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Topological quantum memory interfacing atomic and superconducting qubits
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We propose a scheme to manipulate a topological spin qubit which is realized with cold atoms in a one-
dimensional optical lattice. In particular, by introducing a quantum opto-electro-mechanical interface, we are
able to first transfer a superconducting qubit state to an atomic qubit state and then to store it into the topological
spin qubit. In this way, an efficient topological quantum memory could be constructed for the superconducting
qubit. Therefore, we can consolidate the advantages of boththe noise resistance of the topological qubits and
the scalability of the superconducting qubits in this hybrid architecture.

PACS numbers: 03.67.Lx, 42.50.Dv, 07.10.Cm

I. INTRODUCTION

Quantum computation has attracted much attention as it is
able to solve diverse classes of hard problems. Superconduct-
ing circuits are promising for implementing quantum com-
puter hardwares as they are potentially scalable [1]. As a
superconducting qubit is usually quite sensitive to the exter-
nal environments and background noises, its coherence time
is generally rather short [2]. A promising strategy out of this
difficulty is based on the topological idea [3]: a topological
qubit is largely insensitive to major sources of local noises,
and thus can be used to form an efficient topological quantum
memory (TQM).

Recently, with the potential applications in topological
quantum computation, topological states of matter have at-
tracted renewed interests [4–6]. In particular, time-reversal
invariant topological insulators [7–11] have been reported ex-
perimentally, and thus have greatly stimulated the study of
topological phases [4]. In engineering topological phases, the
spin-orbit (SO) interaction usually plays an important role.
Therefore, with recent great achievements in realizing artifi-
cial SO interaction in cold atom system [12–18], it becomes
a new platform to probe topological phases in a fully con-
trollable way [19]. Recently, Liuet al. [20] proposed to ob-
serve and manipulate topological edge spins realized in a one-
dimensional (1D) optical lattice with experimentally realized
SO interaction. The nontrivial topology there supports twode-
generate zero modes, which are topologically stable, and thus
can be used to construct a topological spin qubit (TSQ).

Here, we propose a scheme to realize an interface between
this TSQ and a solid-state superconducting qubit. This hybrid
system may allow us to combine the advantages of both the
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noise resistance of the topological qubits and the scalability of
the superconducting qubits. With the help of cavity assisted
interaction [21], we show that local operations can be imple-
mented for the TSQ. Our particular interest lies in using this
TSQ as a TQM, where we can store quantum information of
both atomic and superconducting qubits. Meanwhile, recent
experiments shown that the TSQ was not only a theoretical
proposal, but also within experimental feasibility [22]. Fi-
nally, we note that there are proposals considering the hybrid
systems consisting of superconducting qubits and nitrogen-
vacancy centers. However, as the coupling between a single
nitrogen-vacancy center and a cavity is usually very weak, be-
low 0.1 kHz level [23], previous works mainly focus on using
ensemble of nitrogen-vacancy centers [23–26], where the de-
phasing time of the ensemble is much shorter comparing with
a single nitrogen-vacancy center.

To store the state of a superconducting qubit [blue rectan-
gle in Fig. 1(a)] into the TSQ formed by the atomic lattice,
as shown in Fig. 1(a), we firstly transfer the state of the su-
perconducting qubit to an ancillary atomic qubit [pink circle
in Fig. 1(a)] and then store it into the TSQ. As the supercon-
ducting and ancillary atomic qubits are of vastly differentfre-
quencies, a quantum opto-electro-mechanical setup is needed,
where a mechanical oscillator mediates the coherent coupling
of both microwave and optical photons [27–31]. It was re-
ported that this interface had been realized in recent experi-
ments [27, 28]. The superconducting qubit interacts with a
microwave cavity mode in a circuit QED scenario [32], while
the atoms interact with the optical cavity mode. When the
intra-cavity interaction is switched on, one can obtain high
fidelity state transfer from a superconducting qubit to the an-
cillary atomic qubit. By switching off the intra-cavity inter-
action, we show that a TQM for the ancillary atom can be
constructed. Combining the two processes become particu-
larly arresting as we can store a superconducting qubit state
into the TQM, which provides an alternation for interfacing
topological and superconducting qubits [33–36].
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FIG. 1. Illustration of our scheme. (a) A hybrid architecture con-
sists of two-cavity optomechanical system. A mechanical oscillator
(red) mediates the coupling of the optical (left) and microwave cav-
ities (right). A 1D optical lattice, constructing our TQM, is inside
the optical cavity. An ancillary atom (pink circle) is incorporated to
engineer the cavity photon state and its information can be stored in
the TQM. (b) The level structure of atoms in the optical lattice. The
transitions|0〉 → |e〉 and |1〉 → |e〉 are induced by the lasers in a
large one-photon detuning|∆| ≫ Ω and a small two-photon detun-
ing |δ0| ≪ Ω. The transition|1〉 → |e〉 is dispersively coupled to
the cavity field to achieve the QND Hamiltonian. To obtain effec-
tive switch of the cavity-assisted interaction, a strong control laser of
Rabi frequencyΩx driving the transition of|2〉 → |e〉 is also intro-
duced. (c) The level structure of the ancillary atom.

II. A TOPOLOGICAL SPIN QUBIT

The TSQ is based on a quasi-1D cold fermions with three-
level Lamda configuration trapped in an optical lattice [20].
As shown in Fig. 1(b), the transitions|0〉 → |e〉 and |1〉 →
|e〉 are induced by the lasers, with Rabi-frequenciesΩ1 =
Ωsin(k0x/2) andΩ2 = Ωcos(k0x/2), in a large one-photon
detuning|∆| ≫ Ω and a small two-photon detuning|δ0| ≪
Ω, which is equivalent to a Zeeman field along thez axisΓz =
~δ0/2 and can be precisely controlled. Then, adiabatically
eliminating the excited state|e〉 yields the following effective
Hamiltonian

Heff =
p2x
2m

+
∑

σ=0,1

[

Vσ(x) + Γzσz
]

|σ〉〈σ|

−
[

M(x)|0〉〈1|+H.c.
]

, (1)

whereM(x) = M0 sin(k0x) with M0 = ~Ω2

2∆ being an addi-
tional laser-induced Zeeman field alongx axis. To form the
1D lattice, the optical dipole trapping potentials are chosen as
Vσ(x) = −V0 cos2(k0x) with the lattice trapping frequency
beingω = (2V0k

2
0/m)1/2 [19]. The states|0〉 and |1〉 are

defined by spin up and down of a pseudo-spin, respectively.
The tight-binding description of Hamiltonian (1) is definedas

the case when the fermions occupy the lowests-orbitalsφsσ.
Redefining the spin-down operator asĉj↓ → eiπxj/aĉj↓ with
a being lattice constant, the tight-binding Hamiltonian reads
[20]

H = −ts
∑

<i,j>

(ĉ†i↑ĉj↑ − ĉ†i↓ĉj↓) +
∑

i

Γz(n̂i↑ − n̂i↓)

+





∑

j

t(0)so

(

ĉ†j↑ĉj+1↓ − ĉ†j↑ĉj−1↓

)

+H.c.



 , (2)

wheren̂iσ = ĉ†iσ ĉiσ,

ts =

∫

dxφ(j)sσ (x)

[

p2x
2m

+ V

]

φ(j+1)
sσ (x),

t(0)so =
Ω2

0

∆

∫

dxφs(x) sin(2k0x)φs(x− a).

In k space, the tight-binding Hamiltonian can be rewritten as

Hk = −
∑

k,σσ′

ĉ†k,σ [dz(k)σz + dy(k)σy ]σ,σ′ ĉk,σ′ , (3)

wheredy = 2t
(0)
so sin(ka) anddz = −Γz + 2ts cos(ka). This

Hamiltonian describes a nontrivial topological insulatorwhen
|Γz| < 2ts and otherwise a trivial insulator, with a bulk gap

Eg = min{|2ts − |Γz ||, 2|t(0)so |}. The nontrivial topology sup-
ports two degenerate boundary modes, and each mode equals
one-half of a spin 1/2 particle, similar to the relation between
a Majorana fermion and a complex fermion in topological su-
perconductors [37]. The zero modes are robust to local noises,
and thus may form a TSQ which we can use as a TQM. The
TSQ can also be obtained in the middle of the lattice by cre-
ating mass domain. Local operations upon the TSQ can be
achieved by applying a local Zeeman termBy = Γ0σy or

Bz = Γ0σz [20]. When|Γ0| > 2|t(0)so | a mass domain is cre-
ated, associated with two midgap spin states|ψ±〉 localized
around the two edges of the TSQ. Let|ψ+〉 be initially oc-
cupied, reducing|Γ0| smoothly can open the coupling in|ψ±〉
and lead the TSQ state to evolve. If we apply the Zeeman field
alongz (y) axis, the TSQ evolves in thex-y (x-z) plane [20].

III. TQM FOR AN ATOMIC QUBIT

We then show how to store the state of an ancillary atom
into the TSQ. For our TQM purpose, we need controlled ma-
nipulation of the TSQ, and thus a controllable local Zeeman
field. Here, we propose to implement this controlled manip-
ulation with cavity-assisted quantum nondemolition (QND)
Hamiltonian [21]. To achieve this, we introduce another level,
and thus the fermions are now in four-level Tripod configu-
ration. For6Li and 40K atoms, we can find appropriate hy-
perfine levels to meet the requirement. The coupling structure
is shown in Fig. 1(b). To implement the QND Hamiltonian
HQND = χa†a

∑

l σ
z
l , we set the cavity mode to couple the
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transition of|1〉 ↔ |e〉 with a strengthg and blue detuningδ,
whereχ = g2/(2δ) anda(a†) is the annihilation (creation)
operator for the cavity photon. As the cavity assisted interac-
tion is always-on, if we want the interaction to act only on the
atoms within certain area, we should be able to decouple the
interaction outside the wanted area. This can be done by us-
ing another laser which couples the transition of excited state
to another level with a Rabi frequencyΩx, i.e., |2〉 ↔ |e〉, as
shown in Fig. 1(b). WhenΩx ≫ g, the destructive interfer-
ence of excitation pathways from the two transition ensures
that the so-called dark state, which decoupled the atoms from
interacting with both optical fields [38, 39]. This QND Hamil-
tonian preserves the photon numbernc of the cavity mode.
Within thenc ∈ {0, 1} subspace, the evolution of the QND
Hamiltonian for an interaction time ofτ = π/(2χ) yields
[21]

U = exp [−iτHQND] =

{

I for nc = 0

(−i)N
∏

l σ
z
l for nc = 1

(4)

whereN being the number of the selected atoms. If the cavity
is initially prepared in thenc = 1 state, the global operation
in Eq. (4) reduces to a string operationUz =

∏

l σ
z
l . Note

that all the string operators are equivalent toUz up to local
single spin rotations [21]:Ux =

∏

l σ
x
l = HUzH andUy =

∏

l σ
y
l = RUzR, whereH =

∏

lHl andR =
∏

l Rl with
Hl = (σx

l + σz
l ) /

√
2 being the Hadamard rotation andRl =

exp
(

−iπ4σz
l

)

. Therefore, as we can implementUz, universal
single qubit gates on the TSQ can be implemented.

When the cavity state is in a superposition state ofµ|0〉c +
ν|1〉c, the global operation in Eq. (4) reduces to a controlled-
string operation:U1 = |0〉c〈0| ⊗ I + |1〉c〈1| ⊗ Uz. Here, we
need to engineer the cavity photon states. However, it is actu-
ally easier to control an ancillary atom rather than to directly
manipulate the photon number state. Therefore, we put an an-
cillary atom into the optical cavity, which is used to achieve
controlled-string operations between the ancillary atom and
the TSQ. The level structure of the ancillary atom is shown in
Fig. 1(c), the transitions of|1〉 ↔ |e〉 and|2〉 ↔ |e〉 are cou-
pled to the cavity field with strengthg′ and a laser with Rabi
frequencyΩA, respectively. Meanwhile, the two couplings
are in a two-photon resonance scenario with a red detuningδ′

to the exited state|e〉. Then, the two couplings are described
by an effective Hamiltonian given as

He = λ(a†|2〉〈1|+ a|1〉〈2|), (5)

whereλ = g′ΩA/δ
′. To implement the controlled operations

conditioned on the states of the ancillary atom, we choose the
initial state as that the cavity mode is in a vacuum state|0〉
and the ancillary atom is in an arbitrary superposition state of
α|0〉A + β|1〉A. The procedure is listed as follows. (1) An in-
teraction ofHe for t = π/λ coherently couples the cavity with
the atom:α|0〉A|0〉c + β|2〉A|1〉c. (2) The QND Hamiltonian
for τ = π/(2χ) on the above intermediate state is applied. (3)
Applying He for anothert = π/λ will annihilate the cavity
photon and restore the ancillary atom to its original state.In
the steps (1) and (3), we have neglected a phase factor, which
can be compensated by a sing-qubit rotation on the ancillary

atom. In this way, one realizes a controlled-string operation
conditioned on the state of the ancillary atom [21]

U2 = |0〉A〈0| ⊗ I + |1〉A〈1| ⊗ Uz. (6)

In particularly, upon local single spin rotations, one can ob-
tain the controlled operations for the TSQ conditioned on the
ancillary atom given as

Uz
cs = |0〉A〈0| ⊗ I + |1〉A〈1| ⊗ Sz

TSQ,

Ux
cs = |0〉A〈0| ⊗ I + |1〉A〈1| ⊗ Sx

TSQ,

whereS(x,z)
TSQ are the Pauli matrices for the TSQ.

With such controlled operations, one is able to access an
efficient TQM [21]. For this purpose, we need a swap in
gate defined asUin = HAU

z
csHAU

x
cs with HA being the

Hadamard rotation on the ancillary atom, which swaps the an-
cillary atomic state(α|0〉+ β|1〉)A into the topological mem-
ory initialized in |ψ+〉. For the inverse process, we need a
swap out gateUout = Ux

csHAU
z
csHA that swaps the stored

information back to the ancillary atom prepared in|0〉A. The
swap in (out) process corresponds to write (read) process for
our TQM. The read process also provides us an alternative
way of reading out the topological qubit, which is usually a
hard problem.

We now turn to discuss the experimental feasibility of stor-
ing the ancillary atomic state into the TQM. (1) The TSQ con-
sidered here is robust in the largeN limit [37]. For finiteN ,
the ground-state degeneracy is broken, and thus causes deco-
herence. However, the lifetime of the TSQ is exponentially in-
creased with the increasing ofN . Therefore, for smallN , one
may already obtain a relatively long coherence time for the
TSQ [20]. (2) To implement the QND Hamiltonian, we use
the large detuned scheme, which only requires large Purcell
factor, i.e.,P = g2/(γκ) > 1 with γ andκ being the spon-
taneous decay rate of level|e〉 and the cavity decay rate, re-
spectively. For our large detuned scheme, the effective sponta-
neous decay rate is suppressed toγeff = γg2/δ2. Therefore,
as the selected atoms decay independently, the total probabil-
ity for photon loss isPN

loss = (κ+Nγeff )τ ≥ 2π
√

N/P ≈
3% for N = 5, g/(2π) = 220 MHz [40], γ = 10 MHz, and
κ = 1 MHz. (3) The addressing errors of the lasers are asso-
ciated with a finite spread around the lattice points of atoms,
which results in a tiny coupling between the addressing beam
and the selected atoms, and thus leads to a finite lifetime for
the level|2〉. The error probability associated with address-
ing each site is estimated to beε = 1% [38, 39], which can
be further suppressed. (4) The deviation of the QND interac-
tion, which degrades the controlled string operation, can also
be corrected by the quantum control techniques to arbitrarily
high order [41]. (5) For the controlled string operations, we
further need the light-atom interface, i.e., the reversible state
transfer between light and the ancillary atom. With a strong
lase field ofΩA = 1 GHz, the error rate can be achieved un-
derPi = 1%. Finally, combining the above error channels, we
may obtain a fidelity about95% for a controlled operation. As
both the read and write processes of the TQM need two con-
trolled operations, a fidelity ofF1 = 95%× 95% ≈ 90% can
be obtained for the storage of the ancillary atomic state into
the TQM.
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IV. INTERFACE WITH A SUPERCONDUCTING QUBIT

We now show that by incorporating the above system with
an additional quantum opto-electro-mechanics interface [27],
we can achieve the storage of a superconducting qubit state
into our TQM. The combined setup is shown in Fig. 1(a),
where we consider the case of two-cavity optomechanical sys-
tem. For our TQM purpose, we can firstly transfer the state of
the superconducting qubit to the ancillary atomic qubit and
then store the ancillary atomic qubit state into the TSQ as pro-
posed previously. Therefore, we only need to consider the
state transfer between the superconducting qubit and the an-
cillary atomic qubit in the following. This process is achieved
by the quantum opto-electro-mechanical setup. In a circuit
QED system, under the rotating-wave approximation, the in-
teraction Hamiltonian takes the Jaynes-Cummings form [32]

Hm = gm
(

b†σ−
s + bσ+

s

)

, (7)

where gm is the coupling strength of the superconducting
qubit to the microwave cavity, the subscript ”s” denotes that
the operators belong to the superconducting qubit,b and b†

are the annihilation and creation operators of the microwave
cavity field, respectively. Similarly, the ancillary atom is also
coupled to the optical cavity [40], as shown in Fig. 1(c), the
transitions of|1〉 ↔ |e〉 and|0〉 ↔ |e〉 are coupled to the cav-
ity field with strengthg′ and a laser with Rabi frequencyΩB ,
in the two-photon resonance way. Then, the two couplings are
described by an effective Hamiltonian given as

Ho = go(a
†|0〉a〈1|+ a|1〉a〈0|), (8)

wherego = g′ΩB/δ
′ and the subscript ”a” stands for atom.

Here, we consider that the opto-electro-mechanical coupling
is enhanced by strongly driving of each cavity, resulting inan
effective linear couplings [31]. Assuming that each cavityis
far into the resolved-sideband regime and is driven near the
red-detuned mechanical sideband, in the interaction picture,
the interaction Hamiltonian reads

Hc = G1

(

da† + d†a
)

+G2

(

db† + d†b
)

, (9)

whered andd† are the annihilation and creation operators of
the mechanical oscillator, respectively. The coupling between
the mechanical resonator and cavityi is denoted asGi, which
is controllable as they are proportional to the external driven
amplitude, so we may chooseG1 = G2 = G for simplicity.
The total Hamiltonian readsH = Ho+Hm+Hc, which con-
serves the total excitations and we restrict our discussions to
be within the zero- and single-excitation subspaces. Transfer
of the intra-cavity qubit states can be accomplished by modu-
lating parameters of our system [42]. As the light-matter in-
teraction is tunable, we can modulatego = gm = g. The ini-
tial states of the ancillary atomic and superconducting qubits
are assumed to be|0〉a and |ψs〉 = (α|0〉s + β|1〉s), re-
spectively. Deterministic quantum state transfer is realized
when exp (−itH)|000〉c|0〉a|ψs〉 = |000〉c|ψa〉|0〉s is ful-
filled, where|ψa〉 = α|0〉a + β|1〉a and |000〉c means that
the three bosonic modes are all in the vacuum states.

0.9 0.95 1 1.05 1.1
0.86

0.88

0.9

0.92

0.94

0.96

gt/π

F 2

r=1.1

r =
√

1.5
r=1.35

FIG. 2. The fidelity of the quantum state transfer between a super-
conducting qubit and the ancillary atom as a function ofgt/π. The
parameters areκd = 0.1 MHz, κb = κa = 1 MHz, γa = γs = 0.1
MHz, andg = 6π MHz.

After diagonalizing the total Hamiltonian without dissipa-
tion, we find that deterministic state transfer is achieved at
time t = π/g, when the relation2r2 = (4k2 − 1) (with
k = 1, 2, 3, ... and r = G/g) is fulfilled. To facilitate the
state transfer process, largerG is preferable [27]. Meanwhile,
to achieve adiabatic transfer of qubits state,r ≫ 1 is required
in order to single out only the dark bosonic mode, which re-
sults in much smallerg for a givenG. As a result, the time
needed to complete the transfer will be much longer, and thus
decoherence will cause considerable errors. However, if very
strongG is experimentally accessible, e.g.,r = 20, which
meansG ∼ 100 MHz, we have numerically confirmed that
the influences of mechanical mode decay on the state transfer
process can be safely neglected.

Finally, we estimate the influence of dissipation to the state
transfer process by integrating the quantum master equation

ρ̇ = −i[H, ρ] +
∑

β

κβ(2βρβ
† − β†βρ− ρβ†β)

+γs(2σ
−
s ρσ

+
s − σ+

s σ
−
s ρ− ρσ+

s σ
−
s )

+γa(2σ
−
a ρσ

+
a − σ+

a σ
−
a ρ− ρσ+

a σ
−
a ), (10)

where ρ is the density matrix of the entire system,
β ∈ {a, b, d}, κa, κb and κd are the decay rates of the
optical cavity, microwave cavity, and the mechanical oscil-
lator, respectively;γa andγs are the lifetimes of the atomic
and superconducting qubits, respectively. We characterize the
transfer process for the given initial state by the conditional
fidelity of the quantum state defined byF2 = 〈ψa|ρa|ψa〉
with ρa being the atomic reduced density matrix. By choos-
ing the typical parameters:κa = 1 MHz, κb = 1 MHz,
κd = 0.1 MHz, γa = 0.1 MHz andγs = 0.1 MHz, we plot,
in Fig. 2, the fidelity of the quantum state transfer process
F2 as a function of the dimensionless timegt/π, where we
have obtained a high fidelityF2 > 95% of the process. In
particularly, even with considerable deviation (about±10%)
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of the coupling strength to the ideal condition,F2 > 94% can
still be obtained. Therefore, this process is very robust tothe
deviation of the coupling strength. In the above estimation,
we have neglected the effect from the atoms in the optical
lattice due to the following two reasons. Firstly, the cavity-
assisted interaction can be effectively switched off. Secondly,
if there is a small probability that it has not been switched
off, then it will cause energy shift of the cavity mode. As for
N atoms, this shift isNg2/δ ∼ Ng/10 for δ ∼ 10g. For
the ancillary atom, we may chooseδ′ = 10ΩA = 100g; in
this wayλ = 0.1g is still large enough for our manipulation
purpose. With the above parameters, forN = 5, we obtain
that the atom-induced energy shift isδ′/200, and thus can be
safely neglected. Therefore, combining the process of storing
the ancillary atomic state into the TQM, we can obtain a
fidelity of F = F1 ×F2 ≈ 86% for storing a superconducting
qubit into the TQM.

V. CONCLUSION

In summary, we have proposed a hybrid implementation of
a TQM for both atomic and superconducting qubits, which
can combine the advantages of both the noise resistance of the
topological qubits and the scalability of the superconducting
qubits. In particular, by introducing a quantum opto-electro-
mechanical interface, we have demonstrated that the super-
conducting qubit state can be efficiently transferred into the
TSQ.
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