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Abstract

This paper presents a changing window approach to ex-
ploring gene expression patterns in “snapshot windows”. A
snapshot window is a sub-matrix of co-expressed microar-
ray data representing certain expression pattern. In this ap-
proach, we use a feature weighting k-means subspace clus-
tering algorithm to generate a set of clusters and each clus-
ter defines a set of “snapshot windows” which are charac-
terized by different sets of ordered sample weights that were
assigned by the clustering algorithm. We define an accu-
mulated weighting threshold (AWT) as the sum of weights
of samples in the “snapshot window”. Given a cluster, dif-
ferent “snapshot windows” can be obtained by changing
AWT to explore all possible local expression patterns in the
cluster. Experiment results have shown our approach is ef-
fective and flexible in exploring various expression patterns
and identifying novel ones.

1 Introduction

Microarray is a revolutionary new technology which pro-
vides an opportunity to obtain the “global” view of the cell
[1]. However, identifying patterns from subsets of genes
co-expressed under subsets of samples poses great chal-
lenges to microarray data analysis [2]. Subspace clustering
is an effective technique that can identify clusters of objects
in different subsets of features in the dataset [3], which is
appropriate in the context of microarray data analysis. In
this paper, we investigate use of the Entropy Weighting K-
Means (EWKM) subspace clustering algorithm [4] in mi-
croarray data analysis and propose a changing window ap-
proach to exploring gene expression patterns in different
“snapshot windows”.

Our approach is characterized in the following features.
Firstly, EWKM is used to generate a set of clusters, each
defining a set of “snapshot windows” by the same set of
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genes. Secondly, we define an accumulated weighting
threshold (AWT) as the sum of weights of samples in the
“snapshot window”. For a given cluster, different “snapshot
windows” can be obtained by changing AWT so that dif-
ferent local expression patterns can be explored. Thirdly,
the sample weighting mechanism in the EWKM subspace
clustering algorithm works on the hypothesis that differ-
ent samples make different contributions to different genes
clusters. Such contribution of a sample is represented as a
weight that can be treated as the degree of the sample con-
tribution to the cluster. Finally, the weight distribution is
controlled by parameter y of the EWKM algorithm. A large
v results in clusters with more evenly distributed sample
weights. Therefore, changing y can generate different clus-
ters with different characteristics of “snapshot windows”.

The rest of this paper is organized as follows. Section
2 presents related work of subspace clustering in microar-
ray data analysis. Section 3 describes the EWKM subspace
clustering algorithm and the changing window approach to
exploring clusters in different snapshot windows. Section 4
presents experiment results on real microarray data. Section
5 summaries this work.

2 Related work

Clustering techniques are widely used in microarray
data exploration and analysis. Traditional clustering al-
gorithms, such as hierarchical clustering [5], k-means [6],
self-organizing map (SOM) [7] generate clusters from mi-
croarray data across all samples. However, many gene co-
expression patterns occur in subsets of samples. As such,
these global clustering algorithms are inadequate for reveal-
ing all gene expression patterns.

Subspace clustering techniques cluster objects based on
subsets of features in data. In microarray data analysis,
subspace clustering is also referred to as bi-clustering, co-
clustering, or two-mode clustering, which allows simulta-
neously clustering of rows and columns of a data matrix.
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Each cluster represents a set of genes identified by a subset
of samples and different clusters are represented in differ-
ent subsets of samples. Recently, a few subspace cluster-
ing algorithms have been successfully applied to microar-
ray data, including coupled two-way clustering (CTWC)
[8], plaid models [9], d-cluster [10], and biclustering [11].
These algorithms require predefinition of bicluster models
which describe specific characteristics of clusters to be dis-
covered, and search for the models from the data. Only a
few models can be defined and the performance of a biclus-
tering algorithm is highly constrained by the completeness
and appropriateness of the definition of the bicluster model.
Search for cluster models with these algorithms is also NP-
hard.

In contrast, the changing window approach we propose
has two major advantages. It is flexible to generate clus-
ters and explore gene expression patterns in “snapshot win-
dows”. It is efficient for large microarray data because it is
essentially a k-means clustering algorithm.

3 EWKM algorithm and snapshot windows

In this changing window approach, the EWKM algo-
rithm is first used to generate a set of clusters from a mi-
croarray dataset and to assign a set of weights to samples
in each cluster. In each cluster, a set of sample weights in-
dicate the importance of the samples in forming the cluster
and can be used to specify the “snapshot windows” in this
cluster. To compute the sample weights automatically from
data, the objective function of the EWKM algorithm is de-
fined as follows:

n m m
[Z Z wiid(zi — xji)* +y Z /l/ilOg/l/i]
i=1

j=1 =1
ey

F(W,Z,A)=zk:

=1

subject to

k
Ywi=1, 1<j<n 1<I<k w;ef0,1)
=1

SAi=1, 1<I<k 1<i<m, 0<4;<1
i=1
@

where W is a partition matrix that indicates the assignment
of gene j to cluster /, Z is a set of k cluster centers and A is
an k X m matrix in which each row [ represents a set of m
weights assigned to samples in cluster /.

In the clustering process, the EWKM algorithm simulta-
neously minimizes the sum of the within cluster dispersions
and maximizes the negative weight entropy to make more
samples to contribute to the identification of clusters. The
positive parameter y controls the strength of the incentive
for clustering on more samples. The clustering process is
carried out by iterating the following three steps:
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Step 1: Given Z and A, compute W by
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The EWKM algorithm is summarized in Table 1. More
details can be found in [4] and [12].

Parameter y controls the distribution of the sample
weights as follows. A large y will result in more evenly
distributed sample weights, while a small y generates clus-
ters with a few samples having large weights. Therefore, by
using different y, we can generate different sets of clusters
with different weight distributions for exploring interesting
gene expression patterns.

After a set of k clusters are generated by EWKM, each
cluster / has a set of weights ordered as 4;; > Ap > ... >
Am, where m is the number of samples in the dataset. Define
the accumulated weighting threshold of cluster [, AWT(/) as

p+1

Z Ayt
=1

where 1 < p <mand 0 < AWT(I) < 1. For a given AWT,
the “snapshot window” is defined by the size of p samples
and the gene expression pattern under these p samples can
be revealed in the window. By changing AWT, we can ex-
plore different “snapshot windows” in a cluster.
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4 Experiments

We conducted a series of experiments on two real mi-
croarray datasets to investigate the changing window ap-
proach in exploring novel gene expression patterns. For
each dataset, we used different y values to generate differ-
ent sets of clusters. For each cluster, we explored differ-
ent “snapshot windows” by changing the AWT value. The
datasets and experiment results are discussed below.



Table 1. The EWKM subspace clustering al-
gorithm

Input The data matrix, the number of clusters k,
and parameter 7.

Randomly choose k cluster centers and
set all initial weights to 1/m.

Compute the partition matrix W by (3);
Compute the cluster centers Z by (4);
Compute the sample weights A by (5).
The objective function obtains its local

minimum value.

Initialization

Iteration

Until

Table 2. Real world microarray datasets

| Datasets | Genes | Samples | Clusters ]
Iyer 517 12 (time point) 10
Golub 7129 | 38 (27ALL, 11AML) 2

4.1 Datasets

In the experiments, we used two public microarray
datasets, Iyer’s dataset and Golub’s dataset as shown in Ta-
ble 2. More details about these two data sets can be found in
[13] and [14]. Each dataset is represented as an m X n matrix
of real-valued expression levels Y = y;;, where genes were
represented as rows and samples as columns. All sample
columns were standardized to zero means and one standard
deviation to eliminate the scale difference.

4.2 Experiment analysis

The purpose of the experiments was to explore novel
expression patterns in different “snapshot windows” by
changing AWT. For each data set, we ran the EWKM al-
gorithm 10 times. In each run, the number of clusters was
set to 10 and the same initial cluster centers were used. Pa-
rameter y was changed from 0.5 to 9.5 with increment of 1.
Altogether, 100 different clusters were generated from each
data set.

Figure 1 shows gene expression profiles in different
“snapshot windows” of a cluster from Iyer’s data. In each
window, the horizontal axis represents the twelve time
points (i.e., 15min, 30min, lhr, 2hr, 4hr, 6hr, 8hr, 12hr,
16hr, 20hr, 24hr, and UNSYN), and the vertical axis rep-
resents the gene expression level. Each thin line represents
one gene profile in the cluster. The red line with circle dots
represents the average expression level of all genes in the
cluster. The circle dots represent the significant samples
that were included in the “snapshot window”.

To visualize different possible expression patterns in a
cluster, we changed “snapshot windows” by moving the
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Figure 1. Reveal expression details in differ-
ent snapshot windows by increasing AWT

Figure 2. Discover specific expression pat-
terns by decreasing AWT

changing bar to increase or decrease AWT. When AWT
was increased, more samples were included in the “snap-
shot window” and the order of samples to be included was
determined by the sample weights which indicate the sig-
nificance of the samples in expressing the genes. For ex-
ample, the snapshot window A of Figure 1 was generated
with AWT=0.5 and it contains a gene expression pattern in
six samples with comparatively large weights. This pattern
represents a six-point time course (i.e., 15min, 30min, 2 hr,
8 hr, 12 hr, and UNSYN), which shows that most genes had
low expression levels in the first 2 hours. The expression
levels increased significantly afterwards and arrived at peak
levels after 8 hours. The expression level reduced after 12
hours and reached the initial level at UNSYN. These six
sample points revealed the general expression pattern of the



genes in this cluster.

After increasing AWT to 0.6, another relatively more im-
portant sample corresponding to time point 16hr was in-
cluded in window B. We can see that a new peak appeared
at the 16 hour time point. However, since this new peak
was only slightly higher than the peak at the 12 hour point
in window A and the sample weight of this new peak was
smaller than the sample weight of the peak at the 12 hour
time point, the previous peak was stronger than the new
peak. This can be observed from window B where most
genes were peaked at the 12 hour point and the expression
levels reduced afterwards. A few genes were peaked at the
16 hour point.

Further increasing AWT to 0.7 and 0.8, more samples
were included in windows C and D. A small peak occurred
at the 1 hour point in window C, which may indicate that
serum started effective after one hour. An important sample
occurred at the 20 hour point in window D. From this time
point, the expression level reduced.

Figure 2 shows another example of gene expression pro-
files of a cluster from Golub’s leukemia data set. This data
set contained two types of samples of acute lymphoblastic
leukemia (ALL) and acute myeloid leukemia (AML). Dif-
ferent gene expression patterns in ALL and AML could be
explored in “snapshot windows”. Window A corresponded
to AWT=0.8 and window B to AWT=0.5. In window A,
many samples in both ALL and AML were included. It was
difficult to judge whether this pattern was corresponding to
ALL or AML. When AWT was reduced, many samples with
small weights were removed from window A. The remain-
ing samples with relatively bigger weights showed a strong
pattern that was related to ALL because most samples were
ALL samples.

The above examples show that this changing window ap-
proach is flexible to explore gene expression patterns at dif-
ferent details. In other subspace clustering algorithms, only
one pattern is explored in a cluster.

5 Conclusions

In this paper, we have presented a changing window
approach to exploring gene expression patterns in clusters
generated with the EWKM subspace clustering algorithm
from microarray data. In this approach, importance of sam-
ples in a cluster is ordered by the sample weights generated
in the EWKM clustering process. A ‘“snapshot window”
is defined to visualize a gene expression pattern of a clus-
ter in a subset of samples. By changing the accumulated
weighting threshold (AWT), different expression patterns
with different details can be explored in a cluster. There-
fore, this approach offers biologist a more flexible tool to
explore more expression patterns from microarray data.

In our future work, we will investigate post-processing
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methods to remove noise genes from “snapshot windows”
and develop modeling techniques to model subspace cluster
patterns revealed in snapshot windows as in [8]. We will
also develop a tool for gene expression visualization.
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