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ABSTRACT 
This study develops neural network models to explore the nonlinear relationship 
between crash frequency by severity and risk factors. To eliminate the possibility of 
over-fitting and to deal with black-box characteristic, a network structure optimization 
and a rule extraction method are proposed. A case study compares the performance of 
the modified neural network models with that of the traditional multivariate 
Poisson-lognormal model for predicting crash frequency by severity on road segments 
in Hong Kong. The results indicate that the trained and optimized neural networks 
have better fitting and predictive performance than the multivariate 
Poisson-lognormal model. Moreover, the smaller differences between training and 
testing errors in the optimized neural networks with pruned input and hidden nodes 
demonstrate the ability of the structure optimization algorithm to identify insignificant 
factors and to improve the model’s generalizability. Furthermore, two rule-sets are 
extracted from the optimized neural networks to explicitly reveal the exact effect of 
each significant explanatory variable on the crash frequency by severity under 
different conditions. The rules imply that there is a nonlinear relationship between risk 
factors and crash frequencies with each injury-severity outcome. With the structure 
optimization algorithm and rule extraction method, the modified neural network 
models have great potential for modeling crash frequency by severity, and should be 
considered a good alternative for road safety analysis. 
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 1 
1. Introduction 2 

 3 
In the past decade, there has been a quantity of research on predicting crash 4 

frequency by certain categories, such as injury severity (e.g., property damage only, 5 
possible injury, non-incapacitating injury, incapacitating injury or fatality) (Park and 6 
Lord, 2007), the number of vehicles involved (e.g., single vehicle, two vehicles, or 7 
three or more vehicles) (Venkataraman et al., 2013) or collision type (e.g., angle, 8 
head-on, rear-end, sideswipe or pedestrian-involved) (Ye et al., 2009). The first kind 9 
of classification covers most concerns, because crash injury severity is an important 10 
aspect in assessing safety performance, in addition to the crash frequency (AASHTO, 11 
2010). Compared with conventional crash prediction models (referred to as “safety 12 
performance functions”), modeling crash frequency by severity identifies the effects 13 
of observed risk factors (such as the traffic, geometrical and environmental 14 
characteristics of sites) on the frequency of accidents with a particular injury-severity 15 
outcome. The expected crash frequencies at each level of severity provide deeper 16 
insights on the safety situation of a certain road entity (road segment, intersection, 17 
etc.). Therefore, while crash totals may not reveal a site deficiency, over exposure of a 18 
specific crash severity may uncover otherwise undetected deficiencies. Moreover, the 19 
models have been employed to rank road sites with promise for safety improvement, a 20 
critical step of network screening in the roadway safety management process 21 
(AASHTO, 2010), as injury severity and its associated costs are primary concerns in 22 
many programs (Miaou and Song, 2005). 23 

Methodologically, there are mainly two groups of approaches to crash frequency 24 
by severity prediction: joint and separate modeling. In the former group, correlation 25 
between crash frequencies at various severity levels is the most important issue. To 26 
deal with it, a series of techniques have been investigated, such as multivariate 27 
regression models (Aguero-Valverde and Jovanis, 2009; Anastasopoulos et al., 2012; 28 
Barua et al., 2014, 2016; Bijleveld, 2005; El-Basyouny and Sayed, 2009; 29 
El-Basyouny et al., 2014; Ma and Kockelman, 2006; Ma et al., 2008; Park and Lord, 30 
2007), simultaneous equations (Ye et al., 2009, 2013), a joint-probability approach 31 
(Pei et al., 2011), two-stage bivariate/multivariate models (Wang et al., 2011; Xu et al., 32 
2014) and multinomial-generalized Poisson models (Chiou and Fu, 2013, 2015; Chiou 33 
et al., 2014). The multivariate Poisson regression proposed by Ma and Kockelman 34 
(2006) adds a common error term into the Poisson distributions of univariate 35 
regressions to account for their correlation, but it does not allow for the commonly 36 
observed over-dispersion, and it assumes the identical and positive covariances across 37 
crash frequencies (Park and Lord, 2007). In order to improve it, a multivariate 38 
Poisson-lognormal regression has been developed (Ma et al., 2008), which is able to 39 
accommodate over-dispersion and provides a fully general covariance structure. To 40 
account for the spatial correlation among neighboring sites, error terms with Gaussian 41 
conditional auto-regressive distribution have been introduced into the multivariate 42 
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Poisson-lognormal model (Barua et al., 2014). Based on it, Barua et al. (2016) have 1 
proposed a multivariate random parameters count model to further capture 2 
unobserved heterogeneity across observations. 3 

Compared with multivariate regression models, the formulation of simultaneous 4 
equations, the joint probability model and the two-stage bivariate/multivariate models 5 
are less complicated (Pei et al., 2011; Wang et al., 2011; Xu et al., 2014; Ye et al., 6 
2009, 2013). Besides, the computation burden of simultaneous equations is lighter, 7 
because their coefficients are calibrated by a simulated likelihood estimation method 8 
(Ye et al., 2009), while the others are calibrated by Markov chain Monte Carlo 9 
simulation, a typical Bayesian inference method. On the contrary, the 10 
multinomial-generalized Poisson models (Chiou and Fu, 2013; Chiou et al., 2014), 11 
especially the extension with accommodating spatio-temporal dependence (Chiou and 12 
Fu, 2015), are even more complicated than multivariate count models. 13 

Although the correlation across severity levels is significant in many studies, the 14 
advantage of joint modeling over separate modeling is not “theoretical” but rather 15 
“empirical”, as noted by Ma et al. (2008). In the comparative analysis conducted by 16 
Lan and Persaud (2012), univariate models are found to fit the crash data better than 17 
the multivariate model. Consequently, some researchers continue to separately model 18 
crash frequencies at each severity level. For example, Venkataraman et al. (2013) 19 
advocate univariate random parameter models to individually predict crash frequency 20 
by severity, or other aggregation types, by accounting for heterogeneities across 21 
unobserved or unobservable factors. All of the above-mentioned models are based on 22 
a generalized linear function framework and certain assumed distributions of crash 23 
data. However, in some cases, these assumptions may be violated and thereby result 24 
in biased inferences (Li et al., 2008). 25 

Relative to the statistical models, without any prior knowledge or assumption on 26 
model structure, some artificial intelligence models can be used to approximate the 27 
underlying nonlinear relationship between crash frequency by severity and safety 28 
predictors (Haykin, 2009). As a common class of artificial intelligence models, neural 29 
network models have been successfully used in many fields of transportation research 30 
(Karlaftis and Vlahogianni, 2011). For highway safety analysis, a number of studies 31 
have investigated the performance of neural network models in predicting crash 32 
frequency or injury severity (Abdelwahab and Abdel-Aty, 2001; Chang, 2005; Huang 33 
et al., 2016; Zeng and Huang, 2014b). The results show that neural network models 34 
outperform some traditional statistical models, such as the negative binomial model of 35 
crash frequency prediction and the ordered logit/probit models of crash injury severity 36 
prediction. To the best of our knowledge, neural networks have not yet been employed 37 
to predict crash frequency by severity. 38 

Moreover, with the development of neural network techniques, the commonly 39 
criticized weaknesses of crash prediction, the over-fitting problem and the black-box 40 
characteristic, have been mostly eliminated. Advanced methods for network training 41 
and structure optimization can establish generalized neural network models that 42 
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effectively approximate the relationship between crash frequency by severity and 1 
explanatory variables (Haykin, 2009). In addition, piecewise linear rules extracted 2 
from the developed neural networks are able to clearly illustrate the effects of risk 3 
factors (Setiono and Thong, 2004). 4 

In summary, this study attempts to develop advanced neural networks for 5 
modeling the nonlinear relationship between crash frequency by severity and risk 6 
factors, and to clarify the effects of factors on the outcomes by extracting rules from 7 
the developed neural networks. To demonstrate the proposed methods, the neural 8 
network models are compared with the multivariate Poisson-lognormal model with 9 
regard to fitting and predictive performance. Accordingly, the remainder of this paper 10 
is organized as follows. The next section specifies the proposed models and methods. 11 
The collected data for model demonstration are described in Section 3. Section 4 12 
introduces the detailed implementation of the proposed models and discusses the 13 
results. Finally, conclusions and recommendations for future research are presented in 14 
Section 5. 15 
 16 
2. Methodology 17 

 18 
The multivariate Poisson-lognormal model, one of the most widely used statistical 19 

models for jointly predicting crash frequency and severity, is used as a benchmark in 20 
this study to compare its fitting and predictive performance with those of the proposed 21 
neural network models. In this section, the model architectures of the multivariate 22 
Poisson-lognormal and neural network models are specified. Then, the training, 23 
structure optimization, and rule extraction algorithms for the neural network models 24 
are described. 25 
 26 
2.1. Model specification 27 
 28 
2.1.1. Multivariate Poisson-lognormal model 29 

In the multivariate Poisson-lognormal model, the crash count itsY  at site i  during 30 

period t  at injury severity degree s  is assumed to follow a Poisson distribution (Ma 31 

et al., 2008), given its , that is, 32 

P( )
!

its

itsy
its its its its

its

e
Y y

y



 


  , 33 

1,2,i N  , 1,2,t T  , 1,2,s S  , 0,1,2,3,itsy  ,        (1) 34 

where N , T , and S  are the number of observed sites, the periods and the 35 

categorized injury severity levels, respectively. The mean of itsY , its , is assumed to 36 
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have a generalized linear relationship with the explanatory variables, itX , such that 1 

ln its it s its  X β ,                         (2) 2 

in which sβ  are the coefficients to be estimated. The error term its  accommodates 3 

the crash severity correlation and the common over-dispersion, which is 4 
multi-normally distributed as  5 
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 7 
2.1.2. Neural network model 8 

Neural network models are information-processing mechanisms that are inspired 9 
by biological nervous systems (Haykin, 2009). Various categories of neural network 10 
models have been developed with different network architectures, such as the radial 11 
basis function and the self-organizing feature map. The multilayer perceptron, which 12 
is known as a universal approximator and is the most popular neural network for data 13 
mining, is used to model the underlying nonlinear relationship between crash 14 
frequency by severity and risk factors in this study. Although they can be predicted 15 
simultaneously in the same neural network, the crash frequencies at each injury 16 
severity are modeled separately herein to identify their respective pertinent predictors. 17 
Fig. 1 shows the structure of the developed multilayer perceptrons with fully 18 
connected neurons.  19 

Consider a dataset containing 1N  continuous attributes and 2N  categorical 20 

attributes that may affect the crash frequency at the severity level ( 1,2, , )s s S  . As 21 

in many statistical modeling methods, each categorical attribute 2( 1,2, , )nA n N   22 

is transformed into 1nm   binary attribute(s) 1 1, , ,
n

n n n
j ma a a   , where nm  is the 23 

number of possible values for nA . 1n
ja   if nA  is equal to category j ; and 24 

0n
ja   otherwise. Each of the transformed attributes, together with the continuous 25 

attributes, is represented by a node ( 2, )ix i I   in the input layer. In addition, an 26 

input node, with 1 1x  , is added. The weights of its connections with hidden neurons 27 
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are the biases. Therefore, the number of units I  in the input layer is 1 

2

1
1

( 1) 1
N

n
n

I N m


    .                        (4) 2 

To fit the training data well, the number of neurons in the hidden layer must be 3 
sufficiently large. If it is assumed to be J , then the connection weight between 4 

hidden node ( 1, , )j j J   and input node ( 1, , )i i I   is (1)
,j iw . The hyperbolic 5 

function, tanh( ) , which is an odd sigmoid transfer function, is used for all of the 6 
hidden nodes. In the output layer, the only unit,  , represents the expected crash 7 

frequency at severity level s . (2)
jw  denotes the weight of the connection between the 8 

output node and the hidden node ( 1, , )j j J  . A linear function is employed as the 9 

transfer function for the output node. Then, the expected crash frequency at severity 10 
level s  is given by, 11 

(2) (1)
,

1 1

tanh( )
J I

j j i i
j i

w w x
 

  .                      (5) 12 

 13 
2.2. Network training 14 

 15 
The conjugate gradient algorithm, which has a better learning performance than 16 

the popular back-propagation algorithm (Haykin, 2009), is adopted in this study to 17 

train the neural networks. For the collected samples { ( ), ( ) | 1,2, , }m o m m Mx   of 18 

severity ( 1,2, , )s s S  , where ( )mx  and ( )o m  are a vector of risk factors and the 19 

corresponding observed crash frequency at severity s , respectively, and M  is the 20 
number of samples, the conjugate gradient updates the connection weight vector w  21 
as follows: 22 

1 ( 1) 1 (1 )

(1) (1) (1) (2) (2) (2)
1,1 , , 1

( , , , , , , , )

( , , , , , , , )

j I i JI JI JI j J I

j i J I j J

w w w w w w

w w w w w w

    



w    

   
.               23 

1. Randomly select (1)
, ( 2, , ; 1, , )j iw j J i I    and (2) ( 1, , )jw j J   from two 24 

uniform distributions. The means of both distributions are equal to 0, and their 25 

variances are 1 J  and 1, respectively. Set the initial iteration 0t  . 26 

2. According to weight vector (0)w , calculate the expected network outputs, 27 

1,2, ,( )m m M   , the derivative of outputs on all weights, 28 



7 

( )
( )
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1,2, ,m

m
M
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
w

 , and the gradient vector, (0)g : 1 

(1) (2)
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1

2 (1) (1)
, ,(1)

1,

( )
tanh( ( )),

( )

( )
tanh ( ( )) ( ),

I

j i i h j
ij

I
h k

j j i i i h j i
ij i

m
w x m if w w

wm

w m
w w x m x m f w w

w











    

   
 




,          (6) 2 

1

1 ( )
( ) [ ( ) ( )]

( )

M

m

m
t o m m

N t





 

g
w

.                    (7) 3 

3. Set (0) (0) (0)  s r g . 4 

4. In iteration t , for the fixed ( )tw  and ( )ts , use the advance-and-retreat method 5 

to linearly search the optimal ( )t  by minimizing the cost function, 6 

( ( ) ( ))av t t w s : 7 

2

1

1
( ) [ ( ) ( )]

2

M

av
m

o m m
M

 


 w .                   (8) 8 

5. Check the convergence criteria. If the Euclidean norm of ( )tr  decreases to a 9 

certain small portion,  , of its initial value, (0)r , or the iteration number meets 10 

its maximum value, T , the algorithm is done: 11 

( ) (0)n r r , or t T . 12 

6. Update the connection weight vector: 13 

( 1) ( ) ( ) ( )t t t t  w w s .                      (9) 14 

7. Calculate the gradient vector ( 1)t g  by formulas (6)-(7) according to ( 1)t w . 15 

Set ( 1) ( 1)t t   r g . 16 

8. Calculate ( 1)t   by the Polak-Ribiere method: 17 

( 1)( ( 1) ( ))
( 1) max{ ,0}

( ) ( )

t t t
t

t t


   
 


r r r

r r
.               (10) 18 

9. Update the direction vector: 19 
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( 1) ( 1) ( 1) ( )t t t t    s r s .                   (11) 1 

10. Set 1t t  , and return to step 4. 2 
 3 
2.3. Structure optimization 4 

 5 
Following Setiono and Leow (2000), the structure optimization algorithm, which 6 

has been successfully used to develop an optimized neural network model for crash 7 
injury severity prediction (Zeng and Huang, 2014b), is proposed to improve the 8 
generalization capacity of the neural network models and to identify the insignificant 9 
explanatory variables. This method prunes the nodes that do not cause any significant 10 
deterioration of the networks’ accuracy. The mean absolute deviations of the training 11 
set T  and testing set X , that is, p  and q , are used to evaluate the fitting and 12 

predictive performance during network optimization: 13 

( )1

1
( ) ( )

o m

p o m m
M




 
Τ

,                    (12) 14 

( )2

1
( ) ( )

o m

q o m m
M




 
Χ

,                    (13) 15 

where 1M  and 2M  are the number of samples in the training and testing sets, 16 

respectively. 17 
The following steps describe the detailed pruning process. 18 

1. Train the network with a relatively large number of hidden nodes using the 19 
conjugate gradient algorithm. 20 

2. Calculate the p  and q  of the trained neural network, and set _p b p , 21 

_q b q , and max{ _ , _ }ermax p b q b . 22 

3. For each ( 1, , )i i I  , set (1)
, 0( 1, , )i jw j J    and calculate the fitting errors ip . 23 

4. Retrain the network with (1)
, 0( 1, , )l jw j J   , where minl i ip p , and compute 24 

p  and q  for the retrained network. 25 

5. If (1 )p ermax   and (1 )q ermax  , then remove the input node l , set 26 

_ min{ , _ }p b p p b , _ min{ , _ }q b q q b , max{ _ , _ }ermax p b q b , 1I I  , 27 

and go back to step 3; otherwise, keep the previous weights of the network 28 
connections. 29 

6. For each ( 1, , )j j J  , set (2) 0jw   and calculate the fitting errors jp . 30 



9 

7. Retrain the network with (2) 0hw  , where minh j jp p , and compute p  and q  1 

of the retrained network. 2 

8. If (1 )p ermax   and (1 )q ermax  , then remove the hidden node h . Set 3 

_ min{ , _ }p b p p b , _ min{ , _ }q b q q b , max{ _ , _ }ermax p b q b , and 4 

1J J  , and go back to step 6; otherwise, keep the previous weights of the 5 
network connections. 6 
In the above process, _p b  and _q b  represent, respectively, the minimal mean 7 

absolute deviations of the training and testing sets achieved so far. During the pruning 8 
process, generally, _p b  increases while _q b  decreases. ermax  is used to 9 

determine whether or not a node can be removed to remove as many insignificant 10 
nodes as possible without sacrificing the generalization accuracy. In addition,   is 11 
the margin by which the error is allowed to increase when pruning a certain node. 12 
 13 

2.4. Rule extraction 14 
 15 
The rule extraction method developed by Setiono and Thong (2004) is modified to 16 

generate exact and comprehensible rules from the pruned neural network to illustrate 17 
the effects of significant explanatory variables. In the next subsections, a particle 18 
swarm optimization algorithm-based approach to approximating the transfer functions 19 
of hidden units is introduced as a critical step in the method, and then the rule 20 
extraction process is described. 21 
 22 
2.4.1. Approximating transfer functions 23 

The transfer functions of the hidden nodes can be approximated by piecewise 24 
functions. Theoretically, the more pieces fit the function, the more accurate the rule 25 
set, and the more rules may be extracted. To balance the two aspects, a three-piece 26 
linear function suggested by Setiono and Thong (2004) is used to approximate the 27 
transfer function of each hidden node ( 1, , )j j J  , tanh( ) , as shown in Fig. 2. The 28 

slopes, 0j  and 1j , and the cut-off point, 0j , are three undetermined parameters 29 

that minimize the sum of the squared deviations,  30 

2

1

min (tanh( ( )) ( ( )))
M

j j j
m

m L m 


 ,                 (14) 31 

where 32 

1 1 0

0 0 0

1 1 0

( )
j j j

j j j j

j j j

x if x

L x x if x

x if x

  
  
  

   
   
  

,                (15) 33 
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(1)
,

1

( ) ( )
I

j j i i
i

m w x m


 ,                       (16) 1 

1 0 1 0( )j j j j     .                       (17) 2 

 3 
2.4.2. Searching the optimal parameters 4 

To approximate the transfer function accurately, the particle swarm optimization 5 
algorithm, an efficient global search method, is used to solve the preceding nonlinear 6 
optimization problem. The particle swarm optimization algorithm is well-known for 7 
its exploration capacity, its exploitation capacity and its easy implementation (Poli et 8 

al., 2012). In the algorithm, each feasible solution 0 1 0( , , )j j j    is referred to as a 9 

“particle”, U , and each particle flies around the three-dimensional search space with 10 
a velocity V , which is updated iteratively according to the best solution of the 11 
particle achieved so far (particle best, pbest ) and the best solution obtained by all of 12 
the particles in the swarm so far (global best, gbest ): 13 

1
1 1 2 2( ) ( )r r r r r r

s s s s s sc c      V V pbest U gbest U ,           (18) 14 

1 1r r r
s s sU U V+ += + ,                         (19) 15 

0 1 0( , , ); 1,2, , ; 1,2, ,j j j r R s S    U   . 16 

where r
sU  is the s th particle at the r th iteration, and 1r

sV +  is its flying velocity to 17 

the 1r  th iteration. 1c  and 2c  are two acceleration constants, while 1  and 2  18 

are two uniform random numbers in [0,1] . R  is the maximum iteration number, and 19 

S  is the number of particles used for searching the optimal solution. 20 
 21 
2.4.3. Generating regression rules 22 

Once the transfer functions of the hidden units have been approximated, the 23 
relationship between the network inputs and outputs can be formulated with piecewise 24 
linear functions. The detailed steps for extracting rules from the optimized neural 25 
network are as follows: 26 

1. For each hidden unit ( 1, , )j j J  , generate a three-piece linear function ( )jL x27 

with the approach previously described. 28 

2. According to the pair cut-off points in ( )jL x , 0j  and 0j , a certain input can 29 

be located in one of three sections of hidden node j . Then, J  hidden nodes will 30 
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result in 3 3 3
J

    locations for inputs. Consequently, the whole input space can 1 

be separated into 3J  subspaces. 2 

3. For each non-empty subspace, the rule consequence is (2)

1

( )
J

j j j
j

y w L 


  , where 3 

(1)
,

1

I

j i j i
i

w x


  , and the rule condition is 1 2& & JC C C , where jC  is either 4 

0j j   , 0 0j j j      or 0j j  . 5 

 6 
3. Data preparation and preliminary analysis 7 

 8 
A crash dataset obtained from the Traffic Information System maintained by the 9 

Transport Department of Hong Kong is used to demonstrate the proposed neural 10 
network models and to compare them with the multivariate Poisson-lognormal model. 11 
This dataset contains 211 road segments that are evenly and widely distributed across 12 
Hong Kong. Geographical information system techniques are used to map crashes to 13 
these segments. The injury severity outcomes of the crashes are divided into two 14 
levels, fatality or serious injury and slight injury, and the annual crash numbers at 15 
each severity level at each site during 2002 to 2006 are obtained. The road geometric 16 
and traffic information is also included in the dataset. Table 1 illustrates the 17 
definitions and descriptive statistics of the variables used in the model development. 18 

The lane changing opportunity (LCO) variable refers to the different types of 19 
central lane marking, with values 0, 1 and 2 representing, respectively, double 20 
continuous lines, double lines with one continuous line and one dashed line, and a 21 
single dashed line. For those sub-segments with more than one type of central lane 22 
marking, the length-weighted average values are used. Pei et al. (2012) provides a 23 
more detailed description of the lane changing opportunity. 24 

According to Table 1, the mean and variance of crash frequency at the slight 25 
injury level are 6.04 and 25.81, respectively, indicating a possible over-dispersion. A 26 
similar characteristic is found in the fatality or serious injury crash frequency. In the 27 
multivariate Poisson-lognormal model, to account for the potential nonlinear 28 
relationship between crash frequencies and traffic volumes, the natural logarithm of 29 
AADT and Length, ln(AADT) and ln(Length), are modeled as other factors (Zeng and 30 
Huang, 2014a). 31 

Correlation tests and multi-collinearity diagnoses for the risk factors are then 32 
conducted. According to the results of the Pearson correlation tests, we find that 33 
ln(AADT) and Lane, ln(AADT) and Park, Lane and LCO, SL and Shoulder, SL and 34 
Park are significantly correlated with correlation coefficients greater than 0.6. To 35 
reduce the model complexity, Lane, Park, and Shoulder are therefore excluded from 36 
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the models. The results of the diagnoses indicate that there is no significant 1 
collinearity in the remaining factors. 2 
 3 
4. Model implementation and result analysis 4 
 5 
4.1. Model implementation 6 

 7 
The multivariate Poisson-lognormal model is estimated with the freeware 8 

WinBUGS, which is a popular platform to make Bayesian inference and is 9 
well-known for its flexible programming environment (Zeng and Huang, 2014a). In 10 
the absence of sufficient prior knowledge, non-informative priors are specified for the 11 
parameters and the hyper-parameters. Specifically, a diffused normal distribution 12 

4(0,10 )N  is used as the priors of all elements of sβ ( 1,2)s  , while a Wishart prior 13 

( , )W rP  is used for 1Σ , where 
1, 0

0, 1

 
  
 

P  represents the scale matrix and 2r   14 

is the degrees of freedom (El-Basyouny and Sayed, 2009; Park and Lord, 2007). Five 15 
hundred thousand iterations of the Markov chain Monte Carlo simulation are made, 16 
with the first 4000 iterations acting as burn-ins. After ensuring the Markov chain 17 
Monte Carlo convergence by the Gelman-Rubin statistics available in WinBUGS, 18 
another 50,000 iterations are set to make summaries for the (hyper-) parameters. 19 

The training, the structure optimization, and the rule extraction algorithms of the 20 
neural network models are programmed in MATLAB. All of the variables are 21 
normalized for the convenience of network training. To compare the performance of 22 
the models fully, a 5-fold cross validation is conducted, where the dataset is randomly 23 
divided into five parts with equal number of observations/patterns. Each time, the 24 
sub-dataset of any four parts is input for training the models while the rest is used for 25 
testing the predictive performance. Based on the collected data, 14I  , we first set 26 

10J  for all networks. In the network training, 0.001   and 50T  . We assume 27 
that 0.05   in the structure optimization algorithm, while 300R   and 700S   28 
in the particle swarm optimization algorithm.  29 
 30 
4.2. Model comparison 31 

 32 
The results of the model comparison are summarized in Table 2. With regard to 33 

the five folds of model comparison, in terms of the mean absolute deviation criteria, 34 
all of the trained and optimized neural network models have lower fitting and 35 
predictive errors for the training and testing datasets than the multivariate 36 
Poisson-lognormal models, at both the fatality or serious injury and the slight injury 37 
levels. This demonstrates that neural network models of crash frequency prediction 38 
may give a better approximation performance than certain traditional statistical 39 
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models, which is probably due to the neural network’s capacity for approximating 1 
arbitrary nonlinear functions.  2 

After pruning the network structure with the structure optimization algorithm, the 3 
model fitting is generally expected to be degraded to some extent but the model 4 
prediction should be improved as discussed in the section 2.3. But in the results as 5 
shown in Table 2, it is surprisingly found that both the fitting and predictive errors of 6 
the neural network models are reduced by the proposed model structure optimization 7 
algorithm. As generally known, like other training algorithms, the proposed conjugate 8 
gradient algorithm may sometimes be locally converged (Haykin, 2009). Therefore, a 9 
presumable cause for the reduced model-fitting errors may be that pruning nodes and 10 
retraining network could help to escape from local minima and to search for better 11 
solutions. As a result, we may argue that the model generalization performance 12 
associated with the proposed algorithm is improved as reflected by the reduced model 13 
fitting and predictive errors. 14 

Moreover, certain numbers of input and hidden nodes are removed from the 15 
trained neural networks in all of the five folds, which indicates that the original 16 
models have redundant nodes, and that the factors corresponding to those removed 17 
input nodes may have no significant effects on the crash frequency by severity.  18 

It is also noticeable that the five pairs of optimized neural networks end up with 19 
slight distinctions in their mean absolute deviation values and the final sets of input 20 
and hidden nodes. This instability is presumably attributable to the small sample size 21 
(Xie et al., 2007), given the important impact of sample size on a model’s 22 
generalizability (Haykin, 2009). 23 
 24 
4.3. Interpretation of the explanatory variables 25 

 26 
The specific conditions and consequences of the rules extracted from the 27 

optimized neural networks are shown in Tables 3-6. In these tables, we can clearly see 28 
the effects of the significant factors on crash frequencies at the two levels of injury 29 
severity, under diverse conditions. For the purpose of comparison, the estimation 30 
results of the parameters and the hyper-parameters in the multivariate 31 
Poisson-lognormal model are shown in Table 7 and Table 8, respectively. According 32 
to the results in Table 8, we see that both the fatality or serious injury and the slight 33 

injury crash data are over-dispersed, as their extra-Poisson variations ( 11  and 22 ) 34 

are significantly positive at the 95% credible level. Moreover, the correlation 35 

coefficient  ( 12 11 22=   ) reaches 0.763, showing that the crash frequencies at 36 

the two injury levels are highly correlated.  37 
In this section, we analyze mainly the rule consequences in Tables 5 and 6, as the 38 

rule conditions in Tables 3 and 4 may be difficult to understand. Instead, we employ 39 
the characteristics of the road segments involved at certain particular rules to illustrate 40 
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the effects of the risk factors. Even so, it is noticeable that, based on the conditions, 1 
the rule to which each observation in the analysis should be assigned can be 2 
determined accurately. Comparing the results in Tables 5 and 6 with those in Table 7, 3 
we find that the coefficients of all of the identified factors in the optimized neural 4 
networks are significant at the 95% credible level in the multivariate 5 
Poisson-lognormal model, except Rainfall in the fatality or serious injury neural 6 
network.  7 

Regarding the main effects of the risk factors identified, most of the risk factors 8 
have consistent signs, as shown in Tables 5 and 6, which also conform to the signs in 9 
the multivariate Poisson-lognormal model results shown in Table 7. The signs of the 10 
coefficients of the factors AADT, Length, SL, BS and Rainfall in the slight injury 11 
neural network, and AADT and Diverge in the fatality or serious injury neural 12 
network are identical at all rules. As for the other factors, it is interesting to find a few 13 
different signs in several specific rules. Moreover, it is observed that the estimated 14 
coefficient values are also distinct for several specific rules. This implies that those 15 
risk factors probably have variable safety effects under different road conditions. This 16 
could be important evidence of nonlinear relationship between crash frequency by 17 
severity and the risk factors, which cannot be identified and modeled with the 18 
traditional generalized linear regression models, such as the multivariate 19 
Poisson-lognormal model. 20 

According to the results in Table 5, more slight injury crashes tend to occur on 21 
longer road segments with more daily traffic, as observed by the positive coefficient 22 
estimations associated with all of the eleven rules for AADT and Length. This is a 23 
reasonable conclusion, given that AADT and segment length are always used as two 24 
of the crash exposure variables in highway safety analysis (AASHTO, 2010; Zeng 25 
and Huang, 2014a). Nonetheless, the proposed neural network model presents specific 26 
values for varied safety effects under different conditions. For example, increasing 27 
one unit of AADT is expected to increase only 0.08 crashes (based on the normalized 28 
data) under Condition 10, but 2.11 crashes (almost 26 times the former) under 29 
Conditions 1 and 2. 30 

Slight injury crash frequencies are found lower on road segments with higher 31 
speed limits. It may be attributed to two reasons: (1) roadway segments designed for 32 
higher speeds are usually well planned, constructed, and managed, features that 33 
promote road safety, as argued by some previous researchers (Milton and Mannering, 34 
1998), and (2) given a collision occurs, higher speed usually increases the likelihood 35 
of severe injury and fatality while decreases that of slight injury (Zeng and Huang, 36 
2014b).  37 

The presence of median barriers is found to reduce slight injury crash occurrence 38 
at most rules. A number of existing studies have also found that median barriers can 39 
effectively prevent cross-median crashes (Donnell and Mason, 2006). However, the 40 
estimated coefficients are positive at Rules 6 and 9. For those observations at these 41 
rules, about 90 % of the road segments have median barriers, of which most are 42 
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inner-city highways with heavy daily traffic (mean = 36,538 vehicles) and many 1 
merging ramps (mean = 1.74). These factors may hinder safe driving and bring about 2 
more slight injury collisions related to median barriers. Under all conditions, the 3 
presence of bus stops decreases slight injury crash frequencies, which may be 4 
attributed to the increased interaction between buses and other vehicles when entering 5 
or leaving bus bays (Pei et al., 2012). 6 

The negative coefficients of Gradient under most conditions indicate that more 7 
slight crashes are expected to occur on road segments with steeper downgrade slopes, 8 
which is generally consistent with engineering experience. Besides, Gradient is found 9 
to decrease the crash frequencies at Rules 6 and 10. Most of the involved road 10 
segments are very long, such as Tsing Long Highway (9.07 km), Shek O Road (7.75 11 
km) and Tolo Highway (5.60 km). Driving on the downgrade directions of these long 12 
highways, drivers may be more careful, thus reducing the crash risk. 13 

Slight injury crash frequencies usually increase with more lane changing 14 
opportunities. Lane-cutting maneuvers often increase vehicle interaction, such as 15 
overtaking, thereby raising the incidence of traffic conflict (Pei et al., 2012). It is 16 
interesting to find that more lane changing opportunities could bring about more slight 17 
injury collisions under Condition 10. The referred roadways mainly consists of 18 
freeways, such as the longest segment in the dataset— Tsing Long Highway (9.07 19 
km). Lane changing maneuver is less frequent on these freeways than on those busy 20 
inner-city roadways, which may reduce the vehicle speed variance. This may possibly 21 
explain why LCO negatively affects the slight injury crash frequency on them. 22 

Generally, rainfall impairs visibility and makes road surfaces slippery, thereby 23 
reducing skidding resistance, which raises the probability of crash occurrence. This is 24 
why Rainfall has positive model coefficients in Table 5, which indicates that rainfall 25 
may lead to more slight injury crashes (Pei et al., 2012). 26 

Based on the results in Table 6, we find that more fatality or serious injury crashes 27 
are associated with longer roadway segments, more daily traffic, no median barrier, 28 
presence of bus stop, steeper downgrades and more precipitation under most or all 29 
conditions, which is similar to the results of slight injury crashes. The negative 30 
coefficients for the variable Diverge indicate that more diverging ramps give rise to a 31 
higher fatality or serious injury crash risk, which may be attributable to more conflicts 32 
at the sites approaching diverging ramps. 33 

At Rule 21, the length is found negatively related to fatality or serious injury crash 34 
frequency, in which all fatality or serious injury crashes occurred on Tsing Long 35 
Highway. For the longest road segment, its average annual fatality or serious injury 36 
crash number is only 1.3, smaller than the mean of the whole population (1.8). A 37 
possible reason for the negative coefficient of Length may be that some unobserved 38 
factors (such as well design and maintenance) associated with this highway greatly 39 
promote the safety situation. Under the same Condition, Gradient is found positively 40 
related to the fatality or serious injury crash frequency. It may be a result of a similar 41 
reason to the corresponding findings in slight injury crashes, that is, drivers are 42 
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usually more cautious when driving on the downgrade of the so long (9.07 km) 1 
segment. 2 

Regarding the observations at Rules 16 and 17, most of the road segments are also 3 
inner-city highways with heavy daily traffic (mean = 35,462 vehicles) and many 4 
merging ramps (mean = 1.82). Like the situation at Rules 6 and 9, these factors may 5 
impede safe driving and result in more fatality or serious injury median-related 6 
crashes. Meanwhile, there are bus stops on all of the roadway segments at Rules 16 7 
and 17. The decreased travel speed of buses entering or leaving bus bays could reduce 8 
the probability of severe crashes. As a consequence, the presence of bus stops 9 
decreases the fatality or serious injury crash frequency on the segments. 10 

Probably due to the same reason as for the slight injury crashes, Rainfall has 11 
positive coefficients under most conditions. However, drivers tend to be more careful 12 
and reduce their speed when driving on rainy areas. That may be why Rainfall is 13 
negatively related to the fatality or serious injury crash frequency under Conditions 14 14 
and 15, since the annual precipitation of most involved observations are over 3000 15 
mm. 16 
 17 
5. Conclusions and future research 18 

 19 
This study develops advanced neural networks for modeling the nonlinear 20 

relationship between crash frequency by severity and the related factors. To improve 21 
the generalization capacity and to handle the black-box characteristic of neural 22 
networks, a structure optimization algorithm and a modified rule extraction algorithm 23 
are proposed. A crash dataset obtained from the Traffic Information System 24 
maintained by the Transport Department of Hong Kong, where crashes are classified 25 
into slight injury and fatality or serious injury severity degrees, is used to demonstrate 26 
the proposed methods and to compare them with the results of a multivariate 27 
Poisson-lognormal model. 28 

Despite the over-dispersed crash data and the high correlation between the crash 29 
frequencies of the different injury degrees, the results show that both the trained and 30 
the optimized neural networks outperform the multivariate Poisson-lognormal model 31 
in fitting and predictive performance. It indicates the neural network’s superiority 32 
over the multivariate Poisson-lognormal model in modeling crash frequency by 33 
severity. When several input and hidden nodes are deleted from the original neural 34 
networks, better approximation performance is achieved, demonstrating the structure 35 
optimization algorithm’s ability to identify insignificant factors and to improve the 36 
model’s generalization capacity. The optimized neural networks generate two rule-sets 37 
in which the coefficients of the explanatory variables are different, which confirms 38 
that they are nonlinearly related to the crash frequencies. The signs of these 39 
coefficients have identical directions under most conditions, and are consistent with 40 
those in the multivariate Poisson-lognormal model. Moreover, most of the results for 41 
the explanatory variables are reasonable and conform to traffic engineering 42 
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experience or the findings of previous studies, which further validates the proposed 1 
methods. 2 

It is worth noting that the other aforementioned statistical model may have better 3 
performance than the multivariate Poisson-lognormal model for the collected data in 4 
this study, although the latter is the most popular method for jointly modeling crash 5 
frequency and severity. For example, the identified nonlinear relationship between 6 
crash frequency by severity and risk factors could be viewed as unobserved 7 
heterogeneities across observations. The heterogeneities could be accommodated in a 8 
multivariate random parameters Poisson-lognormal model, and the empirical analysis 9 
based on our collected dataset indicates that it is potentially a better fitting approach. 10 
Further research efforts could be made to compare the proposed neural network 11 
models with the emerging advanced statistical models on more field datasets. Further, 12 
as mentioned above, the developed neural network models can be employed as an 13 
alternative approach for identifying sites with promise for improving safety. In the 14 
absence of the averaged crash cost of each injury degree level, this part of the 15 
application has not been conducted. More comprehensive crash data are needed to 16 
compare the proposed neural network techniques with the state-of-the-art methods, 17 
such as the Bayesian hierarchical models, for site ranking. 18 
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Table 1 Descriptive statistics of the variables 1 
Variable Description Mean SD Min. Max. 

Response variable 

Slight 
Slightly injured crash count per segment per 

year 
6.04 5.08 0 40 

KSI 
Killed and seriously injured crash count per 

segment per year 
1.60 1.90 0 12 

Explanatory variables 

AADT Average annual daily traffic (vehicles) 22077 19945 1164 101632 

Length Segment length (km) 1.47 1.55 0.15 9.07 

Lane Number of lanes 2.41 1.18 1 7 

Width Average width of each lane (m) 3.63 0.64 2.40 7.30 

SL Posted speed limit (km/h) 60.3 14.7 50 110 

Merge Number of merging ramps 0.84 1.00 0 4 

Diverge Number of diverging ramps 1.75 2.27 0 17 

Inter Number of intersections 1.90 2.37 0 16 

Gradient Average segment gradient (10-2) 0.04 2.74 -11 11 

Curvature Average segment curvature 21.9 17.5 0 85 

LCO Lane changing opportunity 2.43 1.61 0 7.85 

Median Presence of median barrier: yes = 1, no = 0 0.70 0.46 0 1 

BS Presence of bus stop: yes = 1, no = 0 0.64 0.48 0 1 

Shoulder Presence of hard shoulder: yes = 1, no = 0 0.13 0.34 0 1 

Park Presence of on-street parking: yes = 1, no = 0 0.51 0.49 0 1 

Rainfall Annual precipitation (mm) 2279 565 761 3215 

 2 
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Table 2 Model comparison 1 

 
Injury 

severity 
Model 

Training mean 

absolute deviation 

Testing mean 

absolute deviation 

Number of 

input nodes 

Number of 

hidden nodes 

1 

Slight 

injury 

Multivariate 

Poisson-lognormal 
2.87 3.03 — — 

Trained neural 

network 
2.85 2.99 14 10 

Optimized neural 

network 
2.71 2.93 9 4 

Fatality or 

serious 

injury 

Multivariate 

Poisson-lognormal 
1.17 1.00 — — 

Trained neural 

network 
1.09 1.07 14 10 

Optimized neural 

network 
1.08 1.03 8 4 

2 

Slight 

injury 

Multivariate 

Poisson-lognormal 
2.85 3.00 — — 

Trained neural 

network 
2.77 2.95 14 10 

Optimized neural 

network 
2.76 2.88 7 4 

Fatality or 

serious 

injury 

Multivariate 

Poisson-lognormal 
1.09 1.30 — — 

Trained neural 

network 
1.06 1.26 14 10 

Optimized neural 

network 
1.03 1.25 8 4 

3 

Slight 

injury 

Multivariate 

Poisson-lognormal 
2.89 2.86 — — 

Trained neural 

network 
2.84 2.80 14 10 

Optimized neural 

network 
2.63 2.71 11 4 

Fatality or 

serious 

injury 

Multivariate 

Poisson-lognormal 
1.13 1.15 — — 

Trained neural 

network 
1.08 1.14 14 10 

Optimized neural 

network 
1.06 1.13 10 4 

 2 
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Table 2 (continued) Model comparison 1 

4 

Slight 

injury 

Multivariate 

Poisson-lognormal 
2.87 2.95 — — 

Trained neural 

network 
2.78 2.85 14 10 

Optimized neural 

network 
2.71 2.76 9 3 

Fatality or 

serious 

injury 

Multivariate 

Poisson-lognormal 
1.14 1.13 — — 

Trained neural 

network 
1.09 1.10 14 10 

Optimized neural 

network 
1.06 1.07 7 4 

5 

Slight 

injury 

Multivariate 

Poisson-lognormal 
2.90 2.82 — — 

Trained neural 

network 
2.87 2.76 14 10 

Optimized neural 

network 
2.75 2.70 11 4 

Fatality or 

serious 

injury 

Multivariate 

Poisson-lognormal 
1.12 1.21 — — 

Trained neural 

network 
1.07 1.12 14 10 

Optimized neural 

network 
1.02 1.08 11 6 

 2 
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Table 3 Rule conditions for slight injury crashes 1 
Rule Conditiona 

1 v1 <-1.498 & -0.87≤ v2 ≤0.87 & -1.042≤ v3 ≤1.042 & v4 <-0.52 

2 v1 >1.498 & -0.87≤ v2 ≤0.87 & -1.042≤v3 ≤1.042 & v4 <-0.52 

3 v1 >1.498 & v2 >0.87 & -1.042≤v3 ≤1.042 & v4 <-0.52 

4 v1 <-1.498 & -0.87≤ v2 ≤0.87 & v3 >1.042 & v4 <-0.52 

5 v1 >1.498 & -0.87≤ v2 ≤0.87 & v3 >1.042 & v4 <-0.52 

6 v1 >1.498 & v2 >0.87 & v3 >1.042 & v4 <-0.52 

7 v1 <-1.498 & v2 >0.87 & -1.042≤ v3 ≤1.042 & -0.52≤ v4 ≤0.52 

8 v1 >1.498 & v2 >0.87 & -1.042≤ v3 ≤1.042 & -0.52≤ v4 ≤0.52 

9 v1 >1.498 & -0.87≤ v2 ≤0.87 & v3 >1.042 & -0.52≤ v4 ≤0.52 

10 v1 >1.498 & v2 >0.87 & v3 >1.042 & -0.52≤ v4 ≤0.52 

11 v1 >1.498 & v2 >0.87 & -1.042≤ v3 ≤1.042 & v4 >0.52 

a 1 0.344 0.159 0

0 0.076

0.819 1.061 .357

.032 0.443 .7600

AADT Mediv Lengt ah n

Rainfa

SL

BS Grad llient LCO




    
  

, 2 

2 0.668 1.555 0.019 0.179

0.163 0.238

0.532

0.134 .0 029

AADT Mediv Length SL

BS Gradient L

an

RainfCO all

    
  

, 3 

3 1.809 0.030 0.736

0.305 0.878

1.502 0.763

0.635 0.323

AADT Mediv Length SL

BS Gradient LCO

an

Rainfall

   

  
, 4 

4 0.504 0.285 0.364

0.174 0.504

1.271 0.647

0.177 0.440

AADT Mediv Lengt ah n

Rainfa

SL

BS Gradient LCO ll

 


   
  

. 5 
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Table 4 Rule conditions for fatality or serious injury crashes 1 
Rule Conditiona 

12 v1 <-1.148 & -0.407≤ v2 ≤0.407 & v3 <-0.746 & v4 <-0.139 

13 v1 >1.148 & -0.407≤ v2 ≤0.407 & v3 <-0.746 & v4 <-0.139 

14 v1 <-1.148 & -0.407≤ v2 ≤0.407 & -0.746≤ v3 ≤0.746 & v4 <-0.139 

15 v1 >1.148 & -0.407≤ v2 ≤0.407 & -0.746≤ v3 ≤0.746 & v4 <-0.139 

16 v1 <-1.148 & v2 >0.407 & -0.746≤ v3 ≤0.746 & v4 <-0.139 

17 v1 >1.148 & v2 >0.407 & -0.746≤ v3 ≤0.746 & v4 <-0.139 

18 v1 >1.148 & -0.407≤ v2 ≤0.407 & v3 >0.746 & v4 <-0.139 

19 v1 <-1.148 & v2 >0.407 & v3 >0.746 & v4 <-0.139 

20 v1 >1.148 & v2 >0.407 & v3 >0.746 & v4 <-0.139 

21 v1 >1.148 & -0.407≤ v2 ≤0.407 & v3 <-0.746 & -0.139≤ v4 ≤0.139 

22 v1 >1.148 & -0.407≤ v2 ≤0.407 & v3 <-0.746 & v4 >0.139 

a 1 1.126 1.082 0.923

0.

0.789

0.281353 0.066 0.317

v Length

Median BS Gradient

AADT Diverge

Rainfall

   
  




, 2 

2 0.348 0.127 0.6

0.4

0.352

0.0683 0.473 0.111

v Length

Median BS Gradien

AADT Diverge

Rainfallt

  
  




, 3 

3 0.177 1.36 0.383

1.0

0.966

0.03479 0.751 0.188

v Length

Median BS Gradie

AADT Diverge

Rainfallnt

  

  




, 4 

4 0.69 1.047 0.496

0.

0.424

0.126084 0.06 0.587

v Length

Median BS Gradient

AADT Diverge

Rainfall

   
  




. 5 
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Table 5 Rule consequences for slight injury crashes 1 

Rule 
Coefficient of the variable in the consequence (linear function) 

Constant AADT Length SL Median BS Gradient LCO Rainfall 

1 -0.618 2.110 0.746 -0.105 -0.626 0.347 -0.529 0.830 0.257 

2	 -0.830 2.110 0.746 -0.105 -0.626 0.347 -0.529 0.830 0.257 

3	 -0.751 1.322 1.015 -0.095 -0.535 0.265 -0.461 0.710 0.242 

4	 -0.038 0.975 0.170 -0.127 -0.069 0.117 -0.049 0.167 0.012 

5	 -0.250 0.975 0.170 -0.127 -0.069 0.117 -0.049 0.167 0.012 

6	 -0.172 0.188 0.439 -0.117 0.021 0.034 0.019 0.046 0.002 

7	 -0.543 1.055 1.152 -0.155 -0.458 0.228 -0.424 0.604 0.335 

8	 -0.755 1.055 1.152 -0.155 -0.458 0.228 -0.424 0.604 0.335 

9	 -0.254 0.707 0.306 -0.187 0.007 0.080 -0.012 0.061 0.105 

10	 -0.175 0.080 0.576 -0.177 -0.098 0.003 0.056 -0.060 0.091 

11	 -0.971 1.322 1.015 -0.095 -0.535 0.265 -0.461 0.710 0.242 
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Table 6 Rule consequences for fatality or serious injury crashes 1 

Rule 
Coefficient of the variable in the consequence (linear function) 

Constant AADT Length Diverge Median BS Gradient Rainfall 

12	 0.336 0.546 0.174 0.049 -0.366 0.225 -0.071 0.038 

13	 0.994 0.546 0.174 0.049 -0.366 0.225 -0.071 0.038 

14	 0.0667 0.264 0.570 0.161 -0.051 0.006 -0.061 -0.017 

15	 0.725 0.264 0.570 0.161 -0.051 0.006 -0.061 -0.017 

16	 0.080 0.186 0.542 0.294 0.056 -0.099 -0.048 0.008 

17	 0.738 0.186 0.542 0.294 0.056 -0.099 -0.048 0.008 

18	 0.559 0.546 0.174 0.049 -0.366 0.225 -0.071 0.038 

19	 -0.086 0.467 0.146 0.182 -0.258 0.120 -0.058 0.063 

20	 0.572 0.467 0.146 0.182 -0.258 0.120 -0.058 0.063 

21	 1.913 1.253 -1.574 0.876 -0.505 0.125 0.138 1.017 

22	 0.531 0.546 0.174 0.049 -0.366 0.225 -0.071 0.038 
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Table 7 Parameter estimation in the multivariate Poisson-lognormal model 1 

Variable 
Slight injury Fatality or serious injury 

Mean S.D. 
95 % 

Credible interval 
Mean S.D. 

95 % 
Credible interval 

Constant 1.136 0.201 (0.774, 1.481) -0.474 0.307 (-1.052, 0.126) 

ln(AADT) 0.563 0.035 (0.496, 0.633) 0.334 0.056 (0.228, 0.446) 

ln(Length) 0.557 0.030 (0.498, 0.616) 0.670 0.049 (0.574, 0.765) 

SL -0.027 0.002 (-0.034, -0.021) -0.017 0.004 (-0.026, -0.009) 

Merge -0.046 0.024 (-0.093, 0.001) -0.064 0.036 (-0.135, 0.006) 

Diverge 0.023 0.012 (0.0003, 0.046) 0.057 0.017 (0.023, 0.090) 

Inter 0.015 0.012 (-0.010, 0.040) -0.010 0.019 (-0.047, 0.026) 

Median -0.185 0.068 (-0.313, -0.050) -0.316 0.111 (-0.533, -0.099) 

BS 0.384 0.054 (0.282, 0.490) 0.300 0.085 (0.135, 0.464) 

Gradient -1.559 0.771 (-3.069, -0.058) -2.53 1.16 (-4.816, -0.253) 

Curvature -0.002 0.001 (-0.007, 0.004) -0.001 0.002 (-0.007, 0.006) 

LCO 0.104 0.017 (0.071, 0.136) 0.149 0.026 (0.099, 0.201) 

Width 0.006 0.035 (-0.064, 0.075) 0.089 0.056 (-0.020, 0.197) 

Rainfall 0.083 0.037 (0.015, 0.156) 0.062 0.056 (-0.045, 0.172) 

The values in bold are those significantly positive or negative with the 95 % credible intervals 2 
bounded away from zero. 3 
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Table 8 Hyper-parameter estimation in multivariate Poisson-lognormal 1 

Hyper-parameter Mean S.D. 
95 % Credible interval 

2.5 % 97.5 % 

11  0.228 0.020 0.191 0.269 

21 12( )   0.199 0.022 0.198 0.243 

22  0.299 0.042 0.222 0.388 

 a 
0.763 0.047 0.667 0.847 

The values in bold are those significantly positive or negative with the 95 % credible intervals 2 
bounded away from zero. 3 

a: 12 11 22    . 4 
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