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Abstract

Reliable transport models calibrated from accurttdfic data are crucial for
predicating transportation system performance asdréng better traffic planning. However,
due to the impracticability of collecting data froam entire population, methods of data
inference such as the linear data projection anenconly adopted. A recent study has shown
that systematic bias may be embedded in the pagasnedlibrated due to linearly projected
data that do not account for scaling factor valigbiAdjustment factors for reducing such
biases in the calibrated parameters have been gedpfor a generalized multivariate
polynomial model. However, the effects of lineatadarojection on the dispersion of and
confidence in the adjusted parameters have not &egored. Without appropriate statistics
examining the statistical significance of the atjdsmodel, their validity in applications
remains unknown and dubious. This study reveal$ kmderoscedasticity is inherently
introduced by data projection with a varying sagliactor. Parameter standard errors that are
estimated by linearly projected data without anyprapriate treatments for non-
homoscedasticity are definitely biased, and pogsibbve or below their true values. To ensure
valid statistical tests of significance and prevexposure to uninformed and unnecessary risk
in applications, a generic analytical distributivee (ADF) method and an equivalent scaling
factor (ESF) method are proposed to adjust thenpetexr standard errors for a generalized
multivariate polynomial model, based on the regbrésidual sum of squardhe ESF method
transforms a transport model into a linear functodrthe scaling factor before calibration,
which provides an alternative solution path foriaeimg unbiased parameter estimations.
Simulation results demonstrate the robustness efEitBF method compared with the ADF
method at high model nonlinearity. Case studiesanelucted to illustrate the applicability of
the ESF method for the parameter standard erron&stns of six Macroscopic Bureau of
Public Road functions, which are calibrated usiegl-vorld global positioning system data
obtained from Hong Kong.

Keywords: HeteroscedasticityStandard error estimatiphinear data projection; Macroscopic Bureau of I[Rub
Roads; GPS

1. Introduction

Accurate and reliable model calibration is vitaltlyportant for transportation studies,
because it helps to establish a better understgrafithe interaction between transportation
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infrastructure, vehicles and road users. Hencé salibration allows appropriate urban traffic
planning, traffic management and control measucesd implemented. Moreover, the
irreversible development patterns that are caugedftastructures and the critical roles they
play in promoting economic growth (Carlsson et 2013) necessitate that reliable transport
models be estimated at the planning stage to ptédvemisuse of public budgets and resources.

The observational nature of most transportatiomlistumakes them different from
typical science and engineering subjects, in whydtems can be investigated using the desired
values of independent variables under well-corgmblexperimental setups. In contrast,
accurate traffic data must be collected from hugegportation systems for reliable transport
model calibrationsThe advent of various high-tech devices has sicanifily improved the
accuracy and efficiency of traffic data collectiomer the past several decades. However,
various factors limiting the applications of thekstectors and sensors still make it impractical
to collect traffic data from the entire populatiddn-road fixed detectors, such as inductive
loop detectors, can collect data at an acceptatd bf accuracy with minimal effort, but their
high installation and maintenance costs hindeuthquitous deployment of detectors all over
the network (Herrera and Bayen, 2010; Herrera t28110). Thus, the coverage of such
detectors is normally limited to a subset of linshin a network (Caceres et al., 2012). A
vehicle re-identification system can measure tla@elr time of a vehicle across a link by
matching the vehicle signature as the vehicle pagseugh the two ends of a link outfitted
with sensors (Kwong et al., 2009). The radio fregpyadentification transponders (Wright and
Dahlgren, 2001; Ban et al., 2010), license platogaition systems (Herrera et al., 2010),
wireless magnetic sensors (Kwong et al., 2009) @thdr unique tags are readily available
utilities for such systems. However, the risk ofvacy issues and the high installation and
implementation costs are major obstacles to depipynost such schemes over the entire
arterial network. The cellular systems introducedegzade ago (Bolla and Davoli, 2000;
Ygnace and Drane, 2001; Zhao, 2000) offer a reisolub the cost and coverage problems
(Herrera et al., 2010). Nevertheless, their appboais prohibited or discouraged in many
countries, because the use of cell phones whilendridisrupts the drivers’ attention (Liang et
al., 2007). Global positioning systems (GPSs) aatteer promising means of collecting traffic
data from almost the entire network at a relatively cost (Miwa et al., 2013). However, GPS
data collected from vehicle fleets (e.g., FedExSU®& taxis) (Moore et al., 2001; Bertini and
Tantiyanugulchai, 2004; Schwarzenegger et al., 2008ng et al., 2014) involve biases due
to the fleets’ specific operational or travel paite In addition, the extra capital and installatio
costs of GPS trackers, along with the potentialpiavacy issues, impede the application of
GPS tracking systems on a global scale.

Despite technological advancements, traffic datiectton from huge transportation
systems using specific devices is still limitedvayious factors. Thus, different mathematical
techniques such as data scaling, filtering and §aghpre commonly used to estimate traffic
data and overcome these difficulties. Linear datgeption is a prevalent data scaling scheme
that infers population traffic quantities by prdjeg the observable traffic quantities from a
subset of the population, using the mean of afssmpled scaling factors. The scaling factor
used in a linear data projection varies accordmgdch situation. Because transportation



systems are dynamic and non-steady, scaling faer@sisually random variables that are
subject to variability and thus are assumed t@Wwolilistributions. Depending on the sampling
approach adopted, the scaling factor variance neayire measuring different types of
variability, such as spatial or temporal variapilit

Linear data projection has been used for traffitadastimation in numerous
transportation studies. For example, an hourly tcaffic flow across a link that is not outfitted
with an on-road fixed detector can be estimatedgusnear data projection. Assuming that the
total traffic flow is observable on a subset ok8routfitted with detectors in a network, and
that the occupied taxi flow is observable on evarl in the network, the total-traffic-to-
occupied-taxi ratios that are sampled at the lmkiitted with detectors can be chosen as the
scaling factors. Given the heterogeneities of tarhierarchy and the land use pattern, the
sampled scaling factors can be different from eaitter. They are assumed to follow a
distribution over the network due to geographiaalxpmity. The scaling factors are sampled
across the network, and thus their variance mess$leespatial variability. As the scaling factor
mean is the most probable observed traffic composiatio across the network, if the sampled
scaling factor mean is 100 and the hourly occufagdflow on the link of interest i$0 veh /h,
then the total hourly traffic on this link can b&imated by the product of these factors; that is,
1000 veh/h.

In accident analysis, exposure expressed in vekRitdenetrage (i.e., the product of
annual traffic volume and road length) is usualtycal explanatory variable accounting for
the variations in a road’s annual crash levels. ddreesponding parameter associated with the
variable is known as the accident rate. Due taddhresources, detailed traffic data throughout
a year are usually collected for only a subseirdsl whereas short-term (e.g., a weekday)
traffic data are surveyed for other links. In sgealses, the exposure of a link with only short-
term traffic volume can be estimated using linediagrojection with the annual-to-short-term-
traffic-volume ratios of nearby links with full-ye#raffic data as the chosen scaling factors.
The scaling factor variance measures spatial viitjablrhe product of a road’s short-term
traffic volume, the scaling factor mean and thedrtength provide a good estimate of that
road’s exposure.

Another example uses linear data projection asthavalent traffic flow estimation
expressed in passenger car units (PCUs). Unlikeghal assumption, a PCU is not necessarily
static (Chandra et al., 1995) due to the varyiadfitr composition across time. For a road
installed with an on-road fixed detector recordugdicle counts 24 hours a day, the hourly
PCU value is not always known because surveyorsooinbe sent on-site to identify the
vehicle types for several hours a day, certain dayear, according to a strategic sampling plan
influenced by budget constraints. The product ofi@aurly traffic count and the sampled PCU
means can estimate the hourly equivalent traffivflThe PCU variance measures the temporal
variability. Moreover, other traffic quantities sucas trip completion rates, vehicular
accumulations and space-mean speed can also hbeethfesing linear data projections
(Geroliminis and Daganzo, 2008).



Macroscopic transport models have gained muchtaitemm recent decades due to their
potential applications in area-wide traffic manageim and control (Aboudolas and
Geroliminis, 2013; Geroliminis et al., 2013), andial land use planning (Ho and Wong, 2007,
Yin et al., 2013). However, calibrations of thesedals require traffic flow data across
networks via different links that may be unobselgahinear data projection’s simplicity has
made it a popular choice in many studies and realdaraffic data estimation situations.
Geroliminis and Daganzo (2008) leveraged lineaa gadjection to infer the total traffic flows
of sites without detectors from occupied GPS tlbw$, using the traffic composition ratio as
the scaling factor in their study of a macroscdpitdamental diagram. Similarly, Wong and
Wong (2015, 2016) estimated the total hourly tcaffow enteringl km x 1 km sampled
networks in Hong Kong using linear data projectians! calibrated macroscopic cost flow
functions.

Models that are directly calibrated on linearly jpoted data that do not account for
scaling factor variability may result in systematig biased model parameters. The study
conducted by Wong and Wong (2015) focused on pasarastimations, and proved that such
a bias is introduced if the model is a non-linearction of the scaling factor and the scaling
factor is subject to variability, regardless of thedel form or the distribution of the scaling
factor. In that study, the generalized multivarigidynomial model was examined, and
adjustment factors that could efficiently and efifeely reduce the systematic bias of the
calibrated parameters were derived. Nevertheles$, garameter adjustments only guarantee
unbiased (or slightly biased) parameters in theg lanm, whereas the effects of linear data
projection on the dispersion and variability of théjusted parameters, measured by their
standard errors, have not been explored. Withquiogpiate statistics examining the parameter
statistical significance of the adjusted modelsirthalidity for applications remains unknown
and doubtful. This study focuses on standard emetimations, and reveals that
heteroscedasticity is inherently introduced wherdeda projection scheme is adopted,
regardless of the model form. Parameter standaodsehat are estimated by linearly projected
data without any appropriate treatments for hetmdasticity are definitely biased, and
possibly above or below their true values. In otherds, a true null hypothesis may be wrongly
rejected, leading to a type | error, or a falsé hypothesis may fail to be rejected, leading to
a type Il error in the statistical tests of sigreince for the adjusted parameters. Thus, unbiased
standard error estimations are vitally importanemnsure valid statistical tests of significance
and prevent exposure to uninformed and unnecesskrywvhen the applying the adjusted
models.

To demonstrate the existence of such bias in stdnelaor estimations when a data
projection scheme is adopted, a simple numericaingte of the calibration of the following
model is presented.

y=PBo+ B X+e=po+ B (fx)+¢

wherex is the observable independent varialflés the scaling factor of (which is assumed
to follow a distribution);X = fx is the projected value; is the random error (which is



assumed to be normally distributegl)is the observable dependent variable, @gndndp; are
the model parameters.

Ten thousand data points xof serving as the observable independent variahtes,
sampled from a negative exponential distributiothvei mean 00.2. As scaling factors are
usually positive, a lognormal distribution wifh= 1 andoy = 0.2 is chosen to sample the
corresponding scaling factors for the 10,000 saspkex. f ando; are the mean and the
standard deviation of the scaling facforespectively. Ten thousamgdserving as the random
errors of the 10,000 observations, are sampled &emmrmal distribution with zero mean and
0.1 standard deviation (i.es, = 0.1). Assuming thaf, = 3 andp; = 1, the corresponding
10,000 points ofy (which serve as the observed data for the depénderable) can be
calculated based on the assumed values of the paemand the sampled f ande. Suppose
that the values of all individugl ande are no longer available, atxdcan only be estimated
via a linear data projection based on the mearevaly (i.e., fx), which is a common real-
world occurrence. Regression analysis conductedidsgty and the linearly projected
(using any standard statistical package) resulissiet of calibrated parametefg,andf;, and

a set of reported standard errors of the calibraaedmeterskSE(B,) andRSE (B, ). By using
the same set of, and repeating the above steps 10,000 times, A@&8 of calibrated
parameters and reported standard errors are otitdihe standard deviations of the calibrated
parametersSD’(E)) andSD/(El), are the unbiased estimators of the standardseobthe

calibrated parameters. Table 1 shows the mean tamdlasd deviations of the calibrated
parameters, the mean of the reported standardseanartheir corresponding percentage errors.

Tablel
The mean and standard deviation of the calibraéedrpeters and the mean of the reported standamcs éor the
simple linear function

Mean Standard deviation Mean
Eo (%error) B1 (%error) Eo 31 RS (EO) (Y%error) RSE (Bl) (%error)
3.0000 (0.00%) 1.0000 (0.00%) 0.00174 0.00854 0.00163 (—6.17%) 0.00579 (—32.19%)

Simulation results show that the calibrated patarsere unbiased, which is consistent
with Wong and Wong (2015), because the model imeat function of the scaling factor.
However, the deviations between the means of therted standard errors and the standard
deviations off, (—6.17%) and off; (—32.19%) reveal that the estimated standard errors are
biased. Statistical tests based on these biasedastherrors may lead to biased inferences.
One important implication demonstrated by this dempumerical example is that even if
parameter adjustments are not required for a limeatel, the standard errors are biased and
an appropriate standard estimation method isr&tdessary.

To remove such bias, it is necessary to gain @bettderstanding about the origin of
the bias and of the potential for more efficientimoels of standard error estimation. Standard
error estimations are more difficult to make thamngmeter estimations, because a higher-order
moment for an estimated parameter measuremens dispersion is considered. This study
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aims to fill these knowledge gaps. The study shtved the heteroscedasticity inherently
introduced by data scaling schemes is the sourtieedbias. Although adjustment factors for
reducing systematic biases in the calibrated paemnef generalized multivariate polynomial
models have already been derived by Wong and W20t5|, the standard error estimations
for such model forms have remained unexplored. ege analytical distribution-free (ADF)
method is proposed to estimate the standard esfah® calibrated/adjusted parameters of the
generalized multivariate polynomial model. Howevbe, estimation accuracy of ADF method
deteriorates at high model nonlinearity, due to flbgibility of unspecified scaling factor
distributions. Therefore, an equivalent scalingda¢ESF) method, which generally provides
more robust standard error estimations at highineaitity, is also proposed. As the ESF
method transforms the model to a linear functiomESF before calibration, the calibrated
model parameters are unbiased. In other wordsstu@nts for the calibrated parameter are
not required, and this method provides an alteraagpblution path for unbiased parameter
estimations when a linear data projection is adbpléne Bureau of Public Roads (BPR)
function (as adopted in thdighway Capacity Manual (Transportation Research Board, 2000))
is a member of the generalized multivariate polyrabrfamily. The BPR function, which
depicts the travel time against traffic flow retaiship in a link, is commonly leveraged in
many European countries and the United States (ipgwt al., 1998; Lum et al., 1998). This
function plays a crucial role in static user edmilim analysis (Garcia-Rdédenas and
Verastegui-Rayo, 2013). Macroscopic Bureau of RuRbads (MBPR) functions, which
model the relationship between travel time anditrdliow over a network, are calibrated in
this study based on real-world GPS data, usingthygosed ESF method to estimate the model
parameters and their corresponding standard errors.

The remainder of the study is structured as follo&ction 2 proves that
heteroscedasticity is inherently introduced whelata projection scheme is adopted, and that
direct calibrations based on the linearly projectath lead to biased standard error estimations.
A generic formula estimating the parameter standardrs of the generalized multivariate
polynomial model is derived in Section 3. Simulati@sults based on the ADF method are
presented. The subsequent section proposes thenBtBBd. Simulation results reveal that the
ESF method generally performs better at high modelinearity than the ADF method. In
Section 5, the proposed ESF method is appliedse studies of MBPR function calibrations
and standard error estimations using real-life GRa& acquired in Hong Kong. The final
section provides a conclusion on the findings efdtudy and discusses the potential directions
for future research.

2. Biased standard error estimations dueto heter oscedasticity

This section proves that heteroscedasticity isrigéy introduced in a data projection
scheme when the scaling factor adopted is sulgaariability. This finding violates the usual
assumption of homoscedasticity in model calibratjomhich has led to biased standard error
estimations.



2.1 Heteroscedasticity arising from data projection

This subsection unveils the inherent heteroscedystrising from data projections.
Considery = G(z) + ¢, whereG(z) is a function of any formg is an independent random
error, assumed to be normally distributed with zevean and constant varianeg’; z is
constituted by the sum of the products of a sesaafing factors and a set of observable
independent variables (i.ez,= Y%, fix;; x; is the observable independent variablec
[1,m]); f; is the scaling factor of;, which is assumed to follow any distribution witteanf
and variance,?, andm is the number of terms used to construct the dfyant

In most cases, the data collection #2as impossible or impractically expensive and
labor-intensive compared to data collectionxdorin practice, however, the observable variable
x; can generally be collected in relatively cheapaysv The scaling factgf of each individual
x; Is assumed to follow a distribution. Theoreticathjis factor can be assumed to follow any
distribution, but the properties of the chosenritistion should be in line with the conditions
of the given situation. For instance, if the saglfactor is always non-negative, with a lower
relative frequency at high values, then a lognordstribution can be chosen as the assumed
candidate distribution. The first and second momeftthe distribution can be estimated by
using another set of scaling factors sampled fradependent sources under similar conditions.
In many situations, the impracticability of diretdta collection for necessitates the use of a
data scaling scheme. However, the data projectiethod fundamentally leads to non-
homoscedasticity, due to the variability of thelisgpfactors as stated in Proposition 1.

Proposition 1. In addition to the random errer with a normally assumed constant variance
o.2, heteroscedasticity is inherently introducedzas constituted via a data projection
scheme in whiclz is expressed as a linear combination of the sgdhitorsf; and the
observable independent variabledi.e.,z = Y1, f;x;) regardless of the distribution of the
scaling factor or the form of the mode{z), as long as the scaling factors are subject to
variability.

Proof. ApproximateG (z) by a Taylor series expansion with the centgf at f, Vi € N*.

y = G(f)+z (f)(ﬁ F+-te (1)

Grouping all of the terms with random variablesis defined as a composite random term,
which is expressed in the following form:

€= ZaG(f) (fi=F)+te @

i=1

SubstitutingEq. (2) into Eq. (1), Eq. (3) gives the following results:



y=G(f)+¢ (3)

Taking the variance on both sideskof (3) for any givernx,

Var(y|x) = Var[G(f) + €]

As G(f) is a constan¥ar[G(f)] = 0 andCov[G(f), €'] = 0. Therefore,

Var(y|x) = Var(e") 4)
SubstitutingEq. (2) into Eq. (4) and ignoring higher order terms,

Var(y|x) = Var

> 2Dy

i=1

The independence betweemndf;, Vi € [1,m] leads taCov [Z’{;l ag](cf) (fi —f), g] =0. It

follows that

> 20—

i=1

Var(y|x) = Var + Var(e)

m aG —\-2
Var(y|x) = Z [# Var(f; - f)

i=1

+2 z aG—(_f)aG—O—r)Cov[(fi =0 (fi =]+

1gi<j=m o 9

Assuming thaff;, Vi € N* are independent of each othéoy[(f; — f), (f; — f)] = 0, Vi,j €
N*\[i = j]. Thus,

variyio =y [20) SO0 e [ 7] - 150~ T} + 0

=1

whereE(f; — f) = 0 andE [(ﬁ —f)z] = g;%. Thus,
a6(F)|’

Var(y|x) = o;* o O (5)



Eq. (5) is an approximated scedastic functiorypfvhich expresses the varianceyof
in terms of boths,.? ando;2. In addition to the random erremwith a constant varianee?, it

is apparent that the variability gffor a givenx is also dependent the scaling factor variance
op?. AsYL, [a;;_g) ’ is a function ofx, the effect obr; on the variance of changes withx,

and hence heteroscedasticity exists. The variglotimposition ofy is complex, because it is

a mixture of both the constant variangé and the varying,. Thus, as long as the scaling
factor is subject to variability, heteroscedasyitit introduced when a data projection scheme
is leveraged. It should be stressed that Propastitis generic, a§(z) can be a function of
any model form.

2.2 Violation of the homoscedasticity assumption

Model calibrations normally require an assumptidnhomoscedasticity that is a
constant variance of the dependent variable alatigtixe independent variable being modeled.
However, heteroscedasticity introduced by a dabgeption scheme undesirably violates this
assumption, and this is largely ignored in thedfiéluring model calibrations. Hence, biased
standard error estimates may be above or belowuibestandard errors. These biased statistics
may wrongly reject the true null hypotheses, legdma type | error, or wrongly fail to reject
the false null hypotheses, leading to a type breim the statistical tests of significance for the
adjusted parameters. Direct applications of thesadfd models without valid statistical tests
of significance result in exposure to an uninfornaed unnecessary risk of making wrong
decisions.

Although the scedastic function of the compositergierm can be easily obtained via
Eq. (5), the conventional approaches to the problem daérbetedasticity (generalized least
squares (GLS) and weighted least squares (WLS) ads}hare rather indirect to address
heteroscedasticity arising from linear data progectin this case. Given the additive
relationship between the term w'tljaz ando,?, the formulated weighting factors cannot be

independent of the unknowmn?. Estimation of the unknows.? requires most of the formulae
derived in the ADF method, which is proposed int®ec3. However, once the ADF method
is applied, the problem can be addressed diredhyst importantly, when a linear data
projection is leveraged, the expectation of the posite error termk (¢'), is nonzero when
the model to be calibrated is a nonlinear func{Mong and Wong, 2015). In such cases, the
usual assumption of zero expected value of the ¢éerm is violated and biased parameters
and standard errors are the result. Thus, thesesntional approaches are not only indirect to
this problem, but may also be incapable of sohiingrhus, to ensure reliable and valid
statistical tests, efficient and appropriate stath@aror estimation procedures must be derived
that can estimate the unbiased statistics as turscdf these projected data, involving both the
constani,* and the varying;>.



3. ADF method

A generalized multivariate polynomial model is exaed in this study. It is useful for
approximations of many functional functions and bareasily reduced to a polynomial of the
required number of terms with desired orders irciica. In this section, the generic ADF
method, which estimates standard errors based emefborted residual sum of squares, is
derived based on the generalized multivariate potyial model. The ADF method is flexible,
because no assumption concerning the model's gcddintor distribution is necessary.
Comprehensive simulations using the proposed AD#haoadkeare conducted to demonstrate its
effectiveness in making estimations. Although teaegalized multivariate polynomial model
is the only model chosen for the demonstrationthis study, it should be noted that the
concepts and methodologies proposed in this andubgequent sections can be extrapolated
to other cases.

3.1 Formulation

Let P(z) be a function in polynomial form with + 1 terms and defing = n + 1,
which is the total number of sensitivity parametafrghe polynomial. Consider the following
model,y = P(2) + «:

y=Po+Piz+ Pz + -+ Ppz" + ¢

wherez = Y™ fixi; Bo, B1, B2 ---Bn_1 @andp,, are the model parameters. Thus,
m m m n
y = Bo+ by (Zﬁ-xi) +5y (Z fm) + ok By (me) N C
i=1 i=1 i=1

Eq. (6a) can also be written in matrix form, as showrEgy(6b), in terms of observations:

2

y=Xp +¢ (6b)

wherey” = [yy,¥,, ..., yn], Which is a(1 x N) transposed column vector of observations of
the dependent variabl@} is the total number of observatio;is an(N X p) matrix of
observations of the independent variablgs; = (X, fi-xi)*, which is therth row and the
kth column entry oX, vr € [1,N] andvk € [0,n]; BT = [Bo, B1, .-, Bn], Which is a(1 X p)
transposed column vector of model parametelss [e;, ;, ..., ey], Which is a(1 x N)
transposed column vector of random errors, &nd assumed to be independent identically
distributed (i.i.d.) as normal with zero mean andstant variances.?, vr € [1, N].

However, the individual value of each scaling faesousually not available, which is
a common real-world occurrence. We assume thdirgteand second moments of the scaling
factor distribution can be estimated by using aeottet of scaling factors sampled from
independent sources under similar conditions. Talisgar data projection is usually adopted,
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in which each individual scaling factor is replacsith its mean value. Usingg. (3) and
expandingP(f), Eq. (7a) gives results as follows.

m m 2 m n
y=Fo+ by (Z fxi> + 5, (Z fxi) + ot By (Z fxi> ve ()
i=1 i=1 i=1

Eq. (7a) can also be written in matrix form, as sholkn (7b), in terms of observations:

y=XB+¢ (7b)

where X is an (N xp) matrix of linearly projected independent variablég, =
(Z?;lfxir)k, which is therth row and théeth column entry ok, vr € [1, N] andvk € [0,n],

ande'” = [e'1,€ 5, ...,€'ny], Which isa (1 x N) transposed column vector of composite
random components.

The model parameters are usually calibrated uBmng8), based on the linearly
projected data with an (invalid) assumption that¢tomposite random componeantsare the
error terms i.i.d. as normal, with zero mean andrestant variance ef,/2. Making parameter
estimations usindq. (8) is equivalent to minimizing the residual sum ofuaees. The
minimized residual sum of squares reported byrdstal statistical package is obtained based
on the composite random componeritaNe define this result as the reported residual sti
squares, which is denoted RYSE.

B=X"X)"X"y (8)

whereBT = [By, B1, ..., Bn], Which is a(1 x p) transposed column vector of calibrated model
parameters. The fitted regression model is given by

—_—

y=XB €)

where T = [9o, 91, ...,Pn], Which is a(1 x N) transposed column vector of predicted
response variables, based on the linearly projecidependent variables and the calibrated
parameters. The corresponding hat maitix,which is known as the influence matrix or
projection matrix, is defined as follows.

H = X(X"X)"'X" (10)

Thus,Eq. (9) can be alternatively expressed as showkEqir{11).

y =Hy (11)
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However, Wong and Wong (2015) have recently prdtetithe calibrated parameters
based on linearly projected data are systematitadiged, i.e.E(ﬁ) # f3, regardless of the
distribution of the scaling factor or the form bktmodel to be calibrated, as long as the data
involve a non-linear function of the scaling facamd the scaling factor is subject to variability.

In other words, the calibrated parameters are gedianly if the model is a linear function of
the scaling factor. In particular, for the caseaajeneralized multivariate polynomial model,
these authors have shown tB4X) = XF, and they have proposed to reduce the systematic
bias by incorporating the scaling factor variang&into the calibrated parametgdased on
Eq.(12).

B=F'B (12)

where BT = [Bo, B4, ..., fn], Which is a(1 x p) transposed column vector of the adjusted
model parameters is an(p x p) diagonal matrix, ané, = 1 + [k(kT_l)] [(U—f)z] [%]

F7lEn, )
which is thekth row and thékth column diagonal element Bf Vk € [0,n]. Each calibrated
parameter can be corrected independently. The atranl conducted by Wong and Wong
(2015) demonstrated the effectiveness and effigi@fiche proposed methodology, and it is
indeed true thaE(ﬁ) = B. It should be noted thé‘t(ﬁ) is an approximation t@ only when
the model to be calibrated involves at least on@ t@ith an order greater than two and the
scaling factor moment of the corresponding orderaszero (e.g., a model involves a cubic
term and the skewness of the scaling factor is exan) OtherwiseE (B) is exactly equal to
B, because the adjustment factor proposed by WoddgMong (2015) was derived based on
Taylor series expanded up to the second-order term.

Nevertheless, according to Proposition 1, it isssppt that the response variapland
the composite random componeatsare not randomly distributed with either a constan
variance or with pure heteroscedasticity, but mdtare distributed with a combination of both
patterns. The composite random componehthould thus be regarded as distorted error
components. The invalid assumption of i.i.d. notyndistributede’, with zero mean and a
constant variance,?, definitely leads to incorrect standard errormaations. Accurate and
reliable standard error estimations are importa@tause accurate estimates are necessary to
perform statistical tests and to provide evidentabether the corrected model parameters are
statistically significant. For the case of a geheea multivariate polynomial model involving
a linear data projection, the standard errorsettlibrated/adjusted sensitivity parameters can
be estimated analytically, based on the reportediwal sum of square®SSE, which is
obtained via the usual model calibration procedarestated in Proposition 2.

Proposition 2. The standard error of thgh calibrated/adjusted sensitivity parameter of a
generalized multivariate polynomial modg}, can be estimated by the square root of the
kth row and thekth column diagonal element of the estimated comagamatrix of, Vk €
[0,n]. The estimated covariance matrixfs a(p X p) symmetric matrix given by
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Var(B) = (F)(X"X) X" |Var(XB)

RSSE —tr [(IN - H)Va7(7ﬁ)]

= XXTX)"L(F1)T

+

Iy

wherel is an(N x N) identity matrix.

Proof. Taking variance on both sideskd. (12),

Var(B) = Var(F'B) (13)

SubstitutingEq. (8) into Eq. (13),

Var(B) = Var[F*(X"X)'X"y]

As bothF andX are constants, andis the only quantity possessing randomness,

Var(B) = FHX™X) X" Var(XX"X)" (F )’

The independence betweemndf;, Vi € [1,m] leads to

Var(B) = FHXTX) X" [Var(XB) + o2 Iy XXTX) L (F-1)T (14)

ReplacingVar(XB) ands,? by their unbiased estimators, which are denoteldcb?(iﬁ) and

0.2, respectively, gives the estimated covarianceimetfrg, Var(B).

To obtainVa?()\(ﬁ), consideVar(XB), which is an(N x N) diagonal matrix. Where
vr € [1,N], Vk,l € [0,n] andk < [, therth row andrth column diagonal element of
Var(Xp) is given by

n m k n m k
Z Brk <Z firxir> = Z :Bkz Var l(z firxir) ‘
k=0 i=1 k=0 i=1
m kK m - (15)
+2 Z ﬁkﬁlcov [(Z firxir> ’ (Z firxir)

0<k<lszn

Var

Consider the first expression on the right haneé sikEq. (15), Vk € [0, n].
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[S’szar

m 2k
E <Z firxir>
i=1

m k
<Z firxir> ] = :Bkz
i=1

Using the result from Appendix A,

o k
,[i’szar <Zfirxir> ]

(:1+2k (2k—1)<af zl X2 p

m k1?
—E <Zfirxir> ]
i=1

> (16)

L T )2 (’“_ )
=P 4| k.(k—1)<af> Zl X2 ] |} Zf T
k 2 f 121 Xir)? )

Consider the second expression on the right hateddEq. (15), Vk, [l € [0,n] andk < I.

m kK ,m !
BrBiCov [(z firxir) <Z firxir> ‘

i=1

m k ,m l m k m l
= lgklgl {E <Z firxir> (Z firxir> - (Z firxir) E <Z firxir> ‘}
i=1 i=1 i=1 i=1
Again, using the result from Appendix A,
m k m l
ﬁkﬁlcov l(z firxir) ’ <Z firxir> ‘
i=1 i=1
1+(k+z)-(k+l—1)<a_5>2 Rt | ) L, an
2 f) GRixy)? _
= ﬁkﬁl k m m Z Xir
1+ ’ (k B 1) (0f> Zl 1xlT l (l - 1) <Uf> ZL 1er i=1
\ 2 f) @kix)? f) G x)2|)

Var(XB) can thus be obtained via substitutions of the vlesedata and the corrected model
parameters into each diagonal elemerit@f(Xp).

For the unbiased estimator@f?, consider the reported residual sum of SQUAESE,
as obtained from the standard regression procedures

RSEE =(y-9)"(y - %) (18)

14



SubstitutingEq. (11) into Eq. (18),

RSEE =y"(Iy — H)y (19)

Taking expectation on both sidesEzf. (19) and using the trace-variance formula,

E[RSEE] = tr[(Iy — H)Var()] + E[y]" Iy — H)E[y]

AsVar(y) = Var(XB) + o.°Iy andE[y] = XFp,

E[RSEE] = tr[(Iy — H)Var(XB)] + o.%tr[Iy — H|
+ (XFB)" (1, — H)(XFB)
Also, astr[Iy — H] = N —p and(XFB)' (Iy — H)(XFB) = 0,

E[RSEE] = tr[(Iy — H)Var(XB)] + 0.2(N — p) (20)

By substitutingVar(X[_i) into Eq. (20), 6.% can be obtained after rearrangement.

_,  RSEE —tr|(Uy — H)Var(Xp)|
O, = N — » (21)

After substituting/ar(X[_i) andé.” into Eq. (14), the estimated covariance matrix of
B, Var(B) results, as shown ifq. (22).

Var(B) = F)(X"X) X" |Var(XB)

S (22)
RSEE — tr |(Iy — H)Var(Xp)|

N-p

+ Iy| XX™X)"'(F )T o

The square roots of the diagonal elements of thmated covariance matrix indicate
the standard errors of the calibrated/adjusted itbatys parameters. This proposed
methodology is flexible, because no assumptionaslenconcerning the form of the scaling
factor distribution, and only the first and secandments of the scaling factor are required.
Thus, the method is analytical and distributiorefréoreover, the covariance matrix is
estimated based on the residual sum of squaresndasated by any standard statistical
package) upon a regression on the linear projedata, as if the scaling factor is subject to
zero variability. Thus, the proposed ADF method baneasily integrated with the existing
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standard model calibration procedures and wittptirameter adjustment procedure proposed
by Wong and Wong (2015). The combination of theapsater adjustment procedure and the
proposed ADF method is an extension of the clalssiodel calibration, as it further considers
the effects of scaling factor variability on botie parameter and the standard error estimations.

3.2 Smulations

This subsection presents comprehensive simulatbregressions on the generalized
multivariate polynomial function, as shown k. (23), and on standard error estimations
using the proposed ADF method.

y:ﬁ0+ﬁnzn+€:ﬁ0+ﬁn<zﬁxi> te (23)

Twelve simulation cases with different combinasion terms of the numbers of linear
combinations of the scaling factors and observadalependent variables (i.en, = 1 and5),
scaling factor distributions (i.e., normal and logmal) and model nonlinearity (i.e1,= 1, 2
and3) were considered for investigating the performaniche ADF method under different
situations. Polynomial functions with two termsarflers ranging from zero to three were
selected for simulations because they resembldigmhfunctions of transportation analyses,
such as the BPR function adopted in ltighway Capacity Manual (Transportation Research
Board, 2000).

Asm was chosen to be either one or five, two set)d@d0 observations af serving
as the observable independent variable had to herged. The observable independent
variable can be any traffic variable following atigtribution. We chose a negative exponential
distribution with a mean di.2 for the purpose of data generation for all ofgimeulation cases.
Form = 1, each observation was comprised of @nén contrast, fom =5, five x were
independently sampled from the distribution forreabservation. To facilitate comparisons
between the performances of the ADF method undésreit situations, any effects on the
results due to the sampling error arising from dggaerations of the observable independent
variables should be avoided. Thus, these two $a@opled observable independent variables
were used for all of our simulation cases.

The scaling factof of eachx was sampled from either a normal or lognormal
distribution, withf = 1 and or = 0.2, according to the simulation case of interest. In
addition, 10,00@, which served as the set of random errors fodh800 observations, were
sampled from a normal distribution with zero mead @1 standard deviation. We s = 3
andp, = 1. The corresponding 10,00Q serving as the observed data for the dependent
variable, were calculated based on the assumed|rpadeneter values, the sampbed and
&, and then value of that particular simulation case. Assuniimag the values of all individual
f ande were no longer available, the observed independemble could only be estimated
by leveraging a linear data projection based onsiaing factor mean (i.ex™, fx;).
Regression analysis based on the linearly projedtdd resulted in the calibrated model
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parameters (i.ef, andg,) and the reported standard errors ('Ré‘f?(\ﬁo) andRSf(??n) ).
The calibrated model parameters of the nonlineadatso(i.e.n # 1) were corrected by the
adjustment factors proposed by Wong and Wong (201%hg the proposed ADF method, the

standard errors of the calibrated/adjusted modelmeters (i.e.SE/(E) andSm)) were
subsequently estimated.

As with the simple simulation presented in Secfipeach simulation case was repeated
10,000 times to obtain the mean and standard dewviaf the calibrated/adjusted parameters,
the mean of the reported standard errors and tlae wiethe estimated standard errors based
on the ADF method. For each simulation case, alhef10,000 repeated simulations used the
same set of observable independent variablésit a different and resampled scaling fagtor
and a random errar. Thus, the variability of the calibrated/adjustetbdel parameter
originated purely from the randomness of the sgdhaetor and the random error. The standard
deviation of a calibrated/adjusted parameter foasueng such variability was an unbiased
standard error estimator. Table 2 summarizes thdtsefor the 12 simulation cases.
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Table?2

The means and standard deviations of the calibiedpdted parameters and the means of the repsteedard errors and estimated standard errors loasthe ADF method

Mean

Standard deviation

Mean

Mean

B (%error)

ﬁo Bn

RSE(??O) (%error)

RSEU?,[) (%error)

SE(E,) (Yerror)

Sm) (%error)

1.0000 (0.00%)

1.0004 (4+0.04%)

0.9994 (—0.06%)

0.00175 0.00865

0.00196 0.02677

0.00295 0.06995

0.00163 (—7.00%)

0.00138 (—29.67%)

0.00155 (—47.41%)

0.00579 (—33.08%)

0.00748 (—72.05%)

0.00893 (—87.23%)

0.00175 (—0.10%)

0.00196 (—0.16%)

0.00280 (—5.28%)

0.00862 (—0.38%)

0.02650 (—1.03%)

0.06456 (—7.71%)

1.0000 (0.00%)

1.0000 (0.00%)

1.0001 (4+0.01%)

0.00433 0.00475

0.01042 0.01050

0.04267 0.02850

0.00394 (—9.12%)

0.00574 (—44.95%)

0.01309 (—69.33%)

0.00360 (—24.19%)

0.00352 (—66.51%)

0.00425 (—85.10%)

0.00432 (—0.22%)

0.01033 (—0.91%)

0.04139 (—3.00%)

0.00475 (—0.06%)

0.01034 (—1.53%)

0.02742 (—3.76%)

1.0000 (0.00%)

1.0001 (4+0.01%)

1.0045 (4+0.45%)

0.00174 0.00854

0.00206 0.02839

0.00336 0.08076

0.00163 (—6.17%)

0.00141 (—31.60%)

0.00166 (—50.45%)

0.00579 (—32.19%)

0.00764 (—73.07%)

0.00957 (—88.15%)

0.00175 (+0.79%)

0.00198 (—3.94%)

0.00287 (—14.54%)

0.00862 (+0.94%)

0.02653 (—6.53%)

0.06496 (—19.56%)

Assumed
scaling factor m n
distribution Bo (Y%error)
1 3.0000 (0.00%)
1 2 3.0000 (0.00%)
3 3.0000 (0.00%)
Normal
Distribution
1 3.0001 (0.00%)
5 2 3.0000 (0.00%)
3 2.9997 (—0.01%)
1 3.0000 (0.00%)
1 2 3.0000 (0.00%)
3 3.0000 (0.00%)
Lognormal
Distribution

1 3.0000 (0.00%)

3.0000 (0.00%)

3 2.9995 (—0.02%)

1.0000 (0.00%)

1.0000 (0.00%)

1.0009 (4+0.09%)

0.00425 0.00467

0.01068 0.01067

0.04435 0.02959

0.00394 (—7.39%)

0.00588 (—44.98%)

0.01378 (—68.94%)

0.00360 (—22.91%)

0.00360 (—66.24%)

0.00447 (—84.90%)

0.00432 (+1.67%)

0.01041 (—2.59%)

0.04163 (—6.13%)

0.00475 (+1.64%)

0.01037 (—2.79%)

0.02748 (—7.15%)

* RSE(f,) andRSE (,) were the reported standard errors of the calibratedmeters, but not of the adjusted parameters.
* Adjustments on the calibrated parameters of trealinerms were not required.
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After adjustments on the calibrated parameters g nonlinear terms, the
calibrated/adjusted model parameters were extregiege to their true values (.8, = 3
andpg, = 1). In terms of magnitude, all of their percentag®ms were less than or equal to
0.45% , which demonstrated the significant correction powf the adjustment factors
proposed by Wong and Wong (201Except for the two cases involving cubic terms kd
normally distributed scaling factors, the expectallies of the adjusted sensitivity parameters
of the nonlinear termg,,, should be exactly equal to their corresponding traluesg,,. Any
small discrepancy between them purely emanated frememaining sampling errors of the
scaling factor and random error among the 10,0p8ated simulations. For the two cases with
cubic terms and log-normally distributed scalingtéas, the mean values B8f were close
approximations of3,, due to the unrecovered minimal effects of thedtlmroments of the
scaling factors on their corresponding parametersaddition to the sampling errors, the
unrecovered minimal effects led to the slightlygkar percentage errors of the mean values of
B, (i.e.,+0.45% for m = 1 and+0.09% for m = 5). Nevertheless, such minimal percentage
errors of values less than &5are acceptable in practical termige standard deviations of the
calibrated/adjusted parameters were the unbiasiedagdsrs of their standard errors. However,
the reported standard errors of the calibratedmpeters seriously deviated from those of the
unbiased estimators. The percentage errors oéffeeted standard errors, ranging from around
6% to 88%, generally increased rapidly with

The last two columns shown in Table 2 present shendard errors of the
calibrated/adjusted model parameters, estimateatr@iog to the proposed ADF method. The
simulation results revealed that the magnitudeshefpercentage errors for the estimated
standard errors were much smaller than those toredported standard errors. These results
suggested that the ADF method performed much bttter the classical model calibration
procedures (which do not account for the heterestesty arising from a data projection
scheme). Moreover, a similar pattern persisted hiclwv the percentage errors generally
increased with the exponemt For examplein the case ofn = 1 and the normally distributed

scaling factorsthe magnitudes of the percentage errorSE—(fE,) andSbT(—En) increased from
0.10% and0.38% (whenn = 1), t00.16% and1.03% (whenn = 2) and then t&.28% and
7.71% (whenn = 3). In spite of these results, whan= 1, the errors of the estimated standard
errors could be well controlled by the ADF methtadaroundl1 %. It should also be noted that
the simulation case with = 1, n =1 and a log-normally distributed scaling factor was
exactly the same simulation case as was present&edtion 1. In that case, the estimated
standard errors of3, and B, (as indicated by the proposed ADF method) were
0.00175 (4+0.79%) and0.00862 (+0.94%), respectivelyA lack of information concerning
the higher order moments of the scaling factohasderivation of the ADF method could be
the major cause for the increasing trend of thegrgage error with the exponentbecause
these higher order moments (that may be effectivegaverning the variability of the
calibrated/adjusted parameters at higher modelmeariity) were not captured in the proposed
method.
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Comparing the simulation cases of normally disteduscaling factors with the cases
of log-normally distributed scaling factors, the gndudes of the percentage errors of the
estimated standard error in the former cases warerglly lower than those of the latter cases,
with the same values @t andn. For instance, whem = 1 andn = 3, the magnitudes of the

percentage errors 6E (B,)andSE(f,) in the cases of normally distributed scaling fagto
were 5.28% and7.71%, respectively, which were lower than those in tases of log-

normally distributed scaling factors. The magnitudé the percentage errors&ﬂ’/(—[?o)and

SE(—E) in the log-normally distributed scaling factarases werd4.54% and 19.56%,
respectively These results may provide evidence for the patguthat thehigher order
moments of the scaling factors may be effectivegoverning the variability of the
calibrated/adjusted parameters at higher nonlitygabecause a lognormal distribution is
asymmetric, and its third moment and higher ordiel mumber moments are non-zero.

Moreover, as the numbers of the linear combinatwinthe scaling factors and the
observable independent variables (i) increased, the errors of the estimated standawdse
were reduced for cases with scaling factors samipted the same distribution and the same
values ofn. Taking the case of a log-normally distributedliscpfactor andn = 3 as an

example, the magnitudes of the percentage errofm,)andsm) were14.54% and
19.56%, respectively, whem = 1. However, asn increased t&, these magnitudes dropped
to 6.13% and7.15%, respectively. The cancellation of random effert®ng different scaling
factors asn increased could be a reason for the reductiotiseoéstimated standard errors.

These simulation results demonstrated that thegsep ADF method, which accounts
for the heteroscedasticity arising from the vatigbof a linear data projection, can generally
estimate the standard errors of the model parametean acceptable level of accuracy.
However, although the proposed ADF method was é&énalyand distribution-free, the
estimation accuracy deteriorated when the modelimearity (i.e.,n) was increased and the
higher order moments of the scaling factor govegtine calibrated parameter variability were
ignored

3.3 Mild violation of i.i.d. random error

The ADF method formulated in the previous subsecigobased on an assumption of
i.i.d. random error. However, this might not alwdesthe case in reality. The random error
can possibly be heteroscedastic and its variamagvary withz. Thus,a set of sensitivity
analyses for all of the simulation cases were cotatlio review if the ADF method castill
perform at a satisfactory level under situationshwnild violation of i.i.d. random error.
Keeping all the other settings the same, the seitgiinalyses were performed at a 10%
elasticity of the standard deviation ©fvith respect te. For instance, whem = 5, random
error were sampled from a normal distribution witlean of zero and standard deviation of
0.1+ 0.01(z — 1), which varies witle. This represents a 10% elasticityat € 0.1,z = 1).
Under such settings, heteroscedasticity origindiiwit) from linear data projection and random
error are introduced.
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To test the performance of the ADF method undeh sumild assumption violation,
each of the 12 simulation cases were repeated Ggd0Q times using the conventional
regression analysis and the ADF methods as ifdhéam error was i.i.d. as normal. The mean

of the reported standard errors (iESf(\[?O) andRSf(\Bn)) and mean of the estimated

standard errors (i.esf(—EO) andSbT(—El)) could then be subsequently computed. All of the
simulation cases revealed that the percentageseofathe reported and estimated standard
errors obtained from situations with and withoue tmild assumption violation were

comparable. Taking the case with= 5, n = 3 and a normally distributed scaling factor as
an example, the magnitudes of the percentage efrbrth the reported and estimated standard

errors  (i.e., RSE(By) = —69.17% , RSE(B,) = —84.93% , SE(B,) = —2.48% and
SE(—E) = —2.66%) only decreased slightly compared to the samesta®en in Table 2 (i.e.,
RSE(B,) = —69.33%, RSE(B,) = —85.10%, SE(B,) = —3.00% andSE(B,) = —3.76%).
For the case witm = 5, n = 3 and a log-normally distributed scaling factor, garng to the
same case shown in Table 2 (iRSE(B,) = —68.94%, RSE(B,,) = —84.90%, SE(f,) =
—6.13% andSE(—El) = —7.15%), the magnitudes of the percentage errors ofthatheported
and estimated standard errors (BSE(f,) = —69.63%, RSE(f,) = —85.21%, SE(f,) =

—8.32% andSE(—El) = —9.15%) only increased slightly. Most importantly, resultf all
these simulations indicated that under situatiohsres the assumption of i.i.d. random error
was mildly violated, the use of the proposed ADRhud could yield much better and more
accurate standard error estimates with signifigasthaller percentage errors in magnitudes
compared to those reported standard errors byoimeeational calibration procedures, because
the proposed method at least could address thésgpnalf heteroscedasticity arising from linear
data projection.

4. ESF method

To address the accuracy deterioration of the peghdsDF method at high model
nonlinearity, the ESF method is introduced in gestion. The ESF method is a combination
of a simple transformation simulation (which trarefis the generalized multivariate
polynomial function into a linear function of ESFaphd the ADF method. A series of
simulations demonstrated that the proposed ESFadegmn significantly improve the standard
error estimation accuracy at high model nonlingarit

4.1. Formulation

According to Wong and Wong (2015), if the modebeocalibrated is a linear function
of the scaling factor, no systematic bias will bebedded in the calibrated parameters, even if
the scaling factor is subject to variability. Tajiadvantage of this property, the ESF method
uses a simple transformation simulation to altex generalized multivariate polynomial
function into a linear function of a set of ESFaséd on the additional assumption about the
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distribution of the scaling factor. The assumedritistion should follow the properties of the
scaling factor. For instance, a lognormal distiitmutan be the assumed candidate if the scaling
factor is always non-negative, with a lower relatifrequency at high values. Such a
transformation has two major advantages. It bygapseameter adjustments after a model
calibration, because the calibrated parametersravmsed. Also, it increases the accuracy of
standard error estimation, because information tth@uhigher order moments of the scaling
factor are captured by the first and second monaritse ESF.

Consider a generalized multivariate polynomial tiow, G(f), 3G(g), as shown in

Eq.(24), such that: (g) is equivalent td (f).

y = Bo+ B1g1w + B2gow? + -+ Brgaw" + € (24)

whereg;,Vj € [1,n] is the ESF of thgth term that is assumed to follow an unknown
distribution, with meargj; and standard deviatian;, andw = Yt x;, which is the sum of
all observable independent variables,vi € [1, m].

Consider and compare tkeh terms ofEq. (6a) andEq. (24),

Brgiw™ = B (i fixi
zl (Zm x]) ] (25)

Therefore, the ESF of theh termg, is thekth power of the weighted sum of the
scaling factor. The weighting factors are constitiiby one observation set of the observable
independent variable;, Vi € [1,m].

k

Ik =

Suppose that there akeobservation sets of, Vi € [1,m]. For each observation, one
simulatedg, can be evaluated usirig. (25) by inputting a set of; as sampled from the
assumed scaling factor distribution, with mefaand variance;*. Then, theV simulatedg
form a distribution that approximates the true, tmiknown distribution of,. The mearyg,
and the standard deviatiop, can be estimated from theSesimulatedg,. It should also be
noted that the first and second moments of thedaBMe estimated analytically in some cases.
For instance, this factor can be estimated whenasmed scaling factor distribution is
lognormal andn = 1, andg, andg,, can be evaluated based ﬁandafz using the well-
known standard transformation equations.

Linearly projected data result from replacing eaclividual ESF by its estimated mean
value. As only the first and second moments ofsteding factor contribute to the standard
error estimations in the case of a linear model,athe first two moments of the ESF capture
the information of the higher order moments of dhniginal scaling factor, the standard error
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estimations based on the transformed case usingréwously proposed generic ADF can
significantly improve the estimation accuracy.

4.2. Smulations

To demonstrate the estimation accuracy and efimatiss of the proposed ESF method,
this subsection presents simulations on the regresfEq. (23) with exactly the same
settings as those used in Section 3.2.

Twelve simulation cases with the same combinationghe numbers of linear
combinations of the scaling factors and observadalependent variables (i.en, = 1 and5),
scaling factor distributions (i.e., normal and logmal) and in the model nonlinearity (i.e.=
1,2 and3) were conducted, based on the proposed ESF méeflmoenable comparison, the
exact same two sets of 10,000 observations af sampled previously in Section 3.2 were
adopted for all of the simulation cases.

For each simulation, the scaling factgrsvere sampled from either a normal or a
lognormal distribution, withf = 1 andoy = 0.2. The random errorswere sampled from a
normal distribution with zero mean afd standard deviation. The corresponding dependent
variablesy were evaluated based on these sampled data, dbmed parameter values (i.e.,
Bo = 3 andp, = 1) and then value of each particular case. Supposing thairntidual
value of f and ¢ were unavailable, the simple transformation sitnoita proposed in
Section 4.1 was applied to transform the modelantoear function of the ESF and to simulate
the mean and standard deviation of the ESF. IngsiEaddirect application of the linear data
projection based ofi, the sampled observable independent variables kiverarly projected
using the simulated ESF medj,,. Regression analysis on the linearly projected degulted
in the calibrated model parameters (i#&.,andB,) and the reported standard errors (i.e.,

RSE(B,) andRSE(£,) ). No adjustments of the calibrated model pararsetare required.

The standard errors of the calibrated model pame(ii.e.,SE’(E)) andsm)) were
subsequently estimated based on the generic ADRaniet

In a manner similar to the previous analysis, esactulation case was repeated 10,000
times, using the same set of sampled observabépemtient variables, but with a different
and resampled scaling factband random errar. Table 3 presents the means and standard
deviations of the calibrated parameters, the mebihe reported standard errors and the means
of the estimated standard errors for each simulati@ase. The standard deviations of the
calibrated parameters were the unbiased estimfaotiseir standard errors.
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Table3

The means and standard deviations of the calibresimeters and the means of the reported stardand and estimated standard errors, based deSkemethod

Assumed
scaling factor
distribution

Mean

Standard deviation

Mean

Mean

Bo (%error)

B, (%error)

ﬁo Bn

RSE(??O) (%error)

RSEU?,[) (%error)

SE(E,) (Yerror)

Sm) (%error)

Normal
Distribution

1 3.0000 (0.00%)

2 3.0000 (0.00%)

3 3.0000 (0.00%)

1.0020 (4+0.20%)

1.0091 (4+0.91%)

0.9935 (—0.65%)

0.00177 0.00861

0.00197 0.02714

0.00300 0.07049

0.00163 (—7.75%)

0.00138 (—29.99%)

0.00155 (—48.20%)

0.00580 (—32.64%)

0.00726 (—73.26%)

0.00792 (—88.76%)

0.00175 (—0.90%)

0.00199 (+1.13%)

0.00299 (—0.27%)

0.00864 (+0.30%)

0.02759 (+1.66%)

0.07035 (—0.19%)

1 3.0000 (0.00%)

2 2.9999 (0.00%)

3 2.9993 (—0.02%)

1.0013 (+0.13%)

1.0003 (4+0.03%)

1.0031 (4+0.31%)

0.00429 0.00471

0.01046 0.01051

0.04243 0.02821

0.00394 (—8.10%)

0.00574 (—45.18%)

0.01309 (—69.15%)

0.00361 (—23.44%)

0.00347 (—66.99%)

0.00409 (—85.49%)

0.00431 (+0.63%)

0.01046 (—0.01%)

0.04244 (4+0.04%)

0.00474(+0.65%)

0.01053 (+0.15%)

0.02822 (4+0.01%)

Lognormal
Distribution

1 3.0000 (0.00%)

2 3.0000 (0.00%)

3 3.0000 (0.00%)

1.0027 (+0.27%)

1.0027 (+0.27%)

0.9969 (—0.31%)

0.00176 0.00876

0.00205 0.02849

0.00338 0.08108

0.00163 (—7.58%)

0.00141 (—31.30%)

0.00166 (—50.79%)

0.00581 (—33.69%)

0.00737 (—74.12%)

0.00848 (—89.54%)

0.00175 (—0.62%)

0.00206 (4+0.25%)

0.00334 (—1.37%)

0.00868 (—0.84%)

0.02854 (+0.19%)

0.07944 (—2.02%)

1 3.0001 (0.00%)

2 3.0000 (0.00%)

3 2.9999 (0.00%)

1.0004 (+0.04%)

0.9974 (—0.26%)

1.0019 (4+0.19%)

0.00435 0.00477

0.01068 0.01067

0.04519 0.03004

0.00394 (—9.39%)

0.00588 (—44.97%)

0.01380 (—69.45%)

0.00360 (—24.36%)

0.00355 (—66.77%)

0.00431 (—85.65%)

0.00431 (—0.96%)

0.01064 (—0.39%)

0.04494 (—0.54%)

0.00472 (—0.97%)

0.01066 (—0.16%)

0.02983 (—0.71%)

* No parameter adjustment was required for anyhefsimulation cases.



The calibrated model parameters of the 12 simulat@ses were extremely close to
their assumed valugse., 8, = 3 andf, = 1). In terms of magnitude, the percentage errors
of all of the calibrated parameters were less tiraggual td.91%. In particular, most of the
percentage errors f@, in Table 3 were slightly greater than thaigfin Table 2. The exact
values of the scaling factor mean and standarcatlewi(i.e,f = 1 ando; = 0.2) were used
for linear data projection and parameter adjusts@nSection 3.2. In contrast, the simulated
ESF meansg,,, which were subject to sampling errors arisingrfithe scaling factoyf,, were
adopted for linear data projections in this sectiBy increasing the sample size of the
observable independent variables, and hence théemoh the scaling factof,, from 10,000
sets to 100,000 sets, the significant reductiortérpercentage errors Bf in these repeated
simulation cases provided evidence that the sag@inors embedded in the simulated ESF
meansg,,, caused the slightly greater percentage errosh)y@sn in Table 3. In practical terms,
minimal percentage errors of less tH&% are acceptabldhese results demonstrated that the
proposed ESF method indeed provided an alternpstie for unbiased parameter estimations
when a linear data projection was applied. Howetleg, reported standard errors of the
calibrated parameters were severely biased. Theepege errors of the reported standard
errors ranged from abold®s to 90%, and they escalated rapidlyrascreased.

The information about the higher order momentshef $caling factor distribution
(which may contribute to the calibrated parametetability) were captured by the first and
second moments of the ESF. Thus, the proposed ESFkooh could better account for the
effects of different scaling factor distributionsdaof model nonlinearity on the calibrated
parameter variability. The proposed method sholdd aignificantly improve the standard
error estimation accuracy compared to that of tiAnethod. The means of estimated
standard errors for the 12 simulation cases basedeoESF method are presented in the last
two columns of Table 3. The magnitudes of theircpatage errors for all of the cases were
well controlled, to abouz%. These results provided evidence for a great ingr@nt in
estimation accuracy by using such a method. Momeake to the small magnitudes of these
percentage errors, errors arising purely from ramdampling might account for a considerable
portion of the entire error structure. Thus, thegmiudes of the percentage errors were
anticipated to be less sensitive to the model neality and the distribution of the scaling
factor. Hence, the general patterns of their mages with the model nonlinearity and the
scaling factor distribution might not be obviousr fnstance, in the case mf = 1 and with

normally distributed scaling factorgje magnitudes of the percentage errorSE—(fE)) and

SE(—EI) were0.90% and0.30%, respectively, when = 1. These magnitudes then increased
to 1.13% and1.66% whenn = 2, and dropped t6.27% and0.19%, respectively, when =

3. The clear increasing trend in the magnitudesotgntage errors with the model nonlinearity
as shown in Section 3.2 was not observed in thée.chloreover, the magnitudes of the
percentage errors for the estimated standard eimocases with a log-normally distributed

scaling factor could be lower than in cases withoamally distributed scaling factor. For

example, whenn = 1 andn = 2, the magnitude of the percentage errorsiff,) and
SE(B,) in the case of a normally distributed scaling facteere 1.13% and 1.66% ,
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respectively. However, in the case of a log-nonnalistributed scaling factor, these
magnitudes wereeduced t0d0.25% and0.19%, respectively. The minimal errors in the
standard error estimations in situations of diffiérenodel nonlinearity and scaling factor
distribution demonstrated the robustness of thpgsed ESF method.

In addition to the improved estimation method,eater number of linear combinations
between the scaling factors and the observablegartient variables could generally cancel
the random effects among different scaling factevkich could result in more accurate
estimated standard errors. Taking the case of-adogally distributed scaling factor and=
3 as an example, the magnitudes of the percentages erbeT(—EO) andSbT(—En) werel.37%
and2.02%, respectively, whem = 1. However, their magnitudes dropped0t64% and
0.71%, respectively, whem = 5.

4.3. Mild violation of i.i.d. random error

Similar to Section 3.3, the same set of sensitiaitglyses were conducted to examine
the performance of the ESF method under situatiotismild violation of i.i.d. random error.
All of the simulation results showed that the magphes of the percentage errors of the reported
and estimated standard errors obtained from sigtivith and without the mild assumption
violation were comparable. For instance, for theecaithm =5, n = 3 and a normally
distributed scaling factor, magnitudes of the petage errors of both the reported and

estimated standard errors (i.&SE(B,) = —69.34% , RSE(B,) = —85.58% , SE(f,) =
0.17% andSE(—El) = 0.19%) only increased slightly compared to the same shssvn in
Table 3 (i.e., RSE(B,) = —69.15% , RSE(B,) = —85.49% , SE(f,) =0.04% and
SE(—E) = 0.01%). Whenm =5, n = 3 and the scaling factor was sampled from a log-
normally distribution, the percentage errors ofifygorted and estimated standard errors (i.e.,
RSE(B,) = —69.21, RSE(B,) = —85.52%, SE(B,) = 0.62% andSE(B,) = 0.56%) were
also comparable to that of the same case showrabieT3 (i.e.,RSf(\BO) = —69.45%,
RSE(B,) = —85.65% , SE(B,) = —0.54% and SE(B,) = —0.71% ). Moreover, these
simulations also demonstrated that even if hetedsstic random error did exist, the ESF
method could substantially reduce the magnitudeth@fpercentage errors of the estimated

standard errors compared to the reported standadseobtained via the conventional
calibration procedures.

4.4, Comparisons of the ADF and ESF methods

Although both the proposed ADF and ESF methodsbeaaasily integrated with the
existing standard model calibration proceduresy tieve different properties and different
pros and cons. Therefore, depending on the sityati@ most appropriate method should be
chosen and adopted in each application.
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When the ADF method is used, the observable indpenvariables are linearly
projected by the scaling factor me@nAfter model calibration based on these projediata,
the calibrated parameters are corrected by thestd@nt factors proposed by Wong and Wong
(2015), and the standard errors are estimated basélde reported residual sum of squares
using the ADF method. This method is generic aexlilflle, because no assumption about the
distribution of the scaling factor is required. Hower, the estimation accuracy declines with
the increase of model nonlinearity. When the ESRhow is leveraged, however, an
assumption about the scaling factor distributiongsessary. The assumed distribution should
follow the properties of the scaling factor. A tséormation simulation converts the generalized
multivariate polynomial function into a linear fuman of the ESFs. The observable
independent variables are then linearly projectesthg the ESF meag, As the calibrated
parameters are unbiased, the standard errors castibgated subsequently, after the model
calibration. The estimated standard errors are mudnest at high model nonlinearity, although
an additional assumption on the scaling factoeggiired. Thus, making a choice between the
ADF and ESF methods involves a trade-off betweerilfility and accuracy. In addition,
although both the ADF and ESF methods can genepalfiprm at a satisfactory level when
the assumption of i.i.d. random error is mildly leited, the ESF method can usually yield
standard error estimates with smaller percentagesain magnitudes than that obtained using
the ADF method. Thus, the ESF method is in gersenagrior to the ADF method, and it should
be adopted to ensure high estimation accuracy rag &8 sufficient information about the
scaling factor properties is available.

5. Casestudies

Many real-world situations necessitate the appboat of linear data projection. One
typical example is the model calibration of the MBRiInction, using data acquired from both
stationary and mobile sources. The MBPR functiohictv is a member of the generalized
multivariate polynomial family, is an essentialiedient for the continuum modeling of urban
city systems (Wong, 1998; Yang and Wong, 2000; kb Wong, 2006; Ho et al., 2013; Yin
et al., 2013). Direct model calibration based owmdirly projected data may result in biased
calibrated parameters, and this can definitely eabiased estimated standard errors. This
section illustrates the application of the propoE&# method for the parameter and standard
error estimations in the MBPR function calibratidos six 1 km X 1 km networks in Hong
Kong, using data obtained from the on-road fixe@cders and GPS-equipped taxis.

5.1. The MBPR function

The MBPR function, which depicts the monotonicatigreasing relationship between
the travel cost and traffic flow over an area-wrdgwork, is defined as follows (Wong and
Wong, 2015):

T = T; + T;aQ? (26)
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whereT is the travel time per unit of distance (meastned/km); ¢ is the free-flow travel
time (measured ih/km); Q is the hourly total traffic flow entering the salegh network via
different links (measured imeh/h); a is the congestion sensitivity parameter (measured
in h? /veh?).

5.2. Databases

The databases that store data obtained from saayicgources The Annual Traffic
Census (or ATC) 2010 (Transport Department, 2010)) and those from necdmlurces (the taxi
GPS database 2010) were both used for the casestfdMBPR function calibrations.

The ATC report presents detailed traffic data fnmore than 1500 stations covering
approximately 90% of trafficable area in Hong Kq¢hgm et al., 2003; Tong et al., 2003). The
data for the average annual daily traffic (AADTyass each of these stations were highly
useful for the constitution in this study, and wtrerefore extracted from the ATC report.

The taxi GPS database recorded detailed trip irdtion from 480 GPS-equipped taxis
over the course of 2010. Each probe vehicle regadaeal-time location expressed in WGS84
(the ITRF96 reference frame) in decimal degreed,tha data concerning time, instantaneous
speed, traveling direction, and occupancy wereteethie traffic center at a frequency of twice
per minute. The full coverage of the taxi data awer entire transportation network ensured
the possibility of obtaining the occupied taxi flam any link. As the behavior of occupied
taxis resembled that of normal traffic, only theesg and flow data of these taxis were retrieved
from the database for data constitution.

5.3. Data constitution and the necessity of linear data projection

The travel time per unit of distan@eand the hourly total traffic flow enteringlekm x

1 km sampled network) were the essential ingredients for calibratingMi&PR function of
each network. As occupied taxis interacted witreotrehicles around them as they traveled
within the sampled networks, all of these vehidbsuld have traveled at similar speeds. In
other words, the arithmetic mean of the speedsebtcupied taxis within a sampled network
during an hour was the unbiased estimator of thelh@pace-mean speed of all the traffic
within that network in that hour. The reciprocattoé estimated hourly space-mean speed could
be taken as the estimate of the hourly travel fwereunit of distance.

The hourly total traffic flow entering a sampledwerk was the sum of the hourly
traffic flows entering the network through all diet links intercepting thé km x 1 km
boundary. The intercepting location of each linkl éime network boundary was defined as a
boundary station of that sampled network. Howeagnly a subset of links had been outfitted
with on-road fixed detectors, direct measuremeiitthe hourly traffic flow across these
boundary stations were not possible. Nevertheteesyccupied taxi flow across any link was
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readily attainable through reference to the taxt@Btabase. The hourly total traffic flow could
be alternatively expressed as the sum of lineabomations off; andv; as follows:

Q :ifivi (27)

wherem is the total number of boundary stations of a dathpetwork;f; is the total-traffic-
to-occupied-taxi ratio of boundary statididefined as the scaling factor of that boundary
station);v; is the observed hourly occupied taxi flow enterihg sampled network through
boundary statiom, which was measured ireh/h and adjusted according to the ratio between
the normalized traffic and occupied taxi flows hbyrhour to account for the temporal effects
(Wong and Wong, 2015, 2016). Although the data;afould be extracted from the taxi GPS
database, the value of each individfjavas still unknown.

Given the geographical proximity of each link witta sampled network, the scaling
factors of all the links (including the boundaratgins and the links within the sampled
network) could be assumed to follow a distributoibject to certain spatial variability patterns
arising from the heterogeneities of the road ha@maand land uses of different lots. As ATC
stations were outfitted with on-road fixed detestand the AADT across them could be
obtained from the ATC report, those ATC stationghimi the sampled network were chosen as
the scaling factor sampling sites. Each samplelingctactor was evaluated by dividing the
AADT of an ATC station by the average annual daitgupied taxi flow across that station.
The average value of the sampled scaling factorgedeto estimate the scaling factor
distribution mean, which was probably the most ole total-traffic-to-occupied-taxi ratio of
that network, and the variance of the sampled sgdéctors measured the network’s spatial
variability.

As the value of each individual scaling factor waknown, the mean and the variance
of the scaling factor distribution could be estiethby using the sampled scaling factors.
Therefore, a linear data projection was adoptexstinate the hourly total traffic flow entering
a sampled network. If a linear data projectionwimich each individual scaling factor was
replaced with the estimated mean of scaling facteas applied directly, the calibrated
parameter had to be corrected by the adjustmetdrfpooposed by Wong and Wong (2015),
and the standard errors had to be estimated by tisnADF method. In contrast, if the ESF
method was adopted, the ESF mean and varianceohiael $imulated via a transformation
simulation before the model calibration, basedhenlinearly projected data and using the ESF
mean. The generic ADF method was subsequently addptestimate the parameter standard
errors.

5.4. Model calibrations based on the ESF method

Due to its relatively robust and accurate standgirdr estimations, the ESF method
should be adopted if sufficient information conaegnthe scaling factor is available. The
scaling factor used in this case was the totafitréb-occupied-taxi ratio. An AADT of an
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ATC station consists of flows of any vehicle typgluding the occupied taxi flow. Thus, by
definition, the scaling factor was always greatent zero. The approximately symmetrical
bell-shaped histograms based on the natural |bgardf the sampled scaling factors of most
of these six cases suggested that a log-normaibdiBbn can be a potential candidate scaling
factor distribution. A Kolmogorov-Smirnov (KS) gooelss-of-fit test was then conducted for
each sampled network with a null hypothesis thatséimpled scaling factors were consistent
with the specified log-normal distribution. Becaube KS statistics of all six of these cases
were smaller than their corresponding critical ealdor a level of significance of 0.05, there
was insufficient evidence to reject the null hymstes. Thus, the scaling factors were assumed
to be log-normally distributed for the demonstrataf the proposed ESF methadsing the
transformation simulation proposed in Section thé mean and standard deviation of the ESF
were obtained, anlg. (26) was transformed intBq. (28) as follows:

2

i=1

Table 4 presents the sampled means and standaatioles of the sampled scaling
factors and the simulated means and standard dmsabf the ESFs of the six sampled
networks. The column for the number of ATC statipresents the scaling factor sample sizes
of the sampled networks. Columnindicates the total number of boundary stationsaoh
sampled network. The scaling factor mean was tleeage total-traffic-to-occupied-taxi ratio
of a sampled network. Taking Tin Hau as an examfpieas aboul93, meaning that each
observed occupied taxi in Tin Hau represented riyuB3 vehicles. The scaling factor
standard deviation measured the spatial variabliégcause the scaling factors were sampled
at different locations within the networks. Conwtys the ESF mean did not possess a clear
physical meaning, but instead captured the infolmadf higher order moments of the original
scaling factor that contributed to the mean of idsgponse variable. Similarly, the standard
deviation of the ESF did not have a clear physitaaning, but instead captured the
information of higher order moments of the origisaling factor that governed the calibrated
parameter variability.

Table 5 summarizes the calibrated parameters andstiimated standard errors of the
MBPR function for each sampled network, based erB8F method. As the MBPR function
was transformed into a linear function of the E8te calibrated model parameters were
unbiased and no adjustment was required. The cofemthe R-squared value reveals the
goodness-of-fit of calibrated MBPR functions foe 8ix selected networks. The resultant free-
flow speedd; was given by the inverse of the calibrated fregftravel timeTf, and the
congestion sensitivity paramet&rwas evaluated by dividin@f/\a by Tf. A recent study
revealed that the values f}f anda are highly associated with the junction density avad
density of a network, respectively (see Wong andy@016). The column f&E shows the
standard errors of the calibrated parameters, basetthe ESF method. In addition to the
random error, the effects of heteroscedasticityicwlivas inherently introduced by a linear
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data projection with a varying scaling factor, weaken into account for better standard error
estimations. In contrast, the column KSE presents the reported standard errors based on the
general regression procedures in which parameterstandard errors were estimated as if the
distorted composite error terms were i.i.d. as rarithe biased reported standard errors could
be greater or smaller than their true values. \\&tarence to the best standard error estimates
obtained by the ESF method, the reported standaiiseestimated based on the invalid
assumption of homoscedasticity could be overestichaio as large a49.15% and
underestimated to an extent3$.93% in these case studies. The use of these biasedeadp
standard errors in hypothesis testing could leagntainnecessary risk of making the wrong
decisionThet-statistics ang-values of the calibrated parameters were calalilzdsed on the
calibrated parameters and the standard errorsastihnsing the ESF method. It was apparent
that all of the calibrated parameters were sta#llyi significant, because thg¥values were
much smaller thaf.001, which was the chosen level of significance.
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Table4

Simulated mean and standard deviations of the B6&ach sampled network

Sampled network Number of ATC stations  f of m J- Og,
Tin Hau 31 193.4 74.0 28 38991.6 15420.0
Ma Tau Wai 18 193.9 81.9 26 39754.9 20486.0
Fortress Hill 25 232.2 93.8 18 55783.0 25598.3
Admiralty 15 211.2 71.4 22 45973.8 14383.1
Jordan 31 157.4 69.2 35 251319 7519.0
Kowloon Tong 13 193.4 45.4 19 37626.1 8625.6
Table5
The calibrated parameters and estimated standiamd e&f each sampled network based on the ESF mhetho
ﬁ:&gl&d Model parameter gaarl:)r?ettee ? RSE (Y%error) SE t-statistic p-value R? Dy (km/h) @ (h?/veh?)
Tin Hau Tr (h/km) 0.0331 3.002 x 107* (+19.24%) 2.518 x 107* 131.61 0.000 0.483  30.2 2.558 x 107°
Tra (h®/km/veh?) 8.478 x 107! 1.954 x 10712 (—=7.43%) 2.111 x 10712 40.16 1.378 x 107259
Ma TauWai T (h/km) 0.0229 2.514 x 10™* (+17.11%) 2.146 x 10™* 106.90 0.000 0.715  43.6 4.285 x 107°
Tra (h®/km/veh?) 9.831 x 107! 1.382 x 1072 (—39.93%) 2.300 x 1072 42.74 1.259 x 10728*
Fortress Hill T¢ (h/km) 0.0226 1.947 x 10™* (+49.15%) 1305 x 107* 172.90 0.000 0.600 443 2.828 x 107°
Tra (h®/km/veh?) 6.383 x 10711 1.162 x 10712 (—20.51%)  1.462 x 1072 43.66 1.366 x 107293
Admiralty T¢ (h/km) 0.0225 2.137 x 107* (+20.97%) 1.767 x 10~* 127.28 0.000 0.690 44.5 1.939 x 107°
Tra (h®/km/veh?) 3133 x 10711 4.684 x 10713 (-16.68%)  5.621x 1073  55.73 0.000
Jordan Tr (h/km) 0.0356 3.341 x 107* (+26.45%) 2.642 x 107* 134.92 0.000 0.630 280 4,735 x 107°
Tra (h®/km/veh?) 1.688 x 1071° 2.881 X 1072 (-6.67%) 3.087 x 1072 54.68 0.000
Kowloon Tong T} (h/km) 0.0264 2.191 x 107* (4+2.43%) 2.139 x 107* 123.35 0.000 0.729 379 9.502 x 107°
Tra (h®/km/veh?) 2507 x 1071° 3.406 x 107'% (=20.83%) 4302 x 10712 58.28 0.000
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6. Conclusions

Linear data projection is currently prevalent, aéxpected to become a widespread
data inference method in many observational tramafon studies that necessitate traffic data
estimationsRecently, Wong and Wong (2015) unveiled the polsilthat systematic bias is
introduced into the calibrated parameters of maddibrations that are based on linearly
projected data. These researchers proposed adptsttors for the generalized multivariate
polynomial function to reduce such bias. Nevertbgléhe study only guaranteed unbiased (or
slightly biased) adjusted parameters in the lomg amd did not shed light on the variability of
and confidence in them. Thus, the validity of tipplecations of the adjusted models remains
unknown and suspicious. To avoid any exposure t@cessary risk, the effects of linear data
projection on the standard errors estimations t@shvestigated, and accurate standard error
estimation procedures must be derived for credibdéistical tests of the significance of the
adjusted parameters. The results of this studshidl research gap and address the problem.

This study makes several important contributionth®existing body of knowledge.
First, the study unveils the fact that heteroscgtlgsis inherently introduced when a data
projection scheme is adopted, regardless the fdrineomodel to be calibrated. This implies
that even if the adjustment factors proposed by §\amd Wong (2015) are not required for a
linear model, the estimated standard errors arayawiased and the methodology proposed
in this paper is also always necessary. The faftbeteroscedasticity arising from linear data
projection complicates the composite error strigtas the heteroscedastic data is mixed with
random errors, which violates the usual assumpmfdromoscedasticity in model calibration.
A direct model calibration based on linearly progecdata without any appropriate treatment
of the distorted error structure definitely leadshiased standard errors, which could be
possibly greater or smaller than their true validsreover, due to the additive relationship
between the varying‘f2 and constant? and the possible nonzero expected value of the

composite errors, the conventional GLS and WLS oughare not only indirect to, but also
may not be able to address the problem of hetedasteity originating from linear data
projection.

Estimating standard errors is a more difficult tdskn estimating parameters, because
the variability of a calibrated parameter in measyits dispersion is under consideration. This
study proposes the ADF and ESF methods, whichttek@roblem of heteroscedasticity into
account when estimating the standard errors dbiedéd/adjusted parameters in a generalized
multivariate polynomial model. The ADF method ist mmly purely analytical, but is also
flexible, because no assumption on the scalingfatistribution is required. However, the
simulation results revealed that estimation acoubased on the ADF method declined when
the model nonlinearity was increased, and whelhitjieer order moments of the scaling factor
that governs the calibrated parameter variabiligrevgnored. The ESF method (which is a
combination of a transformation simulation and theF method) is less flexible, as an
additional assumption about the scaling factorrithstion is necessary. The transformation
simulation alters the generalized multivariate polyial model into a linear function of the
ESFs. Thus, no adjustment is required for the catilol parameters, and this method can also
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be regarded as an alternative path for unbiasemhper estimation, without the use of the
adjustment factors proposed by Wong and Wong (2018 results of this study’s simulation
exercises demonstrated significantly improved esiion accuracy by using the ESF method.
This improvement resulted from the additional infiation captured from the higher order
moments of the original scaling factor through B&F mean and standard deviation. Making
a choice between the ADF and ESF methods in fadives a trade-off between flexibility
and accuracy. Moreover, the ESF method can uspatlyide more accurate standard error
estimates with smaller percentage errors in madegwhen the assumption of i.i.d. random
error is mildly violated. Thus, the ESF method énegrally superior to the ADF method and
should always be applied if sufficient informatioancerning the scaling factor is available.
Most importantly, these two proposed standard edion methods can be easily incorporated
with the existing classical model calibration prwees, and thus they can be considered as
extensions of the standard model calibration methbdse proposed methods serve to further
enable the consideration of complex error struesttinat involve both heteroscedasticity and
random errors i.i.d. as normal.

To illustrate the application of the proposed ES#thuad in real-life situations, model
calibrations of the MBPR functions (which are memsbef the generalized multivariate
polynomial family) were conducted for six samplegtworks in Hong Kong. These models
used data retrieved from both on-road fixed detscaond GPS-equipped vehicles. The total-
traffic-to-occupied-taxi ratio was chosen as thaliag factor, and this factor was assumed to
be log-normally distributed. Thevalues of the calibrated parameters, which weeduated
based on the estimated standard errors, were rmualkes than the chosen level of significance
(i.e.,0.001), which indicated that all of the calibrated paetens were statistically significant.

In addition, it should be stressed that heterostemty is inherently introduced for
models of any form when a data projection schenslgpted. However, the proposed ADF
and ESF methods for solving this problem are omlgliaable to generalized multivariate
polynomial models. Although the concepts involvedthe proposed methodologies can
generally be extrapolated, it can be far more aliffito take the complex error structure into
account in cases that involve highly complicateddeddorms or calibration methods. The
challenges of finding new extensions for paramaier standard error estimations that involve
linear data projections for other complicated mddehs or calibration methods may present
interesting directions for future work. Furthermomandom errors are assumed to be
independent identical normally distributed in tbenfiulations of the ADF and ESF methods.
However, in most occasions, random errors can teedsxedastic. Although simulation results
showed that the ADF and ESF methods generally egonm at a satisfactory level when such
an assumption is mildly violated, detecting heteedlgstic random error and accurate standard
error estimations under situations with the presesicheteroscedasticity arising from both
linear data projection and heteroscedastic randoon ean be difficult, because the effects of
heteroscedasticity arising from these two sourcesraxed and the variance structure of the
heteroscedastic random error is usually unknown.eXploration of methodologies that
address heteroscedasticity originating from botlrees would be a possible future research
direction.
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Appendix A. Approximate solution to the expectation of the kth term of a generalized
multivariate polynomial model

Here, we provide an approximate solution to thpeetation of thétth term of a
generalized multivariate polynomial model.

Define thekth term of a generalized multivariate polynomial debto beT;, =
B M, fix)¥, vk € [0,n]. ApproximateT; by a Taylor series expansion with the center at

fi=f,Vie[1,m].

. o OT(F
Ty ::Tk(f)—k:E: g;f)(f%_'f)
=t (A1)

i=1j

Ignoringhigher order terms and taking the expectation dh bidles,

.\ OT
E(Ty) = T () + 5]@13(]1 )
1i="1’ la 2T (f) (A2)
+3). ) 5r e Elf = A)(f =D
i=1 j=1

As E(f) =f, E(fi—f) = 0. Assuming thaif; Vi € N* are independent of each other,
E[(i-F)(fi—f)] =0, vije[1,m]\[i =] andE [(ﬁ —f)z] = g;2. It follows that
N 92T ()

o1
E(Tk)ETk(f)+§af2; T

(A3)

sZ % = Bk (ke = DR, fx)* 22, ¥i,j € [1,m],

k-(k—l)(ﬁ) ¥ x? ](m_> M
+——\F) oy Zf (A4)

E(Ty) = By |1
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