
On The Synthesis of Adaptive Parameter-Dependent Output Feedback Controllers
Through LMI-Based Optimization

Graziano Chesi

Department of Electrical and Electronic Engineering
The University of Hong Kong
Pokfulam Road, Hong Kong

Email: chesi@eee.hku.hk

Abstract—This paper addresses the problem of designing adaptive
output feedback controllers for stabilizing plants affected by pa-
rameters. A novel approach is proposed that allows one to design
a fixed-order fixed-degree adaptive parameter-dependent output
feedback controller by solving convex optimization problems with
Linear Matrix Inequalities (LMIs). The proposed approach i s
based on the construction of a function that provides a stability
margin of the closed-loop system depending on the controller.
The conservatism of the proposed approach can be reduced by
increasing the size of the LMIs.
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I. I NTRODUCTION

Ensuring stability is of fundamental importance in engi-
neering. Given an unstable plant, this is generally achieved
by designing a stabilizing output feedback controller, i.e., a
controller that elaborates the output of the plant in order to
provide an input to the plant such that the so obtained closed-
loop system is stable. The design of such a controller is based
on the model of the plant, and several techniques can be used.

Real plants are often affected by parameters. These can
happen due to various reasons. One reason is that such
parameters can represent quantities that the user can modify,
such as the gain of an amplifier, in order to achieve a different
performance. Another reason is that such parameters can
represent quantities that are unknown or subject to changes,
such as the mass, resistance, temperature, etc.

Whenever the plant is affected by parameters, the output
feedback controller should be able to ensure stability for all
admissible values of the parameters. For this, the controller
should be dependent on the parameters in general, i.e., should
be able to adapt to different plants corresponding to different
values of the parameters. Such a controller would be, hence,
adaptive, in particular parameter-dependent.

Unfortunately, the design of stabilizing output feedback
controllers for plants affected by parameters is a difficult
problem. Indeed, several conditions do exist in the literature
for establishing stability of systems affected by parameters,
in particular conditions based on convex optimization con-
strained by LMIs; see for instance [1]–[5]. However, such
conditions lead to nonconvex optimization problems whenever
a controller is searched for, generally due to the product ofthe
Lyapunov function and the controller that generates Bilinear
Matrix Inequalities (BMIs); see for instance [6] [7]. Also,
several non-LMI strategies are available for the design of

stabilizing feedback controllers for plants that are not affected
by parameters, however, for plants affected by parameters,such
strategies could not be used due to the lack of analytical ex-
pressions (such as factorizations dependent on the parameters)
or could lead to controllers of unacceptable order and degree;
see for instance [8].

This paper addresses the problem of designing adaptive
output feedback controllers for stabilizing plants affected
by parameters. A novel approach is proposed that allows
one to design a fixed-order fixed-degree adaptive parameter-
dependent output feedback controller by solving convex op-
timization problems with LMIs. The proposed approach is
based on the construction of a function that provides a stability
margin of the closed-loop system depending on the controller.
The conservatism of the proposed approach can be reduced
by increasing the size of the LMIs. A numerical example
illustrates the proposed approach. This paper extends our
previous work [9].

The paper is organized as follows. Section II introduces
the preliminaries. Section III describes the proposed approach.
Section IV presents an illustrative examples. Lastly, Section
V concludes the paper with some final remarks. This work
is supported in part by the Research Grants Council of Hong
Kong under Grant HKU711213E.

II. PRELIMINARIES

Notation:N,R,C: sets of nonnegative integers, real num-
bers, and complex numbers;re(A): real part of matrixA; A′:
transpose of matrixA; A ≥ 0: symmetric positive semidefinite
matrix A; spec(A): set of eigenvalues ofA.

Let us consider the plant
{

ẋ(t) = A(p)x(t) +B(p)u(t)

y(t) = C(p)x(t)
(1)

wheret ∈ R is the time,x(t) ∈ Rn is the state,u(t) ∈ Rm

is the input,y(t) ∈ Rq is the output,p ∈ Rq is the vector of
parameters, and the matricesA(p), B(p) andC(p) are given
matrix polynomials. It is supposed that

p ∈ P (2)

whereP is the set of admissible parameters. The plant (1)
is controlled by the parameter-dependent output feedback
controller

{

˙̃x(t) = Ã(p)x̃(t) + B̃(p)y(t)

u(t) = C̃(p)x̃(t) + D̃(p)y(t)
(3)
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wherex̃(t) ∈ Rñ is the state of chosen orderñ ∈ N, and the
matricesÃ(p), B̃(p), C̃(p) andD̃(p) are matrix polynomials
to determine of chosen degreẽd ∈ N.

Problem 1. The problem addressed in this paper consists
of determining a fixed-order fixed-degree output feedback
controller (3) such that the closed-loop system (1)–(3) is
asymptotically stable for allp ∈ P . �

Let us observe that the plant (1) can represent the model of
a nonlinear system that has been linearized for an equilibrium
point of interest. In this case, the matrices in (1) are obtained
by evaluating the derivatives of the vector field and of the
output function of the nonlinear system at the equilibrium point
and corresponding input.

III. PROPOSEDAPPROACH

The first step of the proposed approach is to express the
closed-loop system (1)–(3) as

ż(t) = E(p, v)z(t) (4)

wherez(t) ∈ Rn+ñ is the state,v ∈ Rw is the vector of design
variables in the controller, andE(p, v) is a matrix polynomial
in p andv. This can be simply done from (1)–(3) defining, for
instance,z(t) = (x(t)′, x̃(t)′)′.

The second step of the proposed approach is to introduce
a function, denoted byξ(v), that provides a stability margin
of the closed-loop system depending on the controller. To this
end,ξ(v) could be defined under the constraint thatξ(v) > 0
if and only if the closed-loop system (1)–(3) is asymptotically
stable for allp ∈ P . Moreover, larger (respectively, smaller)
values ofξ(v) should correspond to more (respectively, less)
stable systems. For instance, a possibility is given by

ξ(v) = − sup
p∈P,λ∈spec(E(p,v))

re(λ). (5)

Another possibility consists of exploiting the Hurwitz’s de-
terminants; see for instance [10]. Let us observe that one can
introduce acceptable stability margins by requiring thatξ(v) is
greater than a specific positive value, whose definition depends
on the problem requirements and on the choice ofξ(v).

The third step of the proposed approach is to search for
a polynomialζ(v) that approximatesξ(v) from below to a
desired accuracy. This could be done by imposing

{

ξ(v) > ζ(v)

ξ(v) < ζ(v) + ε
(6)

whereε > 0 is the desired accuracy.
The fourth step of the proposed approach is to search for

a value ofv that makesζ(v) positive, i.e.,

v∗ : ζ(v∗) > 0. (7)

In fact, from (6), it would follows that

ξ(v∗) > 0, (8)

i.e., v∗ solves Problem 1.
The search forζ(v) satisfying (6) and the search forv∗

satisfying (7) can be addressed through convex optimization
problems with LMIs. Moreover, under some assumptions on
the data, the conservatism of these procedures can be decreased
by increasing the size of the LMIs involved.

IV. I LLUSTRATIVE EXAMPLE

For simplicity, let us consider the plant (1) with














A(p) =

(

−1 0 1− p
0 −1 1

1 + p 0 0

)

, B(p) =

(

0
1
1

)

C(p) = ( 1 p 0 ) , P = [−2, 2].

This plant is unstable depending onp. Indeed,

p = 0 ⇒ spec(A(p)) = {−1.618,−1, 0.618}.

Also, it can be verified that there does not exist any stabilizing
controller of order0 and degree0 for this plant.

Hence, we consider the problem to find an adaptive
parameter-dependent output feedback controller (3) of order
0 and degree1 that stabilizes the plant.

Let us express the matrix̃D(p) asD̃(p) = v1+v2p, where
v1, v2 ∈ R are the design variables. We search for a polynomial
ζ(v) as described in Section III, finding

ζ(v) = 0.139v31 − 0.921v21v2 − 1.275v21 − 0.605v1v
2
2

−0.667v1v2 − 1.482v1 + 0.39v32 − 2.833v22 − 6.262v2 − 4.52.

Hence, we search forv∗ satisfying (7), finding

v∗ = (−2,−1.660)′.

Therefore, we conclude that the controller (3) with̃D(p) =
−2− 1.660p stabilizes the plant for allp ∈ P .

V. CONCLUSION

A novel approach has been proposed for designing a fixed-
order fixed-degree adaptive parameter-dependent output feed-
back controller for stabilizing plants affected by parameters.
Future work will analyze its computational burden.
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