instant
or the cumulative occurrence) was the primary outcome.
A density-dependent model simulates that the number of
contacts is dependent of the susceptible population size as
attack rate stays constant; whereas, demographic changes
to the population such as births and deaths were not
considered to be important here for the short period of
interest. The model can be easily parameterised in terms
of the reproductive number R [6] and the average time
between generations of infection Tg [7].

Illustrative scenarios for baseline antibodies and boosting
We defined four different scenarios for baseline titres and
boosting. The first scenario, Scenario A, was entirely theo-
retical and was used to demonstrate that both longitudinal
and cross-sectional designs give unbiased estimates of
seroprevalence under best-case assumptions. In Scenario
A, we assumed that no individuals had detectible antibody
titre and that all individuals underwent antibody boosts to
1:40 following infection.
Scenarios B and C were based on data from the Hong

Kong Longitudinal Cohort Study [8]. Scenario B used
titre values against A/California/4/2009(H1N1) and Sce-
nario C used titre values against A/Perth/16/2009(H3N2).
No PCR data was available for either of these scenar-
ios, so prior to any sensitivity analyses, we assumed
that titre increases of 2-fold or greater were actual
infections but that we could only use rises of 4-fold
or greater to reliably infer infection. All study proto-
cols of Hong Kong Longitudinal Cohort Study were
approved by The Institutional Review Board of The Uni-
versity of Hong Kong/Hospital Authority Hong Kong
West Cluster.
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Scenario D was based on a group of PCR-confirmed
infections from 2009 in England and Wales for which
serological assay results were also available [3]. Unfortu-
nately, it was not possible to match baseline and follow-up
titres at the level of the individual for this cohort. In this
study, 1403 serum samples were collected in 2008 and
1954 serum samples were collected in 2009. We extracted
the pre- and post-infection titre levels from the published
paper, of which only those who had shown titre level
rise were included. Then, since individuals’ boosting lev-
els were unavailable, we estimated their boosting level as
the most minimum possible according to the different
combinations of pre- and post-infection titre values.

Model of immune responses
Haemagglutination-inhibiting (HI) antibody titres were
represented by titre thresholds in the form of (<1:10,
1:10, 1:20, 1:40, ..., 1:1280) for datasets from Riley and
colleagues [8]; whereas, those from Miller and colleagues
[3] were represented in (<1:8, 1:8, 1:16, 1:32, ..., 1:1024).
For mathematical convenience, we transformed both the
baseline and post-infection antibodies onto non-negative
integers, y, such that y = log2(z/A), where the actual titre
threshold was 1:z and we assumed that <1:8 was equal to
1:4 (making A = 4) and <1:10 was equal to 1:5 (A = 5).
On this scale, a four-fold difference or greater in titres
corresponded to an increase of 2 or more in y.
The deterministic model provides a prediction of the

cumulative incidence over time. We assumed that our
serological study was of size n. We then used a simple
statistical simulationmodel to generate the results of sero-
logical surveys. Each simulated survey was assumed to
have drawn baseline blood samples at time t = 0 and fol-
lowup samples at time t = tf . We drew from the assumed
baseline distribution of log titres for all n individuals in
the simulated study. Although we considered many differ-
ent values for tf , we never assumed more than a single
follow-up sample was taken from any individual. The dif-
ference in cumulative incidences between times t = 0
and tf gave us the proportion of the population who were
infected. Therefore, we randomly assigned each individual
as infected or not based on that proportion. The follow-
up log titre for those not infected was assumed to be the
same as their baseline log titre. For those infected, we drew
a random log boosting value from the assumed log boost-
ing distribution, added that to their baseline log titre and
recorded the resulting value as their follow-up log titre.
Based on the definitions of seroprevalence of different

survey designs, the seroprevalence and estimated errors
can be quantified as a function of pre- and post-infection
antibody levels. Specifically, in the analysis of serial cross-
sectional study design, we defined seroprevalence as the
proportion of individuals in the population who were
seropositive after excluding the proportion of individuals

in the population who were seropositive at baseline [4].
Conversely, in the analysis of paired sera samples in longi-
tudinal studies, seroprevalence was defined as proportion
of individuals in the population that had a 2 unit of greater
increase in log titre [8].

Results
If estimates of the reproductive number R and the gen-
eration time Tg are available prior to the arrival of a
new strain, disease-dynamic models can be used to antic-
ipate that speed and hence aid the planning of serological
studies. Specifically, it is useful to be able to predict the
seroprevalence at some future point in time to ensure
that studies are well-powered. For this simulation study,
R = 1.4 was chosen because it agrees with the estimated
value in pandemic H1N1 influenza [9,10] and seasonal
influenza A [11,12] in the community. Despite a relatively
low transmissibility of R = 1.4, peak numbers of infec-
tious individuals in our illustrative epidemic (Figure 1A)
occurred after just 60 days from the time of the impor-
tation that successfully initiated the local epidemic. The
rapid timescale was driven by a short generation time of
2.6 days. The speed of epidemics predicted by the model
scaled linearly with the generation time (not shown).
Therefore, if the generation time were doubled, the delay
from importation to peak numbers of infectious individ-
uals would also double. The speed of the epidemic was
sensitive to the size of population. When the population
size was increased from 100,000 to 1 million (Figure 1C)
and 10 million (Figure 1E), the speed of the epidemic
slowed down considerably, but not linearly with popu-
lation size. Not all infected individuals seroconvert after
being infected. Even a relatively modest delay of 7 days [3]
from infection to raised titres with a high seroconversion
rate of 90% made a substantial impact of the time course
of detectable infections (Figure 1B,D,F).
There were significant differences among the base-

line titre scenarios based on empirical data: B, C and
D (Figure 2 LHS). Scenario B was based on empirical
data for the 2009 pandemic strain of H1N1 infection in
Hong Kong. Under Scenario B we assumed that 67.1%
(59.4%, 74.1%) of the population had detectable titre and
within these individuals the geometric mean titre was
1:11 (1:10, 1:20). Scenario C was based on data from
Hong Kong, but for seasonal H3N2. In these assays, 43.8%
(31.4%, 56.7%) of individuals had detectable titre and of
those the geometric mean titre was 1:62 (1:10, 1:320). Sce-
nario D was based on pandemic H1N1 2009 in the UK
and assumed that 15.6% (6.5%, 29.5%) of the population
had detectable antibodies prior to the start of the epidemic
and that the geometric mean titre of those that did have
detectable antibodies was 1:35 (1:8, 1:218).
There were also substantial differences in levels of

boosting between the three scenarios based on empirical
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Figure 1 Theoretical epidemic generated using an SIR model. LHS numbers of susceptible, infectious and recovered individuals over time. RHS
Incidence of infection and incidence of seroconversion (assuming 90% of individuals seroconvert after 7 days). All model solutions use a
reproductive number of R = 1.4, a mean generation time Tg = 2.6 days, and are seeded at time t = 0 with a single infectious individual. Scenario A,
parts A and B, occurred in a population size of 100,000 individuals. Scenario B, parts C and D, occurred in a population size of 1 million. Scenario C,
parts E and F, occurred in a population size of 10 million.

data (Figure 2 RHS). Average boosting under Scenario B
was 4.8-fold (2.0-fold, 8.0-fold). Under Scenario C, aver-
age boosting was 27.8-fold (2.0-fold, 128.0-fold). Average
boosting under Scenario D was even higher, based on
data from PCR-confirmed cases of pandemic H1N1 infec-
tions in the UK, at 30.6-fold (2.4-fold, 64.0-fold). The
apparent increased average boosting of Scenario C com-
pared with Scenario B was driven by the right-tail of the
distribution.

Under the idealised Scenario A, as would be expected,
there were no apparent biases in the simulated esti-
mates of cumulative incidence under either the cross-
sectional or longitudinal study design in a popula-
tion of 1 million with a sample size of n = 1, 000
(Figure 3A). However, the same did not hold for the 3
scenarios based on empirical data (Figure 3B,C,D). Sce-
nario B performed the worst, with both longitudinal and
cross-sectional designs substantially underestimating the
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Figure 2 Baseline titre level (LHS, blue) and boosting level (RHS, red) for the four different scenarios considered here: Scenario A, parts A
and B; Scenario B, parts C andD; Scenario C, parts E and F; and Scenario D, parts G and H. See Methods for details of data sources and
assumptions for each scenario.

cumulative incidences because of the high levels of
detectable antibody and low levels of boosting. Scenario
C did somewhat better in that the degree of bias was lim-
ited for the longitudinal design but still substantial for

the cross-sectional design. The improvement of Scenario
C compared with Scenario B was because of the more
consistent levels of boosting in Scenario C. Both longi-
tudinal and cross-sectional designs performed well under
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Figure 3 Simulated study estimates of cumulative incidence of infection with population size 1 million. Red line shows the SIR model
cumulative incidence. Green line shows the 95% confidence intervals of cumulative incidence estimates from a longitudinal design and blue lines
the 95% confidence intervals of cumulative incidence from a cross-sectional design. A,B,C, and D correspond to Scenarios A,B,C, and D (see Figure 2
and main text).

the assumptions of Scenario D in which there were very
high levels of boosting and very low levels of background
immunity.
In order to explore the reasons for the most substan-

tial biases, we tested a number of alternate assumptions
for the worst performing scenario, Scenario B (Figure 4).
As might be expected, keeping the population size at 1
million but increasing the sampled size 100 times from
170 to 17,000 did little to reduce the amplitude of bias
but did reduce the size of our confidence intervals sub-
stantially. Also, unrealistically eliminating the delay from
infection to detectible antibodies did not alter the pat-
tern of estimates from the study protocol, although the
delay did shift the description of the epidemic forward in
time. However, changing our assumption about the abil-
ity of serological assays to detect infections that results in
low levels of antibody boosting did have a large effect on
the simulated results from both longitudinal and cross-
sectional study designs. Biases were substantially reduced
for the cross-sectional study design and (apparently) elim-
inated completely for the longitudinal design (as shown
by the reductions in the difference between the actual

cumulative incidence and the estimated cumulative inci-
dence in Figure 4D).

Discussion
For influenza A, we used available data to define three
illustrative scenarios for baseline titre values and boost-
ing of titres following infection. We simulated cross-
sectional and longitudinal serological studies based on
these scenarios in order to assess the accuracy with which
it was possible to measure the cumulative incidence of
infection. We found that plausibly high levels of back-
ground immunity (perhaps due to cross-reactivity) and
plausibly low levels of boosting following infection could
introduce substantial biases to the estimates of cumulative
incidence. Although biases were higher for cross-sectional
study design than for the longitudinal study design in gen-
eral, when levels of background immunity were low, there
was little difference between the performances of the two
designs. Sensitivity analyses indicated that an ability to
detect infections from low levels of antibody boosting
would substantially improve the performance of serolog-
ical surveys, even under difficult conditions, i.e., when
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Figure 4 Sensitivity analysis for worst performing scenario. A shows estimates of cumulative incidence from longitudinal and cross-section
study designs for Scenario B (pH1N1 from Hong Kong, identical to Figure 3B). The other 3 parts show sensitivity analyses for this scenario, with each
alternate assumption applied separately to those used for part A. For B, the sampled size was increased 100 times. For C, we assumed that there was
a zero-day delay between infection and our ability to detect infection. For D, we assumed that x2 increases in titre could be considered as indicators
of infection.

background titres are high and/or boosting after infection
is low. Such conditions were observed in the elderly in
Hong Kong during the 2009 pandemic.
The baseline-boosting scenarios used here were based

on two different empirical study designs. Scenarios B
and C drew on data from a longitudinal community-
wide seroprevalence study [8]. Therefore, the boosting
assumptions for these scenarios reflect accurately the
distribution of changes in antibody state during the epi-
demic. However, no independent data exist with which
to define infection in these data so it was not possible
to tease out assay variation from low-levels of infec-
tion [13]. Conversely, the data used to define boosting
for Scenario D are based on PCR-confirmed infections
and therefore accurately describe boosting for the cohort
of individuals from which these data were obtained
[3]. However, because these samples arose from clini-
cal cases, they likely reflect patterns of antibody boost-
ing among a more severe subset of infections. One way
to overcome these symmetric challenges in the differ-
ent data sets would be to conduct a community-wide

cohort study with intense virological sampling in addition
to baseline and follow-up serology.
The main purpose of the deterministic model was to

produce a realistic proportion of the population who are
infected between two time points. Variations in transmis-
sion parameters, such as the reproductive number R and
generation time Tg would be important for future survey
design, but are not important for the interpretation of the
simulated serological surveys.
We chose to simulate the dynamics within only a

single homogeneously mixing population. Usually, sero-
logical studies of influenza in the community will be
motivated by a whole set of questions of which esti-
mating the cumulative incidence will only be one.
A number of these other questions will likely relate
to specific population subgroups. For example, there
may be an over-representation of one age group than
another in the clinical cases and it might be hoped
that the serological study will help to resolve if the
difference is being driven by differential rates of infec-
tion or by differential rates of becoming symptomatic.
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Also, having a higher proportion of school-aged children
in the population would drive the epidemic to peak earlier
than what shown in a homogeneous population. How-
ever, the conclusion regarding the effects of background
and boosting titre levels toward the accuracy of sero-
prevalence measurement would have been the same if the
model were age-stratified. The framework we describe
here would still be useful in the design of field studies
motivated by important subgroup questions as long as
individual subgroups are treated as separate populations -
so sample sizes and timings of follow-up would be chosen
with specific types of individual in mind. Also, it would
be straightforward to extend the transmission model to
include multiple age groups and thus describe expected
differences in the timing of peaks of infection between
subgroups [4,14].
The determination of cumulative incidence of infec-

tion within a population using serological studies are not
without weaknesses. For instance, as noted, mild and
asymptomatic infections may yield antibody titre below
the level of minimum detection limit and seroconversion.
In fact, a proportion of the pandemic H1N1 infections in
2009 were defined as seronegative following virologically
confirmed infection [1,3,15]. Also antibody titres may be
reduced in patients who were undergoing antiviral treat-
ment [1]. Nevertheless, this model can be extended to
explore the effects of these issues if antibody titre boosted
between baseline and follow-up by these scenarios
are known.
Interpretation of the results of haemagglutination inhi-

bition (HI) test and microneutralization (MN) assays may
further be complicated by vaccination. Often (although
not always) self-reported vaccination status is available
from longitudinal studies and not from cross-sectional
studies. The simulation methods we have described here
could be extended to incorporate this extra uncertainty
where the vaccination status of individuals is not known
but where the average rate across the population is known.
Although this usually applies to cross-section studies,
there is no reason the potential bias could not be assessed
for both studies.
Our simulations (Figure 4) showed that being able to

reliably detect small increases in antibody titre could
substantially improve the accuracy of longitudinal serepi-
demiological studies when conditions are difficult: when
background titres are high and boosting after infection is
sometimes low. Although recently developed novel statis-
tical methods are able to tease apart low levels of infection
from measurement error [13], these rely on the use of
a PCR-confirmed subset of data. As already mentioned,
it may be difficult to obtain these data for a represen-
tative sample of the population. Therefore, we suggest
that the potential reduction in bias from a more sensitive
assay illustrated in these simulation results justifies trials

of dilution protocols with higher resolution than 2-fold,
especially for longitudinal studies.

Conclusion
High levels of background titres and low levels of boost-
ing affect estimates of cumulative incidence of influenza
infection derived from seroepidemiological studies.When
background immunity is high, simulated cross-sectional
studies are particularly prone to higher biases. Otherwise,
the two survey designs produce similar seroprevalence
estimates in general. Assays capable of reliably detect-
ing low levels of boosting after infection would greatly
improve the performance of longitudinal studies when
conditions are difficult.
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