GRASP with path relinking for the selective pickup
and delivery problem

Sin C. Ho® and W. Y. Szeto”

a . . .
Department of Economics and Business Economics
Aarhus University, Denmark

sinho@econ.au.dk

bDepartment of Civil Engineering
The University of Hong Kong, Hong Kong, China
ceszeto@hku.hk
phone: 4852 28578552

k .
corresponding author

Abstract

Bike sharing systems are very popular nowadays. One of the characteristics is
that bikes are picked up from some surplus bike stations and transported to all
deficit bike stations by a repositioning vehicle with limited capacity to satisfy the
demand of deficit bike stations. Motivated by this real world bicycle repositioning
problem, we study the selective pickup and delivery problem, where demand at every
delivery node has to be satisfied by the supply collected from a subset of pickup
nodes. The objective is to minimize the total travel cost incurred from visiting the
nodes. We present a GRASP with path-relinking for solving the described problem.
Experimental results show that this simple heuristic improves the existing results in
the literature with an average improvement of 5.72% using small computing times.
The proposed heuristic can contribute to the development of effective and efficient
algorithms for real world bicycle reposition operations.

Keywords: Pickup and delivery routing; GRASP; Path relinking

1 Introduction

The pickup and delivery problem (PDP) contributes one of the most important classes of
the problems because its models have various logistic applications such as reverse logistics,
shipping cargoes, dial-a-ride systems, the distribution of beverages and the collection of
empty cans and bottles, bike repositioning operations, etc. It aims to determine routes
to distribute the commodities between nodes to minimize the total transportation cost.
Different variants of the PDP are studied in the literature.

Berbeglia, Cordeau, Gribkovskaia, and Laporte (2007) classified the variants of the PDP
according to their structures, the number of deployed vehicles, and the pickup and delivery
activities in the nodes. The structure criterion categorizes the PDP into one-to-one (1-1),
one-to-many-to-one (1-M-1), and many-to-many (M-M) schemes, based on the number
of origins and destinations of the commodities. In the one-to-many-to-one scheme, the
commodities from the depot are delivered to delivery nodes and commodities from the
pickup nodes are transported to the depot; in the one-to-one scheme, each commodity has
exactly one pickup node and one delivery node. In the many-to-many scheme, any node
can serve as a origin or as a destination for any commodity. The criterion of the number
of deployed vehicles divided the PDP into single and multiple vehicle cases. The activity
criterion classifies the PDP according to the way that pickup and delivery operations
are performed at nodes. Under this classification, many PDP studies can be categorized
explicitly.

Table 1 compares different variants of the PDP according to the schemes laid out by
Berbeglia et al. (2007), the node features, and the vehicle characteristics and Table 2
gives the abbreviations of the variants and solution methods. The node features include
the selectivity, depot supply /demand, time windows, the pickup and delivery operations,
and the perfect balance requirement. The selectivity of nodes is about whether all nodes
are required to be visited. Depot supply/demand is concerned with whether the depot
supplies or receives commodities. Time windows define the time period during which the
vehicle visit the nodes. The pickup and delivery operations are concerned with whether
either a pickup or delivery activity is performed at a node and whether both activities
are performed at a node separately or simultaneously. The perfect balance requirement is
related to whether the total supply equals the total demand. The vehicle characteristics
include the number and capacity of vehicles.

Clearly, the classification does not fully list out all elements in the PDP, such as the
number of types of commodities or side constraints etc., but it should be enough to
distinguish five features of the selective pickup and delivery problem (SPDP) which is also
a variant of the PDP under the M-M scheme. First, different from existing 1-M-1 and M-M
PDP variants, the SPDP does not require the depot to provide commodities. Second, the
SPDP does not have time-window constraints related to the pickup and delivery nodes.
Third, based on the problem setting, either pickup or delivery is performed at a customer
node. Fourth, the perfect balance requirement does not need to be satisfied. Fifth, some
nodes are not visited.

Unlike other PDP studies that consider selectivity, the SPDP requires that only some, but
not necessary all, pickup nodes are visited by the vehicle to gather sufficient commodities
for all delivery nodes. Moreover, despite the vehicle capacity constraint for each pickup

activity, there is another constraint for the delivery activity to ensure that the vehicle must
have enough commodities to satisfy the demand of the delivery customers once the vehicle
visits the corresponding nodes (i.e., split or incomplete deliveries are not allowed). These
are the two distinguished features of this problem (Ting & Liao, 2013). The SPDP is
related to applications that supply sufficient commodities to the customers using the cost
minimizing principle while visiting all pickup nodes is not a requirement. An illustrative
example is the single vehicle bicycle repositioning problem, where bikes are picked up from
some surplus bike stations and transported to all deficit bike stations by a repositioning
vehicle with limited capacity using the shortest route. Given that the total surplus is
larger than the total deficit and all bikes are identical, it is not necessary to visit all the
surplus bike stations to satisfy the demand of each deficit station. Hence, some surplus
stations are not visited in order to lower the transportation cost.

Although there are realistic applications related to the SPDP, only Ting and Liao (2013)
proposed and studied this problem as shown in Table 1. As recognized by them that the
SPDP is a NP-hard problem, it is impractical to adopt exact methods to solve instances
of realistic sizes. Hence, they adopted a metaheuristic approach and proposed a memetic
algorithm for solving the SPDP. The performance was illustrated by comparing the results
obtained from the memetic algorithm with the results from the genetic algorithm and tabu
search. However, many existing heuristics could solve the variants of the PDP with great
success as reflected by the last column of Table 1. These heuristics and their hybrids may
give a much better performance.

Table 1 also shows that GRASP has been considered in very few PDP studies despite its
success in solving combinatorial optimization problems and industrial applications (Festa
& Resende, 2011). GRASP is a multi-start heuristic for producing diverse solutions to
combinatorial optimization problems. There are two phases at each iteration of GRASP.
In the first phase, a new solution is constructed based on some principles that rely on
greediness and randomness. Then, the solution is improved by local search in the sec-
ond phase. However, Resende and Ribeiro (2010) stated that the searching efficiency of
GRASP can be improved via adopting fine tuning mechanisms, multiple neighborhoods,
and path relinking.

Path relinking (PR), as an evolutionary method, generates solutions by combining ele-
ments from a pair of elite solutions (defined as initial and guiding solutions). The funda-
mental hypothesis is that good solutions of a problem should share some characteristics,
and one could expect to obtain better ones when moving towards the elite solutions in a
stepwise sequence. Many studies show that the hybridization of GRASP with path relink-
ing can achieve competitive results to different combinatorial optimization problems such
as vehicle routing (Campos, Marti, Sdnchez-Oro, & Duarte, 2014; Souffriau, Vansteenwe-
gen, Berghe, & Oudheusden, 2010), arc routing (Reghioui, Prins, & Labadi, 2007; Usberti,
Franca, & Franga, 2013), capacitated clustering (Deng & Bard, 2011), job shop scheduling
(Aiex, Binato, & Resende, 2003), rural road network development (Scaparra & Church,
2005), and network load balancing (D. Santos, de Sousa, & Alvelos, 2013).

In the current literature (2014-2015), we can find several applications of GRASP with
path relinking. In Campos et al. (2014), the authors applied the hybrid heuristic on
the orienteering problem and achieved competitive results. The authors tested out dif-
ferent strategies on how to construct greedy randomized initial solutions, where these

[J0q J0U I1q SpOU AISAISD [ore Je pauLiojiod st £31A130R Ioyje :(q/d

‘toowrereq 300510d g g

‘MopUIM STy AT,

SIOQUUNU WM\
‘puewap /A1ddns jodep :da(g

{A10AT[Op pue dnyord paurquIod oY) I0J 99UO0 A[}ORXD POJISIA ST d9POU AIOAT[OP [oRd (I
‘opou AILATRP oea Je A[ejeredas 10 1971080} paurrojrod o Aeul SSI)IAIOR OM) :(I-d
‘se11AT)OR AToArep pue dnyoid :joy

(Lyoedes dep
{AYTATIO0T0S (g

qd+dSvad Apnss sy,
wyjod[e oPwely | A N d/d A IN-IN (€10g) oery pue Suif, dads
ooV 1 N N a/d roN NN (010Z) T8 %0 uoorey AdTAS-dSLT
mo-pue-puerg | » A ad N IN-IN (0102) Te 1o wegopiy dSON
SOWISLINOY YOIeos 800 [2 A ad M "IN (010Z) T8 90 davuopIOg dSIN
wjiodre uoryewrrxordde-g 1 25@ TR 10 AQuy
wyIose (Lu)) 1exy I » A ad A IN-IN (6661) Te 10 Aquy ds
ANAD (210T) T8 10 9raoudpPR[N
SW}LI0Se J1)ouar) (6002) Te 10 oeyy
ANA+dSVHD PHqLY (6002) & 10 ZoIJ-ZOpPURUIO
MO-pUe-PURI(WIS Apoo1) T » A d/d M IN-IN (F00%) Zo[pzuon-Ieze[es pue zoI9J-ZopURUIof] dS1AdT
pﬂolﬁﬂﬁuﬂuﬂﬁpm Enz QNHONV N@d%NQOUnH&Nﬁﬂmm UQ@ N@M@@uN@@QﬁQ.ﬁwm
GOEEOQEOUGU wm@@gwm T \ »W Qu& ﬁuﬁ AQOONV N@ﬂ%NQOUuH&N@ﬁmm UQ@ N@H@ﬁﬁuNw,—uQﬁﬁmwm nmw,H\Qnmua
SN'T+VS (900g) YPA1uLjUOl URA puUE JuSY
UoIeds nqe) oAlPRY [< A A a/da 2 -1 (000¢) souregq pue LiueN MILdad
STI/SId 1 A d/d -1 (600g) Te %o uegopy AAddSL
InD-pue-rpUeIg I A d/d I-T (010z) "Te 90 nosexyrun(q dddsL
mo-pue-puerg | A d/d -1 (010Z) & 90 ‘1O ‘NedpIo)) TAddSL
mo-pue-puerg | A d/d -1 (010¢g) 110] pue 0oy [[2(] ‘MeIPIo)) AdddSL
ooud-pue-puerg < A N ad » rN T-IN-T (010Z) Te 30 vdrer-zorouny) MIJISAJHA
SNA+VH (2102) T° 10 ponig
oress nqey, T N N ad rL T-IN-T (8002) 'Te 30 eres{sAOyqLIY) dSAJdYAS
STI (g102) e % 1T
osmfﬁwﬂﬁuoa Sopdww ﬁdooﬂ AHHONV mﬂuﬁoﬁﬁwﬁm @Q@ mﬁ@,ﬁH@QU@N
00V (0107) Leye))
STO + yoress nqey, 1< A A ad N T-IN-T (6002) T8 19 sIpeLrePRy, AdSJdUA
WHLOS[R ATRUOIIN0AS0) [< A A ad » N T-IN-T (€10g) woy) pue Suepy MIJAdAd
[oIeds NqeJ, I N A ad A T-IN-T (L00Z) T8 30 eres{SAOyqLIY) AddYAS
umN - den gd PV ML dd Ps
mﬁoﬂuwa QOESMOW Qﬁoﬂﬂe\/ @@OZ @HS@OS.S@ mmoﬁwp.@w@m muﬁ@ﬁﬁ\r nﬁmnﬁ

spueLtes Jqd s Jdds oy jo uostreduo)) <] o[qer],

Table 2: Abbreviations

1-PDTSP One-commodity pickup-and-delivery travelling salesman problem
1-TSP-SELPD The one-commodity traveling salesman problem with selective pickup and delivery
FDPPTW Flexible delivery and pickup problem with time windows
m-PDTSP Multi-commodity pickup-and-delivery traveling salesman problem
MSP Mixed swapping problem

NCSP Non-preemptive capacitated swapping problem

PDPTW Pickup and delivery (vehicle routing problem) with time windows
SP Swapping problem

SPDP Selective pickup and delivery problem

SVRPDSP Single vehicle routing problem with deliveries and selective pickups
SVRPPD Single vehicle routing problem with pickups and deliveries

TSPPD Traveling salesman problem with pickup and delivery

TSPPDF Pickup and delivery traveling salesman problem with FIFO loading
TSPPDL Pickup and delivery traveling salesman problem with LIFO loading
VRPDSPTW Vehicle routing problem with deliveries, selective pickups and time windows
VRPSPD Vehicle routing problem with simultaneous pickups and deliveries
ACO Ant colony optimization

EA Evolutionary algorithm

GLS Guided local search

GRASP Greedy randomized adaptive search procedure

GVNS General variable neighborhood search

ILS Iterated local search

LNS Large neighborhood search

PR Path relinking

PTS Probabilistic tabu search

SA Simulated annealing

VND Variable neighborhood descent

VNS Variable neighborhood search

solutions are improved by local search consisting of four different neighborhood opera-
tors. Path relinking was applied to the solutions obtained from GRASP. Moran-Mirabal,
Gonzdlez-Velarde, and Resende (2014) proposed a GRASP with path relinking for the
family traveling salesman problem. Path relinking is integrated within GRASP a little
bit different than Campos et al. (2014). First, after the local search procedure path relink-
ing is only applied on a pair of solutions consisting of a local optimal solution and one of
the elite solutions. Second, a more evolved path relinking is applied to every pair of elite
solutions. Due to the computational burden, the second path relinking is only applied
once a while. D. O. Santos and Xavier (2015) presented a GRASP with path relinking
for a dynamic dial-a-ride problem. The path relinking utilizes three different operators
to generate the solutions. Computational experiments show that their heuristic performs
better than GRASP. A non-routing application is found in Rios-Mercado and Escalante
(2015). The authors applied the hybrid heuristic on a commercial districting problem.
They studied the effects of integrating path relinking within GRASP versus placing it
after GRASP as a post-optimization phase. Their results indicate that the latter option
achieved the best results.

Besides hybridizing path relinking with GRASP, one can also find path relinking hy-
bridized with tabu search (Jia & Hu, 2014; Lai & Hao, 2015; Peng, Lii, & Cheng,

2015; Urrutia, Milanés, & Lgkketangen, 2015), local search (Yang, Zhang, & Zhu, 2015),
population-based metaheuristics (F. B. de Oliveira, Enayatifar, Sadaei, Guimaraes, &
Potvin, 2015; Hamdi-Dhaoui, Labadie, & Yalaoui, 2014; Marinakis & Marinaki, 2015;
Marti, Corberén, & Peird, 2015; Ribas, Companys, & Tort-Martorell, 2015) and math-
ematical programming based approaches (R. M. de Oliveira, Lorena, Chaves, & Mauri,
2014; Li, Chu, Prins, & Zhu, 2014). One important component with path relinking is
the neighborhood operator for moving from the initial solution to the guiding solution.
One common observation with the 16 recent publications is that the authors use simple
problem-dependent operators to create the intermediate solutions (i.e., the path) that
take the attributes of the guiding solution into consideration. For example, for the orien-
teering problem in Campos et al. (2014), an intermediate solution is formed by inserting
nodes (that exist in the guiding solution) into the initial solution and by removing nodes
(that do not exist in the guiding solution) from the solution. Another example is the com-
mercial districting problem (Rios-Mercado & Escalante, 2015), where new intermediate
solutions are created by relocating a node from its territory to another territory without
making the territories disconnected. Traditionally, the path ends when an intermediate
solution coincides with the guiding solution. However, it is also possible to terminate the
path before reaching the guiding solution (Jia & Hu, 2014; Moran-Mirabal et al., 2014;
D. O. Santos & Xavier, 2015; Urrutia et al., 2015). Readers are referred to Ribeiro and
Resende (2012) for more ideas/strategies on how to design a path relinking procedure.

This paper proposes a hybrid heuristic based on GRASP and path relinking for solving
the selective pickup and delivery problem. One of the strengths of the proposed method is
its simplicity: the heuristic relies on simple principles to construct a solution, to improve
a solution, to update the solution pool and to generate paths based on initial and guiding
solutions. In the proposed path relinking, a different strategy is utilized. Instead of
terminating the path at the guiding solution (which is usually the chosen strategy in the
current literature), the path might be truncated before reaching the guiding solution (i.e.,
truncated path relinking), or the path might be extended beyond the guiding solution (i.e.,
exterior path relinking). The algorithm does not decide a priori which form (truncated
or exterior) to apply. It depends on the pair of initial and guiding solutions, the path
relinking operator used to create the path and the termination condition. Overall, it is
easy to implement the heuristic and the heuristic only requires three parameters. Despite
its simplicity, the proposed method is also effective and efficient. The heuristic is assessed
on a set of 90 benchmark instances used in the literature. This heuristic has improved
the results obtained by a memetic algorithm on 88 of the instances, with an average
improvement of 5.72% using on average less than 30 seconds of computing time. The
contributions of our paper are as follows. 1) We propose a different path relinking strategy
in our hybrid algorithm to solve the selective pickup and delivery problem and 2) the
proposed algorithm is simple as well as effective and efficient compared with the memetic
algorithm used in the literature. It is expected that our proposed algorithm can contribute
to the development of efficient and effective algorithms for real world bike repositioning
operations.

The paper is organized as follows. Section 2 introduces a complete mathematical for-
mulation of the SPDP. Section 3 depicts the proposed heuristic. Section 4 illustrates
the computational results and a comparison with the results in the literature. Section 5
presents the conclusions.

2 Mathematical formulation

2.1 Problem setting

A complete graph formed by nodes and edges is considered. The nodes can be classified
into three categories: pickup nodes, delivery nodes, and the depot. Each pickup node
supplies the same type of commodity but the supply varies from one pickup node to
another. A demand is associated with every delivery node, and the demand may vary
across the delivery nodes. The depot neither requires nor supplies any commodity, but
the vehicle may return to the depot non-empty. A single vehicle with limited capacity is
used to transport the vehicle load from some pickup nodes to all delivery nodes to satisfy
the needs of each delivery node. Each pickup node is visited at most once. For every
visit to a pickup node, all supply is required to be loaded on the vehicle and the resultant
vehicle load must not exceed the vehicle capacity. Each delivery node is visited exactly
once. For every visit to a delivery node, the vehicle load must be enough to satisfy the
demand. There is a cost associated with each travel between nodes. The objective is to
determine the minimum cost route starting from and ending at the depot to satisfy the
above requirements.

2.2 Problem formulation

The notations of this study are given below:
N Set of nodes, indexed by i =0, 1,...,|N| with 0 representing the depot
E Set of edges
P Set of pickup nodes
D Set of delivery nodes
¢;; Cost of edge (i,7) € €, ¢;; > 0
d; Demand at nodei. d; >0ifieP. d; <0ifi €D. dy =0
@ Vehicle capacity
M A very big constant

Decision variables:

| 1, if the vehicle travels directly from node 7 to node j;
Yij = { 0, otherwise.
l;; The load on the vehicle when it travels directly from node ¢ to node j.
l;; is zero if y;; = 0.
g; Auxiliary variable associated with node ¢ for the sub-tour elimination constraints.

Based on the above notations, the SPDP can be formulated mathematically as follows:

min Z Z CijYij (1)

iEN jeEN

ieN ieN

oy =) yi=1 Vj € DU {0} (3)
ieN ieN

Y b=y li=d vj e N\ {0} (5)

ieN ieN

gi +1—M(1—y;) <g, Vi,j €N (6)
yi; € {0,1} Vi,j e N (7)
g: >0 Vie N (8)
lij =20 Vi,j e N (9)

Equation (1) states the objective of the SPDP, which is to minimize the total travel
cost of the vehicle. Constraints (2) ensure that each pickup node is visited at most
once. Constraints (3) require that each delivery node and the depot must be visited
exactly once. Constraints (4) ensure that the vehicle load is not greater than the vehicle
capacity. Constraints (5) depict the relation between the vehicle load before and after
visiting a node, and their difference must equal to the demand or supply at the visited
node. Constraints (6) eliminate the sub-tours among nodes. Constraints (7)-(9) define
the decision variables to be binary or nonnegative. Note that [;; takes an integer value at
optimality due to the integrality of d; and constraints (5).

Compared with the formulation from Ting and Liao (2013), our formulation represents
the subtour elimination constraints differently and has more decision variables than theirs.
More importantly, our formulation has explicitly related the vehicle load of each arc (i, j)
and the corresponding indicator variable y;; used to define whether arc (z, j) is on a tour,
and hence our formulation can be directly used to solve for exact solutions by CPLEX
for comparison with the results from heuristics if needed.

3 The hybrid algorithm

In this paper, a hybrid algorithm based on GRASP (Feo & Resende, 1995) and Path
relinking (Glover & Laguna, 1993) is proposed to solve the selective pickup and delivery
problem. At every iteration of GRASP, an initial solution is constructed and the initial
solution is improved by a local search procedure. The best solution obtained from the
different iterations is saved and returned to the user. The disadvantage with GRASP is
that the iterations are independent from each other. Hence, as a remedy to overcome this
independence, many researchers have included path relinking within the GRASP frame-
work (e.g., Laguna & Marti, 1999). Path relinking generates new solutions by exploring
paths that are connected by elite solutions found by GRASP. Path relinking has been
applied successfully to different vehicle routing problems (e.g., Campos et al., 2014; Ho &
Gendreau, 2006; Souffriau et al., 2010). Hence, path relinking embedded within GRASP
is chosen to tackle the selective pickup and delivery problem as well.

A tour x is defined as (ig, i1, - . ., in, inr1) Where ig = 7,1 = 0 (i.e., the depot) and i, € N,
h =1,2,...,n where n represents the total number of pickup and delivery nodes in the
tour. For a solution z, let f(x) be its travel cost. The travel cost is obtained by adding
up the costs ¢;,;, associated with traversing the edges (i,,i,). A tour to the selective
pickup and delivery problem is incomplete (or infeasible) if at least one of the following

is met: 1) not every delivery node is visited; 2) no pickup node is visited; 3) the loading
constraints of the vehicle are violated.

In Algorithm 1, a tour is constructed in GreedyRandomized (details are found in Algorithm
2). This subroutine ensures that each delivery node is added to the tour and appears in
the tour exactly once. (i.e., this subroutine ensures that the first infeasibility condition
mentioned in the previous paragraph cannot be met). However, the tour is still incomplete.
The incomplete tour is improved by LocalSearch. New incomplete tours are generated
by applying PathRelinking on incomplete tours from the reference set R and a local
optimum (details can be found in Algorithm 3). However, no nodes are added or deleted
from the tours. UpdateR determines whether an incomplete tour can be included in
R. Pickup nodes are added to the incomplete tour in AddPickUpNodes until the tour
constructed satisfies the loading constraints (i.e., the violation of the third infeasibility
condition does not occur). Note that to address the third infeasibility condition, the
procedure AddPickUpNodes must add at least one pickup node to the incomplete tour
consisting of delivery nodes only. This means that the procedure implicitly caters the
second infeasibility condition as well.

Algorithm 1 GRASP+PR
1: Set f* = oo.
2: forb=1,...,k do
3: & =GreedyRandomized|()
4: & =LocalSearch(x)
5. T =PathRelinking(z,R)
6: R =UpdateR(z,R)
7. & =AddPickUpNodes(Z)
8
9

if f(z) < f* then
Set f* = f(z) and a* = Z.
10: end if
11: end for
12: return zx*.

In the selective pickup and delivery routing problem, every delivery node must be visited,
but this requirement does not apply to the pickup nodes. This leads to the strategy where
delivery nodes are inserted first, and thereafter pickup nodes are inserted. This is due to
the fact that pickup nodes are typically fewer than the delivery nodes, and that inserting
pickup nodes later can reduce the complexity of the search algorithm. Hence, in each it-
eration, the procedures GreedyRandomized, LocalSearch, PathRelinking and UpdateR
are applied on tours with delivery nodes only. Pickup nodes are added to the incomplete
tours in AddPickUpNodes. In other words, our proposed algorithm allows infeasible so-
lutions (i.e., incomplete tours) to be generated in the procedure GreedyRandomized and
maintained in procedures LocalSearch, PathRelinking and UpdateR, and the next pro-
cedure AddPickUpNodes is to recover solution feasibility. The best solution found is saved
in each iteration and returned as the final result. The heuristic runs for a fixed number
of iterations k.

3.1 Construction heuristic

Initial tours are constructed using the value-based strategy from GRASP (Festa & Re-
sende, 2011). This strategy allows randomness to be controlled through the parameter «
where o € (0,1]. The tour is constructed by inserting one delivery node at a time. The
delivery node is chosen randomly from a set of unvisited delivery nodes whose incremen-
tal costs (c(r) = ci,r + Crinyy — Cininy,) are not larger than the best greedy selection by
a x 100% of the difference between the maximum and minimum incremental costs.

Algorithm 2 GreedyRandomized

1: Set x = (ig,int1)-

2: Set D = D.

3: while [D| > 0 do

4: Set Cin = Milen{Cir + Crinyy = Cininar

o Set Craz = maxre@{cinr + Cring1 — Cinin+1}

6: Set RCL={r €D:c(r) < cmin+ a(Cnaz — Cmin) }-
7. Randomly select 7 from RCL.

8: Insert : between i, and lpy1 ID 2.

9: Set @:@\{%}.

10: end while

11: return =x.

Algorithm 2 is a sequential construction heuristic where a tour is constructed by inserting
one delivery node at a time at the end of the tour (i.e., between i, and i,;) until all
delivery nodes are added to the tour. This algorithm has a time complexity of O(|D]?).
The output from this procedure is a tour starting and ending at the depot, and visiting
each delivery node once.

3.2 Local search

The tour x is then improved by 2-opt using the best improving strategy. 2-opt is a
classical neighborhood operator originally designed for the traveling salesman problem
(Lin, 1965). A neighbor solution is obtained by removing non-adjacent arcs (i, i,.1) and
(44, 7p11), and adding the arcs (i, %,) and (4,41, %,41) to complete the tour. 2-opt is applied
until no improvement can be found. This algorithm has a time complexity of O(|D|?).

3.3 Path relinking

The purpose with path relinking is to explore the paths connected by pairs of elite solu-
tions. One of the solutions in the pair is labelled as an initial solution, while the other is
labelled as a guiding solution. A path between the initial solution and the guiding solu-
tion is created by generating new solutions using a neighborhood operator to gradually
introduce the attributes of the guiding solution into the newly generated solutions. As the
procedure progresses, the new solutions possess more and more attributes of the guiding
solution, and less attributes of the initial solution.

10

Path relinking (see Algorithm 3) with O(|D|?) is applied to | R| pairs of solutions consisting
of the local minimum solution Z and the elite solutions from the reference set R. Every
pair of solutions is subject to two rounds of path relinking. In the first round, z takes on
the role as the initial solution x; and the elite solution takes on the role as the guiding
solution x¢. The roles are switched in the second round. Each round of the path relinking
process is terminated after five consecutive iterations without introducing new attributes
from the guiding solution into the newly generated solution Z. This means that the path
from z; to x¢ may be truncated before reaching x, or this may also mean that the path
is extended to beyond x¢.

The neighborhood operator 2-opt is used to generate new solutions. In order to make
sure that the newly generated solutions possess attributes from the guiding solution, only
valid solutions are accepted. In this case, an attribute is an arc. Arcs that exist in both
xr and xg are locked, which means that valid solutions cannot be obtained by removing
locked arcs.

Let T be the set of common arcs between the initial solution x; and the guiding solution
xg, and let A; and Ag be the sets of arcs that make up the initial and guiding solutions,
respectively. The neighborhood operator used to create the path from z; is 2-opt. The
difference between this 2-opt and the 2-opt used in LocalSearch is that tours obtained
by removing arcs (iy,i,+1) € T and (iy,4,+1) € T are not considered.

The set of valid neighbor solutions is defined as the neighborhood H. The tour z that
yields the lowest total distance is chosen from H. The reason for not choosing the tour with
the highest number of attributes from z is that most likely the algorithm will end up with
a short path. In order to explore the vicinity of the path, a long path is preferred. Any arcs
in z common with the guiding solution are recorded in 7. Due to computational burden
and because long paths are preferred, each round of path relinking is terminated after five
consecutive iterations without encountering solutions with an increasing similarity with
. The best tour encountered during the path relinking procedure is improved by local
search.

3.4 Updating the reference set R

A tour 7 is added to the reference set R if the reference set is not full (i.e., |R| < Rz,
where R, is the maximum number of solutions that can be stored in R). If the reference
set is already full and tour ¥ is better than the worst tour in the reference set, then the
worst tour is replaced by tour Z. This procedure only takes O(1) time.

3.5 Adding pickup nodes

The tour © = (ig,41,...,%,41) SO far consists of all delivery nodes only. In order to
construct a feasible solution, pickup nodes need to be inserted in x and vehicle capacity
constraints are considered.. Pickup nodes are inserted one at a time and the selection of
pickup node 7 and the insertion position p are based on the cheapest insertion criterion,
and the inclusion must not violate the vehicle capacity constraint. Pickup nodes are added

11

Algorithm 3 PathRelinking

Require: A local minimum Z and the reference set R
1. if R # () then
2: Set f; = o0.

33 forb=1,...,|R| do

4 Set x; = & and xg = 0, (where oy, is the bth element in R).

5: Set TT=A;NAg and © = x;.

6: Set noImpr = 0.

7 while nolmpr < 5 do

8 Let W(z) be the neighborhood of = obtained by applying 2-opt.

9 Let H = {z € W(x) : z is not obtained by removing common arcs from x}.

10: Select a tour € H that minimizes f(Z). Z is obtained by removing (i,+, ty++1)
and (iy, 1y+11), and adding (iy«, p+) and (Tys 1, Gpxy1)-

11: if (iy, 1) € Ag and/or (iy«i1,0p11) € Ag then

12: Set T' =T U (ly+,ip) and/or T =T U (i 41, Gyr41)-

13: Set nolmpr = 0.

14: else

15: Set nolmpr = nolmpr + 1.

16: end if

17: if £ # x; and T # x¢ and f(Z) < f; then

18: Set fi = f(z) and & = 7.

19: end if

20: Set © = 7.

21: end while

22: Repeat lines 5-21 (once for every b), but with z; = 0, and z¢ = .

23: end for

24: T =LocalSearch(Z)
25: return .

26: else

27: return z.

28: end if

12

until the solution becomes feasible. The full procedure is depicted in Algorithm 4. It has
the time complexity of O(|P|?).

Algorithm 4 AddPickUpNodes
Require: An infeasible tour x.
1: Set P =P.
2: Set lmin = minuzlw,nﬂ{liu%iu}.
3: while [,;;, < 0 do
4: (r,p) = arg min, sy ACiprr +Criy — Cipyiy iy g, Yy S Qiu=p, ...t — 1},
where ¢ is the index of the first node ¢; in the tour where l;,;,,, <0,t=1,...,n.
Insert 7 in position p in z.
Set P =P\ {#}.
Update l;, i, u=p+1,...,n+ 1.
Set lmin = minu:ﬁ+1,._.7n+1{liufliu}.
end while
10: return z.

4 Computational experiments

The heuristic was coded in C++ and all computational experiments were carried out on
a Dell notebook with an Intel Core i5-2520M CPU@2.5GHz. The efficiency of the hybrid
algorithm was validated through a series of computational experiments. The experiments
were conducted on the same set of test instances described in Ting and Liao (2013) and
these instances are available from https://db.tt/6ErosIg9. The number of nodes in
these instances range from 91 to 454. The vehicle capacity ranges from 400 to 1000.
A total of 90 instances. These instances are modified from some pickup and delivery
instances. An instance is denoted as X(Y)/Z, where X denotes the name of the original
instance, Y denotes the number of nodes (N'), and Z denotes the number of pickup nodes
(P). = is the additional supply added to the original supply of each pickup node (i.e.,
d; = d; +, Vi € P). Ting and Liao (2013) compared the results obtained from a tabu
search (TS), a genetic algorithm (GA), and a memetic algorithm (MA). Their results
showed that MA outperformed both TS and GA. In the following, parameter tuning
results will be given. Then, the results obtained from the hybrid heuristic (GRASP+PR)
as well as the results from GRASP will be compared to the results from MA.

4.1 Parameter tuning

The heuristic has three parameters: «, R,,,, and k. The tuning process of the first two
parameters is performed on a selection of instances - n100mosA, n200mosA, n300mosA
and n400mosA on different values of v and @), a total of 36 instances. The first parameter
to be tuned was « and it governs the degree of randomness when creating initial solutions.
In the tuning process, a can take on different values in the interval [0.5,0.9], while R,,.. =
0 and x = 100. Each instance was run 30 times. On average, setting a = 0.5 yields the
best results. Hence, « is given the value 0.5. The next parameter in the tuning process is
R0z It is the maximal number of tours the reference set can hold for the purpose of the

13

path relinking procedure. The larger R,,.. is, the better the results will be, but at the
expense of increasing computing time. While o = 0.5 and x = 100, R,,,. is set to take
the following values: 5, 10, 15, 20, 25 and 30. The average results are shown in Figure 1.
It is decided to set R,,.. to 10, as it shows a good trade-off between solution quality and
computing time. The last parameter, x, sets the total number of iterations for the entire
algorithm. As with R,,.., the higher value k gets, the better the average results will be
and this is also at the expense of soaring computing time. Hence, in the next few sections
results from running GRASP and GRASP+PR with x € {50, 100,200} are shown.

30
°
o
m 25
)

m
2
S n 2.0
1]
2
]
£
= 15
> o | °
o o~
O
g
<

" 10

0 °

5
S o
T T T T T
8150 8152 8154 8156 8158

Avg travel cost

Figure 1: Results from tuning R,

4.2 Comparing GRASP with GRASP+PR

To show the benefit of including a path relinking procedure within the GRASP framework,
a comparison between the results obtained from GRASP and GRASP+PR is detailed
below. The comparison is between GRASP (omitting lines 5-6 of Algorithm 1) and two
variants of GRASP+PR. The first variant is the standard version as stated in Algorithm 1,
while the second variant is a slightly faster version where AddPickUpNodes is only applied
to the solutions in the reference set after the s iterations have been completed (i.e., lines
7-10 of Algorithm 1 are moved out of the for-loop). The main results are reported in
Tables 3 and 4. In these tables, the first three columns display the name of the instance
and the values of v and @, while the remaining columns show the average travel cost (over
30 trials) of each instance of the different heuristics. From these tables, one can observe
that the quality of the results depend on the values of v and @. For a fixed value of ~,
the average travel cost tend to be slightly better as () increases. The improvement can be
explained by the fact that there are more feasible positions in the tour to insert pickup
nodes into it when () is increased. For a fixed value of (), a substantial improvement of

14

the results is observed with an increasing v. When 7 is increased, fewer pickup nodes are
needed. Hence, the total travel cost decreases.

The fourth and fifth columns show the results obtained from GRASP over 100 and 200
iterations, respectively. When running GRASP for more iterations, the average improve-
ment is 0.27%. The next four columns show the results from the different variants of
GRASP+PR over 50 and 100 iterations, respectively. As expected, the standard ver-
sion is slightly better with an average improvement of 0.001%. In order to have a fair
comparison between GRASP and GRASP+PR, the computing time consumed should
be approximately the same between the heuristics. The average computing times of the
heuristics are depicted in Table 5. It can be observed that running GRASP over 100
(200) iterations and GRASP+PR over 50 (100) iterations consumes about equal amount
of computing time, but GRASP+PR has a better performance. The average gap between
GRASP and GRASP+PR is 0.74% (0.77%).

We have shown that GRASP+PR produces better solutions than GRASP. In the follow-
ing, we will further assess its performance by comparing it to MA proposed by Ting and
Liao (2013) on the same set of instances.

4.3 Comparing GRASP+PR with MA

As the difference between the two variants of GRASP+PR is negligible (0.001%). The
comparison is with the slightly faster version. Tables 6 and 7 provide a comparison on the
results obtained from MA and GRASP+PR. The fourth column shows the average travel
cost (over 30 trials) obtained from MA, while the remaining columns list the average
and best results from GRASP+PR over 50 and 100 iterations, respectively. MA performs
better than GRASP+PR (with x = 50) on only six out of 90 instances, while GRASP+PR
produces better solutions on the remaining instances. The average deviation between the
two is 5.44%. GRASP+PR (with k = 100) performs even better, with 88 instances
being better than MA. The average deviation is increased to 5.72%. The results will be
even better if x is increased, but at the expense of the computing time. Ting and Liao
have shown that by adding a local search component (2-opt) to GA (which is the MA),
better results are obtained. Due to maintaining feasibility of a complete tour (where both
pickup and delivery nodes exist), Ting and Liao modified the 2-opt operator where a tour
is partitioned into segments and 2-opt is applied on each of the segments rather than on
the whole tour. However, our 2-opt is applied on a tour consisting of delivery nodes only
and few pickup nodes are inserted at a later stage. This two-stage search strategy shows
to be beneficial for this problem as GRASP alone also outperforms MA. The average gap
is 4.75% (with k = 100) and 5% (with x = 200).

The excellence of the proposed method is also statistically significant. The Wilcoxon
signed rank test (Golden & Stewart, 1985) has been applied to compare MA with GRASP+PR,
as well as MA with GRASP. The null hypothesis is that both MA and GRASP+PR (or
GRASP) perform equally good, while the alternative hypothesis is that GRASP+PR (or
GRASP) performs better than MA. The significance level is set to be 0.05. The sum of
the signed ranks has been calculated as 4033 (or 3489). The corresponding test statistic
is 8.113 (or 7.019), which is larger than the critical value of 1.645. Therefore, the null

15

hypothesis is rejected. As a matter of fact, we conclude that GRASP+PR (or GRASP)
performs better MA under the current settings.

It is difficult to compare the CPU time between MA and GRASP+PR as Ting and
Liao (2013) did not report the computing times for running their heuristic. They only
included two plots of the solution value against the running time for two of the instances
(n100mosA(91) and n500mosA(453)). The final running times on the plots for the two
instances are about 10 and 40 seconds, respectively. Their experiments were conducted
on an Intel core i7-920 computer, which is faster than our computer. Based on the two
instances, GRASP+PR (with x = 50) is definitely faster than MA. On the other hand, it
is difficult to conclude which method is faster when GRASP+PR is set to run for k = 100
iterations.

5 Conclusions

In this paper, we present a hybrid heuristic consisting of GRASP and path relinking for
the selective pickup and delivery problem, which is motivated by a real-world bicycle
repositioning problem. Path relinking makes it possible to further diversify and intensify
the search around the local minima obtained by GRASP. Our proposed path relinking
uses a different strategy compared with those in the literature. Instead of terminating
the path at the guiding solution, the path might be truncated before reaching the guiding
solution, or the path might be extended beyond the guiding solution. In addition, the
search in our hybrid heuristic is based on two solution spaces: the infeasible space (where
the tours consist of delivery nodes only) and the feasible space (where the tours are feasible
consisting of both delivery and pickup nodes). The algorithm mainly looks for good tours
in the infeasible space, and switches to the feasible space at the end of the algorithm.
The heuristic is easy to understand, simple to implement, efficient and effective. These
characteristics are important for managing real-time bike repositioning operations.

Experiments were conducted on 90 benchmark instances. Computational experiments
show that including path relinking within the GRASP framework improves the GRASP
results by 0.77% on average without additional computing time. Further, experiments
also show that the hybrid heuristic improves the existing results in the literature with an
average and maximum improvement of 5.72% and 6.79%, respectively. This improvement
can be further accentuated by increasing the values of R,,,, and k, but at the expense of
increased computing time.

The proposed algorithm attains better results than MA because the proposed algorithm
makes use of the feature that only few pickup nodes are visited eventually. More effort is
thus spent on searching for the best sequence of delivery nodes before adding a few pickup
nodes to obtain a more accurate solution. The main lesson learned is that it is important
to incorporate the properties of the problem into the algorithm to obtain good solutions
quickly.

Although the results show that our proposed heuristic performs better than MA, there are
a few limitations related to the algorithmic aspect and findings. One limitation with the
proposed heuristic is that there is still a 1% gap between the average improvement and

16

the maximum improvement of the results. This indicates that it is not always possible
to achieve solutions of superior quality. Another limitation is that the proposed heuristic
may not work very well when there is a need of a large amount of pickup nodes, because
the proposed algorithm first focuses on generating good tours that consist of delivery
nodes only and pickup nodes are then added at the end to make the tours complete and
feasible. The third limitation is that our comparisons might be a bit limited as we only
compared GRASP+PR with MA, which was in turn compared with GA and tabu search
by Ting and Liao (2013). However, these are the only existing algorithms in the literature
developed for the problem under study. One more limitation is that we only used the 90
instances provided by Ting and Liao (2013) for comparison and hence our experimental
findings and conclusion are based on these instances. However, the instances do not
capture the cases of small vehicle capacity, or varying the ratio between the numbers of
pickup nodes and delivery nodes.

The following future works can be performed. First, as a remedy to the first limitation
of the proposed algorithm, we could replace the local search component in Section 3.2
with a more sophisticated method (e.g., tabu search). Instead of a greedy randomized
construction heuristic, we could have a ruin and recreate procedure where a solution is
not constructed from scratch (Schrimpf, Schneider, Stamm-Wilbrandt, & Dueck, 2000).
Currently, randomness can only be found in the construction heuristic. We could also ap-
ply randomness in the path relinking procedure. For example, instead of making greedy
choices when creating the path, we could make random choices or greedy random choices
equivalent to how the restricted candidate list RCL is made. Second, to address the
second algorithmic limitation, we could pass the feasible tours to another procedure for
post-optimization purposes where different operators can be applied in order to further
improve the solutions. Third, more future works could be focused on designing other
search methods to address the third limitation regarding very few algorithm comparisons.
Fourth, we can generate more test instances in order to check the validity of the con-
clusions. Lastly, besides the above algorithmic research directions, we could also look at
the problem settings to make the problem more realistic, especially for day-time opera-
tions (e.g., multiple routes/vehicles, split deliveries/pickups, stochastic/dynamic selective
pickup and delivery problems).

Acknowledgments

This work was partially supported by a grant from National Natural Science Foundation
of China (71271183). This support is gratefully acknowledged. Thanks are also due to
the two anonymous reviewers for their constructive comments.

References

Aiex, R. M., Binato, S., & Resende, M. G. C. (2003). Parallel GRASP with path-relinking
for job shop scheduling. Parallel Computing, 29(4), 393-430.

Anily, S., Gendreau, M., & Laporte, G. (1999). The swapping problem on a line. SIAM
Journal on Computing, 29(1), 327-335.

17

Anily, S., Gendreau, M., & Laporte, G. (2011). The preemptive swapping problem on a
tree. Networks, 58(2), 83-94.

Bent, R., & Van Hentenryck, P. (2006). A two-stage hybrid algorithm for pickup and
delivery vehicle routing problems with time windows. Computers & Operations
Research, 33(4), 875-893.

Berbeglia, G., Cordeau, J.-F., Gribkovskaia, 1., & Laporte, G. (2007). Static pickup and
delivery problems: a classification scheme and survey. TOP, 15(1), 1-31.

Bordenave, C., Gendreau, M., & Laporte, G. (2010). Heuristics for the mixed swapping
problem. Computers € Operations Research, 37(1), 108-114.

Bruck, B. P.; dos Santos, A. G., & Arroyo, J. E. C. (2012, June). Hybrid metaheuristic
for the single vehicle routing problem with deliveries and selective pickups. In 2012
IEEE Congress on Evolutionary Computation (CEC) (p. 1-8).

Campos, V., Marti, R., Sdnchez-Oro, J., & Duarte, A. (2014). Grasp with path relinking
for the orienteering problem. Journal of the Operational Research Society, 65(12),
1800-1813.

Catay, B. (2010). A new saving-based ant algorithm for the vehicle routing problem
with simultaneous pickup and delivery. Ezpert Systems with Applications, 37(10),
6809-6817.

Cordeau, J.-F., Dell’Amico, M., & Tori, M. (2010). Branch-and-cut for the pickup and
delivery traveling salesman problem with FIFO loading. Computers € Operations
Research, 37(5), 970-980.

Cordeau, J.-F., lori, M., Laporte, G., & Salazar Gonzalez, J. J. (2010). A branch-and-
cut algorithm for the pickup and delivery traveling salesman problem with LIFO
loading. Networks, 55(1), 46-59.

de Oliveira, F. B., Enayatifar, R., Sadaei, H. J., Guimaraes, F. G., & Potvin, J.-Y. (2015).
A cooperative coevolutionary algorithm for the multi-depot vehicle routing problem.
Ezpert Systems with Applications. (In press)

de Oliveira, R. M., Lorena, L. A. N.; Chaves, A. A., & Mauri, G. R. (2014). Hybrid
heuristics based on column generation with path-relinking for clustering problems.
Ezxpert Systems with Applications, 41(11), 5277-5284.

Deng, Y., & Bard, J. F. (2011). A reactive GRASP with path relinking for capacitated
clustering. Journal of Heuristics, 17(2), 119-152.

Dumitrescu, 1., Ropke, S., Cordeau, J.-F., & Laporte, G. (2010). The traveling sales-
man problem with pickup and delivery: polyhedral results and a branch-and-cut
algorithm. Mathematical Programming, 121(2), 269-305.

Erdogan, G., Cordeau, J.-F., & Laporte, G. (2009). The pickup and delivery traveling
salesman problem with first-in-first-out loading. Computers & Operations Research,
36(6), 1800-1808.

Erdogan, G., Cordeau, J.-F., & Laporte, G. (2010). A branch-and-cut algorithm for
solving the non-preemptive capacitated swapping problem. Discrete Applied Math-
ematics, 158(15), 1599-1614.

Falcon, R., Li, X., Nayak, A., & Stojmenovic, I. (2010, July). The one-commodity travel-
ing salesman problem with selective pickup and delivery: An ant colony approach.
In 2010 IEEE Congress on Evolutionary Computation (CEC) (p. 1-8).

Feo, T. A., & Resende, M. G. C. (1995). Greedy randomized adaptive search procedures.
Journal of Global Optimization, 6(2), 109-133.

Festa, P., & Resende, M. G. C. (2011). GRASP: basic components and enhancements.
Telecommunication Systems, 46(3), 253-271.

18

Glover, F., & Laguna, M. (1993). Tabu search. In C. R. Reeves (Ed.), Modern Heuristic
Techniques for Combinatorial Problems (p. 70-150). Oxford: Blackwell Scientific
Publishing.

Golden, B. L., & Stewart, W. R. (1985). Empirical analysis of heuristics. In E. L. Lawler,
J. K. Lenstra, A. H. G. R. Kan, & D. B. Shmoys (Eds.), The Traveling Salesman
Problem (p. 207-249). Wiley, Chichester.

Gribkovskaia, 1., Halskau sr., @., Laporte, G., & Vléek, M. (2007). General solutions to
the single vehicle routing problem with pickups and deliveries. Furopean Journal of
Operational Research, 180(2), 568-584.

Gribkovskaia, 1., Laporte, G., & Shyshou, A. (2008). The single vehicle routing problem
with deliveries and selective pickups. Computers & Operations Research, 35(9),
2908-2924.

Gutiérrez-Jarpa, G., Desaulniers, G., Laporte, G., & Marianov, V. (2010). A branch-and-
price algorithm for the vehicle routing problem with deliveries, selective pickups and
time windows. Furopean Journal of Operational Research, 206(2), 341-349.

Hamdi-Dhaoui, K., Labadie, N., & Yalaoui, A. (2014). The bi-objective two-dimensional
loading vehicle routing problem with partial conflicts. [International Journal of
Production Research, 52(19), 5565-5582.

Herndndez-Pérez, H., Rodriguez-Martin, 1., & Salazar-Gonzalez, J.-J. (2009). A hy-
brid GRASP/VND heuristic for the one-commodity pickup-and-delivery traveling
salesman problem. Computers €& Operations Research, 36(5), 1639-1645.

Hernandez-Pérez, H., & Salazar-Gonzalez, J.-J. (2004). Heuristics for the one-commodity
pickup-and-delivery traveling salesman problem. Transportation Science, 38(2),
245-255.

Hernéndez-Pérez, H., & Salazar-Gonzélez, J.-J. (2009). The multi-commodity one-to-one
pickup-and-delivery traveling salesman problem. Furopean Journal of Operational
Research, 196(3), 987-995.

Hernéndez-Pérez, H., & Salazar-Gonzilez, J.-J. (2014). The multi-commodity pickup-
and-delivery traveling salesman problem. Networks, 63(1), 46-59.

Ho, S. C., & Gendreau, M. (2006). Path relinking for the vehicle routing problem. Journal
of Heuristics, 12(1-2), 55-72.

Jia, S., & Hu, Z.-H. (2014). Path-relinking tabu search for the multi-objective flexible
job shop scheduling problem. Computers & Operations Research, 47, 11-26.
Laguna, M., & Marti, R. (1999). GRASP and path relinking for 2-layer straight line

crossing minimization. INFORMS Journal on Computing, 11(1), 44-52.

Lai, X., & Hao, J.-K. (2015). Path relinking for the fixed spectrum frequency assignment
problem. Ezxpert Systems with Applications, 42(10), 4755 - 4767.

Li, J., Chu, F., Prins, C., & Zhu, Z. (2014). Lower and upper bounds for a two-stage
capacitated facility location problem with handling costs. FEuropean Journal of
Operational Research, 236(3), 957 - 967.

Li, J., Pardalos, P. M., Sun, H., Pei, J., & Zhang, Y. (2015). Iterated local search
embedded adaptive neighborhood selection approach for the multi-depot vehicle
routing problem with simultaneous deliveries and pickups. Fxpert Systems with
Applications, 42(7), 3551-3561.

Lin, S. (1965). Computer solutions of the traveling salesman problem. Bell System
Technical Journal, 44, 2245-2269.

Marinakis, Y., & Marinaki, M. (2015). Combinatorial neighborhood topology bumble
bees mating optimization for the vehicle routing problem with stochastic demands.

19

Soft Computing, 19(2), 353-373.

Marti, R., Corberdn, A., & Peird, J. (2015). Scatter search for an uncapacitated p-hub
median problem. Computers & Operations Research, 58, 53-66.

Mladenovi¢, N., Urosevié, D., Hanafi, S., & Ili¢, A. (2012). A general variable neighbor-
hood search for the one-commodity pickup-and-delivery travelling salesman prob-
lem. European Journal of Operational Research, 220(1), 270-285.

Moran-Mirabal, L., Gonzélez-Velarde, J., & Resende, M. (2014). Randomized heuristics
for the family traveling salesperson problem. International Transactions in Opera-
tional Research, 21(1), 41-57.

Nanry, W. P., & Barnes, J. W. (2000). Solving the pickup and delivery problem with
time windows using reactive tabu search. Transportation Research Part B, 34(2),
107-121.

Peng, B., Lii, Z., & Cheng, T. (2015). A tabu search/path relinking algorithm to solve
the job shop scheduling problem. Computers & Operations Research, 53, 154-164.

Reghioui, M., Prins, C., & Labadi, N. (2007). GRASP with path relinking for the capac-
itated arc routing problem with time windows. In M. Giacobini (Ed.), Applications
of Evolutionary Computing (Vol. 4448, p. 722-731). Springer Berlin Heidelberg.

Resende, M. G. C., & Ribeiro, C. C. (2010). Greedy randomized adaptive search proce-
dures: Advances, hybridizations, and applications. In M. Gendreau & J.-Y. Potvin
(Eds.), Handbook of Metaheuristics (p. 283-319). Springer US.

Ribas, 1., Companys, R., & Tort-Martorell, X. (2015). An efficient discrete artificial bee
colony algorithm for the blocking flow shop problem with total flowtime minimiza-
tion. Ezpert Systems with Applications, 42(15-16), 6155-6167.

Ribeiro, C. C., & Resende, M. G. (2012). Path-relinking intensification methods for
stochastic local search algorithms. Journal of Heuristics, 18(2), 193-214.

Rios-Mercado, R. Z., & Escalante, H. J. (2015). GRASP with path relinking for commer-
cial districting. Expert Systems with Applications. (In press)

Santos, D., de Sousa, A., & Alvelos, F. (2013). A hybrid column generation with GRASP
and path relinking for the network load balancing problem. Computers € Operations
Research, 40(12), 3147-3158.

Santos, D. O., & Xavier, E. C. (2015). Taxi and ride sharing: A dynamic dial-a-ride
problem with money as an incentive. FEzpert Systems with Applications, 42(19),
6728-6737.

Scaparra, M. P.; & Church, R. L. (2005). A GRASP and path relinking heuristic for rural
road network development. Journal of Heuristics, 11(1), 89-108.

Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H., & Dueck, G. (2000). Record breaking
optimization results using the ruin and recreate principle. Journal of Computational
Physics, 159(2), 139-171.

Souffriau, W., Vansteenwegen, P., Berghe, G. V., & Oudheusden, D. V. (2010). A path
relinking approach for the team orienteering problem. Computers € Operations
Research, 37(11), 1853-1859.

Ting, C.-K., & Liao, X.-L. (2013). The selective pickup and delivery problem: Formulation
and a memetic algorithm. International Journal of Production Economics, 141(1),
199-211.

Urrutia, S., Milanés, A., & Lgkketangen, A. (2015). A dynamic programming based local
search approach for the double traveling salesman problem with multiple stacks.

International Transactions in Operational Research, 22(1), 61-75.
Usberti, F. L., Franga, P. M., & Franca, A. L. M. (2013). GRASP with evolutionary

20

path-relinking for the capacitated arc routing problem. Computers & Operations
Research, 40(12), 3206-3217.

Wang, H.-F., & Chen, Y.-Y. (2013). A coevolutionary algorithm for the flexible deliv-
ery and pickup problem with time windows. International Journal of Production
Economics, 141(1), 4-13.

Yang, Z., Zhang, G., & Zhu, H. (2015). Multi-neighborhood based path relinking for two-
sided assembly line balancing problem. Journal of Combinatorial Optimization,
1-20. (In press)

Zachariadis, E. E., & Kiranoudis, C. T. (2011). A local search metaheuristic algorithm
for the vehicle routing problem with simultaneous pick-ups and deliveries. Fxpert
Systems with Applications, 38(3), 2717-2726.

Zachariadis, E. E., Tarantilis, C. D., & Kiranoudis, C. T. (2009). A hybrid metaheuristic
algorithm for the vehicle routing problem with simultaneous delivery and pick-up
service. Ezpert Systems with Applications, 36(2, Part 1), 1070-1081.

Zhao, F., Li, S., Sun, J., & Mei, D. (2009). Genetic algorithm for the one-commodity
pickup-and-delivery traveling salesman problem. Computers & Industrial Engineer-
ing, 56(4), 1642-1648.

21

Table 3: Average travel costs for GRASP and GRASP+PR

Instance ¥ Q GRASP GRASP GRASP+PR GRASP+PR! GRASP+PR GRASP+PR!
k=100 k=200 Kk =50 Kk =50 k=100 k=100

nl00mosA(91)/42 100 400 5169.63 5167.50 5167.50 5167.50 5167.50 5167.50
600 5169.63 5167.50 5167.50 5167.50 5167.50 5167.50

1000 5169.63 5167.50 5167.50 5167.50 5167.50 5167.50

200 400 5169.12 5166.99 5166.99 5166.99 5166.99 5166.99

600 5169.12 5166.99 5166.99 5166.99 5166.99 5166.99

1000 5169.12 5166.99 5166.99 5166.99 5166.99 5166.99

400 600 5168.96 5166.83 5166.83 5166.83 5166.83 5166.83

800 5168.96 5166.83 5166.83 5166.83 5166.83 5166.83

1000 5168.96 5166.83 5166.83 5166.83 5166.83 5166.83

nl00mosB(92)/47 100 400 5153.76 5153.76 5153.76 5153.76 5153.76 5153.76
600 5153.76 5153.76 5153.76 5153.76 5153.76 5153.76

1000 5153.76 5153.76 5153.76 9153.76 5153.76 5153.76

200 400 5153.52 5153.52 5153.52 5153.52 5153.52 5153.52

600 5153.52 5153.52 5153.52 5153.52 5153.52 5153.52

1000 5153.52 5153.52 5153.52 5153.52 5153.52 5153.52

400 600 5153.41 5153.41 5153.41 5153.41 5153.41 5153.41

800 5153.41 5153.41 5153.41 5153.41 5153.41 5153.41

1000 5153.41 5153.41 5153.41 5153.41 5153.41 5153.41

n200mosA(181)/94 100 400 7461.99 7438.99 7415.55 7415.55 7389.73 7390.03
600 7461.99 7438.99 7415.55 7415.55 7389.73 7390.03

1000 7461.99 7438.99 7415.55 7415.55 7389.73 7390.03

200 400 7460.89 7437.88 7414.63 7414.63 7388.79 7389.07

600 7460.18 7437.29 7414.19 7414.19 7388.08 7388.40

1000 7460.18 7437.29 7414.19 7414.19 7388.08 7388.40

400 600 7460.71 7437.72 7414.55 7414.55 7388.74 7389.02

800 7459.83 7436.96 7413.93 7413.93 7387.73 7388.06

1000 7459.83 7436.96 7413.93 7413.93 7387.73 7388.06

n200mosB(184)/88 100 400 8240.86 8204.49 8149.48 8150.15 8121.35 8121.35
600 8240.86 8204.48 8149.48 8150.15 8121.35 8121.35

1000 8240.86 8204.48 8149.48 8150.15 8121.35 8121.35

200 400 8240.16 8204.14 8148.58 8149.25 8120.48 8120.48

600 8239.81 8203.66 8147.97 8148.64 8119.92 8119.92

1000 8239.81 8203.66 8147.97 8148.64 8119.92 8119.92

400 600 8240.01 8204.02 8148.37 8149.03 8120.33 8120.33

800 8239.64 8203.48 8147.81 8148.47 8119.73 8119.73

1000 8239.64 8203.48 8147.81 8148.47 8119.73 8119.73

n300mosA(181)/94 100 400 9188.24 9161.32 9112.40 9112.40 9048.53 9048.74
600 9188.24 9161.32 9112.40 9112.40 9048.53 9048.74

1000 9188.24 9161.32 9112.40 9112.40 9048.53 9048.74

200 400 9187.43 9160.00 9111.39 9111.39 9047.80 9047.86

600 9187.42 9159.99 9111.33 9111.33 9047.78 9047.83

1000 9187.42 9159.99 9111.33 9111.33 9047.78 9047.83

400 600 9187.34 9159.88 9111.20 9111.20 9047.70 9047.75

800 9187.30 9159.85 9111.17 9111.17 9047.66 9047.71

1000 9187.30 9159.85 9111.17 9111.17 9047.66 9047.71

! AddPickUpNodes is only applied to the tours in the reference set R after & iterations have been completed.

22

Table 4: Average travel costs for GRASP and GRASP+PR (cont’d)

Instance ¥ Q GRASP GRASP GRASP+PR GRASP+PR! GRASP+PR GRASP+PR!
k=100 k=200 Kk =50 Kk =50 Kk =100 k=100

n300mosB(279)/138 100 400 9318.91 9289.10 9237.74 9237.74 9189.72 9189.82
600 9318.88 9289.05 9237.74 9237.74 9189.70 9189.80

1000 9318.88 9289.05 9237.74 9237.74 9189.70 9189.80

200 400 9317.34 9287.16 9235.96 9235.96 9188.18 9188.22

600 9317.13 9286.97 9235.78 9235.78 9187.94 9187.97

1000 9317.03 9286.89 9235.67 9235.67 9187.82 9187.85

400 600 9316.91 9286.66 9235.54 9235.54 9187.70 9187.75

800 9316.69 9286.54 9235.37 9235.37 9187.55 9187.59

1000 9316.69 9286.54 9235.37 9235.37 9187.55 9187.59

n400mosA(358)/172 100 400 11095.70 11072.80 11030.90 11030.90 11016.20 11016.20
600 11095.70 11072.80 11030.90 11030.90 11016.20 11016.20

1000 11095.70 11072.80 11030.90 11030.90 11016.20 11016.20

200 400 11094.50 11071.50 11029.40 11029.40 11014.80 11014.80

600 11094.30 11071.30 11029.20 11029.20 11014.60 11014.60

1000 11094.30 11071.30 11029.20 11029.20 11014.60 11014.60

400 600 11094.20 11071.30 11029.00 11029.00 11014.50 11014.50

800 11094.10 11071.10 11028.80 11028.80 11014.30 11014.30

1000 11094.00 11071.10 11028.80 11028.80 11014.30 11014.30

n400mosB(364)/183 100 400 10868.20 10828.50 10757.50 10758.10 10740.60 10741.40
600 10868.10 10828.20 10757.40 10758.10 10740.50 10741.30

1000 10868.10 10828.20 10757.40 10758.10 10740.50 10741.30

200 400 10865.80 10826.10 10754.70 10755.30 10737.80 10738.50

600 10865.10 10825.50 10754.10 10754.70 10737.20 10738.00

1000 10865.10 10825.50 10754.00 10754.70 10737.10 10737.90

400 600 10865.10 10825.60 10753.80 10754.50 10737.00 10737.80

800 10864.60 10825.00 10753.40 10754.00 10736.50 10737.30

1000 10864.60 10824.90 10753.30 10754.00 10736.50 10737.30

n500mosA(453)/232 100 400 11823.80 11777.10 11712.20 11712.20 11661.00 11661.00
600 11823.70 11777.00 11712.10 11712.10 11660.90 11660.90

1000 11823.70 11777.00 11712.10 11712.10 11660.90 11660.90

200 400 11822.00 11774.50 11709.80 11709.80 11658.60 11658.60

600 11821.60 11774.20 11709.50 11709.50 11658.30 11658.30

1000 11821.60 11774.20 11709.40 11709.50 11658.30 11658.30

400 600 11821.60 11774.30 11709.50 11709.60 11658.50 11658.50

800 11821.30 11773.80 11709.20 11709.20 11658.10 11658.10

1000 11821.30 11773.80 11709.20 11709.20 11658.10 11658.10

n500mosB(454)/228 100 400 12306.90 12267.60 12136.00 12136.00 12097.30 12097.30
600 12306.80 12267.50 12135.90 12135.90 12097.10 12097.10

1000 12306.70 12267.50 12135.90 12135.90 12097.10 12097.10

200 400 12305.70 12266.30 12134.50 12134.50 12095.90 12095.90

600 12305.40 12265.90 12134.00 12134.00 12095.30 12095.30

1000 12305.40 12265.90 12134.00 12134.00 12095.30 12095.30

400 600 12305.40 12265.70 12133.90 12133.90 12095.30 12095.30

800 12305.20 12265.60 12133.70 12133.70 12095.00 12095.00

1000 12305.10 12265.60 12133.60 12133.60 12095.00 12095.00

! AddPickUpNodes is only applied to the tours in the reference set R after & iterations have been completed.

23

Table 5: Average CPU times (in seconds) for the different classes of instances for the
different heuristics

Instance GRASP GRASP GRASP+PR GRASP+PR! GRASP+PR GRASP+PR!
k=100 &k =200 K =30 K =50 k=100 K =100
n100mosA(91)/42 0.30 0.58 0.67 0.66 1.43 1.31
n100mosB(92)/47 0.25 0.48 0.61 0.57 1.32 1.16
n200mosA(181)/94 1.88 3.67 2.62 2.34 5.63 4.88
n200mosB(184)/88 2.31 4.42 3.42 3.11 7.27 6.56
n300mosA(181)/94 7.20 13.97 9.12 8.00 19.26 16.80
n300mosB(279)/138 8.08 15.65 9.18 8.11 19.82 16.65
n400mosA (358) /172 20.12 40.18 21.56 18.28 45.07 37.18
n400mosB(364)/183 19.04 37.97 20.52 17.24 42.41 34.94
n500mosA (453)/232 37.74 75.32 35.75 28.60 73.28 59.34
n500mosB(454) /228 38.44 77.07 36.98 30.53 76.33 63.77
Average time 13.54 26.93 14.04 11.74 29.18 24.26

1 AddPickUpNodes is only applied to the tours in the reference set R after k iterations have been completed.

24

Table 6: Average travel costs for MA and GRASP+PR

Instance 5 Q MA GRASP+PR GRASP+PR GRASP+PR GRASP+PR
K =50 K =30 K = 100 x =100

Average Average Best Average Best

n100mosA(91)/42 100 400 5274.23 5167.50 5167.50 5167.50 5167.50
600 5232.19 5167.50 5167.50 5167.50 5167.50

1000 5243.14 5167.50 5167.50 5167.50 5167.50

200 400 5268.42 5166.99 5166.99 5166.99 5166.99

600 5215.64 5166.99 5166.99 5166.99 5166.99

1000 5189.47 5166.99 5166.99 5166.99 5166.99

400 600 5170.98 5166.83 5166.83 5166.83 5166.83

800 5168.91 5166.83 5166.83 5166.83 5166.83

1000 5167.87 5166.83 5166.83 5166.83 5166.83

n100mosB(92)/47 100 400 5272.99 5153.76 5153.76 5153.76 5153.76
600 5261.24 5153.76 5153.76 5153.76 5153.76

1000 5263.58 5153.76 5153.76 5153.76 5153.76

200 400 5231.55 5153.52 5153.52 5153.52 5153.52

600 5236.76 5153.52 5153.52 5153.52 5153.52

1000 5185.84 5153.52 5153.52 5153.52 5153.52

400 600 5172.61 5153.41 5153.41 5153.41 5153.41

800 5156.03 5153.41 5153.41 5153.41 5153.41

1000 5160.39 5153.41 5153.41 5153.41 5153.41

n200mosA(181)/94 100 400 7646.87 7415.55 7338.39 7390.03 7338.39
600 7560.72 7415.55 7338.39 7390.03 7338.39

1000 7549.46 7415.55 7338.39 7390.03 7338.39

200 400 7715.88 7414.63 7337.06 7389.07 7337.06

600 7515.59 7414.19 7336.01 7388.40 7336.01

1000 7457.90 7414.19 7336.01 7388.40 7336.01

400 600 7581.82 7414.55 7336.01 7389.02 7336.01

800 7471.26 7413.93 7335.37 7388.06 7335.37

1000 7418.96 7413.93 7335.37 7388.06 7335.37

n200mosB(184)/88 100 400 8329.73 8150.15 8024.34 8121.35 8024.34
600 8289.96 8150.15 8024.34 8121.35 8024.34

1000 8211.91 8150.15 8024.34 8121.35 8024.34

200 400 8433.09 8149.25 8022.70 8120.48 8022.70

600 8233.01 8148.64 8021.54 8119.92 8021.54

1000 8187.13 8148.64 8021.54 8119.92 8021.54

400 600 8292.87 8149.03 8021.54 8120.33 8021.54

800 8178.86 8148.47 8021.42 8119.73 8021.42

1000 8149.09 8148.47 8021.42 8119.73 8021.42

n300mosA(181)/94 100 400 9613.65 9112.40 8978.63 9048.74 8944.07
600 9321.98 9112.40 8978.63 9048.74 8944.07

1000 9239.73 9112.40 8978.63 9048.74 8944.07

200 400 9612.50 9111.39 8978.33 9047.86 8943.58

600 9289.82 9111.33 8978.33 9047.83 8943.58

1000 9148.37 9111.33 8978.33 9047.83 8943.58

400 600 9228.90 9111.20 8978.30 9047.75 8943.51

800 9156.36 9111.17 8978.22 9047.71 8943.50

1000 9104.33 9111.17 8978.22 9047.71 8943.50

25

Table 7: Average travel costs for MA and GRASP+PR (cont’d)

Instance 5y Q MA GRASP+PR GRASP+PR GRASP+PR GRASP+PR
Kk =50 k=50 Kk =100 k=100

Average Average Best Average Best

n300mosB(279)/138 100 400 9807.17 9237.74 9132.86 9189.82 9055.51
600 9476.11 9237.74 9132.61 9189.80 9055.42

1000 9412.23 9237.74 9132.61 9189.80 9055.42

200 400 9816.74 9235.96 9132.53 9188.22 9054.67

600 9377.53 9235.78 9132.08 9187.97 9054.43

1000 9270.51 9235.67 9131.58 9187.85 9054.23

400 600 9376.53 9235.54 9131.58 9187.75 9054.14

800 9189.02 9235.37 9131.56 9187.59 9054.14

1000 9189.70 9235.37 9131.56 9187.59 9054.14

n400mosA(358)/172 100 400 13303.94 11030.90 10822.30 11016.20 10822.30
600 11802.30 11030.90 10822.30 11016.20 10822.30

1000 11912.59 11030.90 10822.30 11016.20 10822.30

200 400 12940.68 11029.40 10821.30 11014.80 10821.30

600 11447.40 11029.20 10821.00 11014.60 10821.00

1000 10972.00 11029.20 10821.00 11014.60 10821.00

400 600 11781.90 11029.00 10821.00 11014.50 10821.00

800 11259.50 11028.80 10820.70 11014.30 10820.70

1000 11018.23 11028.80 10820.70 11014.30 10820.70

n400mosB(364)/183 100 400 13338.54 10758.10 10518.80 10741.40 10516.30
600 11687.35 10758.10 10518.80 10741.30 10516.30

1000 10996.21 10758.10 10518.80 10741.30 10516.30

200 400 12937.36 10755.30 10515.50 10738.50 10513.00

600 11311.26 10754.70 10514.30 10738.00 10511.90

1000 10694.08 10754.70 10514.30 10737.90 10511.90

400 600 11652.05 10754.50 10514.30 10737.80 10511.90

800 11030.08 10754.00 10514.00 10737.30 10511.50

1000 10772.36 10754.00 10514.00 10737.30 10511.50

n500mosA (453)/232 100 400 19272.46 11712.20 11550.50 11661.00 11417.30
600 14664.66 11712.10 11550.50 11660.90 11417.30

1000 13965.66 11712.10 11550.50 11660.90 11417.30

200 400 18218.14 11709.80 11550.10 11658.60 11413.40

600 14321.33 11709.50 11550.10 11658.30 11412.50

1000 12151.28 11709.50 11550.10 11658.30 11412.50

400 600 13691.69 11709.60 11550.10 11658.50 11412.50

800 12444.84 11709.20 11550.10 11658.10 11411.90

1000 12347.79 11709.20 11550.10 11658.10 11411.90

n500mosB(454)/228 100 400 18430.17 12136.00 11956.80 12097.30 11956.80
600 14450.89 12135.90 11956.80 12097.10 11956.80

1000 13477.41 12135.90 11956.80 12097.10 11956.80

200 400 18041.28 12134.50 11955.30 12095.90 11955.30

600 14363.94 12134.00 11955.10 12095.30 11955.10

1000 12455.25 12134.00 11955.10 12095.30 11955.10

400 600 13752.26 12133.90 11955.10 12095.30 11955.10

800 12883.73 12133.70 11955.00 12095.00 11955.00

1000 12350.01 12133.60 11955.00 12095.00 11955.00

26

