
Transportation Research Part D 47 (2016) 104–135
Contents lists available at ScienceDirect

Transportation Research Part D

journal homepage: www.elsevier .com/ locate / t rd
Chemical reaction optimization for solving a static bike
repositioning problem
http://dx.doi.org/10.1016/j.trd.2016.05.005
1361-9209/� 2016 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: ceszeto@hku.hk (W.Y. Szeto).
W.Y. Szeto a,⇑, Ying Liu b, Sin C. Ho c

a The University of Hong Kong Shenzhen Institute of Research and Innovation, Shenzhen, China
bDepartment of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
cDepartment of Economics and Business Economics, Aarhus University, Fuglesangs Allé 4, Building 2628, 320, 8210 Aarhus V, Denmark

a r t i c l e i n f o a b s t r a c t
Article history:
 In this paper, the single-vehicle static repositioning problem is studied. The objective of
repositioning is to minimize the weighted sum of unmet customer demand and opera-
tional time on the vehicle route. To solve this problem, chemical reaction optimization
(CRO) is proposed to handle the vehicle routes, and a subroutine is proposed to determine
the loading and unloading quantities at each visited station. An enhanced version of CRO is
proposed to improve the solution quality of the original CRO by adding new operators,
rules, and intensive neighbor solution search methods. The concept of a neighbor-node
set is proposed to narrow the solution search space. To illustrate the efficiency and accu-
racy of the enhanced CRO, different test scenarios are set and the results obtained from
IBM ILOG CPLEX, the original CRO, and the enhanced CRO are compared. The computational
results indicate that the enhanced CRO provides high-quality solutions with shorter com-
puting times than those of IBM ILOG CPLEX and provides better solutions than the original
CRO. The results also demonstrate that incorporation of the two neighbor-node sets into
the enhanced CRO improves the solution quality, and the probability of running the
intensive search should increase with iteration in the final part of the main stage of the
algorithm to obtain better solutions.
� 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Bicycle riding is a green mode of transportation. It is an alternative to the use of private cars (Fürst, 2014) and can be used
as a feeder mode to public transportation by serving as the last-mile mode for passengers. This mode has been researched
widely, including, but not limited to, bike safety (e.g., Bai et al., 2013), cyclist choice behavior (e.g., Caulfield et al., 2012),
bicycle commuting (e.g., Buehler, 2012; Thigpen et al., 2015), e-bikes (e.g., Fyhri and Fearnley, 2015), bike network design
(e.g., Lu, 2016), bike network flow analysis (e.g., Kitthamkesorn et al., 2016), and bike sharing (e.g., Fishman et al., 2014a;
Castillo-Manzano et al., 2015).

Bike sharing is currently very popular worldwide. As of 12 April 2016, public bike-sharing systems were available in about
1019 cities and included approximately 1,324,530 bicycles around the world (Meddin and DeMaio, 2015). Bike sharing can
enhance the shift to modes other than motor vehicles and the use of public transport and can reduce CO2 emissions and other
pollutant emissions frommotorized traffic to improve air quality. Ricci (2015) reported on user surveys worldwide that 2% of
private car usage has shift to bicycles in London (London BCH), 7% in Lyon, France (Vélo’v), 9% inWashington, D.C., United States

http://crossmark.crossref.org/dialog/?doi=10.1016/j.trd.2016.05.005&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.trd.2016.05.005
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ceszeto@hku.hk
http://dx.doi.org/10.1016/j.trd.2016.05.005
http://www.sciencedirect.com/science/journal/13619209
http://www.elsevier.com/locate/trd

W.Y. Szeto et al. / Transportation Research Part D 47 (2016) 104–135 105
(CapitalBikeshare), and19% inMelbourne,Australia (MelbourneBike Share). Theoverall distance traveledbymotorvehicleshas
been reduced by bike sharing in most of the investigated cities except for London, even when the additional vehicle usage
introduced by repositioning the bikes is considered (Fishman et al., 2014a). In London (Goodman and Cheshire, 2014) and
Washington, D.C. (Shaheen et al., 2014), the use of bike sharing to rail stations was significantly higher, and in Paris (Shaheen
et al., 2014), the use to Metro stations was higher. However, an analysis of the use of bike sharing in Melbourne revealed that
the number of trips was significantly higher for docking stations located in areas with relatively less accessible public transit
opportunities, which suggests that bike sharing can be a potential substitute for public transport in addition to connecting to
it (Fishman et al., 2014b). It is therefore important to conduct bike-sharing research to examine its true benefits and effects.

A common phenomenon of bike-sharing is that the number of bikes required at some stations is insufficient to satisfy the
user demandwhile other stations have an excess of bicycles. Bicycles are thusmoved from stations with excess bikes to those
with insufficient bikes to lower the total unmet demand. This operational problem is called a bike repositioning problem.

There are two types of bike repositioning problems: user-based and vehicle-based. User-based repositioning problems
refer to cases in which price incentives are provided to customers to encourage them to return their bicycles to nearby
underused stations. Very few papers (Fricker and Gast, 2014; Pfrommer et al., 2014; Ruch et al., 2014; Singla et al., 2015)
have studied the user-based repositioning problem; most existing studies deal with vehicle-based repositioning problems.
In these problems, vehicles are deployed to redistribute bicycles among stations. These problems are also known as bike-
sharing rebalancing problems (BRPs) (Dell’Amico et al., 2014) and require the determination of vehicle routes and loading
and unloading quantities at each visited station. If only one vehicle is deployed to operate bicycle repositioning, the resultant
bike repositioning problem can be viewed as a special one-commodity pickup-and-delivery capacitated vehicle routing
problem studied by Hernández-Pérez and Salazar-González (2004) and Hernández-Pérez and Salazar-González (2007).

In general, there are two types of vehicle-based repositioning problems: static and dynamic. If the operation is performed
at night, the number of bicycles in each station and the number each station requires are often known before repositioning
takes place and remain unchanged during the repositioning operation. This problem is referred to as a static bike reposition-
ing problem. A dynamic repositioning problem considers changes in the number of bicycles in each station and the number
required in each station over time. This type of repositioning is always operated during the day. To the best of our knowl-
edge, very few studies (Caggiani and Ottomanelli, 2012; Contardo et al., 2012; Regue and Recker, 2014; Brinkmann et al.,
2015a, 2015b; Labadi et al., 2015) have examined the dynamic bike repositioning problem, and most existing studies deal
with the static bike repositioning problem.

Previous studies of vehicle-based repositioning problems have considered different measures in the objective function,
including (1) the total travel time (cost) of the vehicle (Benchimol et al., 2011; Chemla et al., 2013; Di Gaspero et al., 2013a;
Dell’Amico et al., 2014); (2) the total operational cost of repositioning, including the vehicles’ travel time and the operational
time for loadingandunloading (Raviv et al., 2013;DiGaspero et al., 2013a; Papazeket al., 2013;Rainer-Harbachet al., 2015); (3)
the total absolute deviation from the target number of bicycles at each station (Di Gaspero et al., 2013a, 2013b; Papazek et al.,
2013; Rainer-Harbach et al., 2015); (4) the total unmet demand for bicycles and lockers (Contardo et al., 2012); (5) the sum of
the squared deviations between the target and final inventory levels over all stations (Brinkmann et al., 2015a); (6) the sum of
the relocation cost and lost user cost (Caggiani and Ottomanelli, 2012); (7) the total penalty cost at all stations (Raviv et al.,
2013; Ho and Szeto, 2014; Forma et al., 2015); and (8) the expected number of due date violations (Brinkmann et al.,
2015b). The objectives are normally determined according to the concerns of the bike-sharing operator.

Vehicle-based repositioning problems can be formulated with various operational constraints. For example, the routing
constraint proposed by Benchimol et al. (2011) forced the deployed vehicle to visit each station exactly once. However, Raviv
et al. (2013) introduced a routing constraint that did not require all stations to be visited. They also limited the repositioning
duration by the repositioning time constraint. Benchimol et al. (2011) and Chemla et al. (2013) did not consider the repo-
sitioning time constraint but added another constraint that required the inventory level of each station equal to its target
level after repositioning. Meanwhile, Nair and Miller-Hooks (2011) introduced a probabilistic level-of-service constraint
such that the repositioning activity was required to satisfy a certain proportion of all near-term demand scenarios in the
planning horizon but ignored the routing constraint. The operational constraints included in the problems should be related
to the application. These constraints determine the complexity of the problems.

Exact methods, such as branch-and-cut algorithms (see Dell’Amico et al., 2014; Erdoğan et al., 2014, 2015), can be used to
solve vehicle-based repositioning problems. However, it is more complicated to solve a vehicle-based bike repositioning
problem than a vehicle routing problem (VRP) because the former further considers loading and unloading quantities at each
node. The bike repositioning problem is also an NP-hard problem because a VRP is already NP-hard. It is intractable to use
exact methods to solve large, realistic repositioning problems. Previous studies (e.g., Raviv et al., 2013; Ho and Szeto, 2014)
have also illustrated this point by conducting numerical experiments. Hence, most of the existing literature focuses on the
development of inexact methods to obtain good solutions with short computing times.

A brief summary of inexact solution methods are as follows.

� Approximation method
o 9.5-approximation algorithm (Benchimol et al., 2011)

� Heuristics or metaheuristics
o Cluster-first route-second (Schuijbroek et al., 2013)
o Iterated tabu search (Ho and Szeto, 2014)

106 W.Y. Szeto et al. / Transportation Research Part D 47 (2016) 104–135
o PILOT and variable neighborhood descent (Kloimüllner et al., 2014; Rainer-Harbach et al., 2015)
o GRASP and variable neighborhood descent (Kloimüllner et al., 2014; Rainer-Harbach et al., 2015)
o Variable neighborhood search (VNS) (Kloimüllner et al., 2014; Rainer-Harbach et al., 2015)
o GRASP hybridized with path relinking (Papazek et al., 2014)

� Hybrid heuristic and exact methods
o branch-and-cut algorithm with tabu search (Chemla et al., 2013)
o 3-step math heuristic (Forma et al., 2015)

Most of these inexact methods do not consider problem properties and station characteristics. For example, in reality, not
all stations need to be visited by the repositioning vehicles, for several reasons. First, the stations at which the demand for
bikes equals the supply do not require extra bikes when the objective is to minimize unmet demand, neither should the bikes
at those stations be taken away; thus it is not necessary to visit these ‘‘balanced” stations. Second, some stations may not be
reached by the vehicles due to their short operational time. Third, it is not necessary for the trucks to visit all stations that
have more bikes than required (i.e., pickup stations), especially when the objective is to minimize the total unmet demand
and the total supply from all pickup stations is greater than the total demand from stations that have fewer bikes than
required (i.e., drop-off stations), Fourth, the pickup stations may not have sufficient total supply for the drop-off stations.
In such a case, even if the trucks visit all drop-off stations, the total demand from all drop-off stations cannot be satisfied.
Hence, it is unwise to visit all drop-off stations. Only Ting and Liao (2013) and Ho and Szeto (2014, 2016) considered the
characteristics of the stations to narrow the solution search space and to develop efficient heuristics to solve their problems.
They classified stations into pickup and drop-off stations and made use of the station characteristic in problem-solving.

The preceding heuristics applied to BRPs are mainly classical heuristics. Many recently developed heuristics have not been
used to solve BRPs. These recently developed heuristics have been applied tomany applications with great success. For exam-
ple, the chemical reaction optimization algorithm (CRO) is a newly proposed population-basedmetaheuristic that mimics the
interactionsbetweenmolecules in a reaction (LamandLi, 2010). The total numberof solutions kept simultaneously by the algo-
rithmmay change from time to time (Lam and Li, 2010). CRO has the ability to avoid getting the search stuck at local minima.
Unlikeotherheuristics, CROallows thediversificationand intensificationof solutions tooccur automatically rather thanusinga
fixed sequence of operators for these purposes. Moreover, as indicated by Lam and Li (2010), CROmay be considered an opti-
mization algorithm that allows users to use their favorable heuristic components for specific optimization problems, owing to
the changeable components of CRO, including the criteria andmechanisms of various operators. The extents of intensification
and diversification in the solution search are controlled easily by the operators. Hence, this meta-heuristic can be applied to a
wide range of optimization problems and has already been proven to performwell in solving classic NP-hard problems, such as
thequadratic assignmentproblem, the resource-constrainedproject schedulingproblem, and the channel assignmentproblem
(e.g., Lamand Li, 2010). It also has hadwide application in various fields, such as the fuzzy rule learning problem (e.g., Lamet al.,
2012), sensor deployment for air pollutionmonitoring (e.g., Yu et al., 2012), and stock portfolio selection (e.g., Xu et al., 2011).
However, the performance of CRO in solving BRPs is unknown. Therefore, we are interested in improving CRO and testing the
performance of the improved algorithm to solve our studied problem.

In this paper, the (single-vehicle) static repositioning problem is studied and a modified version of the formulation pro-
posed by Raviv et al. (2013) is developed. The objective of repositioning is to minimize the weighted sum of the unmet cus-
tomer demand and the operational time on the vehicle’s route, which is different from the BRPs studied in the literature.
Hence, existing methods to solve BRPs cannot be directly applied to our problem. CRO is proposed to handle the vehicle
route, and a subroutine is proposed to determine the loading and unloading quantities at each visited station. To make
CRO suitable for the solution of our static repositioning problem, an enhanced version of CRO is proposed. New operators
and neighbor solution search methods are added to the original CRO. Two concepts of neighbor-node sets associated with
each station are proposed to narrow the solution search space. A candidate station belongs to at least one of the two
neighbor-node sets of another station based on the deviation from the demand at the candidate station and the operational
time of an arc between them (which includes the travel time along the arc and the expected time for loading or unloading
bicycles at the candidate station). This concept provides competitive advantages to CRO in the solution of static repositioning
problems with a large size. To illustrate the efficiency and accuracy of the enhanced CRO, different test scenarios are set up,
and the results obtained from IBM ILOG CPLEX, the original CRO, and the enhanced CRO are compared. In particular, the per-
formance of the newly introducing features to CRO is demonstrated.

The contributions of this paper are as follows.

1. This paper proposes a new heuristic for the solution of a static BRP. The proposed heuristic makes use of the problem
property (e.g., the objective function and station characteristic) to solve the loading and unloading subproblem. It is dif-
ferent from and more efficient than other methods (e.g., Rainer-Harbach et al., 2015) that rely on solving the subproblem
as a linear programming or max-flow subproblem in each iteration. The solution space is reduced with the use of the pro-
posed two new neighbor-node sets.

2. This paper shows that CRO can be used to quickly obtain good solutions to large routing problems. To the best of our
knowledge, it is one of the first applications of CRO to routing problems with great success and the first for BRPs.

3. The paper improves upon the traditional CRO to solve our BRP. The results demonstrate that the enhanced version per-
forms better than the traditional one in terms of solution quality.

W.Y. Szeto et al. / Transportation Research Part D 47 (2016) 104–135 107
4. This paper proposes novel operators and concepts of neighbor-node sets that can also be incorporated into other heuris-
tics to solve routing problems, including but not limited to BRPs.

The reminder of this paper is as follows. Section ‘Formulation’ depicts the problem formulation. Section ‘Solution method’
describes the solution method. Section ‘Numerical studies’ presents the numerical results. Finally, Section ‘Conclusion’ pro-
vides conclusions.

Formulation

The bike-sharing system is represented by a complete direct graph G0 ¼ ðV0;A0Þ, where V0 and A0 are sets of nodes and
arcs, respectively. The set of nodes is composed by a set of stations denoted by V ¼ f1;2; . . . ;Ng and the depot (denoted by 0),
where N is the number of stations. Each node is characterized by its initial inventory s0i , final inventory si, demand qi, and
capacity Ci (in terms of number of bicycles). If qi < s0i ði 2 VÞ, station i is a pickup station, belongs to the set of pickup stations
S, and can provide s0i � qi bicycles to the drop-off stations. If qi ¼ s0i ði 2 VÞ, station i is called a balanced station and belongs to
the set of balanced stations B. If qi > s0i ði 2 VÞ, station i is a drop-off station, belongs to the set of drop-off stations D, and
should ideally be supplied by qi � s0i bicycles.

A single vehicle with the capacity Q is used to redistribute bicycles within the repositioning duration T. It starts from the
depot empty and travels to assigned stations to load and unload bikes. It may not visit all stations due to time limitations. It
picks up yLi bikes at an assigned pickup station ði 2 SÞ and drops off yUi bikes at a visited drop-off station ði 2 DÞ. It visits each
station no more than once before finally returning to the depot empty at the end of the operation. The route is formed by a
sequence of arcs. Whether an arc is on the route is defined by a binary variable xij ði; j 2 V0Þ. It equals one if ði; jÞ 2 A0 is on the
route; and zero otherwise. Each arc ði; jÞ 2 A0 is associated with an operational time tij that includes the travel time along the
arc and the expected time required to load or unload bicycles at station j (see Rainer-Harbach et al. (2015)). Each arc is also
associated with a flow variable f ij ði; j 2 V0Þ, which represents the number of bikes on the vehicle when traveling from node i
to node j.

The repositioning problem is formulated as follows.
Min z ¼
X
i2V

wi þ l �
X

i;j2V0 ;i–j

tij � xij ð1Þ

s:t:
wi P qi � si; 8i 2 V ð2ÞX
j2V

x0j ¼ 1; ð3Þ
X

j2V0 ;j–i

xij 6 1; 8i 2 V ð4Þ
X

j2V0 ;j–i

xij ¼
X

j2V0 ;j–i

xji; 8i 2 V0 ð5Þ
X

i;j2V0 ;i–j

tij � xij 6 T; ð6Þ

gj P gi þ 1� Gð1� xijÞ; 8i 2 V0; j 2 V; i– j ð7ÞX
j2V

f 0j ¼ 0; ð8Þ

f ij 6 Q � xij; 8i 2 V0; j 2 V0; i– j ð9Þ
si < Ci; 8i 2 V ð10Þ
si ¼ s0i � yLi þ yUi ; 8i 2 V ð11Þ
yLi � yUi ¼

X
j2V0 ;j–i

f ij �
X

j2V0 ;j–i

f ji; 8i 2 V ð12Þ

yUi ¼ min maxðqi � s0i ; 0Þ �
X

j2V0 ;j–i

xij;
X

j2V0 ;j–i

f ji

 !
; 8i 2 V ð13Þ

yLi 6 min maxðs0i � qi;0Þ �
X

j2V0 ;j–i

xij; Q �
X

j2V0 ;j–i

f ji

 ! !
; 8i 2 V ð14Þ

X
i2V

yLi ¼
X
i2V

yUi ; ð15Þ

yLi þ yUi P
X

j2V0 ;j–i

xij; 8i 2 V ð16Þ

108 W.Y. Szeto et al. / Transportation Research Part D 47 (2016) 104–135
xij 2 f0;1g; 8i 2 V0; j 2 V0; i– j ð17Þ
xii ¼ 0; 8i 2 V0 ð18Þ
yLi P 0; integer; 8i 2 V ð19Þ
yUi P 0; integer; 8i 2 V ð20Þ
f ij P 0; 8i 2 V0; j 2 V0; i– j ð21Þ
gi P 0; 8i 2 V0 ð22Þ
wi P 0; 8i 2 V ð23Þ
where l is the weight associated with the vehicle’s total operational time and G is the number of nodes involved in the net-
work (i.e., G ¼ N þ 1). gi is an auxiliary variable associated with each node to define the sub-tour elimination constraint. wi is
an auxiliary variable associated with each station. Its minimum value, denoted by w�

i , is the unmet demand at station i, i.e.,
w�

i ¼ maxðqi � si;0Þ. This condition implies that w�
i ¼ min wi s.t. wi P qi � si and wi P 0.

Objective (1) aims to minimize the weighted sum of two terms: the total number of the unsatisfied customers (or total
unmet demand) reflected by

P
i2Vwi and the vehicle’s total operational time

P
i;j2V0 ;i–j tij � xij. Note that

P
i2Vwi is equivalent toP

i2Vw
�
i because the objective function is minimized.

Constraint (2) defines one of the two conditions of the unmet demand at each station. (The second one is defined by con-
dition (23).) Constraint (3) states that the vehicle leaves the depot exactly once. Constraint (4) requires that each station can
be visited by the vehicle at most once. Constraint (5) is the vehicle flow conservation condition, which ensures that the vehi-
cle must leave the assigned station after visiting that station and that the vehicle must return to the depot. Constraint (6)
ensures that the repositioning operation must be finished within the repositioning duration T . Constraint (7) is used to
eliminate sub-tours. Constraint (8) ensures that the vehicle leaves the depot empty. Constraint (9) is the vehicle capacity
constraint; it ensures that the number of bicycles on the vehicle on each arc is not greater than the vehicle capacity Q .
Constraint (10) requires that the final inventory at each station should not exceed the station capacity.

Constraints (11)–(16) are all related to the loading and unloading quantities. Constraint (11) depicts the conservation of
bicycles at each station; it defines the final inventory of each station. Constraint (12) states the conservation of bicycles on
each vehicle: the difference between loading and unloading quantities at a station equals the difference between the quan-
tities of bicycles on the vehicle when it reaches and leaves the station. Constraint (13) ensures that the unloading quantities
equal the minimum value of two terms: the number of additional bicycles needed by station i and the number of bicycles on
the vehicle when the vehicle reaches station i. If the station i 2 S (qi < s0i), maxðqi � s0i ;0Þ will equal 0, which makes the
unloading quantity yUi equal 0. Thus, constraint (13) implies that the unloading quantities at all pickup stations are zeros.
Constraint (14) requires that the loading quantity at a station should not be greater than the number of bicycles supplied
by that station and greater than the available spaces on the vehicle when it arrives at the station. The loading quantity at
a station is not simply subject to the station condition itself and the vehicle capacity but also depends on the number of bicy-
cles needed by the drop-off stations along the rest of the vehicle route. For this reason, ‘‘6” is used in constraint (14) rather
than ‘‘=”. If the station i 2 D (qi > s0i), the loading quantity yLi is zero, because maxðs0i � qi;0Þ is zero. Therefore, constraint (14)
limits the loading quantities yLi at drop-off stations to zero. Constraint (15) ensures that all bicycles loaded onto the vehicle
are unloaded at the end of the repositioning operation. Constraint (16) implies that the loading/unloading operation must be
carried out at each station visited by the vehicle.

Constraint (17) defines xij as a binary variable. Constraint (18) states that the vehicle cannot travel from a node to the
same node. Constraints (19) and (20) ensure that the loading and unloading quantities are non-negative integers. Constraints
(21)–(23) state that the number of bicycles on the vehicle and the auxiliary variables are all non-negative.
Solution method

In this section, an enhanced version of CRO is proposed to solve the static repositioning problem. For both the original
CRO and the enhanced CRO, the station characteristics are used in the operators and a solution adjustment strategy is con-
sidered to ensure the feasibility and quality of the solutions. These heuristics are also mainly used to handle route structures,
and a subroutine is proposed and incorporated into them to determine the loading and unloading quantities at each visited
station. The major differences between the original CRO and the enhanced CRO are stated as follows. First, newly defined
operators are applied to obtain new solutions. Second, two neighbor-node sets are considered to narrow the solution search
space. Third, an intensive search method is added to ensure a sufficient local search. Fourth, some of the elementary reac-
tions and rules are adjusted to improve the solution quality.
Chemical reaction optimization

The major components of the CRO framework are molecules and elementary reactions.

W.Y. Szeto et al. / Transportation Research Part D 47 (2016) 104–135 109
Molecules
Molecules, denoted by M, are characterized by the following properties.

(1) Molecular structure x: It corresponds to a solution to the problem. In the bike repositioning problem, the molecular
structure corresponds to a vehicle route.

(2) Potential energy (PE): It quantifies the molecular structure in terms of the objective function value in the optimization
problem. i.e., PE corresponds to the objective function value.

(3) Kinetic energy (KE): It measures the tolerance of having a worse solution and represents the ability to escape from a
local minimum.

Elementary reactions
Elementary reactions occur as a result of the conservation of energy. They are distinct from one another in their ways of

manipulating the energies of reactant molecules. Normally, four types of elementary reactions are taken into consideration,
including (1) on-wall ineffective collision, (2) decomposition, (3) inter-molecular ineffective collision, and (4) synthesis.

On-wall ineffective collision. An on-wall ineffective collision refers to a reaction in which a molecule M hits the wall of the
container and bounces back. The molecular structure of the resultant molecule M0 can be expressed as x0 ¼ OnwallðxÞ,
where Onwall is a neighborhood search operator that is used to obtain the resultant molecule’s structure by modifying
the structure of a reactant within a small extent. If the resultant molecule possesses a lower PE than the total energy of a
reactant molecule, on-wall ineffective collision will take place and the molecular structure stored in the memory will be
updated to x0. Mathematically, the if-condition can be stated as
PEx þ KEx P PEx0 ; ð24Þ

where PEx and KEx are the potential and kinetic energy held by the reactant whose molecular structure is represented by x.
In this type of reaction, a fraction of KE lost to the environment is considered, and this process is controlled by the parameter
KELossRate, where KELossRate is the maximum percentage of KE loss. A random number q 2 ½KELossRate;1� determines the
fraction of KE that is possessed by the resultant molecule. Based on the theory of energy conservation, the KE of the molecule
with its structure x0 and KE loss (denoted by KEloss) can be respectively calculated by
KEx0 ¼ ðKEx þ PEx � PEx0 Þ � q; and ð25Þ

KEloss ¼ ðKEx þ PEx � PEx0 Þ � ð1� qÞ: ð26Þ

The energy loss is stored in the central buffer to support decomposition, which is depicted next. If inequality (24) does not

hold, the on-wall ineffective collision is not permitted to occur and the molecular structure saved in the memory retains x.
The pseudocode of the on-wall ineffective collision is as follows:

Subroutine 1. OnwallIneffCollision(M, buffer)

Input: A molecule M with its profile (i.e., the structure x, PEx, and KEx) and the central energy buffer buffer
1. Obtain x0 ¼ OnwallðxÞ
2. Calculate PEx0

3. if PEx þ KEx P PEx0 then
4. Get q randomly in interval ½KELossRate;1�
5. Calculate KE of resultant molecule
6. Update buffer ¼ buffer þ ðKEx þ PEx � PEx0 Þ � ð1� qÞ
7. Update the profile of M by x ¼ x0, PEx ¼ PEx0 and KEx ¼ KEx0

8. end if
9. Output M and buffer
Decomposition. The process in which a molecule hits the wall and decomposes into two molecules is called decomposition.
Unlike ineffective collision, decomposition is a violent reaction after which the molecular structures of the two resultant
molecules x0

1 and x0
2 are very different from the original molecule with structure x. The two molecular structures are

obtained by the Decom operator:
DecomðxÞ ¼ ½x0
1;x

0
2�:
The molecule decomposes into two molecules if the total potential energy of the resultant molecules is less than the total
energy of the reactant:
PEx þ KEx P PEx0
1
þ PEx0

2
: ð27Þ
The KE of the two new molecules are
KEx0
1
¼ ðPEx þ KEx � PEx0

1
� PEx0

2
Þ � k; and ð28Þ

110 W.Y. Szeto et al. / Transportation Research Part D 47 (2016) 104–135
KEx0
2
¼ ðPEx þ KEx � PEx0

1
� PEx0

2
Þ � ð1� kÞ; ð29Þ
where k 2 ½0;1� is a random number to help assigning KE to the resultants.
Given inequality (27), decomposition only occurs when KEx is sufficiently large. The KE of the resultant molecules are

calculated according to Eqs. (28) and (29). However, the KE of the molecule continues to decrease in a sequence of on-
wall ineffective collisions due to energy loss. If the reactants do not possess sufficient total energy for decomposition, an
alternative criterion stated below for decomposition to occur is checked:
PEx þ KEx þ buffer P PEx0
1
þ PEx0

2
: ð30Þ
If the above holds, the energy saved in the central buffer is adopted to support the decomposition and KEx0
1
and KEx0

2
are

obtained by:
KEx0
1
¼ ðPEx þ KEx � PEx0

1
� PEx0

2
þ bufferÞ �m1 �m2; and ð31Þ

KEx0
2
¼ ðPEx þ KEx � PEx0

1
� PEx0

2
þ bufferÞ �m3 �m4; ð32Þ
where m1, m2, m3, and m4 are independent random numbers within [0,1].
If decomposition occurs under either of the two conditions (27) and (30), the molecular structures of the resultants are

stored in the memory and the original one is removed. If neither condition holds, the reaction cannot occur and the molec-
ular structure retains x.

The pseudocode of the decomposition is as follows:

Subroutine 2. Decomposition(M, buffer)

Input: A molecule M with its profile (i.e., the structure x, PEx, and KEx) and the central energy buffer buffer
1. Obtain ½x0

1;x
0
2� ¼ DecomðxÞ

2. Calculate PEx0
1
and PEx0

2

3. Let temp1 ¼ PEx þ KEx � PEx0
1
� PEx0

2

4. Create a Boolean variable Success
5. if temp1 P 0 then
6. Success = TRUE
7. Create two new molecules M0

1 and M0
2

8. Get k randomly in interval [0,1]
9. Calculate KE of resultant molecules
10. Calculate KE of resultant molecules
11. Assign x0

1, PEx0
1
and KEx0

1
to the profile of M0

1, and x0
2, PEx0

2
and KEx0

2
to the profile of M0

2
12. else if temp1 þ buffer P 0 then
13. Success = TRUE
14. Get m1, m2, m3, and m4 independently randomly in interval [0,1]
15. Calculate KE of resultant molecules
16. Calculate KE of resultant molecules
17. Update buffer ¼ temp1 þ buffer � KEx0

1
� KEx0

2

18. Assign x0
1, PEx0

1
and KEx0

1
to the profile of M0

1, and x0
2, PEx0

2
and KEx0

2
to the profile of M0

2
19. else
20. Success = FALSE
21. end if
22. Output M0

1, M
0
2, Success, and buffer
Inter-molecular ineffective collision. Two molecules,M1 andM2, are involved in inter-molecular ineffective collision. They col-
lide and bounce away. This reaction is not vigorous. The resultants’ molecular structures,x0

1 andx0
2, are obtained by the Inter

operator:
Interð½x1;x2�Þ ¼ ½x0
1;x

0
2�:
Inter-molecular ineffective collision occurs if the following energy requirement is satisfied:
PEx1 þ KEx1 þ PEx2 þ KEx2 P PEx0
1
þ PEx0

2
: ð33Þ
A random number p 2 ½0;1� is then used to determine the KE of the resultant molecules, as stated below.
KEx0
1
¼ ðPEx1 þ KEx1 þ PEx2 þ KEx2 � PEx0

1
� PEx0

2
Þ � p; and ð34Þ

KEx0
2
¼ ðPEx1 þ KEx1 þ PEx2 þ KEx2 � PEx0

1
� PEx0

2
Þ � ð1� pÞ: ð35Þ

W.Y. Szeto et al. / Transportation Research Part D 47 (2016) 104–135 111
The molecular structures x1 and x2 saved in the memory are replaced by the newly obtained structures x0
1 and x0

2. If
inequality (33) does not hold, the molecular structures remain unchanged.

The pseudocode of the inter-molecular ineffective collision is as follows:

Subroutine 3. InterMoleIneffCollision(M1;M2)

Input: Molecule M1 with its profile and M2 with its profile
1. Obtain ½x0

1;x
0
2� ¼ Interð½x1;x2�Þ

2. Calculate PEx0
1
and PEx0

2

3. Calculate temp2
4. if temp2 P 0 then
5. Get p randomly in interval [0,1]
6. Calculate KE of resultant molecule
7. Calculate KE of resultant molecule
8. Update the profile of M1 by x1 ¼ x0

1, PEx1 ¼ PEx0
1
and KEx1 ¼ KEx0

1
, and the profile of M2 by x2 ¼ x0

2,
PEx2 ¼ PEx0

2
and KEx2 ¼ KEx0

2

9. end if
10. Output M1 and M2
Synthesis. Synthesis refers to the reaction of twomolecules that collide and combine with each other. A newmolecular struc-
ture x0 is obtained by synthesizing the two molecules with their structures x1 and x2. The operator is defined as:
Synthð½x1;x2�Þ ¼ x0:
Synthesis occurs if the following condition is met:
PEx1 þ KEx1 þ PEx2 þ KEx2 P PEx0 : ð36Þ

The KE of the new molecular structure is given by
KEx0 ¼ PEx1 þ KEx1 þ PEx2 þ KEx2 � PEx0 : ð37Þ

PEx0 is supposed to have a similar value to PEx1 and PEx2 . According to Eq. (37), KEx0 should be much larger than KEx1 and
KEx2 , which means that the probability of the resultant escaping from a local minimum is increased.

The pseudocode of the synthesis is as follows:

Subroutine 4. Synthesis(M1;M2)

Input: Molecules M1 and M2 with their profiles
1. Obtain x0 ¼ Synthð½x1;x2�Þ
2. Calculate PEx0

3. Create a Boolean variable Success
4. if PEx1 þ KEx1 þ PEx2 þ KEx2 P PEx0 then
5. Success = TRUE
6. Create one molecules M0

7. KEx0 ¼ PEx1 þ KEx1 þ PEx2 þ KEx2 � PEx0

8. Assign x0, PEx0 and KEx0 to the profile of M0

9. else
10. Success = FALSE
11. end if
12. Output M0 and Success
Application to the BRP

Solution representation
In the BRP, it is assumed that the vehicle always starts and finishes the repositioning exercise at the depot; thus the depot

must be the first and last element in the routing sequence array for all feasible solutions. Therefore, the depot is not present
in the sequence, and a solution is represented by a sequence of selected stations visited by the vehicle as shown in Fig. 1. This
sequence is presented by x ¼ ðr1; r2; . . . ; rnÞ, rl 2 V, l ¼ 1;2; . . . ;n where n is the total number of stations visited by the vehi-
cle. However, for notation purposes, we define r0 ¼ rnþ1 ¼ 0 (where 0 represents the depot).

Neighbor-node sets
To speed up the evaluation of potentially promising neighbor solutions in the search algorithm, two sorted neighbor-node

sets for each node i 2 V0 are created a priori.

3 2 7 5 1 6 4 9

Fig. 1. Solution representation.

112 W.Y. Szeto et al. / Transportation Research Part D 47 (2016) 104–135
(1) NodeNeighborCi:

The set is created as follows:
– fj 2 V n figjc nodes with the largest js0j � qjjg
– The nodes in NodeNeighborCi are then sorted in ascending order according to operational time tij,

j 2 NodeNeighborCi.
(2) NodeNeighborDi:

The set is created as follows:
– fj 2 V n figjc nodes with the smallest tijg
– The nodes in NodeNeighborDi are then sorted in ascending order according to s0j � qj, j 2 NodeNeighborDi.
The value of c is related to the repositioning duration T and the size of the considered network N as follows.
c ¼ min ðN � 1� jBjÞ; ð2nT
max þ N=2Þ=2� �

;3nT
max

� �
: ð38Þ
This equation is defined on the basis of the preliminary results of the CRO. nT
max is the estimated maximum number of

stations that could be visited by the vehicle during the repositioning duration T. For each instance, nT
max is obtained by run-

ning the CRO once. The value of c is the minimum of the following three terms: (1) the total number of stations excluding the
considered station i and the balanced stations; (2) the average of 2nT

max and N=2; and (3) 3nT
max. In the case in which N is large,

consideration of only twice the maximum number of stations possible in a vehicle route may not be adequate to find good
solutions. Hence in the second term, the average of 2nT

max and N=2 is taken into account to address the problem. Adding the
third term to Eq. (38) ensures that an adequate number of stations are considered for small-size instances and to avoid an
excessive number of stations to be considered for large-size instances. c is the number of stations considered for each node in
each neighbor-node set, and thus the total number of the stations considered in the sets NodeNeighborCi and NodeNeighborDi

is much larger than the value of c.
Initial solution construction and determination of loading and unloading quantities
An initial solution to the described problem is constructed as follows:

Step 1: The best three pickup nodes from NodeNeighborC0 are considered. One of them is randomly chosen to insert into
position 1 of the routing sequence x. Set l ¼ 2.
Step 2: A node is randomly chosen from NodeNeighborDrl�1 and inserted into position l of the routing sequence. The inser-
tion can only be performed if it does not lead to violation of constraint (6). Set l ¼ lþ 1. Repeat this step until constraint
(6) is violated.
Step 3: Given the routing sequence x constructed by the sequential heuristic, the number of bikes to load or unload at
each node can be calculated according to constraints (13)–(15) as shown in the following steps:
Step 3.1. Set the number of bikes on the vehicle Fbike ¼ 0. Set l ¼ 1. The station at position l is v ¼ rl.
Step 3.2. If v 2 S, the numbers of bikes to load and unload at station v are calculated by yLv ¼ minðs0v � qv ;Q � FbikeÞ and
yUv ¼ 0; If v 2 D, the numbers of bikes to load and unload at station v are yLv ¼ 0 and yUv ¼ minðqv � s0v ; Fbike; Cv � s0v Þ.
Update the number of bikes on the vehicle by Fbike ¼ Fbike þ yLv � yUv and l ¼ lþ 1. Repeat this step until l ¼ n.
Step 3.3. If Fbike ¼ 0, stop.
Step 3.4. If v ¼ rl 2 D, l ¼ l� 1.
Step 3.5. If v ¼ rl 2 S, the possible change in the loading quantity at station v is calculated: D ¼ minðyLv ; FbikeÞ. yLv and
Fbike are then revised by yLv ¼ yLv � D and Fbike ¼ Fbike � D. l ¼ l� 1. Go to step 3.3.

Solution adjustment
In this section, three operators are introduced to adjust or improve the routes obtained from the elementary reactions.

The main ideas of adjustment include (1) adding stations to a route to make full use of the repositioning duration, (2) making
infeasible solutions (due to violation of the time constraint) feasible by deleting nodes, and (3) rearranging the order of the
visited stations by 2-Opt to improve the solution quality. All of these operators are applied to modify the routes. For the oper-
ators introduced in Sections ‘Insertion of stations’ and ‘Removal of stations’, the loading/unloading quantities are recalcu-
lated according to step 3 of Section ‘Initial solution construction and determination of loading and unloading quantities’
only if a new route is obtained after the operators are used. For the operator introduced in Section ‘2-Opt’, the loading/
unloading quantities are calculated once a new feasible route is obtained.

W.Y. Szeto et al. / Transportation Research Part D 47 (2016) 104–135 113
Insertion of stations. InsertionOfStationsðÞ is triggered if T �Pi;j2V0 ;i–j tij � xij > 0:5t0, where t0 ¼Pi;j2V0 ;i–j tij=ðjV0j2 � jV0jÞ. The
following is the detailed procedure:

Step 1: The type of station v must be determined. This is done by comparing the number of bikes that can be picked up
(Ys) from the visited pickup stations with the number of bikes that can be dropped off (Yd) at the visited drop-off stations.
The number of bikes is calculated as follows: Ys ¼

P
i2S\x minðs0i � qi;QÞ and Yd ¼

P
i2D\x minðqi � s0i ;QÞ. If Ys > Yd, sta-

tion v should be a drop-off station; otherwise, it should be a pickup station.
Step 2: Randomly pick a position g in the routing sequence for insertion of station v .
Step 3: X is defined as the intersection of two sets NodeNeighborDrg�1 and NodeNeighborDr g . If X is not empty, then station
v ¼ argmaxi2Xjs0i � qij. Otherwise, v ¼ argmini2NodeNeighborCrg�1 trg�1 i. Xmay only consist of the type of station determined in
Step 1.
Step 4: Station v is inserted into position g if the insertion does not violate constraint (6).
Step 5: Steps 1–4 are repeated until it is no longer possible to insert more stations.

Removal of stations. RemovalOfStationsðÞ is triggered when the solutions obtained by applying any one of the modified reac-
tion operators introduced in Section ‘Reactions in the enhanced CRO’ are infeasible due to violation of constraint (6). To
determine the type of station to be removed, it is necessary to compare Ys with Yd. If Ys > Yd, a pickup station should be
removed; otherwise, a drop-off station should be removed. This continues until the solution becomes feasible.

2-Opt. 2-OptðÞ is applied to a feasible solution x in the enhanced CRO. This operator was originally developed for the trav-
eling salesman problem (Lin, 1965) to reduce the total distance traveled. This procedure considers the inversion of all pos-
sible sub-sequences (that consist of at least two nodes). The best improved feasible solution according to the objective
function replaces x, and the procedure stops. This differs from a traditional local search in which the search continues until
no improvement can be found. Fig. 2 shows the inversion of a sub-sequence of four nodes.

Reactions in the enhanced CRO
The four reactions in the enhanced CRO make use of reaction operators to generate new routes. The loading/unloading

quantities at the stations are calculated as in step 3 in Section ‘Initial solution construction and determination of loading
and unloading quantities’ once a new feasible route is obtained. The four reactions are given in the following subsections.

On-wall ineffective collision. The reaction uses the NewOnwall operator, which is a hybrid operator that consists of the
replacement operator replðxÞ and the swapping operator swapðxÞ. A new routing sequence is obtained by applying this
operator to an original routing sequence. In this process, the number of stations visited by the vehicle is unchanged and
involves twomain steps. First, the stations whose yLi ¼ 0 and yUi ¼ 0 are singled out, and the type (pickup or drop-off) of these
stations are identified. Second, either the replacement operator or the swapping operator is applied to obtain a new solution
where the choice is controlled by k 2 ð0;1Þ. If k > SwapWeight, where SwapWeight is the probability of choosing the swap-
ping operator, the replacement operator is applied to obtain new solutions; otherwise, the swapping operator is used. The
details of how these two operators work are stated below.

(1) Replacement

This operator replaces a node i 2 x with another node j R x. Either of the following cases will occur.
– 9yLv ¼ 0 and 9yUv ¼ 0 8v 2 x: The first node inxwhose yLv ¼ 0 and yUv ¼ 0 is denoted as i. If i 2 S (or i 2 D), then it is

replaced by j 2 D n ðD \xÞ (or j 2 S n ðS \xÞ).
– 9= yLv ¼ 0 or 9= yUv ¼ 0 8v 2 x: Node i 2 x is randomly chosen and replaced by j R x, which is also randomly chosen.
If we denote that node i is located in position h in the routing sequence, then the node located in position h� 1 is rh�1. The
replacement node j is randomly selected from a set of six nodes. This set is composed of the best three nodes of
NodeNeighborCrh�1 and the best three nodes of NodeNeighborDrh�1 .

Fig. 3 shows an example of how replðxÞ works. An integer in the routing sequence row represents a station number. An
integer in the loading instruction row stands for the number of loading/unloading quantities at the station concerned. Here, a
Molecular structure of M (ω)

5 2 7 6

Molecular structure of M’ ('ω)

5 9 6 7

9 8 3 1

2 8 3 1

Fig. 2. One possible solution obtained by 2-Opt.

Molecular structure and loading instructions of M (ω)

Routing sequence 5 2 7 4 9 8 3 1

Loading instructions 8 2 6 0 0 3 2 5

Molecular structure and loading instructions of M’ ('ω)

Routing sequence 5 2 7 6 9 8 3 1

Loading instructions 8 2 6 7 5 3 2 7

Fig. 3. replðxÞ for the on-wall ineffective collision.

Molecular structure of M (ω)

5 2 7 6 9 8 3 1

Molecular structure of M’ ('ω)

5 1 7 6 9 8 3 2

Fig. 4. swapðxÞ for the on-wall ineffective collision.

114 W.Y. Szeto et al. / Transportation Research Part D 47 (2016) 104–135
positive integer refers to loading quantities and a negative integer refers to unloading quantities. In this example, station 4 is
a drop-off station; it is the first station with a zero-loading instruction in the original routing sequence x. Applying the
replacement operator to the original routing sequencex, station 4 is replaced by a pickup station (station 6), which is chosen
from the neighbor-node sets of station 7. Because the new route obtained by the replacement operator is feasible, the load-
ing/unloading quantities are then recalculated. The total number of loading quantities at the pickup stations is 20, which is
the same as the total number of unloading quantities at the drop-off stations in the new solution.

(2) Swapping

This operator swaps node i 2 x with j 2 x. Either of the following cases will occur.
– 9yLv ¼ 0 and 9yUv ¼ 0 8v 2 x: The first node inxwhose yLv ¼ 0 and yUv ¼ 0 is denoted as i. If i 2 S (or i 2 D), then it is

swapped with j 2 x \ D (or j 2 x \ S).
– 9= yLv ¼ 0 or 9= yUv ¼ 0 8v 2 x: Non-adjacent nodes i 2 x and j 2 x are randomly chosen and swapped.
In Fig. 4, two drop-off stations (stations 1 and 2) are swapped to obtain a new solution.
The on-wall ineffective collision in the enhanced CRO incorporates the solution adjustment operators introduced in Sec-

tion ‘Solution adjustment’ in addition to NewOnwall. The pseudocode is given as follows.

Subroutine 5. NewOnwallIneffCollision(M, buffer)

Input: A molecule M with its profile (i.e., the structure x, PEx, and KEx) and the central energy buffer buffer
1. Obtain x0 ¼ NewOnwallðxÞ
2. Calculate PEx0

3. if T �Pi;j2V0 ;i–j tij � xij > 0:5t0

4. x0 ¼ InsersionOfStationsðx0Þ
5. else if T �Pi;j2V0 ;i–j tij � xij < 0
6. x0 ¼ RemovalOfStationsðx0Þ
7. end if
8. Obtain x0 ¼ 2� Optðx0Þ
9. if PEx þ KEx P PEx0 then
10. Get q randomly in interval ½KELossRate;1�
11. KEx0 ¼ ðKEx þ PEx � PEx0 Þ � q
12. Update buffer ¼ buffer þ ðKEx þ PEx � PEx0 Þ � ð1� qÞ
13. Update the profile of M by x ¼ x0, PEx ¼ PEx0 and KEx ¼ KEx0

14. end if
15. Output M and buffer

Remarks: Lines 3–8 are not executed in the original CRO, and line 1 in the modified CRO uses the proposed NewOnwall oper-
ator instead of the original Onwall operator. The original Onwall operator only uses the swapping operator.

W.Y. Szeto et al. / Transportation Research Part D 47 (2016) 104–135 115
Decomposition. The decomposition reaction in the enhanced CRO involves the NewDecom operator instead of Decom. Unlike
the NewOnwall operator, NewDecom applies to one vehicle routex to generate two new vehicle routes. The reaction involves
the following two steps.

Step 1: Two sub-sequences (sub1 and sub2) are obtained from x. The length (in terms of the number of nodes) of these
sub-sequences should be approximately the same.
Step 2: Two solutions (x1 andx2) are then selected randomly from the solution pool Pop. New solutions are obtained by
combining sub1 with x1 and sub2 with x2.

In step 2, a new solution x0
1 is obtained as follows:

Step 2.1: Two sets are created: X1 ¼ fi : i 2 ðsub1 [x1Þ \ Sg and X2 ¼ fi : i 2 ðsub1 [x1Þ \ Dg.
Step 2.2: To create a new solution, only dn=2e nodes with the largest js0i � qij (i 2 X1) and bn=2c nodes with the largest
js0i � qij (i 2 X2) are considered. The new solution is initiated with the pickup node i 2 X1 that is closest to the depot.
The remaining nodes in X1 and X2 are chosen randomly one by one and inserted into x0

1 sequentially.

To create the second solutionx0
2, repeat the same procedure but using sub2 andx2 instead. Fig. 5 illustrates how to obtain

two new solutions by applying NewDecomðxÞ to one solution.
As in the on-wall ineffective collision of the enhanced CRO, the decomposition reaction also incorporates the solution

adjustment operators introduced in Section ‘Solution adjustment’. The pseudocode is given as follows.

Subroutine 6. NewDecomposition(M, buffer)

Input: A molecule M with its profile (i.e., the structure x, PEx, and KEx) and the central energy buffer buffer
1. Obtain ½x0

1;x
0
2� ¼ NewDecomðxÞ

2. Calculate PEx0
1
and PEx0

2

3. if T �Pi;j2V0 ;i–j tij � xij > 0:5t0

4. x0
1 ¼ InsersionOfStationsðx0

1Þ
5. x0

2 ¼ InsersionOfStationsðx0
2Þ

6. else if T �Pi;j2V0 ;i–j tij � xij < 0
7. x0

1 ¼ RemovalOfStationsðx0
1Þ

8. x0
2 ¼ RemovalOfStationsðx0

2Þ
9. end if
10. Obtain x0

1 ¼ 2� Optðx0
1Þ and x0

2 ¼ 2� Optðx0
2Þ

11. Let temp1 ¼ PEx þ KEx � PEx0
1
� PEx0

2

12. Create a Boolean variable Success
13. if temp1 P 0 then
14. Success = TRUE
15. Create two new molecules M0

1 and M0
2

16. Get k randomly in interval [0,1]
17. KEx0

1
¼ temp1 � k

18. KEx0
2
¼ temp1 � ð1� kÞ

19. Assign x0
1, PEx0

1
and KEx0

1
to the profile of M0

1, and x0
2, PEx0

2
and KEx0

2
to the profile of M0

2
20. else if temp1 þ buffer P 0 then
21. Success = TRUE
22. Get m1 m2, m3, and m4 independently randomly in interval [0,1]
23. KEx0

1
¼ ðtemp1 þ bufferÞ �m1 �m2

24. KEx0
2
¼ ðtemp1 þ bufferÞ �m3 �m4

25. Update buffer ¼ temp1 þ buffer � KEx0
1
� KEx0

2

26. Assign x0
1, PEx0

1
and KEx0

1
to the profile of M0

1, and x0
2, PEx0

2
and KEx0

2
to the profile of M0

2
27. else
28. Success = FALSE
29. end if
30. Output M0

1, M
0
2, Success, and buffer
Remarks: Lines 3–10 are not executed in the original CRO, and line 1 in the modified CRO uses the proposed NewDecom oper-
ator instead of the original Decom operator. The original Decom operator uses the circular shift operator to obtain new solu-
tions. The circular shift operator is mentioned in Section ‘Intensive search’.

Inter-molecular ineffective collision. The inter-molecular ineffective collision adopts NewInterðxÞ to generate two new solu-
tions from two existing solutionsx1 andx2. New solutions are obtained by swapping sub-sequences (sub1 fromx1 and sub2

Molecular structure of M (ω)

5 2 7 6 9 8 3 1

Molecular structure of 1M ′ (1ω′)

5 2 7 + routing sequence 1ω

Molecular structure of 2M ′ (2ω′)

6 9 8 3 1 + routing sequence 2ω

Fig. 5. NewDecomðxÞ for the decomposition.

Molecular structure of 1M (1ω)

5 2 7 6 9 8 3 4

Molecular structure of 2M (2ω)

2 9 4 8 1 5 6 7

Molecular structure of 1M ′ (1ω′)

5 2 7 6 9 4 8 1

Molecular structure of 2M ′ (2ω′)

2 9 8 3 4 5 6 7

Fig. 6. NewInterðxÞ for the inter-molecular ineffective collision.

116 W.Y. Szeto et al. / Transportation Research Part D 47 (2016) 104–135
from x2) between the existing solutions. The starting position h is first determined randomly from 1; . . . ;n0, where
n0 ¼ minðn1;n2Þ and n1 and n2 are the numbers of stations considered by the two solutions. Next, the length of sub1, L, deter-
mined randomly from 1; . . . ;n0 � hþ 1. The length of sub2 is then set to be L. The feasible starting positions of sub2 in x2 are
therefore 1; . . . ;n2 � Lþ 1. Some of these feasible starting positions are removed based on the type of the first node of sub1.
Denote i and j as the first node of sub1 and sub2, respectively. If yLi ¼ 0 and yUi ¼ 0, then the positions with nodes that have the
same type as i will be removed because j should be chosen with a different type of station than i. Otherwise, the positions
with nodes that have different types from i will be removed because j with the same type as i should be chosen. The remain-
ing feasible positions are then randomly chosen. After exchanging the two subsequences, if sub1 \ ðx2 n sub2Þ –£, then the
duplicated nodes in sub1 are replaced with the node found by the replacement operator introduced in Section ‘On-wall inef-
fective collision’. A similar action is performed if sub2 \ ðx1 n sub1Þ –£. Fig. 6 shows an example of swapping two sub-
sequences when there are no stations with zero-loading instructions.

Other than NewInterðxÞ, the inter-molecular ineffective collision in the enhanced CRO also incorporates the solution
adjustment operators introduced in Section ‘Solution adjustment’. The pseudocode is stated below:

Subroutine 7. NewInterMoleIneffCollision(M1;M2)

Input: Molecule M1 with its profile and M2 with its profile
1. Obtain ½x0

1;x
0
2� ¼ NewInterð½x1;x2�Þ

2. Calculate PEx0
1
and PEx0

2

3. if T �Pi;j2V0 ;i–j tij � xij > 0:5t0

4. x0
1 ¼ InsersionOfStationsðx0

1Þ
5. x0

2 ¼ InsersionOfStationsðx0
2Þ

6. else if T �Pi;j2V0 ;i–j tij � xij < 0
7. x0

1 ¼ RemovalOfStationsðx0
1Þ

8. x0
2 ¼ RemovalOfStationsðx0

2Þ
9. end if
10. Obtain x0

1 ¼ 2� Optðx0
1Þ and x0

2 ¼ 2� Optðx0
2Þ

11. Let temp2 ¼ PEx1 þ KEx1 þ PEx2 þ KEx2 � PEx0
1
� PEx0

2

12. if temp2 P 0 then
13. Get p randomly in interval ½0;1�
14. KEx0

1
¼ temp2 � p

15. KEx0
2
¼ temp2 � ð1� pÞ

16. Update the profile of M1 by x1 ¼ x0
1, PEx1 ¼ PEx0

1
and KEx1 ¼ KEx0

1
, and the profile of M2 by x2 ¼ x0

2,
PEx2 ¼ PEx0

2
and KEx2 ¼ KEx0

2

17. end if
18. Output M1 and M2

Molecular structure of 1M (1ω)

5 2 7 6 9 8 3 4

Molecular structure of 2M (2ω)

2 9 5 7 1 3 1 8 4

Molecular structure of M ′ (ω′)

5 2 7 6 9 3 1 8 4

Fig. 7. SynthðxÞ for the synthesis.

W.Y. Szeto et al. / Transportation Research Part D 47 (2016) 104–135 117
Remarks: Lines 3–10 are not executed in the original CRO, and line 1 in the modified CRO uses the proposed NewInter oper-
ator instead of the original Inter operator. The original Inter operator uses the swapping operator, which is the same as the
original Onwall operator.

Synthesis. Synthesis uses SynthðxÞ to generate a new solution x0 by combining two existing solutions x1 and x2, as shown
in Fig. 7. Each existing solution is divided into two sub-sequences. The length of each subsequence is randomly determined.
The new solution is obtained by combining the first sub-sequence from x1 with the second sub-sequence from x2. If any of
the nodes in x0 are duplicated, then those in the second sub-sequence are replaced by nodes randomly selected from either
NodeNeighborCi or NodeNeighborDi.

The pseudocode of the synthesis, which also incorporates the solution adjustment operators introduced in Section ‘Solu-
tion adjustment’, is presented below.

Subroutine 8. NewSynthesis(M1;M2)

Input: Molecules M1 and M2 with their profiles
1. Obtain x0 ¼ Synthð½x1;x2�Þ
2. Calculate PEx0

3. if T �Pi;j2V0 ;i–j tij � xij > 0:5t0

4. x0 ¼ InsersionOfStationsðx0Þ
5. else if T �Pi;j2V0 ;i–j tij � xij < 0
6. x0 ¼ RemovalOfStationsðx0Þ
7. end if
8. Obtain x0 ¼ 2� Optðx0Þ
9. Create a Boolean variable Success
10. if PEx1 þ KEx1 þ PEx2 þ KEx2 P PEx0 then
11. Success = TRUE
12. Create one molecules M0

13. KEx0 ¼ PEx1 þ KEx1 þ PEx2 þ KEx2 � PEx0

14. Assign x0, PEx0 , and KEx0 to the profile of M0

15. else
16. Success = FALSE
17. end if
18. Output M0 and Success

Remarks: Lines 3–8 are not executed in the original CRO, and line 1 in the modified CRO uses the proposed Synth operator,
which is the same as the one in the original CRO.

Intensive search
Intensive search is composed by two operators: consecutive replacement and circular shift. The operator (either con-

secutive replacement or circular shift) that is adopted to obtain new solutions in the intensive search is randomly deter-
mined. More than one new solution can be generated by the intensive search, but only a feasible solution with the
minimum objective value is selected and treated as the resultant solution obtained from the intensive search. The energy
criterion (i.e., inequality (24)) for the occurrence of on-wall ineffective collision and the energy assignment Eqs. (25) and
(26) introduced in Section ‘On-wall ineffective collision’ are used in the intensive search because the intensive search per-
forms like an on-wall ineffective collision (without changing the total number of solutions in the solution pool after the
reaction). Subroutine 9 shows the framework of the intensive search. Success means that the energy criterion (inequality
(24)) is satisfied and that the new solution can be included in the solution pool Pop. The following are the details of the
two operators.

118 W.Y. Szeto et al. / Transportation Research Part D 47 (2016) 104–135
(1) Consecutive replacement

This operator is similar to the replacement operator in Section ‘On-wall ineffective collision’. One difference is that it now
begins to replace the nodes at the end of the route. Another difference is that instead of replacing just one node, as in the
replacement operator, up to five adjacent nodes are replaced.

Step 1: The node located in the last position n of routex is replaced by an unvisited node chosen from NodeNeighborCrn�1

and NodeNeighborDrn�1 . The replacement is chosen by following the procedure explained in Section ‘On-wall ineffective
collision’ (1). This is the first new solution. Set j ¼ 1.
Step 2: Set l ¼ 0. The node located in position h ¼ n� jþ l is replaced by randomly choosing a node from
NodeNeighborCrh�1 and NodeNeighborDrh�1 . Set l ¼ lþ 1. The replacement continues until l > j. This is considered the
ðjþ 1Þ-th new solution.
Step 3: Set j ¼ jþ 1, and repeat step 2 until j > minf4;n� 1g.

With this operator, up to five new solutions are created. The best feasible solution, denoted as
x0 ¼ ConsecutivereplacementðxÞ, is kept.

(2) Circular shift

This operator generates neighbor solutions by shifting the nodes rh; . . . ; rn to the left so that a different pickup station
(located in position h) is in position 1 and the stations originally located in positions 1; . . . ; h� 1 are moved to positions
n� hþ 2; . . . ; n, respectively. A maximum of two new solutions are generated with this operator by choosing the two pickup
locations (located in position h – 1) in the route that have the shortest operational time to the depot. The best feasible solu-
tion expressed byx0 ¼ CircularshiftðxÞ is retained. Fig. 8 shows that station 6 (a pickup station) is selected and 6;9; . . . ;1 are
shifted to the left so that 6 is in position 1.

Subroutine 9. IntensiveSearch()

Input: A molecule M with its profile (i.e., the structure x, PEx, and KEx) and the central energy buffer buffer
1. Get random t in the interval (0,1)
2. if t > 0:5 then
3. Obtain x0 ¼ ConsecutivereplacementðxÞ
4. else
5. Obtain x0 ¼ CircularshiftðxÞ
6. end if
7. Calculate PEx0

8. if Success then
9. Get q randomly in interval ½KELossRate;1�
10. Calculate KEx0 by Eq. (25)
11. Update buffer based on (26) i.e., buffer ¼ buffer þ ðKEx þ PEx � PEx0 Þ � ð1� qÞ
12. Update the profile of M by x ¼ x0, PEx ¼ PEx0 , and KEx ¼ KEx0

13. end if
14. Check for any new minimum solution
15. Output M and buffer
Implementation of enhanced and original CRO

The implementation details of the original CRO and the enhanced CRO are given in Algorithm 1 and Algorithm 2. The
flow charts for the original CRO and the enhanced CRO are shown in Figs. 9 and 10. Similar to the original CRO, the enhanced
CRO has three stages, including initialization, iteration, and final stage.
Molecular structure of M (ω)

5 2 7 6 9 8 3 1

Molecular structure of M’ ('ω)

6 9 8 3 1 5 2 7

Fig. 8. One possible solution obtained by circular shift.

Start

Initializtion

Inter-molecular
collision? YesNo

YesNo No Yes

Check for any new
min. point

Molecule selection
(two are chosen)

Satisfy the criteria of
synthesis?

Inter-molecular
ineffective collision Synthesis

Molecule selection
(one is chosen)

Satisfy the criteria of
decomposition?

DecompositionOn-wall ineffective
collision

Stopping criteria
matched

Obtain the global
min. point

Yes

End

No

Fig. 9. Flow chart for the original CRO (Lam and Li, 2010).

W.Y. Szeto et al. / Transportation Research Part D 47 (2016) 104–135 119
In the initiation stage (Subroutine 10), the values are assigned to the parameters and the initial solutions are generated
according to the simple construction heuristic described in Section ‘Initial solution construction and determination of load-
ing and unloading quantities’. The current best solution is set to be the feasible solution with the lowest objective function
value among all of the initial feasible solutions.

Subroutine 10. Initialization()

Input: Problem-specific information (objective function, constraints)
1. Assign parameter values.
2. Generate PopSize initial feasible solutions.
3. for each solution x do
4. Calculate PEx by setting it to be the objective function value zðxÞ.
5. Assign KEx with the value of InitialKE.
6. Assign Hitx ¼ 0
7. end for
8. Let the central energy buffer be buffer and buffer = 0
9. Determine the current best solution among all the initial solutions
10. Output Pop

The second stage includes the enhanced CRO main steps. Within the main steps, as in the original CRO, there are four prin-
ciple reactions in the enhanced version. For the enhanced CRO, a hybrid operator (replðxÞ and swapðxÞ) is adopted in the on-
wall ineffective collision, whereas only the swapping operator is used in the original CRO. Unlike NewDecomðxÞ in the
enhanced CRO, a circular shift is applied to obtain new solutions from the decomposition in the original CRO. For the
inter-molecular ineffective collision, the swapping of sub-sequences between solutions is used in the enhanced CRO,

Inter-molecular
collision? YesNo

YesNo No Yes

Check for any new
min. point

Molecule selection
(two are chosen)

Satisfy the criteria
of synthesis?

Inter-molecular
ineffective collision Synthesis

Molecule selection
(one is chosen)

Satisfy the criterion of
decomposition?

DecompositionOn-wall ineffective
collision

Stopping criterion
matched

Obtain the global
min. point

Yes

End

No Yes

Satisfy the criterion of
intensive search?

Yes

Intensive search

No

Start

Initializtion

Reach IntensivePoint?

No

Fig. 10. Flow chart for the enhanced CRO.

120 W.Y. Szeto et al. / Transportation Research Part D 47 (2016) 104–135
whereas the swapping operation, which is used in the on-wall ineffective collision, is used to obtain new solutions in the
original CRO. For synthesis, the operators adopted in the enhanced CRO and the original CRO are the same. At the end of each
iteration of the enhanced CRO, the current best solution is updated (i.e., the routing sequence and the objective function
value is stored in the memory) if a new solution with a lower objective function value is obtained. This current best solution
is the best value obtained by comparing all solutions in the pool. However, the original CRO determines the current best solu-
tion obtained by comparing all of the structures of a molecule (i.e., all of the solutions generated from a specific solution).

Another two differences between the original CRO and the enhanced CRO in the main steps are the definition of Hit, Hitx,
of each molecule and the decomposition criterion. In the enhanced CRO, Hitx in the decomposition criterion (Subroutine 11,
line 4) refers to the total number of consecutive iterations for either the on-wall ineffective collision or the inter-molecular
ineffective reactions (i.e., the total number of searches among the neighbor solutions) before the current best solution is
updated. For each molecule, if the current best solution is not updated after either the on-wall ineffective collision or the
inter-molecular ineffective collision occurs, Hitx is increased by one; otherwise, Hitx is reset to zero. a in the decomposition
criterion (Subroutine 11, line 4) is a parameter that represents the maximum number of consecutive iterations to undergo
either the on-wall ineffective collision or the inter-molecular ineffective reaction. The decomposition criterion Hitx � a > 0
means that no better solution is obtained after searching the neighbor solutions of the solution x with very similar struc-
tures a times. If such a criterion is met, the decomposition will be carried out to obtain a solution with a very different struc-
ture. Hitx is set to zero after the decomposition or synthesis has occurred. In the original CRO, the decomposition criterion
(Algorithm 1, line 7) is (Hit0x �minHitx > a). Hit0x is the number of collisions of any kind. minHitx records the number of

W.Y. Szeto et al. / Transportation Research Part D 47 (2016) 104–135 121
collisions when the solution obtains its current minimum value. Both Hit0x and minHitx are set to 0 when a new molecule is
created. It is possible that for a very poor current solution, even though the current best solution continues to be updated, the
quality would still be poor compared with other solutions after many reactions have been conducted, the search cannot
jump to another solution with a very different structure, and the search is conducted within the local region for a long time.
This is different from the enhanced CRO. If a considered solution is far from the current best solution, after searching the
neighbor region a times, it will be discarded by the enhanced CRO.

The third difference is the rule for the occurrence of synthesis. In the enhanced CRO, for the decomposition reaction to
occur, the number of solutions in Pop should be at least three (whereas other reactions require a smaller number). Moreover,
the number of solutions in the population is reduced only after synthesis occurs. Therefore, in the enhanced CRO, the con-
dition (PopSize > 3) is added to the synthesis criterion (Subroutine 11, line 15) to avoid Pop being too small to allow any reac-
tion, including decomposition, in the subsequent iteration.

The enhanced CRO main steps (see Subroutine 11) are run in the first part of the second stage until the total num-
ber of iterations reaches IntensivePoint. In the second part of the second stage, either intensive search or main
enhanced CRO steps is selected, and the selection is controlled by d. d is a function of the current number of iterations
stated as
d ¼ 1� ðmaxIteration� iterÞ=ðmaxIteration� IntensivePointÞ: ð39Þ
If a random number is less than d, one solution is selected from the solution pool and modified to obtain a new solution
with the intensive search; otherwise, the main CRO steps are applied. Based on definition (39) and line 8 of Algorithm 2 (the
criterion of intensive search), the probability of running an intensive search equals d and varies from 0 to 1 in the second part
of the second stage. It increases as the iteration continues.

The second stage repeats until the stopping criterion is matched. The stopping criterion is met if the number of
iterations equals the maximum number of iterations maxIteration. In the final stage, the best solution obtained is
output.

Subroutine 11. EnhancedCROMainStepsðÞ
Input: Pool of solutions Pop
1. Get random t in the interval ð0;1Þ
2. if t > MoleColl then
3. Select solution M from Pop randomly
4. if Hitx � a > 0 then
5. ðM0

1;M
0
2; SuccessÞ ¼ NewDecompositionðM; bufferÞ

6. if Success = TRUE then
7. Remove M from Pop
8. Add M0

1 and M0
2 to Pop

9. Hitx0
1
¼ 0 and Hitx0

2
¼ 0

10. end if
11. else
12. NewOnwallIneffCollisionðM; bufferÞ
13. else
14. Select two solutions M1 and M2 from Pop randomly
15. if KEx1 < b, KEx2 < b, and PopSize > 3 then
16. ðM0; SuccessÞ ¼ NewSynthesisðM1;M2Þ
17. if Success = TRUE then
18. Remove M1 and M2 from Pop
19. Add M0 to Pop
20. Hitx0 ¼ 0
21. end if
22. else
23. NewInterMoleIneffCollisionðM1;M2Þ
24. end if
25. end if
26. Check for any new minimum solution
27. Output Pop

122 W.Y. Szeto et al. / Transportation Research Part D 47 (2016) 104–135
Algorithm 1. Original CRO.

1. Pop = Initialization()
2. Let iter = 0
3. while iter <maxIteration do
4. Get random t in the interval ð0;1Þ
5. if t > MoleColl then
6. Select solution M from Pop randomly
7. if Hit0x �minHitx > a then
8. ðM0

1;M
0
2; SuccessÞ ¼ DecompositionðM; bufferÞ

9. if Success = TRUE then
10. Remove M from Pop
11. Add M0

1 and M0
2 to Pop

12. Hit0x0
1
¼ 0, Hit0x0

2
¼ 0, minHitx0

1
¼ 0, and minHitx0

2
¼ 0

13. end if
14. else
15. OnwallIneffCollisionðM; bufferÞ
16. else
17. Select two solutions M1 and M2 from Pop randomly
18. if KEx1 < b and KEx2 < b then
19. ðM0; SuccessÞ ¼ SynthesisðM1;M2Þ
20. if Success = TRUE then
21. Remove M1 and M2 from Pop
22. Add M0 to Pop
23. Hit0x0 ¼ 0
24. end if
25. else
26. InterMoleIneffCollisionðM1;M2Þ
27. end if
28. end if
29. iter ¼ iter þ 1
30. end while
31. Output the overall best solution and its objective function value
Algorithm 2. Enhanced CRO.

1. Pop = Initialization()
2. Let iter = 0
3. while the stopping criterion is not met do
4. if iter < IntensivePoint then
5. EnhancedCROMainStepsðÞ
6. else
7. Get random t in the interval ð0;1Þ
8. if t < d then
9. IntensiveSearchðÞ
10. else
11. EnhancedCROMainStepsðÞ
12. end if
13. end if
14. iter ¼ iter þ 1
15. end while
16. Output the overall best solution and its objective function value

Numerical studies

The proposed heuristic was tested on the same set of instances used by Rainer-Harbach et al. (2015), which were gener-
ated on the basis of 2011 real-world data provided by Citybike Vienna. The operational time tij is the average driving time

0 179 358 537 716 895 1074 1253 1432 1611 1790
106.5

106.6

106.7

106.8

106.9

107.0

107.1

107.2
A

ve
ra

ge
 o

bj
ec

tiv
e

va
lu

e

InitialKE
0 179 358 537 716 895 1074 1253 1432 1611

106.8

106.9

107.0

107.1

107.2

107.3

A
ve

ra
ge

 o
bj

ec
tiv

e
va

lu
e

β
10 20 30 40 50 60 70 80 90 100 110 120

106.5

106.6

106.7

106.8

106.9

107.0

107.1

107.2

107.3

A
ve

ra
ge

 o
bj

ec
tiv

e
va

lu
e

PopSize

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
106.7

106.8

106.9

107.0

107.1

107.2

107.3

A
ve

ra
ge

 o
bj

ec
tiv

e
va

lu
e

MoleColl
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

106.7

106.8

106.9

107.0

107.1

107.2

A
ve

ra
ge

 o
bj

ec
tiv

e
va

lu
e

KELossRate
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

106.6

106.7

106.8

106.9

107.0

107.1

107.2

A
ve

ra
ge

 o
bj

ec
tiv

e
va

lu
e

SwapWeight

100 500 900 1300 1700 2100 2500 2900 3300 3700
104.0

104.4

104.8

105.2

105.6

106.0

106.4

106.8

107.2

A
ve

ra
ge

 o
bj

ec
tiv

e
va

lu
e

α

35000 45000 55000 65000 75000 85000 95000
104.3

104.4

104.5

104.6

104.7

104.8

104.9

105.0

105.1
A

ve
ra

ge
 o

bj
ec

tiv
e

va
lu

e

IntensivePoint

Fig. 11. Parameter tuning for the enhanced CRO.

W.Y. Szeto et al. / Transportation Research Part D 47 (2016) 104–135 123
from node i to j; it considers an estimated time for parking the vehicle and loading and unloading bicycles at node i. The
demand at each station was set to be 50% of the station’s capacity. In this section, unless otherwise specified,
l ¼ 0:00001, which implies that the number of unsatisfied customers is very important to consider.

The proposed heuristic was coded in Visual Studio using C++, and all computational experiments were carried out on a
computer with an Intel i7-3770 CPU @ 3.4 GHz and 32 GB RAM. Unless otherwise specified, ‘‘enhanced CRO” refers to the
version in which the two neighbor sets are incorporated.

Parameter tuning

The values of the parameters are crucial to the average performance of the proposed heuristic. Therefore, the parameter
values are tuned. According to the mechanisms for obtaining new solutions and the criteria of reaction occurrence, the values
of parameters related to energy, i.e., InitialKE and b, control the ability to obtain new solutions and have a direct and close
relationship with the PE of the problem, which usually varies widely among different problems. Therefore, fixing parameter
values may not exert their best effects on optimization problems with very different objective function values (Szeto et al.,
2014). To tune these parameter values, the method proposed by Szeto et al. (2014) was used. An initial objective value,
denoted InitialObj, was calculated by

P
i2Vðmaxðqi � s0i ;0ÞÞ to represent the total number of unsatisfied customers before

repositioning occurs. InitialKE and b were first tuned on the basis of this initial objective value. The trial values used to tune
the ratios of these two parameters were the multiple of the initial objective value InitialObj. Other parameters were tuned in
the following order: PopSize, MoleColl, KELossRate, SwapWeight, a, and IntensivePoint. Twenty random seeds were used. The
stopping criterion was set to reach a maximum of 100,000 iterations. The average of the best objective values from 20 runs
determined the parameter values.

The test instance used for parameter tuning is a small-size instance consisting of 60 stations. The vehicle capacity is set at
20. The repositioning duration is 21,600 s (6 h). The initial objective value (InitialObj) is 179. The initial values of the param-
eters were set as follows: InitialKE = 179; b = 179; PopSize = 30; MoleColl = 0.5; KELossRate = 0.5; SwapWeight = 0.5; a = 100;
and IntensivePoint = 70,000. The first parameter to be tuned was InitialKE. This parameter can take on different values from
the set f0;179;358; . . . ;1790g, whereas the other parameters took on their initial values as depicted above. Setting InitialKE
to 1074 yields the best average results. The next parameter in the tuning process is b, with an InitialKE of 1074 and the other

124 W.Y. Szeto et al. / Transportation Research Part D 47 (2016) 104–135
parameters at their initial values, b 2 f179;360; . . . ;1611g. According to the second plot of Fig. 11, setting b to 1074 yields
the best result. The tuning process continues in this manner until every parameter is tuned.

The tuning results are plotted in Fig. 11. The values of the parameters are set as follows: InitialKE = 1074 (i.e., 6 � Ini-
tialObj); b = 1074; PopSize = 100; MoleColl = 0.7; KELossRate = 0.2; SwapWeight = 0.8; a = 1700; and IntensivePoint = 60,000.
These parameter values are applied in the following numerical experiments, except for InitialKE and b, for which a ratio
of 6 is used. Regarding the value of MoleColl, approximately 70% of the overall reactions are bimolecular reactions, which
indicates that the operators for the synthesis and inter-molecular ineffective collision reaction are more efficient than those
for the decomposition and on-wall ineffective collision reactions for searching for good solutions. The value of SwapWeight is
far greater than the midpoint 0.5, which shows that the swapping operator performs much better than the replacement
operator. However, the average performance of the heuristic for SwapWeight values of 0.9 and 1.0 is worse than that for a
SwapWeight of 0.8, which indicates that the replacement operator is still necessary to obtain good solutions.

Effectiveness of incorporating neighbor-node sets into enhanced CRO

In this section, the Vienna instances studied by Rainer-Harbach et al. (2015) were used. Small-size to medium-size
instances are defined as those with 30–90 stations. Large-size instances considered contain 120, 240, and 300 stations. Three
repositioning durations were used: T = 14,400 s, T = 21,600 s, and T = 28,800 s. Two vehicle capacities (in terms of number of
bicycles) were considered: Q = 10 and Q = 20.

In our study, two neighbor-node sets, NodeNeighborCi and NodeNeighborDi, are introduced to improve the efficiency of the
proposed heuristic by narrowing the search space. To illustrate the effectiveness of introducing the neighbor-node sets, the
comparisons of the performance of the enhanced CRO with and without neighbor-node sets were conducted using the var-
ious instances, repositioning durations, and vehicle capacities stated above. To ensure a fair comparison, for each scenario
(i.e., a given combination of instance, repositioning duration, and vehicle capacity) and each seed, the enhanced CRO without
neighbor-node sets was first executed with a maxIteration value of 100,000. The number of solutions generated by the
enhanced CRO without neighbor-node sets was then recorded and set as the stopping criterion for the enhanced CRO when
incorporating the neighbor-node set(s).

Tables 1–3 present the results obtained with the enhanced CRO without neighbor-node sets and those obtained with the
enhanced CRO with individual consideration of NodeNeighborCi and NodeNeighborDi under different repositioning durations.
Gap (in percent) in the tables refers to the difference in the average of the best objective values of the concerned scenario
obtained from 20 runs by the two variants under comparison, normalized by the average objective value obtained from
the enhanced CRO without neighbor-node sets. The value of Gap implies the relative improvement (or deterioration) on
the demand satisfaction of the enhanced CRO with neighbor-node sets to the enhanced CRO without the neighbor-node sets.
If it is negative, the performance of the enhanced CRO is improved by the introduction of the neighbor-node set; it is weak-
ened otherwise. CPU denotes the average running time in seconds.

As shown in Tables 1–3, almost all of the values for Gap are non-positive (with only three exceptions for the results
obtained with the enhanced CRO with NodeNeighborCi and three exceptions for the enhanced CRO with NodeNeighborDi),
whereas the average running times of the two versions are about the same, which indicates that the general performance
of the enhanced CRO with a neighbor-node set is better than that without. It is beneficial to incorporate neighbor-node sets
into the CRO to solve the BRP. Moreover, the average standard deviation (SD) decreases when either of the neighbor-node
sets is applied to the enhanced CRO, which means that the objective values obtained with the variants are less dispersed
and that the variants give more or less similar objective values even if different random seeds are used. We take the results
under the repositioning duration T = 28,800 s as an example. The average SD for the results from the enhanced CRO without
neighbor-node sets is 1.26 and is greater than that from the enhanced CRO with NodeNeighborCi (0.74) and that with
NodeNeighborDi (0.94).

For the results under different repositioning durations (i.e., T = 14,400 s, T = 21,600 s, and T = 28,800 s), the average Gap
obtained with the enhanced CRO with NodeNeighborCi have larger absolute values than those obtained with the enhanced
CRO with NodeNeighborDi, which implies that the overall solution quality of the enhanced CRO with NodeNeighborCi is better
for the scenarios considered. However, for some of the scenarios, the Gap obtained with the enhanced CRO with
NodeNeighborCi is less negative, which means that the solution quality of the enhanced CRO with NodeNeighborDi is better
for the scenario, especially for the scenarios for which the Gap obtained with the enhanced CRO with NodeNeighborCi is pos-
itive. For example, regarding the result of T = 14,400 s, jVj ¼ 90, and Q = 10, the Gap obtained with the enhanced CRO with
NodeNeighborCi is 0.36%, whereas the Gap obtained with the enhanced CRO with NodeNeighborDi is �2.80%. This mixture of
conclusions suggests that the enhanced CRO proposed in this paper should consider both the neighbor-node sets
NodeNeighborCi and NodeNeighborDi to obtain new solutions for different-size instances, vehicle capacities, and repositioning
durations.

Tables 4–6 show a comparison of the results between the enhanced CRO with and without the two neighbor-node sets
under different repositioning durations. The enhanced CRO was executed with the same number of solutions generated by
the enhanced CRO without neighbor-node sets used as the stopping criterion. The results show that the solution quality of
the enhanced CRO is improved by incorporating both neighbor-node sets. By comparing the results with those in Tables 1–3,
we found that the solution quality of the enhanced CRO with both neighbor-node sets has been further improved compared
to the enhanced CRO without the sets. For example, the average Gap obtained with the enhanced CRO for T = 28,800 s is

Table 1
Result comparison of the enhanced CRO with and without neighbor-node sets (T = 14,400 s).

jVj Q Enhanced CRO without neighbor-node sets Enhanced CRO with NodeNeighborCi Gap (%) Enh nced CRO with NodeNeighborDi Gap (%)

Best Average CPU SD Best Average CPU SD Bes Average CPU SD

30 10 68.13860 68.13860 1.69 0.00 68.13860 68.13860 1.69 0.00 0.00 68 4040 68.14040 1.68 0.00 0.00
20 60.14100 60.14181 1.71 0.00 60.14100 60.14118 1.71 0.00 0.00 63 3860 63.13860 1.70 0.00 4.98

60 10 139.13380 139.13380 1.53 0.00 139.13380 139.13380 1.47 0.00 0.00 139 3440 139.13440 1.46 0.00 0.00
20 126.14400 126.99226 1.61 0.36 127.14160 127.14160 1.56 0.00 0.12 127 4160 127.54169 1.58 0.49 0.43

90 10 253.14400 260.17693 1.60 2.24 261.12060 261.12537 1.54 0.00 0.36 252 4400 252.89352 1.58 0.77 �2.80
20 241.14340 243.79109 1.62 1.27 241.14400 241.74319 1.61 0.49 �0.84 243 4100 245.04181 1.60 0.44 0.51

120 10 314.13500 314.13569 1.52 0.00 314.13500 314.13500 1.43 0.00 0.00 314 3680 314.13680 1.47 0.00 0.00
20 295.14400 297.03959 1.54 0.43 294.14400 294.74322 1.48 1.07 �0.77 294 4400 295.34238 1.50 1.16 �0.57

240 10 744.14040 745.02738 1.47 0.30 745.12960 745.12960 1.36 0.00 0.01 736 4400 736.99112 1.44 0.36 �1.08
20 725.14340 727.23959 1.51 0.94 724.14340 724.74193 1.41 0.86 �0.34 725 4160 725.64139 1.48 0.50 �0.22

300 10 843.12420 843.12774 1.22 0.00 843.13920 843.13920 1.18 0.00 0.00 837 4340 842.08071 1.18 1.85 �0.12
20 830.14220 834.93914 1.28 1.47 833.14160 833.14160 1.20 0.00 �0.22 828 4400 829.49136 1.26 0.57 �0.65

Avg 1.52 0.58 1.47 0.20 �0.14 1.49 0.51 0.04

W
.Y.Szeto

et
al./Transportation

R
esearch

Part
D

47
(2016)

104–
135

125
a

t

.1

.1

.1

.1

.1

.1

.1

.1

.1

.1

.1

.1

Table 2
Result comparison of the enhanced CRO with and without neighbor-node sets (T = 21,600 s).

jVj Q Enhanced CRO without neighbor-node sets Enhanced CRO with NodeNeighborCi Gap (%) Enha ced CRO with NodeNeighborDi Gap (%)

Best Average CPU SD Best Average CPU SD Best Average CPU SD

30 10 47.21420 48.21291 4.43 0.70 47.2142 47.41474 4.47 0.40 �1.66 47. 420 47.31441 4.46 0.30 �1.86
20 39.21420 40.06171 4.61 0.36 39.21420 39.56243 4.67 0.47 �1.25 39. 420 39.66150 4.65 0.49 �1.00

60 10 120.20700 120.20871 3.79 0.00 115.21420 115.61453 3.83 0.74 �3.82 115. 420 116.01429 3.77 1.08 �3.49
20 104.21480 106.61054 3.99 0.86 104.21360 104.36450 4.03 0.48 �2.11 104. 480 105.66378 4.00 0.80 �0.89

90 10 231.21000 232.05946 4.17 0.48 231.20760 231.20811 4.19 0.00 �0.37 231. 760 231.45832 4.21 0.43 �0.26
20 217.21180 218.35928 4.28 0.72 215.21060 215.41246 4.31 0.40 �1.35 215. 180 216.21168 4.36 0.83 �0.98

120 10 289.21540 291.36135 3.92 1.19 287.21240 287.21303 3.96 0.00 �1.42 287. 240 287.41348 3.92 0.40 �1.35
20 269.21300 271.31084 4.04 0.94 267.21240 268.21255 4.06 0.63 �1.14 268. 240 268.56234 4.04 0.47 �1.01

240 10 717.20820 719.16180 3.78 1.36 715.20700 715.20784 3.56 0.00 �0.55 715. 880 715.26129 3.84 0.22 �0.54
20 697.21180 701.21099 3.88 1.87 692.21480 693.10703 3.84 0.30 �1.16 692. 180 693.41240 3.95 0.75 �1.11

300 10 817.21240 822.00172 3.37 1.85 813.20400 813.20505 3.21 0.00 �1.07 813. 340 813.25655 3.39 0.22 �1.06
20 807.21300 809.66069 3.57 1.24 799.21540 801.86300 3.56 0.91 �0.96 800. 180 801.46210 3.63 0.70 �1.01

Avg 3.98 0.97 3.97 0.36 �1.40 4.02 0.56 �1.22

126
W
.Y.Szeto

et
al./Transportation

R
esearch

Part
D

47
(2016)

104–
135
n

21
21

21
21

20
21

21
21

20
21

20
21

Table 3
Result comparison of the enhanced CRO with and without neighbor-node sets (T = 28,800 s).

jVj Q Enhanced CRO without neighbor-node sets Enhanced CRO with NodeNeighborCi Gap (%) Enh nced CRO with NodeNeighborDi Gap (%)

Best Average CPU SD Best Average CPU SD Bes Average CPU SD

30 10 33.28620 34.68218 8.48 0.58 33.28620 34.18464 8.67 0.54 �1.43 33 8680 34.43260 8.58 0.65 �0.72
20 22.28740 24.68266 8.97 1.02 22.28620 23.68509 9.14 0.73 �4.04 22 8620 23.83446 9.07 0.92 �3.44

60 10 99.28680 102.13227 7.19 1.15 98.28200 98.28263 7.26 0.00 �3.77 98 8200 98.38320 7.30 0.30 �3.67
20 87.28200 88.23140 7.63 0.59 84.28500 84.93254 7.75 0.47 �3.74 84 8380 84.93188 7.78 0.57 �3.74

90 10 212.27960 213.07834 8.05 0.60 205.28560 206.43485 8.22 0.73 �3.12 206 8380 206.93470 8.25 0.65 �2.88
20 193.28680 195.88248 8.36 1.24 188.28140 188.93461 8.55 0.57 �3.55 188 8440 190.08323 8.63 0.75 �2.96

120 10 269.27780 271.03248 7.48 0.94 265.28560 266.88437 7.63 0.80 �1.53 266 8800 267.82984 7.59 0.59 �1.18
20 247.28560 250.53173 7.85 1.51 242.28620 243.48392 8.02 0.51 �2.81 242 8560 243.73467 8.05 0.80 �2.71

240 10 695.28440 698.17972 7.30 1.13 688.28440 693.47567 7.28 2.78 �0.67 687 8740 690.68479 7.55 1.32 �1.07
20 673.28260 677.93227 7.58 1.74 660.28320 662.98341 7.66 0.90 �2.21 662 8260 664.73434 7.82 1.63 �1.95

300 10 794.28080 798.13128 6.73 2.59 793.26580 793.26871 6.62 0.00 �0.61 787 8560 790.18413 6.93 1.94 �1.00
20 780.28620 786.53125 7.24 1.99 772.28140 774.33410 7.28 0.86 �1.55 773 8140 775.13425 7.48 1.11 �1.45

Avg 7.74 1.26 7.84 0.74 �2.42 7.92 0.94 �2.23

W
.Y.Szeto

et
al./Transportation

R
esearch

Part
D

47
(2016)

104–
135

127
a

t

.2

.2

.2

.2

.2

.2

.2

.2

.2

.2

.2

.2

Table 4
Result comparison of the enhanced CRO with and without two neighbor-node sets (T = 14,400 s).

jVj Q Enhanced CRO without neighbor-node sets Enhanced CRO with both sets Gap (%)

Best Average CPU SD Best Average CPU SD

30 10 68.13860 68.13860 1.69 0.00 68.13860 68.13893 1.66 0.00 0.00
20 60.14100 60.14181 1.71 0.00 60.14100 60.64088 1.69 0.86 0.83

60 10 139.13380 139.13380 1.53 0.00 139.13380 139.13380 1.42 0.00 0.00
20 126.14400 126.99226 1.61 0.36 126.14400 126.49316 1.58 0.48 �0.39

90 10 253.14400 260.17693 1.60 2.24 252.14400 252.64373 1.58 0.59 �2.90
20 241.14340 243.79109 1.62 1.27 241.14280 241.99316 1.61 0.85 �0.74

120 10 314.13500 314.13569 1.52 0.00 314.13500 314.13530 1.43 0.00 0.00
20 295.14400 297.03959 1.54 0.43 294.14400 294.49361 1.48 0.57 �0.86

240 10 744.14040 745.02738 1.47 0.30 736.14400 737.09073 1.66 0.22 �1.07
20 725.14340 727.23959 1.51 0.94 723.14280 723.39271 1.49 0.43 �0.53

300 10 843.12420 843.12774 1.22 0.00 837.14340 841.33272 1.17 2.49 �0.21
20 830.14220 834.93914 1.28 1.47 828.14340 828.59298 1.25 0.50 �0.76

Avg 1.52 0.58 1.50 0.58 �0.55

Table 5
Result comparison of the enhanced CRO with and without two neighbor-node sets (T = 21,600 s).

jVj Q Enhanced CRO without neighbor-node sets Enhanced CRO with both sets Gap (%)

Best Average CPU SD Best Average CPU SD

30 10 47.21420 48.21291 4.43 0.70 47.21420 47.31414 4.44 0.30 �1.86
20 39.21420 40.06171 4.61 0.36 39.21420 39.26405 4.66 0.22 �1.99

60 10 120.20700 120.20871 3.79 0.00 115.21420 115.21432 3.81 0.00 �4.15
20 104.21480 106.61054 3.99 0.86 104.21480 104.66486 4.02 0.59 �1.83

90 10 231.21000 232.05946 4.17 0.48 231.20760 231.20778 4.21 0.00 �0.37
20 217.21180 218.35928 4.28 0.72 215.21180 215.51297 4.36 0.46 �1.30

120 10 289.21540 291.36135 3.92 1.19 287.21240 287.21267 3.94 0.00 �1.42
20 269.21300 271.31084 4.04 0.94 267.21540 268.36234 4.08 0.47 �1.09

240 10 717.20820 719.16180 3.78 1.36 715.20700 715.20859 3.77 0.00 �0.55
20 697.21180 701.21099 3.88 1.87 690.21360 692.26303 3.93 0.86 �1.28

300 10 817.21240 822.00172 3.37 1.85 813.20220 813.20502 3.31 0.00 �1.07
20 807.21300 809.66069 3.57 1.24 800.21240 800.81228 3.60 0.49 �1.09

Avg 3.98 0.97 4.01 0.28 �1.50

Table 6
Result comparison of the enhanced CRO with and without two neighbor-node sets (T = 28,800 s).

jVj Q Enhanced CRO without neighbor-node sets Enhanced CRO with both sets Gap (%)

Best Average CPU SD Best Average CPU SD

30 10 33.28620 34.68218 8.48 0.58 33.28620 33.63560 8.63 0.57 �3.02
20 22.28740 24.68266 8.97 1.02 22.28620 23.13470 9.13 0.36 �6.27

60 10 99.28680 102.13227 7.19 1.15 98.28200 98.28209 7.36 0.00 �3.77
20 87.28200 88.23140 7.63 0.59 84.28320 84.43416 7.86 0.35 �4.30

90 10 212.27960 213.07834 8.05 0.60 205.28440 205.48527 8.32 0.40 �3.56
20 193.28680 195.88248 8.36 1.24 188.28080 189.03335 8.72 0.54 �3.50

120 10 269.27780 271.03248 7.48 0.94 265.28500 266.63470 7.62 0.85 �1.62
20 247.28560 250.53173 7.85 1.51 243.28020 243.28275 8.13 0.00 �2.89

240 10 695.28440 698.17972 7.30 1.13 687.28560 689.43479 7.45 1.56 �1.25
20 673.28260 677.93227 7.58 1.74 660.28740 662.48431 7.85 1.25 �2.28

300 10 794.28080 798.13128 6.73 2.59 785.28440 788.93251 6.71 2.49 �1.15
20 780.28620 786.53125 7.24 1.99 771.28680 773.28434 7.43 0.95 �1.68

Avg 7.74 1.26 7.93 0.78 �2.94

128 W.Y. Szeto et al. / Transportation Research Part D 47 (2016) 104–135

Table 7
Result comparison of constant and varying values of d.

Settings of d Best Average CPU SD

1: Varying 770.28560 772.18386 9.30 1.02
2: Constant (0.5) 771.28500 772.43458 9.35 0.67

W.Y. Szeto et al. / Transportation Research Part D 47 (2016) 104–135 129
�2.94%, whereas the average Gaps obtained with the enhanced CRO with NodeNeighborCi and NodeNeighborDi are only
�2.42% and �2.23%, respectively.

From Tables 1–6, it can be observed that the CPU time does not increase with network size but rather decreases with net-
work size in general. This is due to the network data, which has a longer average operational time between nodes for a larger
network in general. Therefore, for a fixed repositioning duration, as the network size increases, the route length (in terms of
the number of nodes visited) is shorter. The number of solutions generated by 2-Opt, and hence the CPU time, is lower.

Comparison between constant and varying values of d

d represents the probability of running the intensive search in each iteration (see Section ‘Intensive search’). To illustrate
the benefit of the use of varying values of d over iterations, two settings of d were considered in this section. For the first
setting, the value of d obtained from Eq. (39) is used, which varies linearly from 0 to 1. The second part of the second stage,
which considers the intensive search, begins when the number of iterations reaches an IntensivePoint of 60,000 (see Algo-
rithm 2). maxIteration is set at 100,000. For the second setting, a constant value of d ¼ 0:5 (i.e., an average value of d used
in the first setting) is used for the last 40,000 iterations. The starting point of the intensive search is also set at
IntensivePoint = 60,000.

The instance used in this section is the sharing network containing 300 stations. A single vehicle with a capacity of 20
bicycles is deployed to carry out the repositioning operation within 8 h (T = 28,800 s). The results are shown in Table 7.

Compared with the results obtained with the constant value of d, the setting with varying d values achieves solutions with
better quality (from the perspectives of both the best and average objective values obtained from 20 runs), although the SD
for the solutions is slightly larger. Therefore, Eq. (39) is used to obtain the varying values of d in the enhanced CRO, rather
than adopting a constant value, to control for the occurrence of intensive search.

Comparison between CPLEX, the original CRO, and the enhanced CRO

For comparison purposes, the scenarios (described in Section ‘Effectiveness of incorporating neighbor-node sets into
enhanced CRO’) solved with the enhanced CRO were also solved with the original CRO and with IBM ILOG CPLEX 12.5 with
the default settings. The best and average of the best solutions from 20 runs were used to evaluate the performance of the
original CRO and the enhanced CRO. These solutions were achieved by running the heuristics to obtain the same number of
solutions as the enhanced CRO without the neighbor-node sets (discussed in Section ‘Effectiveness of incorporating
neighbor-node sets into enhanced CRO’). A running time of 2 h was imposed on CPLEX. Note that CPLEX only checks the time
at certain points, not throughout the program running. Therefore, even after the time limit has been reached, CPLEX may not
stop until it gets to the certain point to check the time. For this reason, the running time is more than 2 h for some of the
scenarios. With this time limit, a program error caused by insufficient memory was found in some cases. The corresponding
results were therefore excluded in this section. The optimality tolerance of the solver was set to 0.01%. The result given by
CPLEX is ‘‘optimal” if the optimal gap, Gapopt, which is a deviation from optimal of 0.01%; otherwise, it indicates an upper
bound on the objective value of an optimal solution.

Tables 8–10 present the results from CPLEX, the original CRO, and the enhanced CRO under different repositioning dura-
tions where the optimal objective values are printed in bold. In these tables, Gap indicates the performance of the enhanced
CRO relative to those of other discussed methods (in percent). It is the deviation of the result (i.e., the best/average of the best
objective values) obtained with the enhanced CRO from the result obtained with the discussed method, divided by the result
of the discussed method. Gap1 and Gap2 are obtained by comparing the best and average of the best objective values
obtained with the enhanced CRO with the best objective value of CPLEX (i.e., the optimal objective value [Opt] or an upper
bound [UB]), respectively. Gap3 shows the performance of the enhanced CRO relative to that of the original CRO based on the
average of the best objective values. The CPU (in seconds) denotes the average computing time of 20 runs for the enhanced or
original CRO, or the running time of CPLEX.

According to Tables 8–10, in which the results between the original CRO and the enhanced CRO are compared, all negative
Gap3 values indicate that the solution quality of the enhanced CRO has been improved. However, under a fixed repositioning
duration, Gap3 becomes less negative as the size of the instance increases. This means that it is more effective to incorporate
neighbor-node sets into the CRO to solve smaller BRPs.

The results from CPLEX and the enhanced CRO are discussed with different repositioning durations. For the short-term
repositioning duration (T = 14,400 s) and for most of the small-size and medium-size instances (up to 90 stations), the opti-
mal results were obtained with CPLEX, and the enhanced CRO could always find the optimal solutions within 20 runs. For the
results of the scenarios with large-size instances with the same repositioning duration, CPLEX could only provide an upper

Table 8
Result comparison of CPLEX, the original CRO, and the enhanced CRO (T = 14,400 s).

jVj Q CPLEX Original CRO Enhanced CRO Gap1 (%) Gap2 (%) Gap3 (%)

Opt/UB Gapopt CPU Best Average CPU SD Best Average CPU SD

30 10 68.13860 0.01 479.97 79.13560 82.48416 1.45 1.56 68.13860 68.13893 1.66 0.00 0.00 0.00 �17.39
20 60.14100 0.01 339.10 73.14040 77.68425 1.46 2.11 60.14100 60.64088 1.69 0.86 0.00 0.83 �21.94

60 10 139.13400 1.07 7210.31 151.12960 157.42801 1.36 2.21 139.13380 139.13380 1.42 0.00 0.00 0.00 �11.62
20 126.14400 0.01 973.42 147.13440 151.93176 1.41 2.29 126.14400 126.49316 1.58 0.48 0.00 0.28 �16.74

90 10 252.14400 0.01 1006.72 272.11940 276.78323 1.42 2.18 252.14400 252.64373 1.58 0.59 0.00 0.20 �8.72
20 241.14300 0.01 3227.79 266.13740 271.13527 1.40 2.14 241.14280 241.99316 1.61 0.85 0.00 0.35 �10.75

120 10 314.13600 1.19 7200.75 333.13500 334.37525 1.90 0.76 314.13500 314.13530 1.43 0.00 0.00 0.00 �6.05
20 294.14400 0.01 4581.34 322.13200 328.43104 2.08 2.97 294.14400 294.49361 1.48 0.57 0.00 0.12 �10.33

240 10 747.12500 1.63 7204.09 760.13920 764.12882 2.27 1.99 736.14400 737.09073 1.66 0.22 �1.47 �1.34 �3.54
20 726.14000 1.30 7532.29 754.12780 758.88392 1.56 2.38 723.14280 723.39271 1.49 0.43 �0.41 �0.38 �4.68

300 10 847.13400 1.56 7211.45 858.13260 863.73095 2.64 2.08 837.14340 841.33272 1.17 2.49 �1.18 �0.68 �2.64
20 839.13400 1.75 7394.95 853.13320 860.88008 2.68 2.47 828.14340 828.59298 1.25 0.50 �1.31 �1.26 �3.82

Avg 4530.18 1.80 2.09 1.50 0.58 �0.36 �0.16 �9.85

130
W
.Y.Szeto

et
al./Transportation

R
esearch

Part
D

47
(2016)

104–
135

Table 9
Result comparison of CPLEX, the original CRO, and the enhanced CRO (T = 21,600 s).

jVj Q CPLEX Original CRO Enhanced CRO Gap1 (%) Gap2 (%) Gap3 (%)

Opt/UB Gapopt CPU Best Average CPU SD Best Average CPU SD

30 10 47.21420 0.01 108.16 69.16080 71.44923 3.70 1.79 47.21420 47.31414 4.44 0.30 0.00 0.21 �33.78
20 39.21420 0.01 4404.44 59.20640 63.99773 3.74 2.20 39.21420 39.26405 4.66 0.22 0.00 0.13 �38.65

60 10 115.21400 0.00 15.93 142.19080 148.34749 3.24 2.32 115.21420 115.21432 3.81 0.00 0.00 0.00 �22.33
20 103.21600 0.00 6935.69 132.21420 140.05025 3.41 3.67 104.21480 104.66486 4.02 0.59 0.97 1.40 �25.27

90 10 231.20800 1.74 7205.56 259.20460 266.54824 3.52 3.21 231.20760 231.20778 4.21 0.00 0.00 0.00 �13.26
20 216.21500 3.17 7203.56 255.19380 258.95490 3.61 2.55 215.21180 215.51297 4.36 0.46 �0.46 �0.32 �16.78

120 10 287.21200 0.28 7202.22 321.21300 324.54740 3.48 1.74 287.21240 287.21267 3.94 0.00 0.00 0.00 �11.50
20 270.21400 2.43 7266.80 302.21300 316.00226 3.42 3.83 267.21540 268.36234 4.08 0.47 �1.11 �0.69 �15.08

240 10 736.15000 3.72 7599.76 748.20820 755.14770 3.34 2.46 715.20700 715.20859 3.77 0.00 �2.84 �2.84 �5.29
20 – – – 740.20760 747.04698 3.41 3.77 690.21360 692.26303 3.93 0.86 � � �7.33

300 10 821.21500 1.84 7205.65 849.20400 856.15010 2.76 2.20 813.20220 813.20502 3.31 0.00 �0.98 �0.98 �5.02
20 870.10000 8.93 7202.59 844.20760 850.70280 2.94 2.29 800.21240 800.81228 3.60 0.49 �8.03 �7.96 �5.86

Avg 5668.21 3.38 2.67 4.01 0.28 �1.13 �1.00 �16.68

W
.Y.Szeto

et
al./Transportation

R
esearch

Part
D

47
(2016)

104–
135

131

Table 10
Result comparison of CPLEX, the original CRO, and the enhanced CRO (T = 28,800 s).

jVj Q CPLEX Original CRO Enhanced CRO Gap1 (%) Gap2 (%) Gap3 (%)

Opt/UB Gapopt CPU Best Average CPU SD Best Average U SD

30 10 33.28560 0.01 1354.15 53.25800 59.20344 6.94 2.29 33.28620 33.63560 63 0.57 0.00 1.05 �43.19
20 22.28620 0.01 308.66 46.27060 50.46730 7.30 2.34 22.28620 23.13470 13 0.36 0.00 3.81 �54.16

60 10 97.28800 0.01 2858.53 132.22800 138.36838 6.10 3.00 98.28200 98.28209 36 0.00 1.02 1.02 �28.97
20 84.28620 2.66 7205.01 121.28560 129.51643 6.37 3.61 84.28320 84.43416 86 0.35 0.00 0.18 �34.81

90 10 205.28400 0.78 7205.92 249.25320 256.86289 6.74 3.29 205.28440 205.48527 32 0.40 0.00 0.10 �20.00
20 191.28100 4.38 7204.19 241.27240 246.51490 6.92 2.73 188.28080 189.03335 72 0.54 �1.57 �1.18 �23.32

120 10 263.28500 0.43 8462.72 311.28800 316.51460 6.29 2.47 265.28500 266.63470 62 0.85 0.76 1.27 �15.76
20 243.28700 2.45 7207.96 300.22680 307.32066 6.46 3.22 243.28020 243.28275 13 0.00 0.00 0.00 -20.84

240 10 688.28700 0.78 7203.03 741.28200 746.62153 6.24 2.15 687.28560 689.43479 45 1.56 �0.15 0.17 �7.66
20 – – – 726.24540 736.72177 6.18 3.50 660.28740 662.48431 85 1.25 � � �10.08

300 10 801.26100 2.67 7206.02 842.28080 847.57012 5.47 2.49 785.28440 788.93251 71 2.49 �1.99 �1.54 �6.92
20 803.27200 5.15 9872.86 831.25920 839.91355 5.80 3.58 771.28680 773.28434 43 0.95 �3.98 �3.73 �7.93

Avg 6008.10 6.40 2.89 93 0.78 �0.54 0.10 �22.80

132
W
.Y.Szeto

et
al./Transportation

R
esearch

Part
D

47
(2016)

104–
135
CP

8.
9.

7.
7.

8.
8.

7.
8.

7.
7.

6.
7.

7.

Table 11
Sensitivity test on l.

l CPLEX Enhanced CRO Gap1 (%) Gap2 (%)

Opt/UB Gapopt CPU Best Average CPU SD

0.0000 68.00000 0.00 208.42 68.00000 68.00000 1.71 0.00 0.00 0.00
0.0003 72.15800 0.00 403.37 72.15800 72.16610 1.90 0.02 0.00 0.00
0.0006 76.30860 0.00 987.26 76.31600 76.33220 1.92 0.03 0.00 0.00
0.0009 80.47400 0.00 299.37 80.47400 80.50640 1.91 0.06 0.00 0.00
0.0012 84.63200 0.00 254.43 84.63200 84.70400 1.89 0.10 0.00 0.00
0.0015 88.79000 0.00 234.67 88.79000 88.95650 1.88 0.12 0.00 0.00
0.0018 92.94800 0.00 237.61 92.94800 93.02360 1.87 0.13 0.00 0.00
0.0021 97.10600 0.00 109.22 97.10600 97.27530 1.86 0.18 0.00 0.00
0.0024 101.10400 0.00 59.45 101.10400 101.27440 1.85 0.19 0.00 0.00
0.0027 104.99200 0.00 45.47 104.99200 105.24900 1.84 0.15 0.00 0.00
0.0030 108.62000 0.00 5.27 108.88000 109.09000 1.84 0.12 0.00 0.00

Avg 0.00 258.60 1.86 0.10 0.00 0.00

W.Y. Szeto et al. / Transportation Research Part D 47 (2016) 104–135 133
bound for the problem in most cases. The negative Gap1 values for most of these scenarios indicate that a better upper bound
is found by the enhanced CRO. Considering all scenarios, the best and average of the best objective values obtained with the
enhanced CRO are�0.36% and�0.16%, respectively, from the corresponding optimal solution or the upper bound on average,
which means that the enhanced CRO gives better solutions on average. Moreover, the mean computing time is 1.50 s. Thus,
compared with the average computing time of CPLEX (4530.18 s), the enhanced CRO outperforms CPLEX in computation
time.

From Table 9 (T = 21,600 s), the average objective values obtained with the enhanced CRO show that it could achieve opti-
mal solutions for three scenarios, provide a good upper bound for three scenarios, and improve the upper bounds obtained
with CPLEX for five scenarios within a very short computing time. The average gaps achieved by the best and average of the
best objective values obtained with the enhanced CRO are �1.13% and �1.00%, respectively, which means that the solution
quality of the enhanced CRO is still better when T = 21,600 s.

For the scenarios where the repositioning duration T = 28,800 s, the enhanced CRO could achieve optimal solutions for
two scenarios, good upper bounds for three scenarios, one upper bound better than those of CPLEX for the small-size to
medium-size instances, and two good upper bounds and two upper bounds better than those of CPLEX for large-size
instances (with at least 120 stations). The average computing time was 7.93 s, which is also very short compared with that
of CPLEX (6008.10 s).

Regardless of the repositioning duration, CPLEX could not always find optimal solutions for the large-size instances. In our
study, when jVj reached 240, CPLEX could not find feasible solutions within the 2-h time limit for the case of T = 21,600 s and
Q = 20 and the case of T = 28,800 s and Q = 20. Unlike CPLEX, the enhanced CRO always found feasible solutions quickly, even
when the sizes of the test instances were large. Moreover, the enhanced CRO always outperformed CPLEX in terms of solu-
tion quality when solving large instances and obtained good upper bounds or achieve optimality when solving other
instances. Therefore, we can conclude that the enhanced CRO always obtains good feasible solutions muchmore quickly than
CPLEX.
Sensitivity test on l

l determines the relative importance between the total unmet demand reflected by
P

i2Vwi and the vehicle’s total oper-
ational time

P
i;j2V0 ;i–j tij � xij. In this section, the sensitivity of l is tested with a sharing network containing 30 stations. Repo-

sitioning was carried out by a single vehicle with a capacity of 10 bicycles within 4 h. Different values of l from 0 to 0.003 in
increments of 0.0003 were considered. The results obtained with IBM ILOG CPLEX 12.5 and the enhanced CRO were com-
pared. CPLEX was performed with its default settings and a 2-h running time limit, and the enhanced CRO was executed with
a maxIteration of 100,000. To evaluate the performance of the enhanced CRO, the best and average of the best solutions
obtained from 20 runs were used. The results are shown in the table below. CPU is the running time for CPLEX (in seconds)
or the average computing time of 20 runs for the enhanced CRO.

According to Table 11, the fact that all values of optimal gap, Gapopt, are zero indicates that all of the results obtained with
CPLEX are optimal solutions. Gap1 and Gap2 are the deviations of the best/average of the best objective values from 20 runs
obtained with the enhanced CRO from the corresponding optimal solution obtained with CPLEX, respectively. The best objec-
tive values obtained with the enhanced CRO show that the enhanced CRO can always obtain optimal solutions under differ-
ent values of l within 20 runs except for the cases l ¼ 0:0006 and l ¼ 0:0030. The average of the best objective values
obtained with the enhanced CRO from 20 runs for each of the discussed cases indicates that nearly optimal solutions are
obtained with the enhanced CRO in general. Moreover, the average computing time of the enhanced CRO is 1.86 s
(SD = 0.10), which is much shorter than that of CPLEX. Therefore, we can conclude that the enhanced CRO works well under
the different values of l.

134 W.Y. Szeto et al. / Transportation Research Part D 47 (2016) 104–135
Conclusions

An enhanced version of CRO for a static repositioning problem with a single vehicle is proposed. The enhanced CRO incor-
porates novel operators, new rules, and an intensive search to improve the solution quality. It also considers station char-
acteristics and proposes two neighbor-node sets to narrow the search space. It is mainly used to deal with vehicle routes.
A subroutine is proposed and incorporated within the enhanced CRO to determine the loading and unloading quantities
at each visited station. This determination method is different from and more efficient than other methods (e.g., Rainer-
Harbach et al., 2015) that rely on solving the subproblem as a linear programming or max-flow subproblem in each iteration.
The computational experiments were conducted on instances up to 300 stations. The computational results indicate that the
enhanced CRO provides high-quality solutions with short computing times. Specially, it outperforms the original CRO in
terms of solution quality and CPLEX in terms of speed; it can always outperform CPLEX in terms of solution quality when
solving large instances. The results also confirm that incorporation of the two neighbor-node sets into CRO is beneficial
and that the probability of running the intensive search should increase with the iteration number in the final part of the
main stage of the enhanced CRO.

Acknowledgements

This research was supported by a grant from the National Natural Science Foundation of China (71271183). The authors
are grateful to the three reviewers for their constructive comments.

References

Bai, L., Liu, P., Chen, Y., Zhang, X., Wang, W., 2013. Comparative analysis of the safety effects of electric bikes at signalized intersections. Transp. Res. Part D:
Transp. Environ. 20, 48–54.

Benchimol, M., Benchimol, P., Chappert, B., de la Taille, A., Laroche, F., Meunier, F., Robinet, L., 2011. Balancing the stations of a self service ‘‘bike hire”
system. RAIRO – Oper. Res. 45 (1), 37–61.

Brinkmann, J., Ulmer, M.W., Mattfeld, D.C., 2015a. Inventory routing for bike sharing systems. Working Paper (2015-01-12). <https://www.tu-
braunschweig.de/Medien-DB/winfo/publications/wp_brinkmann_inventory_routing_bike_sharing.pdf>.

Brinkmann, J., Ulmer, M.W., Mattfeld, D.C., 2015b. Short-term strategies for stochastic inventory routing in bike sharing systems. In: Proceedings of the 18th
EURO Working Group on Transportation. Transp. Res. Procedia, vol. 10, pp. 364–373.

Buehler, R., 2012. Determinants of bicycle commuting in the Washington, DC region: The role of bicycle parking, cyclist showers, and free car parking at
work. Transp. Res. Part D: Transp. Environ. 17 (7), 525–531.

Caggiani, L., Ottomanelli, M., 2012. A modular soft computing based method for vehicles repositioning in bike-sharing systems. Procedia – Soc. Behav. Sci.
54, 675–684.

Castillo-Manzano, J.I., Castro-Nuño, M., López-Valpuesta, L., 2015. Analyzing the transition from a public bicycle system to bicycle ownership: A complex
relationship. Transp. Res. Part D: Transp. Environ. 38, 15–26.

Caulfield, B., Brick, E., McCarthy, O.T., 2012. Determining bicycle infrastructure preferences—A case study of Dublin. Transp. Res. Part D: Transp. Environ. 17
(5), 413–417.

Chemla, D., Meunier, F., Wolfler Calvo, R., 2013. Bike sharing systems: Solving the static rebalancing problem. Discrete Optim. 10 (2), 120–146.
Contardo, C., Morency, C., Rousseau, L.-M., 2012. Balancing a dynamic public bike-sharing system. Technical Report CIRRELT 2012, Montréal.
Dell’Amico, M., Hadjicostantinou, E., Iori, M., Novellani, S., 2014. The bike sharing rebalancing problem: Mathematical formulations and benchmark

instances. Omega 45, 7–19.
Di Gaspero, L., Rendl, A., Urli, T., 2013a. Constraint-based approaches for balancing bike sharing systems. In: Schulte, C. (Ed.), Principles and Practice of

Constraint Programming, vol. 8124. Springer, Berlin Heidelberg, pp. 758–773.
Di Gaspero, L., Rendl, A., Urli, T., 2013b. A hybrid ACO+CP for balancing bicycle sharing systems. In: Blesa, M.J., Blum, C., Festa, P., Roli, A., Sampels, M. (Eds.),

Hybrid Metaheuristics, vol. 7919. Springer, Berlin Heidelberg, pp. 198–212.
Erdoğan, G., Battarra, M., Wolfler Calvo, R., 2015. An exact algorithm for the static rebalancing problem arising in bicycle sharing systems. Eur. J. Oper. Res.

245 (3), 667–679.
Erdoğan, G., Laporte, G., Wolfler Calvo, R., 2014. The static bicycle relocation problem with demand intervals. Eur. J. Oper. Res. 238 (2), 451–457.
Fishman, E., Washington, S., Haworth, N., 2014a. Bike share’s impact on car use: Evidence from the United States, Great Britain, and Australia. Transp. Res.

Part D: Transp. Environ. 31, 13–20.
Fishman, E., Washington, S., Haworth, N., Mazzei, A., 2014b. Barriers to bikesharing: An analysis from Melbourne and Brisbane. J. Transp. Geogr. 41, 325–

337.
Forma, I., Raviv, T., Tzur, M., 2015. A 3-step math heuristic for the static repositioning problem in bike-sharing systems. Transp. Res. Part B: Methodol. 71,

230–247.
Fricker, C., Gast, N., 2014. Incentives and redistribution in homogeneous bike-sharing systems with stations of finite capacity. EURO J. Transp. Logist., 1–31
Fürst, E., 2014. Making the way to the university environmentally sustainable: A segmentation approach. Transp. Res. Part D: Transp. Environ. 31, 1–12.
Fyhri, A., Fearnley, N., 2015. Effects of e-bikes on bicycle use and mode share. Transp. Res. Part D: Transp. Environ. 36, 45–52.
Goodman, A., Cheshire, J., 2014. Inequalities in the London bicycle sharing system revisited: Impacts of extending the scheme to poorer areas but then

doubling prices. J. Transp. Geogr. 41, 272–279.
Hernández-Pérez, H., Salazar-González, J.-J., 2004. A branch-and-cut algorithm for a traveling salesman problem with pickup and delivery. Discr. Appl.

Math. 145 (1), 126–139.
Hernández-Pérez, H., Salazar-González, J.-J., 2007. The one-commodity pickup-and-delivery traveling salesman problem: Inequalities and algorithms.

Networks 50 (4), 258–272.
Ho, S.C., Szeto, W.Y., 2014. Solving a static repositioning problem in bike-sharing systems using iterated tabu search. Transp. Res. Part E: Logis. Transp. Rev.

69, 180–198.
Ho, S.C., Szeto, W.Y., 2016. GRASP with path relinking for the selective pickup and delivery problem. Expert Syst. Appl. 51 (1), 14–25.
Kitthamkesorn, S., Chen, A., Xu, X., Ryu, S., 2016. Modeling mode and route similarities in network equilibrium problem with go-green modes. Networks

Spatial Econ. 16 (1), 33–60.
Kloimüllner, C., Papazek, P., Hu, B., Raidl, G.R., 2014. Balancing bicycle sharing systems: An approach for the dynamic case. In: Blum, C., Ochoa, G. (Eds.),

Evolutionary Computation in Combinatorial Optimisation, vol. 8600. Springer, Berlin Heidelberg, pp. 73–84.
Labadi, K., Benarbia, T., Barbot, J.P., Hamaci, S., Omari, A., 2015. Stochastic petri net modeling, simulation and analysis of public bicycle sharing systems. IEEE

Trans. Autom. Sci. Eng. 12 (4), 1380–1395.

http://refhub.elsevier.com/S1361-9209(16)30060-8/h0005
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0005
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0010
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0010
https://www.tu-braunschweig.de/Medien-DB/winfo/publications/wp_brinkmann_inventory_routing_bike_sharing.pdf
https://www.tu-braunschweig.de/Medien-DB/winfo/publications/wp_brinkmann_inventory_routing_bike_sharing.pdf
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0020
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0020
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0025
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0025
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0030
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0030
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0035
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0035
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0040
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0040
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0045
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0055
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0055
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0060
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0060
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0065
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0065
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0070
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0070
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0075
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0080
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0080
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0085
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0085
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0090
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0090
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0095
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0100
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0105
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0110
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0110
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0115
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0115
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0120
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0120
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0125
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0125
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0130
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0135
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0135
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0140
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0140
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0145
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0145

W.Y. Szeto et al. / Transportation Research Part D 47 (2016) 104–135 135
Lam, A.Y.S., Li, V.O.K., 2010. Chemical-reaction-inspired metaheuristic for optimization. IEEE Trans. Evol. Comput. 14 (3), 381–399.
Lam, A.Y.S., Li, V.O.K., Wei, Z., 2012. Chemical reaction optimization for the fuzzy rule learning problem. In: Proceedings of IEEE Congress on Evolutionary

Computation (IEEE CEC 2012), Brisbane, Australia.
Lin, S., 1965. Computer solutions of the traveling salesman problem. Bell Syst. Tech. J. 44 (10), 2245–2269.
Lu, C.-C., 2016. Robust multi-period fleet allocation models for bike-sharing systems. Networks Spatial Econ. 16 (1), 61–82.
Meddin, R., DeMaio, P., 2015. The bike-sharing world map. <http://www.bikesharingworld.com/> (access on 12 April).
Nair, R., Miller-Hooks, E., 2011. Fleet management for vehicle sharing operations. Transp. Sci. 45 (4), 524–540.
Papazek, P., Kloimüllner, C., Hu, B., Raidl, G.R., 2014. Balancing bicycle sharing systems: An analysis of path relinking and recombination within a GRASP

hybrid. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (Eds.), Parallel Problem Solving from Nature – PPSN XIII, vol. 8672. Springer International
Publishing, pp. 792–801.

Papazek, P., Raidl, G.R., Rainer-Harbach, M., Hu, B., 2013. A PILOT/VND/GRASP hybrid for the static balancing of public bicycle sharing systems. In: Moreno-
Díaz, R., Pichler, F., Quesada-Arencibia, A. (Eds.), Computer Aided Systems Theory – EUROCAST 2013, vol. 8111. Springer, Berlin Heidelberg, pp. 372–379.

Pfrommer, J., Warrington, J., Schildbach, G., Morari, M., 2014. Dynamic vehicle redistribution and online price incentives in shared mobility systems. IEEE
Trans. Intell. Transp. Syst. 15 (4), 1567–1578.

Rainer-Harbach, M., Papazek, P., Raidl, G.R., Hu, B., Kloimüllner, C., 2015. PILOT, GRASP, and VNS approaches for the static balancing of bicycle sharing
systems. J. Global Optim. 63 (3), 597–629.

Raviv, T., Tzur, M., Forma, I., 2013. Static repositioning in a bike-sharing system: Models and solution approaches. EURO J. Transp. Logist. 2 (3), 187–229.
Regue, R., Recker, W., 2014. Proactive vehicle routing with inferred demand to solve the bikesharing rebalancing problem. Transp. Res. Part E: Logist. Transp.

Rev. 72, 192–209.
Ricci, M., 2015. Bike sharing: A review of evidence on impacts and processes of implementation and operation. Res. Transp. Bus. Manage. 15, 28–38.
Ruch, C., Warrington, J., Morari, M., 2014. Rule-based price control for bike sharing systems. In: Control Conference (ECC), 2014 European. IEEE, pp. 708–713.
Schuijbroek, J., Hampshire, R., van Hoeve, W.-j., 2013. Inventory rebalancing and vehicle routing in bike sharing systems (Report No. 1491). Tepper School of

Business. <http://repository.cmu.edu/tepper/1491/>.
Singla, A., Santoni, M., Bartók, G., Mukerji, P., Meenen, M., Krause, A., 2015. Incentivizing users for balancing bike sharing systems. In: Paper presented at

Twenty-Ninth AAAI Conference on Artificial Intelligence.
Shaheen, S. A., Martin, E. W., Chan, N. D., Cohen, A. P., Pogodzinski, M., 2014. Public bikesharing in North America during a period of rapid expansion:

Understanding business models, industry trends and user impacts (CA-MTI-14-1131). <http://transweb.sjsu.edu/PDFs/research/1131-public-
bikesharing-business-models-trends-impacts.pdf> (access on 31 March 2016).

Szeto, W.Y., Wang, Y., Wong, S.C., 2014. The chemical reaction optimization approach to solving the environmentally sustainable network design problem.
Comput.-Aided Civ. Infrastruct. Eng. 29 (2), 140–158.

Thigpen, C.G., Driller, B.K., Handy, S.L., 2015. Using a stages of change approach to explore opportunities for increasing bicycle commuting. Transp. Res. Part
D: Transp. Environ. 39, 44–55.

Ting, C.-K., Liao, X.-L., 2013. The selective pickup and delivery problem: Formulation and a memetic algorithm. Int. J. Prod. Econ. 141 (1), 199–211.
Xu, J., Lam, A.Y.S., Li, V.O.K., 2011. Stock portfolio selection using chemical reaction optimization. In: Proceedings of International Conference on Operations

Research and Financial Engineering (ICORFE 2011), Paris, France, pp. 458–463.
Yu, J.J.Q., Li, V.O.K., Lam, A.Y.S., 2012. Sensor deployment for air pollution monitoring using public transportation system. In: Proceedings of IEEE Congress

on Evolutionary Computation (IEEE CEC 2012), Brisbane, Australia.

http://refhub.elsevier.com/S1361-9209(16)30060-8/h0150
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0155
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0155
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0160
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0165
http://www.bikesharingworld.com/
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0175
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0180
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0180
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0180
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0185
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0185
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0190
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0190
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0195
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0195
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0200
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0205
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0205
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0210
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0215
http://repository.cmu.edu/tepper/1491/
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0225
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0225
http://transweb.sjsu.edu/PDFs/research/1131-public-bikesharing-business-models-trends-impacts.pdf
http://transweb.sjsu.edu/PDFs/research/1131-public-bikesharing-business-models-trends-impacts.pdf
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0235
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0235
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0240
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0240
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0245
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0250
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0250
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0255
http://refhub.elsevier.com/S1361-9209(16)30060-8/h0255

	Chemical reaction optimization for solving a static bike repositioning problem
	Introduction
	Formulation
	Solution method
	Chemical reaction optimization
	Molecules
	Elementary reactions
	On-wall ineffective collision
	Decomposition
	Inter-molecular ineffective collision
	Synthesis

	Application to the BRP
	Solution representation
	Neighbor-node sets
	Initial solution construction and determination of loading and unloading quantities
	Solution adjustment
	Insertion of stations
	Removal of stations
	2-Opt

	Reactions in the enhanced CRO
	On-wall ineffective collision
	Decomposition
	Inter-molecular ineffective collision
	Synthesis

	Intensive search

	Implementation of enhanced and original CRO

	Numerical studies
	Parameter tuning
	Effectiveness of incorporating neighbor-node sets into enhanced CRO
	Comparison between constant and varying values of δ
	Comparison between CPLEX, the original CRO, and the enhanced CRO
	Sensitivity test on μ

	Conclusions
	Acknowledgements
	References

