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ABSTRACT 

Breathers and rogue waves of special coupled nonlinear Schrödinger systems 

(the Manakov equations) are studied analytically. These systems model the 

orthogonal polarization modes in an optical fiber with randomly varying 

birefringence. Studies earlier in the literature had shown that rogue waves can 

occur in these Manakov systems with dispersion and nonlinearity of opposite signs, 

and that the criterion for the existence of rogue waves correlates closely with the 

onset of modulation instability. In the present work the Hirota bilinear transform is 

employed to calculate the breathers (pulsating modes), and rogue waves are 

obtained as a long wave limit of such breathers. In terms of wave profiles, a ‘black’ 

rogue wave (intensity dropping to zero) and the transition to a four-petal 

configuration are elucidated analytically. Sufficiently strong modulation 

instabilities of the background may overwhelm or mask the development of the 

rogue waves, and such thresholds are correlated to actual physical properties of 

optical fibers. Numerical simulations on the evolution of breathers are performed 

to verify the prediction of the analytical formulations.   
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1. Introduction 

Rogue waves are large amplitude displacements which suddenly appear in an 

otherwise calm situation. They are localized in both time and space, and are 

frequently characterized as ‘extreme or rare events in physical systems’. These 

waves were first recognized nearly a century ago in the maritime community in the 

settings of oceanic waves [1], and obviously pose great danger to shipping and 

offshore structures. After the recent detection of optical rogue waves in a 

microstructured fiber [2], these unexpectedly large displacements from a tranquil 

background have commanded increasing attention in optics and other fields of 

physics [3, 4].  

The nonlinear Schrödinger equation (NLSE) is a commonly used model in the 

analysis of nonlinear wave propagation. In the optical fiber setting, the dynamics 

of a slowly varying envelope of the electric field is governed by the competing 

influence between second order dispersion and Kerr (cubic) nonlinearity [5]. 

Rogue wave modes then only occur in the anomalous dispersion regime, i.e. 

nonlinearity and dispersion of the same sign, where modulation instability (MI) is 

present [6]. MI represents an exponential growth of small disturbances on a plane 

wave background arising from the interplay between dispersion and nonlinearity, 

and results in a broadband output spectrum from an input of a relatively narrow 
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range of frequencies. In the present optical context, anomalous (normal) dispersion 

regime corresponds to the nonlinear Schrödinger equation with nonlinearity and 

dispersion of the same (opposite) signs respectively. 

MI is closely related to the dynamics of a breather, a pulsating mode of wave 

propagation. For the NLSE relevant to a temporal soliton in a fiber [5], two classes 

of breathers are possible: the Kuznetsov-Ma breather, which is periodic in space 

(the propagation variable) but localized in time, and the Akhmediev breather, 

which is periodic in time but localized in space [7, 8]. The long wave limits of both 

breathers yield the Peregrine soliton, the widely used algebraic model of a rogue 

wave [9, 10]. 

For coupled NLSE systems [11], rogue waves in the anomalous regime have 

been derived by the Darboux transformation [12, 13], and interactions with solitons 

have been investigated. Further extensions with special features, e.g. relations 

between breathers and rogue waves, higher order rogue waves, and non-symmetric, 

doubly localized rogue waves are studied too [14–16]. 

In the normal dispersion regime, MI can occur in a single component NLSE 

only if higher order effects like fourth order dispersion and quintic nonlinearity are 

included [17, 18]. For coupled systems without these higher order effects, MI can 

occur even when dispersion and nonlinearity are of opposite signs [19–24]. This 
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may happen if the cross phase modulation (XPM) coefficient is larger than the self 

phase modulation (SPM) coefficient. Alternatively the presence of a group velocity 

mismatch might produce the same effect. Recent works highlighted the existence 

of rogue waves for coupled NLSEs in the normal dispersion regime [25, 26]. One 

goal here is to extend the analysis to breathers in this normal dispersion regime, 

using coupled NLSEs with identical SPM and XPM coefficients, i.e. the Manakov 

model. 

The relation among MI, breathers, and rogue waves will be clarified. The 

physics revealed can be realistically interpreted in terms of the propagation of the 

orthogonal polarization modes in an optical fiber with birefringence [27–29], as 

rogue waves have been observed in fibers. Furthermore, the line of investigation 

developed here can be readily extended to other nonlinear evolution systems, e.g. 

nonlinear Schrödinger system with external potential [30] or quintic nonlinearity 

[31], and derivative nonlinear Schrödinger equations [32, 33]. 

The plan of the paper can now be described. The general formulation of a 

breather for the Manakov model in the normal dispersion regime is first described, 

and in particular an Akhmediev breather is calculated analytically (Section 2). A 

rogue wave is then obtained as a limiting case (Section 3). Conditions of MI for 

small perturbation wavenumber correlate exactly with the existence criterion of 
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rogue waves (Section 4). Numerical simulations of stabilities confirmed the 

predictions of these analytical calculations (Section 5). Conclusions are drawn 

(Section 6). 

 

2. Breathers for the Manakov model in the normal dispersion regime 

 The Manakov model can be obtained from the coupled NLSEs for the 

envelopes of two orthogonal polarization modes of an optical fiber [27–29], where 

rapidly varying four-wave-mixing (coherent coupling) terms are ignored and the 

birefringence in the fiber is assumed to vary randomly along the fiber. Rotation of 

the Stokes vectors and averaging over the Poincaré sphere lead to  
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where A, B are the slowly varying envelopes of the two orthogonal polarization 

modes, z, t, σ are the propagation distance, retarded time and strength of the cubic 

nonlinearity respectively. 

Although the Darboux transformation is used widely in the literature, we shall 

employ the Hirota bilinear transform here [34, 35]. Indeed the Hirota method has 

been employed to compute solitons (though not the rogue waves) of the Manakov 

system [36, 37]. The bilinear method has been proven effective in finding solitons 

for over forty years and most integrable evolution equations possess bilinear forms: 
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The parameter s represents a mismatch in the group velocity between the two 

polarization modes, as a simple transformation 

A = u, B = exp(ist + is2z)v can recast Eq. (1) as 

iuz – utt + (uu* + vv*)u = 0, ivz – 2isvt – vtt + (uu* + vv*)v = 0, 

where s is readily recognized as a group velocity mismatch parameter. The 

quantity ρ denotes the amplitude of the background continuous wave, assumed to 

be identical for both polarizations for simplicity. Situations with distinct 

background amplitudes will be left for future studies. 

The breather can now be obtained by considering a 2-soliton solution where the 

frequencies and wave numbers of the solitons are complex conjugate pairs [38]:  
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with ω, K being complex frequency and wavenumber respectively, ζ(1), ζ(2) being 

phase factors and  
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The dispersion relation is  

( ) ( ) ( ){ }4242224222 2224 ω+ω+ω+=ω+ω+ω+ωσρ sKKsKsK . (5)                

An Akhmediev breather in the present context will be strictly periodic in time 

and localized in space [7, 8, 30], the dispersion relation will simplify to 

      0ω=ω i  (ω0 real),          ( )isK −µ−µ±ω= 120 2 ,                                             (6) 

     222
01 2σρ++ω=µ s , ( )22222

0
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For a non-singular wave profile, K must have a nonzero real part. Eq. (6) implies a 

condition on the group velocity mismatch, 

22
0

2 40 σρ<ω−< s ,  (8) 

as the criterion for the existence of breathers.  
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These formulations for breathers can also be expressed in terms of 

trigonometric and hyperbolic functions [32], e.g. 
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3. Rogue waves      

3.1  Analytical formulation                                                                 

A rogue wave will arise when the period of an Akhmediev breather becomes 

indefinitely large. Theoretically, a zero frequency limit is taken (ω0 → 0 in Eqs. (4 

– 8)): 

( )3
000 ωω OKK += ,  ( ) aK =0Re , ( ) bK =0Im ,                                                 (9) 

( ) 222222 222 σρ+σρ+−σρ−±= ssa ,  sb −= . (10) 
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The criterion for the existence of rogue wave follows from Eq. (8) as  

s2 < 4σρ2. (11) 

To derive the rogue wave mode analytically, one takes the phase factors exp(ζ(1)) = 

exp(ζ(2)) = –1 in Eq. (4) and expands f, g, and h for small ω0, following analogous 

procedure in deriving rogue waves for derivative NLSE [39] and long wave-short 

wave resonance model [40]:  
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Similar to the Peregrine soliton of the single component NLSE, this rogue wave is 

also localized algebraically in both space and time. However, there are striking 

differences. At the center of the rogue wave (t = z = 0 here), the amplitude is less 

than ρ, and hence this mode is a ‘dark’ rogue wave. Indeed such dark / depression 

rogue waves have been derived for many other evolution equations as well, e.g. the 

erbium-doped fiber systems governed by the Maxwell-Bloch equations [41–44]. 

Theoretically, a real positive value of the parameter a is necessary (otherwise Eqs. 

(12, 13) are just plane waves for a = 0), and the necessary condition is then Eq. 

(11). 
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FIG. 1. (Color online) A dark rogue wave pair for the Manakov model in the 

normal dispersion regime with ρ = 1, s = 1, and σ = 0.5 for the two components (a) 

|A| and (b) |B|. There is just one single depression at the center. 
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FIG. 2. (Color online) A rogue wave pair in a four-petal configuration for the 

Manakov model in the normal dispersion regime with ρ = 1, s = 0.5 and σ = 0.5 for 

the two components (a) |A| and (b) |B|. 

 

3.2  Wave profiles 

      For NLSE of a single component in the anomalous dispersion regime, the 

rogue wave consists of a single ‘elevation’ accompanied by two ‘depressions’, 

with the peak of the elevation being three times the background. For two coupled 

NLSEs in the normal dispersion regime, the main displacements for the present 

case of equal background consist of depressions below the mean level in the center 
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(a dark rogue wave, Fig. 1). Furthermore, profiles of both components must be of a 

similar nature, and thus combinations of ‘dark-bright’ rogue waves are not 

permitted.  

To prove these assertions, first we recognize that t = z = 0 is a turning point of 

the function  

2

2

ρ
=

AL .  

The second derivatives at the stationary point (t, z) = (0, 0) are given by  
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The second derivatives at the stationary point (t, z) = (0, 0) for B are the same and 

hence the profiles must be of a similar nature.  

The precise profiles are determined by the signs of these second derivatives. For 

a local maximum or a minimum, (a2−3s2)(3a2−s2) must be positive. As s2 < a2 /3 is 

inadmissible due to Eq. (10), the range of group velocity difference for rogue wave 

modes to occur is s2 > 3a2, and the turning point is a minimum (Lxx > 0), i.e. a dark 

rogue wave. Since ∫ dtA 2  and ∫ dtB 2  are conserved quantities of this dynamical 

system, two maximum points emerge above the mean level in the vicinity to 

compensate for the drop in the intensity at (0, 0). Physically as s2 goes from 
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infinity to 3a2, the depression at (0, 0) deepens until the intensity reaches zero at s2 

= 3a2, i.e. a ‘black’ rogue wave. 

For 3a2 > s2 > a2, theoretically the point (0, 0) transforms from a minimum to a 

saddle point. Physically the minimum splits into two smaller units, and these units 

move away from each other in opposite directions, and the wave profile now 

displays a ‘four-petal’ pattern (Fig. 2). Regarding the ‘elevation’ portions of the 

wave profile, these peaks approach the value ρ2  as a2 tends to s2, in sharp 

contrast with the Peregrine breather which has a maximum of 3ρ. 

 

4. Modulation instability 

The connections between MI and rogue waves have been pursued in the 

literature, e.g. single component NLSE [45], coupled NLSEs (Manakov model) in 

the normal dispersion [26] and derivative NLSE [39]. Here we extend the 

consideration to breathers too. First a quick outline of MI of Eq. (1) is presented. 

Normal modes for small perturbations of continuous waves of Eq. (1) are sought: 

A = ρ exp(2iσρ2z)(1 + φ), B = ρ exp(ist + is2z + 2iσρ2z)(1 + ψ),   (14) 

φ = F1exp[i(rt–kz)] + G1exp[–i(rt–kz)], ψ = F2exp[i(rt–kz)] + G2exp[–i(rt–kz)].  (15) 

Nontrival solutions of F1, G1, F2, and G2 lead to the dispersion relation   
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MI will occur for complex values of k, i.e. values of r which fall in the range of 

                                              2 2 2 24s r sσρ < <− .                                               (16) 

The gain is then given by 

Gain = |Im(k)|. (17) 

The MI gain spectrum generally increases with the coefficient of cubic 

nonlinearity (σ), the group velocity mismatch parameter (s), and the amplitude of 

the background continuous wave (ρ) (Fig. 3).  
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FIG. 3. (Color online) The variations of MI gain spectrum with (a) σ for s = 1.2, ρ 

= 1; (b) s for σ = 1, ρ =1; and (c) ρ for σ = 1, s = 1.2. 
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When s2 < 4σρ2 holds, any positive perturbation frequency r in the range of 

0 r s< < will satisfy Eq. (16), and the zero frequency limit (r → 0) falls within the 

range of MI. However, in the opposite case, when s2 > 4σρ2 holds, the range of 

unstable perturbation frequency r is restricted to s2 – 4σρ2 < r2, i.e. bounded away 

from zero. Hence a long wave limit (r → 0) to derive a rogue wave will go beyond 

the regime of MI. Consequently, the lack of rogue wave modes for the parameter 

regime s2 – 4σρ2 > 0 is not surprising.  

This analysis now establishes the connection between the existence of rogue 

wave / breather and MI. However, a sufficiently strong MI will mask the evolution 

of a rogue wave/breather as the noise grows too rapidly. It is natural to conjecture 

that a compromise is to have ‘mild’ values of the MI gain spectrum for a rogue 

wave/breather to be readily observable. Numerical simulations to this effect will be 

demonstrated in the next section.  

 

5. Computational studies on stability for breathers and rogue waves 

In these numerical simulations, a pseudospectral method in the time domain and 

a fourth-order Runge-Kutta scheme with an adaptive step-size control in the spatial 

domain are employed. The initial condition for the fiber is given by 

A(0, t) = (1+noise) Aexact(0, t), B(0, t) = (1+noise) Bexact(0, t),     (18) 
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with noise = 0.001(1 – 2·Rand). Aexact(0, t) and Bexact(0, t) are the exact amplitudes 

of the breather / rogue wave solutions at the input end of the fiber (i.e., z = 0). The 

noise is generated by a random variable ‘Rand’ in the interval [0, 1] and has an 

amplitude of 0.1% relative to the input wave. 

 

5.1 Evolution of the Akhmediev breather 

First, we focus on the Akhmediev breather. In the absence of noise, a breather 

can be formed smoothly at a proper propagation distance. In the presence of noise, 

a stable breather can be observed only for parameters that lead to weak MI, as 

shown in Fig. 4 for σ = 0.25, ρ = 1, ω0 = 1, and s = 1.2, where the maximum gain is 

0.2. The appropriate characterization of ‘weak’ versus ‘strong’ gain will be made 

precise after all the numerical results have been presented. When the MI effect is 

strong, the breather is severely affected by the growth of the background noise (Fig. 

5, where the parameters are the same as those for Fig. 4 except for σ = 1 and the 

maximum gain is then 0.45).  
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FIG. 4. (Color online) Evolution of the amplitude (a) |A| and (b) |B| with a 

background noise of 0.1% for the parameters ρ = 1, ω0 = 1, s = 1.2, and σ = 0.25, 

showing the stable evolution of an Akhmediev breather. 
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FIG. 5. (Color online) Evolution of the amplitude (a) |A| and (b) |B| with a 

background noise of 0.1% for the parameters ρ = 1, ω0 = 1, s = 1.2, and σ = 1. The 

gain displayed by the noise will severely affect or even overwhelm the Akhmediev 

breather. 
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For the present scaled version of coupled NLSEs (Eq. (1)), more extensive 

simulations show that a modulation instability gain in the range of 0.2 to 0.3 will 

be a threshold for a structural stability of these breathers, above which the 

pulsating modes will be ‘contaminated’ by the growth of the noise.  

 

5.2 Stability of rogue waves 

A similar picture emerges for rogue waves, which is possible only for parameter 

regimes with MI. In other words, a ‘mild’ MI will permit a readily observable 

rogue wave, while a ‘strong’ MI will ‘overwhelm’ or ‘mask’ the development. To 

illustrate the situation, the evolution with maximum MI gains of 0.10, 0.11, and 

0.27 are shown in Figs. 6, 7 and 8 respectively. When the MI effect is weak, a 

rogue wave can be readily observed (Fig. 6). As the MI gain increases, the rogue 

wave begins to be affected by MI (Fig. 7). As the MI effect becomes sufficiently 

strong, the evolution of the rogue wave will be ‘masked’ by the background 

instability (Fig. 8). The maximum MI gain which permits a distinct recognition of 

rogue wave development under the present scaling (Eq. (1)) is found from more 

extensive simulations to be around 0.1, roughly half the threshold value of the case 

of the Akhmediev breather.  
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FIG. 6. (Color online) Evolution of the amplitude (a) |A| and (b) |B| with a 

background noise of 0.1% for ρ = 1, s = 0.5, and σ = 0.5, showing the formation of 

a rogue wave with almost no influence from the background modulation 

instability. 
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FIG. 7. (Color online) Evolution of the amplitude (a) |A| and (b) |B| with a 

background noise of 0.1% for ρ = 1, s = 0.5, and σ = 1. A few ripples can be seen 

in the background, but the rogue wave is mostly unaffected. 
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FIG. 8. (Color online) Evolution of the amplitude (a) |A| and (b) |B| with a 

background noise of 0.1% for ρ = 1, s = 1, and σ = 0.5. The rogue wave is 

‘masked’ or ‘overwhelmed’ in view of the strong modulation instability of the 

background. 
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6. Discussions and conclusions 

Breathers (pulsating modes) have been studied earlier in the literature for 

coupled nonlinear Schrödinger systems (the Manakov model) in the anomalous 

dispersion regime [46], and these modes are shown in this paper to exist in the 

normal dispersion regime as well. The background continuous waves have 

different frequencies and wavenumbers which can analytically be transformed to a 

setting of wave packets with group velocity mismatch. These formulations serve as 

adequate models for the propagation of two orthogonal polarization modes of an 

optical fiber with randomly varying birefringence.  

 While recent works [25, 26] also treated rogue waves for coupled NLSEs in the 

normal dispersion regime, the present effort further generalizes the physical setting: 

● The present work treats the general case of a breather (pulsating mode) while 

previous papers [25, 26] only discussed the rogue waves (rational solutions). The 

long wave limits of breathers will yield the rogue wave modes. 

● The Hirota bilinear method, instead of the Darboux transformation, is used here, 

with the merit that the Hirota method has been used in soliton calculations for over 

forty years, and most ‘integrable’ equations have bilinear forms.  

● More importantly, we perform numerical simulations on the stability for both 

breathers and rogue waves, an aspect which had not been covered earlier [25, 26]. 
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Many previous theoretical works postulated the correlation between modulation 

instability and the onset of rogue waves. Here it is demonstrated that a sufficiently 

strong modulation instability may cause robust growth of background noise too. 

Such growth may overwhelm or mask the evolution of the rogue wave modes. 

 Since rogue waves were first studied in a context of water waves, a historical 

remark would be valuable. Even though perturbation series and theoretical analysis 

were sought intensively for finite amplitude waves in the 1940s to 1960s, 

experimental verification for such large waves failed in the 1960s. Eventually a 

mechanism of instability, known in modern terms as the Benjamin-Feir instability, 

explains this phenomenon in terms of sideband modes, the nonlinear Schrödinger 

equation and in optical terms, supercontinuum generation [47]. Further 

computational works on the stability of rogue waves might be fruitful. 

  Returning to the dynamics of rogue waves, precise comparisons with earlier 

works can now be made. Firstly, the geometric configuration of the rogue waves is 

discussed. For the special case of equal background amplitude for both polarization 

modes of the fiber A and B of Eq. (1), it was established [22 and calculations here] 

that localized modes must have a depression in the center. In addition we identify 

the existence of a black rogue wave (intensity dropping to zero), and elucidate 

theoretically the transformation from a configuration of a single ‘depression’ to 
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two ‘depressions’. With two elevations in the vicinity to maintain the conserved 

quantities, the transformation to a four-petal configuration is elucidated. Similar 

changes had been described earlier in the literature for the coupled NLSEs in the 

focusing regime [48], but now a similar phenomenon is demonstrated to hold in the 

defocusing regime as well. Besides being in the two different regimes of the 

coupled NLSEs, the present investigation offers several distinct contrasts. We 

provide an analytically closed form description of the shift in frequency necessary 

to achieve this transition to a ‘four-petal’ configuration. Furthermore, our present 

formulation can predict the amplitude of the nearby ‘elevations’ too.  

The existence criterion for rogue waves correlates exactly with the onset of 

modulation instabilities. However, an extremely strong background instability may 

overwhelm or mask the growth phase of the rogue wave. As such a ‘mild’ range of 

background should be beneficial to the experimental observation of rogue waves. 

Computational studies of stabilities conducted confirm this trend. More precisely, 

for relatively ‘weak’ MI, both the breathers and the rogue waves can evolve stably 

in the presence of small perturbations. However, the evolution is distorted or 

masked if the MI is sufficiently strong. 

Quantitatively in terms of optical applications, in the scaling defined by Eq. (1), 

the maximum MI gain values that can lead to the stable evolution of Akhmediev 
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breathers and rogue waves should be less than 0.24 and 0.1 respectively. To 

convert into actual values relevant to an optical fiber, we assume a characteristic 

length equal to (T0)2/|β2| [5] where a typical period T0 of say 1ps is chosen. If the 

second order group velocity dispersion β2 takes on a value of 20ps2/km, these 

critical thresholds correspond to actual MI gains of 4.8/km and 2/km respectively, 

which are realistic values in a laboratory setting. 

From a theoretical perspective, a more comprehensive description concerning 

the relation among MI, rogue waves and group velocity mismatch is emerging. 

While classical efforts predicted the existence of MI [19–24], recent works 

established the criterion for the onset of rogue waves as identical to those predicted 

by the MI analysis. By its very nature MI is a linearized approximation and thus 

MI gain does not saturate. Full scale numerical simulations predict cycles of 

growth and relaxation known as the Fermi-Pasta-Ulam recurrence [47]. Rogue 

waves might be interpreted as the fundamental modes in the description of this 

intriguing growth/decay process. Numerical simulations in this work represent 

further constraints on the rogue waves and other unstable modes in the MI 

spectrum: Rogue waves can only exist if MI exists, but sufficiently strong MI 

might mask the rogue waves as other modes might grow at a robust rate too.   
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Finally a remark on the comparison between the various theoretical approaches 

in obtaining breathers and rogue waves is in order. The Darboux transformation 

can give a whole family of rational [25, 26] and rational-exponential [12, 13] 

solutions. The Hirota bilinear transform can also produce these solutions through a 

coalesence of wave number approach [49]. For a merger in the zero wave number 

limit, purely rational solutions are obtained, while a coalescence at a finite wave 

number will yield the rational-exponential solutions [12, 13, 50]. Closely related to 

these approaches are the double pole solutions which are obtained through the 

inverse scattering mechanism [50]. The term ‘double pole’ arises from the merger 

of simple poles in the reflection coefficient in the inverse scattering mechanism.  

In principle, these studies can be readily extended to other settings of optical 

rogue waves. Effects of other realistic optical fibers, e.g. multi-mode fibers, can be 

considered too [51]. A tremendous amount of valuable information is awaiting 

future efforts of researchers.  
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