(19) 日本国特許庁(JP) (12) 特許公報(B2) (11) 特許番号

特許第5882054号 (P5882054)

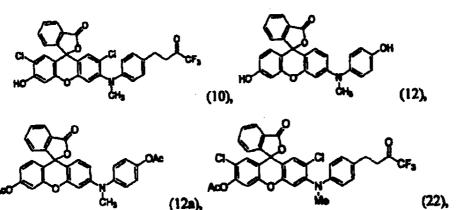
(45) 発行日 平成28年3月9日 (2016.3.9)

(24) 登録日 平成28年2月12日 (2016.2.12)

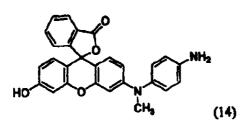
Ζ

(51) Int.Cl.		F I	
GO1N 33/15	(2006.01)	GO1N	33/15
CO7D265/38	(2006.01)	C O 7 D	265/38
CO7D 311/78	(2006.01)	C O 7 D	311/78
CO7D 491/16	(2006.01)	C O 7 D	491/16
CO7D 491/22	(2006.01)	C O 7 D	491/22

		請求項の数 12 (全 78 頁) 最終頁に続く
	IT E 2011 - 202015 (D2011 - 202015)	
(21) 出願番号		(73)特許権者 509255923
(86) (22) 出願日	平成21年4月7日(2009.4.7)	ベルスイテクフ リミテッド
(65) 公表番号	特表2011-516432 (P2011-516432A)	中華人民共和国 香港 クイベルポルト
(43)公表日	平成23年5月26日 (2011.5.26)	ロード 100 クイベルポルト 4 ロ
(86) 国際出願番号	PCT/CN2009/000376	オム 405エー
(87)国際公開番号	W02009/121247	(73)特許権者 509255912
(87) 国際公開日	平成21年10月8日 (2009.10.8)	モルニングスイデ ベントウレス リミテ
審査請求日	平成22年12月3日 (2010.12.3)	ッド
審判番号	不服2014-15951 (P2014-15951/J1)	中華人民共和国 香港 カウセワイ バイ
審判請求日	平成26年8月11日 (2014.8.11)	パテルソン ストリート 2-20 ハ
(31) 優先権主張番号	61/042, 720	ング ルング セントレ 22/エフ
(32) 優先日	平成20年4月5日(2008.4.5)	(74)代理人 100117787
(33)優先権主張国	米国 (US)	弁理士 勝沼 宏仁
		(74)代理人 100091487
		弁理士 中村 行孝
		最終頁に続く


(54) 【発明の名称】反応種検出のためのルミネセンス消光剤及び発蛍光型プローブ

(57)【特許請求の範囲】

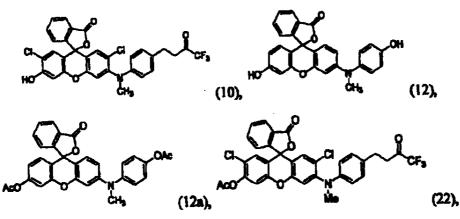

【請求項1】

非ヒトの試料中の活性窒素種又は活性酸素種の測定、検出、又はスクリーニングのため の、発蛍光型プローブとしての芳香族アミン化合物の使用であって、該芳香族アミン化合 物が、化合物(10)、化合物(12)、化合物(12a)、化合物(22)、化合物(14)、それらの互変異性体又はそれらの組合せである、使用:

【化1】

10

20


【請求項2】

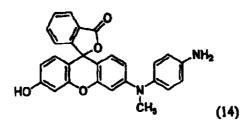
請求項1に記載の芳香族アミン化合物を含有している、ペルオキシナイトライトを測定 、検出又はスクリーニングするための発蛍光型プローブ組成物。

【請求項3】

前記芳香族アミン化合物が、化合物(10)、化合物(12)、化合物(12a)、化 合物(22)、それらの互変異性体又はそれらの組合せである、請求項2に記載の発蛍光 型プローブ組成物:

【化2】

30


40

【請求項4】

前記発蛍光型プローブ組成物が、溶媒、酸、塩基、緩衝溶液又はそれらの組合せを更に 含有している、請求項2又は3に記載の発蛍光型プローブ組成物。 【請求項5】

請求項1に記載の芳香族アミン化合物を含有している、次亜塩素酸イオンを測定、検出 又はスクリーニングするための発蛍光型プローブ組成物。 【請求項6】 前記芳香族アミン化合物が、化合物(14)、又はそれらの互変異性体である、請求項 5に記載の発蛍光型プローブ組成物:

【化3】

10

【請求項7】

前記発蛍光型プローブ組成物が、溶媒、酸、塩基、緩衝溶液又はそれらの組合せを更に 含有している、請求項5又は6に記載の発蛍光型プローブ組成物。

【請求項8】

a)請求項1に記載の芳香族アミン化合物を、試料と接触させ、蛍光化合物を形成する 工程;及び

b)この蛍光化合物の蛍光特性を測定する工程

を含む、非ヒトの試料中のペルオキシナイトライト又は次亜塩素酸イオンを測定する方法。

【請求項9】

前記試料が、化学試料又は生物試料である、請求項8に記載の方法。

【請求項10】

前記試料が、微生物、又は動物由来の細胞若しくは組織を含む、生物試料である、請求 項9に記載の方法。

【請求項11】

a)請求項1に記載の芳香族アミン化合物を、試料と接触させ、1種以上の蛍光化合物 を形成する工程;及び

b) この蛍光化合物の蛍光特性を測定し、試料中のペルオキシナイトライト又は次亜塩 素酸イオンの量を決定する工程

30

40

20

を含む、試料中のペルオキシナイトライト又は次亜塩素酸イオンを検出するための、ハ イスループットスクリーニング蛍光法。

【請求項12】

a)請求項1に記載の芳香族アミン化合物を、標的化合物と接触させ、1種以上の蛍光 化合物を形成する工程;及び

b)この蛍光化合物の蛍光特性を測定し、標的化合物を定性的又は定量的に決定する工程

を含む、ペルオキシナイトライト又は次亜塩素酸イオンのレベルを増加又は減少する1 種以上の標的化合物をスクリーニングするための、ハイスループット法。

【発明の詳細な説明】

【技術分野】

[0001]

(先行する関連出願)

本出願は、2008年4月5日に出願された米国特許仮出願第61/042,720号の優先権を主張す るものである。米国特許手続き(practice)に関して、この仮出願は、その全体が引用によ り本明細書中に組み込まれている。

[0002]

(技術分野)

ペルオキシナイトライトのような活性窒素種(RNS)又は次亜塩素酸イオンのような活性 酸素種(ROS)の測定、検出又はスクリーニングのための、ルミネセンス消光剤及び/又は発 50 蛍光型プローブとして使用することができる芳香族アミン化合物が、本明細書において提供されている。前記芳香族アミン化合物の製造方法、及び前記芳香族アミン化合物の使用 方法も、本明細書において提供されている。

(4)

【背景技術】

[0003]

(背景)

ルミネセンスは概して、発光物体(emitting body)の温度からエネルギーを派生しない 光の放出である。ルミネセンスは、化学的、生化学的若しくは結晶学的変化、亜原子粒子 の運動、又は原子システム若しくは分子システムの放射線が誘導した励起により引き起こ されることができる。ルミネセンス消光とは、所与の発光団のルミネセンス強度を減少す ることができる任意のプロセスをいう。励起状態の反応、エネルギー移動、複合体形成及 び衝突消光のような様々なプロセスが、ルミネセンス消光を生じることができる。

[0004]

エネルギー移動を介した、ルミネセンス消光プロセス、特に蛍光消光プロセスは、良く 研究されている。第一の発蛍光体が励起されかつその吸収されたエネルギーが第二の発蛍 光体へ移動された場合、このエネルギー移動は、第二の発蛍光体の発光波長で蛍光シグナ ルを生じる。しかし、第二の発蛍光体が蛍光を示さない場合、その吸収されたエネルギー は、蛍光放出を生じず、かつ第一の発蛍光体は、「消光された」と称される。同様に、エ ネルギー移動は、リン光ドナー及び化学ルミネセンスドナーのようなその他のルミネセン スドナー発光の消光に利用されることもできる。

[0005]

蛍光のようなルミネセンスを消光するために少なくともひとつの発光団を含有する様々 な色素の使用が、当該技術分野において公知である。生物学的システムを分析するための ルミネセンス消光の適用も、良く研究されている。しかし、本技術分野における新たな進 歩の様々な必要要件に合致する様々な吸収特性を有するルミネセンス消光剤が、常に必要 とされている。

[0006]

活性酸素種(ROS)及び活性窒素種(RNS)は、一般に、高い反応性を持つ非常に小さい無機 分子又は有機分子として、科学者に公知である。スーパーオキシドラジカル、ヒドロキシ ルラジカル、一酸化窒素、二酸化窒素、及び有機ペルオキシルラジカルのようなフリーラ ジカル、更には過酸化水素、一重項酸素、オゾン、亜硝酸、ペルオキシナイトライト及び 次亜塩素酸イオンのような非ラジカル種を含む、様々な形のROS及びRNSが存在する。ROS 及びRNSは、細胞呼吸の副産物である。正常な状態下では、ROS及びRNSは、非常に低いレ ベルで存在し、かつ細胞シグナル伝達において重要な役割を果たすのに対し、酸化的スト レス時には、ROS及びRNSのレベルは劇的に上昇し、このことは、タンパク質、脂質及びDN Aのような様々な生体分子に対し、重篤な損傷を引き起こし得る。ROS及びRNSの過剰な発 生は、心臓血管疾患、炎症疾患、代謝性疾患、癌及び中枢神経系疾患のような、多くのヒ ト疾患に関与している。従って、インビトロ及びインビボの両方におけるそれらの生理的 役割に対処するために、ある種のROS及びRNSを感度良くかつ選択的に測定、検出又はスク リーニングすることができる化学物質が、強く必要とされている。

[0007]

ペルオキシナイトライト及び次亜塩素酸イオンは、ROS及びRNSの様々な形の中で最強の 酸化力を有し、かつそれらの選択的検出は、生体におけるそれらの重要な役割を明確に説 明するために大いに望ましい。ペルオキシナイトライト(0N00⁻)は、一酸化窒素(N0)とス ーパーオキシド(0²·⁻)の1対1の化学量での拡散律速反応(k=0.4~1.9×10¹⁰ M⁻¹s⁻¹)に よりインビボにおいて形成される、寿命が短いオキシダント種である。ペルオキシナイト ライトのオキシダント反応性は、高度にpH-依存性であり、かつペルオキシ亜硝酸陰イオ ン及びそのプロトン化型であるペルオキシ亜硝酸は両方とも、生体分子との1-電子及び2-電子酸化反応に直接参加することができる。0N00⁻の病的活性は、それの生物学的に遍在 するC0₂との反応にも関連しており、これにより高度に反応性であるラジカルC0₃⁻⁻及びN 10

20

30

40

10

20

30

 0_2 ・を収率約35%で生成する。この結果として、ペルオキシナイトライトは、チロシンを ニトロ化し、かつタンパク質、脂質、並びに生体分子の鉄及び硫黄クラスターを酸化する ことができる。生体における他の酸化剤同様に、ペルオキシナイトライト及びそのプロト ン化型は、有益作用及び有害作用の両方に関与している。しかしいくつかの研究は、ペル オキシナイトライトは、虚血性再灌流障害、関節リウマチ、敗血性ショック、多発性硬化 症、アテローム性動脈硬化症、卒中、炎症性腸疾患、癌、及びいくつかの神経変性疾患の ような多くのヒト疾患における組織損傷の一因となっていることを暗に示している(MacMi llan-Crow, L.A. らの論文、Proc. Natl. Acad. Sci. USA 1996, 93, 11853-11858; Roden as, J. らの論文、Free Radical. Biol. & Med. 2000, 28, 374; Cuzzocrea, S. らの論文 、Pharmacol Rev. 2001, 53, 135-159; Szabo, C. の論文、Toxicol. Lett. 2003, 140, 1 05-112; White, C.R. らの論文、Proc. Natl. Acad. Sci. USA 1994, 91, 1044-1048; Lip ton, S.A. らの論文、Nature 1993, 364, 626-632; Pappolla, M.A. らの論文、J. Neural Transm. 2000, 107, 203-231; Beal, M.F. の論文、Free Radical Biol. & Med. 2002, 32 , 797-803)。

[0008]

他方で、次亜塩素酸イオンは、炎症ゾーンにおける活性化された食細胞により分泌され 得る酵素ミエロペルオキシダーゼ(MPO)により触媒された化学反応において、過酸化水素 及び塩素イオンからインビボにおいて生成される。求核性の非ラジカルオキシダントとし ての次亜塩素酸イオンは、殺微生物剤として使用することができる(Thomas, E. L. の論文 、Infect. Immun., 1979, 23, 522-531)。更に細菌も正常な健全細胞も、その毒性作用を 中和することができず、その理由はこれらは、その触媒的解毒に必要な酵素を欠いている ためである(Lapenna, D. 及びCuccurullo, F. の論文、Gen. Pharmacol., 1996, 27, 1145-1147)。

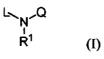
[0009]

一般に次亜塩素酸イオンは、細菌細胞の殺傷及び/又はヒト疾患において重要な役割を
果たすことができるいくつかのタンパク質と反応することができる(Thomas, E. L. の論文、
Infect. Immun., 1979, 23, 522-531; McKenna, S. M. 及びDavies, K. J. A. の論文、Bioc
hem. J., 1988, 254, 685-692; Hazell, L. J. 及びStocker, R. の論文、Biochem. J., 199
3, 290, 165-172; Hazell, L. J., van den Berg, J. J. 及びStocker, R. の論文、Biochem.
J., 1994, 302, 297-304)。次亜塩素酸イオンは、タンパク質と接触する際に、そのタン
パク質に損傷を引き起こすことができる。例えば、次亜塩素酸イオンは、タンパク質構造
を変化させ、並びに/又はタンパク質の断片化及び二量体化を引き起こすことがある。強
力なオキシダントとしての次亜塩素酸イオンは、低密度リポタンパク質(LDL)を迅速に酸
化することもできる。更に、次亜塩素酸イオンのDNAとの反応も、DNAの化学修飾及び構造
変化の両方を生じることができる(Hawkins, C. L. 及びDavies, M. J. の論文、Chem. Res. T
oxicol., 2002, 15, 83-92; Prutz, W. A. の論文、Arch. Biochem. Biophys. 1996, 332, 110-120; Arch. Biochem. Biophys. 1998, 349, 183-191; Arch. Biochem. Biophys. 199
9, 371, 107-114)。

[0010]

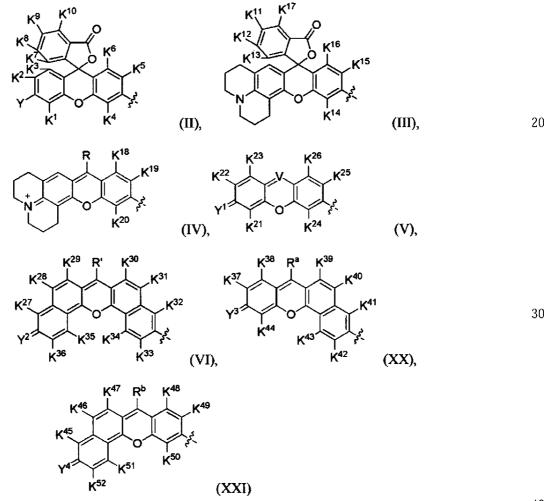
前述のROS及びRNSの使用及び役割のために、インビボ検出及び測定を含む、次亜塩素酸 40 イオンのようなROS及び/又はペルオキシナイトライトのようなRNSを検出、測定及び/又は スクリーニングする方法が必要とされている。

【発明の概要】


[0011]

(概要)

¹0₂、0₂・「、N0、H₂0₂、・OH、「OC1、ONOO⁻及びアルキルペルオキシルラジカル(ROO⁻) のような活性窒素種(RNS)又は活性酸素種(ROS)の測定、検出又はスクリーニングのための 、ルミネセンス消光剤及び/又は発蛍光型プローブとして使用することができる芳香族ア ミン化合物が、本明細書において提供されている。 【0012】


ひとつの態様において、本芳香族アミン化合物は、式(I)により表すことができる: 【化1】

(6)

(式中、R¹は、水素、アルキル、ハロゲン化アルキル、ヘテロアルキル、アルケニル、ア ルキニル、アリール、アラルキル、アルカリル、ヘテロシクリル、シクロアルキル、シク ロアルケニル又はシクロアルキニルであり;

Lは、式(II)-(VI)、又はそれらの互変異性体のひとつを有し: 【化2】

ここで、Yは、O-A、S-A又は NR^2R^3 であり;

Y¹、Y²、Y³及びY⁴の各々は独立して、0、S、NR^{2′}R^{3′}又はN⁺R^{2′}R^{3′}であり;

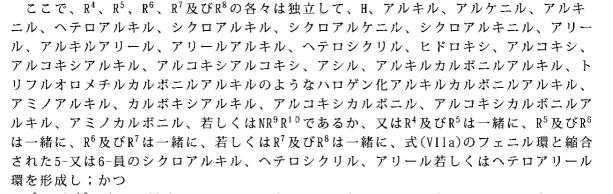
Vは、N又はCR"であり;

 R^2 、 R^3 、 $R^{2'}$ 及び $R^{3'}$ の各々は独立して、H、アルキル、ハロゲン化アルキル、アルケニ ル、アルキニル、アルコキシアルキル、ヘテロアルキル、シクロアルキル、シクロアルケ ニル、シクロアルキニル、ヘテロシクリル、アミノアルキル、アリール、アルカリル、ア リールアルキル、アルキルオキシ、カルボキシアルキル、アルキルアミド、アルコキシア ミド、スルホニルアリール又はアシルであり;

R、R'、R"、R^a及びR^bの各々は独立して、H、CN、アルキル、ハロゲン化アルキル、アル ケニル、アルキニル、アルコキシアルキル、ヘテロアルキル、シクロアルキル、シクロア 50

10

ルケニル、シクロアルキニル、ヘテロシクリル、アミノアルキル、アリール、アルカリル 、アリールアルキル、アルキルオキシ、カルボキシアルキル、アルキルアミノ、アルコキ シアミノ、アルキルアミド、アルコキシアミド、スルホニルアリール又はアシルであり;


Aは、H、アルキル、アルケニル、アルキニル、アルコキシアルキル、ヘテロアルキル、 シクロアルキル、シクロアルケニル、シクロアルキニル、ヘテロシクリル、アミノアルキ ル、アリール、アルカリル、アリールアルキル、カルボキシアルキル、アルコキシカルボ ニル、アシル又はアミノカルボニルであり;

 $K^{1}-K^{52}$ の各々は独立して、H、ハロ、アルキル、ハロゲン化アルキル、ヘテロアルキル 、アルケニル、アルキニル、アリール、アラルキル、アルカリル、ヘテロシクリル、シク ロアルキル、シクロアルケニル、シクロアルキニル、ヒドロキシアルキル、アミノアルキ ル、アミノ、アルキルアミノ、アリールアミノ、ジアルキルアミノ、アルキルアリールア ミノ、ジアリールアミノ、アシルアミノ、ヒドロキシ、チオ、チオアルキル、アルコキシ 、アルキルチオ、アルコキシアルキル、アリールオキシ、アリールアルコキシ、アシルオ キシ、シアノ、ニトロ、スルフヒドリル、カルバモイル、トリフルオロメチル、フェノキ シ、ベンジルオキシ、スルホニル、ホスホニル、スルホン酸エステル、リン酸エステル、 -C(=0)-P¹又は-C(=0)-Z-P²であり;

P¹及びP²の各々は独立して、水素、ハロ、アルコキシ、ヒドロキシ、チオ、アルキル、 アルケニル、アルキニル、シクロアルキル、シクロアルケニル、シクロアルキニル、アリ ール、アルカリル、アリールアルキル、カルバメート、アミノ、アルキルアミノ、アリー ルアミノ、ジアルキルアミノ、アルキルアリールアミノ、ジアリールアミノ、アルキルチ オ、ヘテロアルキル、又は3~7個の環原子を有するヘテロシクリルであり;かつ

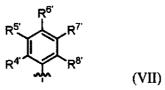
Zは、アルキレン、アルケニレン、アルキニレン、アリーレン、アラルキレン又はアル カリレンであり;かつ

Qは、式(VIIa)を有する置換又は非置換のフェニルであり: 【化3】

(VIIa)

R⁹及びR¹⁰の各々は独立して、H、アルキル、アルケニル、アルキニル、アルコキシアル キル、アルカノイル、アルケノイル、アルキノイル、シクロアルキル、シクロアルケニル 、シクロアルキニル、アリール、アルカリル、アリールアルキル、アリーロイル、又はポ リエーテルであり;

但し、Lが、YがNR²R³である式(II)を有する場合、QのR⁶は、ヒドロキシ、アルケニル、 アルキニル、ヘテロアルキル、シクロアルキル、シクロアルケニル、シクロアルキニル、 アリール、ヘテロシクリル、アルコキシアルキル、アルコキシアルコキシ、アシル、アル キルカルボニルアルキル、トリフルオロメチルカルボニルアルキルのようなハロゲン化ア ルキルカルボニルアルキル、カルボキシアルキル、アルコキシカルボニル、アルコキシカ 10


20

ルボニルアルキル、アミノカルボニル若しくはNR⁹R¹⁰であるか、又はR⁴及びR⁵は一緒に、 R⁵及びR⁶は一緒に、R⁶及びR⁷は一緒に、若しくはR⁷及びR⁸は一緒に、式(VIIa)のフェニル 環と縮合された5-又は6-員のシクロアルキル、ヘテロシクリル、アリール若しくはヘテロ アリール環を形成することを条件とする。)。

[0013]

一部の実施態様において、R、R'、R"、R^a及びR^bの各々は独立して、式(VII)を有する:
 【化4】

10

(式中、 $R^{4'}$ 、 $R^{5'}$ 、 $R^{6'}$ 、 $R^{7'}$ 及び $R^{8'}$ の各々は独立して、H、アルキル、アルキル、アルケニル、アル キニル、ヘテロアルキル、シクロアルキル、シクロアルケニル、シクロアルキニル、アリ ール、アルキルアリール、アリールアルキル、ヘテロシクリル、ヒドロキシ、アルコキシ 、アルコキシアルキル、アルコキシアルコキシ、アシル、アルキルカルボニルアルキル、 ハロゲン化アルキルカルボニルアルキル、アミノアルキル、カルボキシアルキル、アルコ キシカルボニル、アルコキシカルボニルアルキル、アミノカルボニル、若しくは NR^9R^{10} で あるか、又は $R^{4'}$ 及び $R^{5'}$ は一緒に、 $R^{5'}$ 及び $R^{6'}$ は一緒に、 $R^{6'}$ 及び $R^{7'}$ は一緒に、若しくは $R^{7'}$ 及び $R^{8'}$ は一緒に、式(VII)のフェニル環と縮合された5-又は6-員のシクロアルキル、 ヘテロシクリル、アリール若しくはヘテロアリール環を形成している。)。

[0014]

ある実施態様において、式(VII)のR^{4'}、R^{5'}、R^{6'}及びR^{7'}は、独立してHであり;かつ、 R^{8'}は、-COOH、-COR¹⁷、-COOR¹⁸、又は-CONR¹⁹R²⁰であり、ここでR¹⁷、R¹⁸、R¹⁹及びR²⁰ は独立して、H、アルキル、アルケニル、アルキニル、ヘテロアルキル、シクロアルキル 、シクロアルケニル、シクロアルキニル、アリール、アルキルアリール、アリールアルキ ル、ヘテロシクリル、ヒドロキシ、アルコキシ、アルコキシアルキル、アルコキシアルコ キシ、アシル、アルキルカルボニルアルキル、ハロゲン化アルキルカルボニルアルキル、 アミノアルキル、カルボキシアルキル、アルコキシカルボニル、アルコキシカルボニルア ルキル、アミノカルボニルであるか、又はN、R¹⁹及びR²⁰は一緒に、少なくともひとつの 窒素原子を有する5-又は6-員の複素環を形成する。別の実施態様において、R^{8'}は、-CONR ¹⁹R²⁰であり、かつN、R¹⁹及びR²⁰は一緒に、5-又は6-飽和複素環を形成する。更なる実施 態様において、該複素環は、置換又は非置換のピペリジン、モルホリン、ピロリジン、オ キサゾリジン、チオモルホリン、チアゾリジン又はピペラジンである。

[0015]

一部の実施態様において、式(VII)のR⁴、R⁵、R⁶及びR⁷の各々は独立して、Hであり ;かつ、R⁸は、キサンテン環面(plane)からベンゼン環を形成するための、メチル、メト キシなどである。

【0016】

ー部の実施態様において、Lは、式(II)又はそれらの互変異性体を有する。別の実施態様において、式(II)のYは、NR²R³である。別の実施態様において、式(II)のYは、OH、OAc 又はOCH₂OCOCH₃である。更なる実施態様において、K¹、K³、K⁴、K⁶、K⁷、K⁸、K⁹及びK¹⁰ の各々は、Hであり;かつ、K²及びK⁵の各々は独立して、H又はハロである。なお更なる実 施態様において、K¹、K²、K³、K⁴、K⁵、K⁶、K⁷、K⁸、K⁹及びK¹⁰の各々は、Hである。

ある実施態様において、Lは、式(III)又はそれらの互変異性体を有する。別の実施態様において、 K^{11} 、 K^{12} 、 K^{13} 、 K^{14} 、 K^{16} 及び K^{17} の各々は、Hであり;かつ、 K^{15} は、H又はハロである。

30

[0018]

一部の実施態様において、Lは、式(IV)又は(IVa)を有する。別の実施態様において、K¹
 ⁸及びK²⁰の各々は、Hであり;かつ、K¹⁹は、H又はハロである。

(9)

[0019]

ある実施態様において、Lは、式(V)を有する。別の実施態様において、VはNである。別の実施態様において、VはCR"である。更なる実施態様において、Y¹は、N⁺R^{2'}R^{3'}である。 なお更なる実施態様において、Y¹は0である。なお更なる実施態様において、K²¹、K²²、K ²³、K²⁴、K²⁵及びK²⁶の各々は、Hである。

[0020]

一部の実施態様において、Lは式(VI)を有する。別の実施態様において、Y²は、N⁺R^{2'}R³ 10 [']である。更なる実施態様において、Y²は0である。なお更なる実施態様において、K²⁷-K³ ⁶の各々は、Hである。

[0021]

一部の実施態様において、Lは、式(XX)を有する。別の実施態様において、Y³は、N⁺R^{2'} R^{3'}である。更なる実施態様において、Y³は0である。なお更なる実施態様において、K³⁷-K⁴⁴の各々は、Hである。なお更なる実施態様において、K³⁸-K⁴⁴の各々は、Hであり;かつ、K³⁷はC1又はFである。

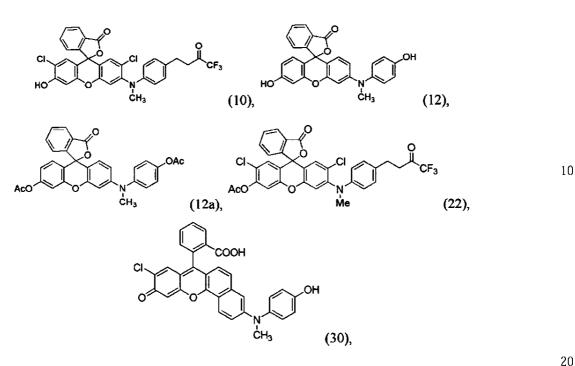
[0022]

一部の実施態様において、Lは、式(XXI)を有する。別の実施態様において、Y⁴は、N⁺R² [']R^{3'}である。更なる実施態様において、Y⁴は0である。なお更なる実施態様において、K⁴⁶ 20 -K⁵¹の各々はHであり、かつK⁴⁵及びK⁵²の少なくとも一方は、独立してC1又はFである。

【0023】

ある実施態様において、式(VIIa)のR⁶は、-OCH₂OCH₃、OH、NR⁹R¹⁰、-CH₂CH₂C(=0)CF₃、 又は-CH₂CH₂C(=0)OCH₃であり、ここでR⁹及びR¹⁰の各々は独立して、H又はアルキルであり ;かつ、R⁴、R⁵、R⁷及びR⁸の各々は、Hである。別の実施態様において、R⁶は、OH、NH₂又 は-CH₂CH₂C(=0)CF₃である。

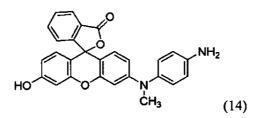
[0024]


ー部の実施態様において、式(I)のR¹は、H、アルキル、ハロゲン化アルキル、ヘテロア ルキル、アルケニル、アルキニル、アリール、アラルキル、アルカリル、ヘテロシクリル 、シクロアルキル、シクロアルケニル、及びシクロアルキニルであり;R⁴、R⁵、R⁶、R⁷及 びR⁸の各々は独立して、H、ハロゲン、アルキル、アルコキシ、又はポリエーテルであり ;R⁶は、OR¹¹又はCH₂COR¹²であり、ここでR¹¹は、H、アルキル、アルコキシアルキル 、アルカノイル、又はポリエーテルであり;R¹²は、CF₃、ハロゲン-置換された低級アル キル、又は(C=O)-O-V²から選択された電子求引基であり;かつ、V²は、アルキル、アルケ ニル、アルキニル、シクロアルキル、シクロアルケニル、シクロアルキニル、アリール、 アルカリル又はアリールアルキルから選択された基である。

【0025】

本明細書に開示された芳香族アミン化合物を含有する、ペルオキシナイトライトを測定、検出又はスクリーニングするための発蛍光型プローブ組成物も、本明細書において提供 されている。ある実施態様において、本芳香族アミン化合物は、化合物(10)、化合物(12) 、化合物(12a)、化合物(22)、若しくは化合物(30)、又はそれらの互変異性体又はそれら の組合せである:

30


【化5】

[0026]

本明細書に開示された芳香族アミン化合物を含有する、次亜塩素酸イオンを測定、検出 又はスクリーニングするための発蛍光型プローブ組成物も、本明細書において提供されて いる。ある実施態様において、本芳香族アミン化合物は、化合物(14)、又はそれらの互変 異性体である:

【化6】

30

40

[0027]

ある実施態様において、本明細書に開示された発蛍光型プローブ組成物は、溶媒、酸、 塩基、緩衝溶液又はそれらの組合せを更に含有する。

【0028】

試料中のペルオキシナイトライト又は次亜塩素酸イオンを測定するための発蛍光型プロ ーブ組成物も、本明細書において開示されており、ここで該組成物は、本明細書に開示さ れた芳香族アミン化合物を含有している。一部の実施態様において、前記発蛍光型プロー ブ組成物は、溶媒、酸、塩基、緩衝溶液又はそれらの組合せを更に含有している。 【0029】

試料中のペルオキシナイトライト又は次亜塩素酸イオンを測定する方法も、本明細書に おいて開示されており、ここで該方法は:

a)本明細書に開示された芳香族アミン化合物を、試料と接触させ、蛍光化合物を形成する工程;及び

b)この蛍光化合物の蛍光特性を測定し、試料中のペルオキシナイトライト又は次亜塩素酸イオンの量を決定する工程:を含む。

[0030]

一部の実施態様において、前記試料は、化学試料又は生物試料である。別の実施態様に 50

おいて、前記試料は、微生物、又は動物由来の細胞若しくは組織を含む、生物試料である。

[0031]

試料中のペルオキシナイトライト又は次亜塩素酸イオンを検出するためのハイスループ ットスクリーニング蛍光法も、本明細書において開示されており、ここで該ハイスループ ット法は:

a)本明細書に開示された芳香族アミン化合物を、試料と接触させ、1種以上の蛍光化合物を形成する工程;及び

b)この蛍光化合物の蛍光特性を測定し、試料中のペルオキシナイトライト又は次亜塩素酸イオンの量を決定する工程:を含む。

[0032]

ペルオキシナイトライト又は次亜塩素酸イオンのレベルを増加又は減少することができる1種以上の標的化合物をスクリーニングするためのハイスループット法も、本明細書において開示されており、ここで該ハイスループット法は:

a)本明細書に開示された芳香族アミン化合物を、標的化合物と接触させ、1種以上の蛍 光化合物を形成する工程;及び

b)この蛍光化合物の蛍光特性を測定し、標的化合物を定性的又は定量的に決定する工程 :を含む。

【図面の簡単な説明】

[0033]

(図面の簡単な説明)

【図1】図1は、異なる波長で、異なる濃度の0N00⁻に反応する、10μMの化合物10の蛍光 強度を示す、蛍光スペクトルを描く。このスペクトルは、pH7.4の0.1Mリン酸カリウム緩 衝液中で獲得し、ここで0.1%DMFを共溶媒として使用し、かつλ_{励 起}は520nmであった。

【0034】

【図2】図2は、540nmで測定された、10μMの化合物10の蛍光強度と、0N00⁻濃度の間の線 形の相関を描く。

[0035]

【図3】図3は、25℃で30分間540nmで測定された、様々なROS/RNS発生システムにおける、10 μ Mの化合物10の蛍光強度を描く。¹0₂、0₂⁻⁻、N0、R00・の濃度及びH₂0₂濃度は、10 30 0 μ Mであった。・0H、⁻0C1の濃度及び0N00⁻濃度は、10 μ Mであった。

[0036]

【図4】図4は、異なる波長で、異なる濃度の0N00⁻に反応する、1µMの化合物12の蛍光強度を示す、蛍光スペクトルを描く。このスペクトルは、pH7.4の0.1Mリン酸カリウム緩衝液中で獲得し、ここで0.1%DMFを共溶媒として使用した。

[0037]

【図 5 】図5は、25℃で30分間530nmで測定された、様々なROS/RNS発生システムにおける、1 μ Mの化合物12の蛍光強度を描く。¹0₂、0₂・⁻、N0、R00・及びH₂0₂の各々の濃度は、10 μ Mであった。・0H、⁻0C1及び0N00⁻の各々の濃度は、1 μ Mであった。

【0038】

40

50

【図6】図6は、異なる波長で、異なる濃度の⁻0C1に反応する、1μMの化合物14の蛍光強 度を示す、蛍光スペクトルを描く。このスペクトルは、pH7.4の0.1Mリン酸カリウム緩衝 液中で獲得し、ここで0.1%DMFを共溶媒として使用した。

【0039】

【図7】図7は、25℃で30分間530nmで測定された、様々なROS/RNS発生システムにおける 、1µMの化合物14の蛍光強度を描く。¹0₂、0₂・⁻、NO、ROO・、H₂O₂、・OH、⁻OC1及びONO 0⁻の各々の濃度は、5µMであった。

[0040]

【図8】図8は、異なる刺激条件下での、マウスのJ744.1マクロファージの蛍光顕微鏡の 結果を示す。これらのマクロファージ細胞は、化合物10と共に濃度20µMでインキュベー

ションした。(A)のマクロファージは、対照であった。(B)のマクロファージは、LPS及びI FN-yで4時間刺激した。(C)のマクロファージは、LPS及びIFN-yで4時間刺激し、引き続 きPMAで0.5時間更に刺激した。

[0041]

【図9】図9は、異なる刺激条件下での、マウスのJ744.1マクロファージの蛍光顕微鏡の 結果を示す。これらのマクロファージ細胞は、化合物12及びMitoTracker Red CMXRos(Inv itrogen社から購入)と共に濃度20μMでインキュベーションした。(A)-(B)のマクロファー ジは、対照であった。(C)-(F)のマクロファージは、LPSで刺激した。

[0042]

【図10】図10は、刺激条件下での、マウスのJ744.1マクロファージの2光子蛍光顕微鏡 の結果を示す。これらのマクロファージ細胞は、化合物12aと共に濃度20μMでインキュベ ーションした。(A)のマクロファージは、対照であった。(B)のマクロファージは、LPSで4 時間刺激した。

【0043】

【図11】図11は、異なる波長で、異なる濃度のペルオキシナイトライトに反応する、10 μMの化合物30の蛍光強度を示す、蛍光スペクトルを描く。このスペクトルは、pH7.4の0. 1Mリン酸カリウム緩衝液中で、520nmで励起することにより獲得し、ここで0.1%DMFを共 溶媒として使用した。

【発明を実施するための形態】

[0044]

(定義)

本明細書において開示された主題の理解を進めるために、本明細書において使用される 多くの用語、略語又は他の省略語を、以下に定義する。定義されていない用語、略語又は 省略語は、本出願の提出と同時期に当業者により使用される通常の意味を有すると理解さ れる。

【0045】

「アミノ」は、任意に置換されてよい第一級、第二級又は第三級アミンをいう。具体的 には複素環の一員である第二級又は第三級アミン窒素原子が含まれる。同じく具体的には 、例えば、アシル部分により置換された第二級又は第三級アミノ基が含まれる。アミノ基 のいくつかの非限定的例は、-NR'R"を含み、ここでR'及びR"の各々は独立して、H、アル キル、アリール、アラルキル、アルカリル、シクロアルキル、アシル、ヘテロアルキル、 ヘテロアリール又はヘテロシクリルである。

[0046]

「アルキル」は、炭素及び水素を含み、かつ分枝されているか又は直鎖であることがで きる、完全に飽和された非環式の一価のラジカルをいう。一部の実施態様において、アル キルは、約1~約25個の炭素原子を含む。アルキル基の例は、メチル、エチル、n-プロピ ル、イソプロピル、n-ブチル、t-ブチル、n-ヘプチル、n-ヘキシル、n-オクチル、及びn-デシルである。「低級アルキル」は、1~6個の炭素原子のアルキルラジカルをいい、メチ ル、エチル、n-ブチル、i-ブチル、t-ブチル、イソアミル、n-ペンチル、及びイソペンチ ルにより例示される。

[0047]

「ヘテロアルキル」は、0、S及びNのようなヘテロ原子により置換されたアルキル基内 に1個以上の炭素原子を有するアルキル基をいう。一部の実施態様において、ヘテロアル キル基は、1個以上の0原子を含む。別の実施態様において、ヘテロアルキル基は、1個以 上のS原子を含む。更なる実施態様において、ヘテロアルキル基は、1個以上のアミニレン 基を含む。ある実施態様において、ヘテロアルキル基は、2個以上の0、S、アミニレン又 はそれらの組合せを含む。

[0048]

「アルケニル」又は「アルケニレン」は各々、少なくとも1個の二重結合を有する、一 価又は二価のヒドロカルビルラジカルをいう。アルケニル基又はアルケニレン基は、環式 ⁵⁰

、分枝した非環式、又は線状の非環式であってよい。一部の実施態様において、アルケニ ル基又はアルケニレン基は、ただ1個の二重結合を含む。別の実施態様において、アルケ ニル基又はアルケニレン基は、2個以上の二重結合を含む。更なる実施態様において、ア ルケニル基又はアルケニレン基は、主鎖内に2~8個の炭素原子を含む、低級アルケニル又 はアルケニレンであることができる。更なる実施態様において、アルケニル基又はアルケ ニレン基は、1個の二重結合及び最大25個の炭素原子を有し、エテニル、プロペニル、イ ソプロペニル、ブテニル、イソブテニル、ヘキセニルなどにより例示される。

【0049】

「アルキニル」又は「アルキニレン」は各々、少なくともひとつの三重結合を有する、 一価又は二価のヒドロカルビルラジカルをいう。一部の実施態様において、アルキニル基 2はアルキニレン基は、ただ1個の三重結合を含む。別の実施態様において、アルキニル 基又はアルキニレン基は、2個以上の三重結合を含む。更なる実施態様において、アルキ ニル基又はアルキニレン基は、主鎖内に2~8個の炭素原子を含む、低級のアルキニル又は アルキニレンであることができる。更なる実施態様において、アルキニル基又はアルキニ レン基は、1個の三重結合及び最大20個の炭素原子を有し、エチニル、プロピニル、イソ プロピニル、ブチニル、イソブチニル、ヘキシニルなどにより例示される。

[0050]

「芳香族の」又は「芳香族基」は、アリール又はヘテロアリールをいう。

[0051]

「アリール」は、任意に置換された炭素環式芳香族基をいう。一部の実施態様において 20 、アリール基は、フェニル、ビフェニル、ナフチル、置換されたフェニル、置換されたビ フェニル又は置換されたナフチルのような、環部分に6~12個の炭素原子を含む、単環式 又は二環式の基を含む。別の実施態様において、アリール基は、フェニル又は置換された フェニルである。

【0052】

「アラルキル」は、アリール基により置換されているアルキル基をいう。アラルキルの いくつかの非限定的例は、ベンジル及びフェネチルを含む。

【0053】

「アルカリル」は、アルキル基により置換されているアリール基をいう。アルカリルの いくつかの非限定的例は、メチルフェニル及びメチルナフチルを含む。

【0054】

「アシル」は、式-C(=0)H、-C(=0)-アルキル、-C(=0)-アリール、-C(=0)-アラルキル、 又は-C(=0)-アルカリルの一価の基をいう。

[0055]

「ハロゲン」は、フッ素、塩素、臭素及びヨウ素をいう。

[0056]

「ハロ」は、フルオロ、クロロ、ブロモ及びヨードをいう。

[0057]

「ヘテロ原子」は、炭素及び水素以外の原子をいう。

[0058]

40

30

「ヘテロシクロ」又は「ヘテロシクリル」は、少なくとも一つの環の中に、0、S、N、B 及びPのような少なくとも1個のヘテロ原子を有する、任意に置換された、完全に飽和され た又は不飽和の、単環式又は二環式の、芳香族基又は非芳香族基をいう。芳香族ヘテロシ クリル(すなわちヘテロアリール)基は、環内に1若しくは2個の酸素原子、1若しくは2個の 硫黄原子、及び/又は1~4個の窒素原子を有することができ、かつ炭素原子又はヘテロ原 子を介して、その分子の残余部分に結合されてよい。ヘテロアリールのいくつかの非限定 的例は、フリル、チエニル、チアゾリル、ピリジル、オキサゾリル、ピロリル、インドリ ル、キノリニル、又はイソキノリニルなどを含む。

[0059]

「炭化水素」又は「ヒドロカルビル」は、専ら炭素及び水素の元素からなる有機化合物 50

又はラジカルをいう。ヒドロカルビルは、アルキル、アルケニル、アルキニル、及びアリ ール部分を含む。ヒドロカルビルは、アルカリル、アルケンアリール及びアルキンアリー ルのような、他の脂肪族、環式又はアリール炭化水素基により置換されたアルキル、アル ケニル、アルキニル、及びアリール部分も含む。一部の実施態様において、「炭化水素」 又は「ヒドロカルビル」は、1~30個の炭素原子を含む。

[0060]

「ヒドロカルビレン」は、炭化水素から2個の水素原子を取り除くことにより形成され 、その自由原子価が二重結合に関与しない、二価基をいい、例えばアリーレン、アルキレ ン、アルケニレン、アルキニレン、アラルキレン又はアルカリレンである。 [0061]

化合物又は化学部分を説明するために本明細書で使用される「置換された」は、その化 合物又は化学部分の少なくとも1個の水素原子が、第二の化学部分で置き換えられている ことをいう。置換基の非限定的例は、本明細書において開示された前述の例証的化合物及 び実施態様において認められるものであり、更にはハロゲン;アルキル;ヘテロアルキル ;アルケニル;アルキニル;アリール、ヘテロアリール、ヒドロキシ;アルコキシル;ア ミノ;ニトロ;チオール;チオエーテル;イミン;シアノ;アミド;ホスホナト;ホスフ ィン;カルボキシル;チオカルボニル;スルホニル;スルホンアミド;ケトン;アルデヒ ド;エステル;オキソ;ハロアルキル(例えばトリフルオロメチル);単環又は縮合された 若しくはされない多環であることができる炭素環式シクロアルキル(例えば、シクロプロ 20 ピル、シクロブチル、シクロペンチル又はシクロヘキシル)、又は単環又は縮合された若 しくはされない多環であることができるヘテロシクロアルキル(例えば、ピロリジニル、 ピペリジニル、ピペラジニル、モルホリニル又はチアジニル);炭素環式又は複素環式、 単環式又は縮合された若しくはされない多環式のアリール(例えば、フェニル、ナフチル 、ピロリル、インドリル、フラニル、チオフェニル、イミダゾリル、オキサゾリル、イソ オキサゾリル、チアゾリル、トリアゾリル、テトラゾリル、ピラゾリル、ピリジニル、キ ノリニル、イソキノリニル、アクリジニル、ピラジニル、ピリダジニル、ピリミジニル、 ベンズイミダゾリル、ベンゾチオフェニル又はベンゾフラニル);アミノ(第一級、第二級 又は第三級);o-低級アルキル;o-アリール、アリール;アリール-低級アルキル;-C0,CH $_3$; -CONH₂; -OCH₂CONH₂; -NH₂; -SO₂NH₂; -OCHF₂; -CF₃; -OCF₃; -NH($\mathcal{P} \mu \neq \mu$); -N(\mathcal{P} ルキル),;-NH(アリール);-N(アルキル)(アリール);-N(アリール),;-CH0;-CO(アルキ ル); -CO(アリール); -CO₂(アルキル); 及び-CO₂(アリール)であり; 並びに、そのような部分は、縮合環構造又は架橋、例えば-0CH20-により、任意に置換されることもできる。 これらの置換基は、そのような基から選択された置換基により、任意に更に置換されるこ とができる。本明細書に開示された全ての化学基は、別に指定されない限りは、置換され ることができる。例えば、本明細書に説明された「置換された」アルキル、アルケニル、 アルキニル、アリール、ヒドロカルビル又はヘテロシクロ部分は、ヒドロカルビル部分、 置換されたヒドロカルビル部分、ヘテロ原子、又はヘテロシクロにより置換されている部 分である。更に置換基は、炭素原子が、窒素、酸素、ケイ素、リン、ホウ素、硫黄、又は ハロゲン原子のような、ヘテロ原子により置換されている部分を含んでよい。これらの置 換基は、ハロゲン、ヘテロシクロ、アルコキシ、アルケノキシ、アルキンオキシ、アリー ルオキシ、ヒドロキシ、保護されたヒドロキシ、ケト、アシル、アシルオキシ、ニトロ、 アミノ、アミド、シアノ、チオール、ケタール、アセタール、エステル及びエーテルを含 んでよい。

[0062]

「ルミネセンス」は、発光物体の温度からエネルギーを派生しない光の放出である。ル ミネセンスは、化学的、生化学的若しくは結晶学的変化、亜原子粒子の運動、又は原子シ ステムの放射線が誘導した励起により引き起こされ得る。ルミネセンスは、リン光、蛍光 、化学ルミネセンス、生物ルミネセンス、結晶ルミネセンス、陰極線ルミネセンスのよう なエレクトロルミネセンス、音響ルミネセンス、摩擦ルミネセンス、フラクトルミネセン ス及びピエゾルミネセンスのようなメカノルミネセンス、リン光及び蛍光のような光ルミ

10

30

10

20

30

40

ネセンス、放射線ルミネセンス、並びに熱ルミネセンスを含むが、これらに限定されるものではない。

(15)

【0063】

「発光団」とは、ルミネセンスを顕在化する化学物質内の原子又は化学基をいう。有機 発光団及び無機発光団が存在する。一部の実施態様において、本明細書に開示された発光 団は、ロドール(rhodol)、ローダミン、レソルフィン又はそれらの誘導体のような有機発 光団である。発光団は、発リン光体、発蛍光体、化学発光団、生物発光団、結晶発光団(c rystallolumiphore)、陰極線発光団(cathodolumiphore)のような電気発光団(electrolumi phore)、音響発光団(sonolumiphore)、摩擦発光団(tribolumiphore)、破壊発光団(fracto lumiphore)及び圧電発光団(piezolumiphore)のような応力発光団(mechanolumiphore)、光 発光団(photolumiphore)、放射発光団、並びに熱発光団を含むが、これらに限定されるも のではない。

[0064]

「光ルミネセンス」とは、物質が光子(電磁放射線)を吸収し、その後光子を後方に(pho tons back out)放射するプロセスをいう。光子を吸収した後の物質は、より高いエネルギ ー準位に励起され、その後光子の放出を伴い、より低いエネルギー準位に戻る。光ルミネ センスのふたつの一般型は、リン光及び蛍光を含む。

【0065】

「ルミネセンス消光剤」とは、発光団のルミネセンスを部分的又は全体的に除去することができる化合物をいう。

[0066]

「蛍光」とは、光子の分子吸収が、より長い波長の別の光子の放出の引き金を引くルミネセンスをいう。一部の実施態様においては、吸収された光子は紫外範囲内にあり、放出 された光は可視範囲内にある。

【0067】

「発蛍光体」とは、光により励起され、蛍光を発することができる、小型分子又は大型 分子の一部をいう。一部の実施態様において、発蛍光体は、約200nm~約1000nm、又は約5 00nm~約800nmの波長を有する光により励起された際に、蛍光を効率的に生じる。放出さ れた放射線の強度及び波長は一般に、発蛍光体及びその発蛍光体の化学環境の両方により 決まる。発蛍光体は、アクリジンオレンジ、アントラセン環、アロフィコシアニン、BODI PY、シアニン、クマリン、エダンス(Edans)、エオシン、エリスロシン、フルオレスカミ ン、フルオレセイン、FAM(カルボキシフルオレセイン)、HEX(ヘキサクロロフルオレセイ ン)、JOE(6-カルボキシ-4',5'-ジクロロ-2',7'-ジメトキシ-フルオレセイン)、オレゴン グリーン(Oregon Green)、フィコシアニン、フィコエリトリン、ローダミン、ROX(カルボ キシ-X-ローダミン)、TAMRA(カルボキシテトラメチルローダミン)、TET(テトラクロロフ ルオレセイン)、テキサスレッド、テトラメチルローダミン、及びキサンチンから選択さ れてよい。その他の非限定的例は、「蛍光プローブ及び標識技術の指針に関するハンドブ ック(The Handbook: a Guide to Fluorescent Probes and Labeling Technologies)」(第 10版、Molecular Probes社、ユージーン、オレゴン州、2006年)に認めることができ、こ れは引用により本明細書中に組み込まれている。

【0068】

「リン光」とは、蛍光に関連した光ルミネセンスの特定の型をいう。蛍光とは異なり、 リン光物質は、それが吸収した放射線を直ちには再放出しない。再放出の比較的遅い時間 スケールは、量子力学の「禁制」エネルギー準位遷移に関連している。これらの遷移は、 ある種の物質において低頻度で生じるので、吸収された放射線は、一部の実施態様におい て、より低い強度で最大数時間の間再放出され得る。

[0069]

「ケミルミネセンス」又は「化学ルミネセンス」とは、化学反応の結果としてのルミネ センスの作用をいう。

[0070]

「生物ルミネセンス」とは、その間に化学エネルギーが光エネルギーに変換される化学 反応の結果としての、生体による光の発生及び放出をいう。

(16)

[0071]

「結晶ルミネセンス」とは、結晶化時に発生されるルミネセンスの作用をいう。 【0072】

「エレクトロルミネセンス」とは、物質が、それを通過する電流に反応して、又は強力 な電界に反応して、光を発する、ルミネセンスの作用をいう。

[0073]

「陰極線ルミネセンス」とは、電子銃(例えば、陰極線管)により電子ビームが発生され、その後蛍光体のような発光物質に衝撃を与え、この物質に可視光線の発生を引き起こす 10 ことによる、ルミネセンスの作用をいう。

[0074]

「メカノルミネセンス」とは、固形物への何らかの機械的作用の結果としてのルミネセンスの作用をいう。これは、摩擦、超音波又は他の手段により発生されることができる。 【0075】

「摩擦ルミネセンス」とは、物質が、擦過、圧壊、又は摩擦される場合に、結晶内の不 斉結合の破壊を介して、光が発生される、ルミネセンスの作用をいう。

[0076]

「フラクトルミネセンス」とは、結晶の破壊からの光の放出をいう。

[0077]

「ピエゾルミネセンス」とは、弾性変形のみ生じるような圧力により引き起こされるル ミネセンスの作用をいう。

[0078]

「放射線ルミネセンス」とは、β粒子のような、電離放射線の衝突により物質中に生じ る、ルミネセンスの作用をいう。

[0079]

「熱ルミネセンス」とは、紫外線又は他の電離放射線に曝露された際に、一部の無機物 質がエネルギーを貯蔵する、ルミネセンスの作用をいう。このエネルギーは、無機物が加 熱された場合に、光の形で放出される。

[0080]

「反応基」又は「Rg」とは、アミン、チオ、アルコール、アルデヒド又はケトンに対し 高度に反応性である基をいう。反応基のいくつかの非限定的例は、ホスホロアミダイト、 カルボン酸のスクシンイミジルエステル、ハロアセトアミド、ヒドラジン、イソチオシア ネート、マレイミド、ペルフルオロベンズアミド、アジドペルフルオロベンズアミドなど を含む。

[0081]

「共役された物質」又は「Cg」とは、共役されることが必要であり、かつ一般に各反応 基Rgとの共有反応に適した官能基を有している、所望の物質をいう。共役された物質のい くつかの非限定的例は、抗原、ステロイド、ビタミン、薬物、ハプテン、代謝産物、毒素 、アミノ酸、ペプチド、ヌクレオチド、オリゴヌクレオチド、核酸、炭水化物、脂質など の共役体を含む。

[0082]

「活性酸素種」又はROSとは、酸素を含むイオン、フリーラジカル、更には非-ラジカル 種をいう。活性酸素種のいくつかの非限定的例は、 $^{1}O_{2}$ 、 O_{2} ・⁻、ROO・、 $^{\circ}$ OH、OC1⁻、及び $H_{2}O_{2}$ を含む。

【0083】

「活性窒素種」又はRNSとは、窒素を含むイオン、フリーラジカル、更には非-ラジカル 種をいう。活性窒素種のいくつかの非限定的例は、一酸化窒素(NO[•])、二酸化窒素(NO₂[•])、亜硝酸イオン(NO₂⁻)、及びペルオキシナイトライト($0N00^{-}$)を含む。

[0084]

30

40

「発蛍光型プローブ」とは、その蛍光が、標的と反応する以前は「オフ」状態にあり、 かつ標的と反応した以降は「オン」状態に切り替わることができる、潜在的蛍光分子をい う。一部の実施態様において、本明細書において開示された発蛍光型プローブは、活性酸 素種及び活性窒素種とは、実質的に反応しない。別の実施態様において、本明細書におい て開示された発蛍光型プローブは、活性酸素種及び活性窒素種と、実質的に反応すること ができる。

[0085]

「ペルオキシナイトライトプローブ」とは、ペルオキシナイトライトと反応して、蛍光 化合物を形成することができる化合物をいう。一部の実施態様において、本明細書におい 10 て開示されたペルオキシナイトライトプローブは、ペルオキシナイトライトと実質的に反 応しない。別の実施態様において、本明細書において開示されたペルオキシナイトライト プローブは、ペルオキシナイトライトと、実質的に反応することができる。

[0086]

「次亜塩素酸イオンプローブ」とは、次亜塩素酸イオンと反応し、蛍光化合物を形成す ることができる化合物をいう。一部の実施態様において、本明細書に開示された次亜塩素 酸イオンプローブは、次亜塩素酸イオンと実質的に反応しない。別の実施態様において、 本明細書に開示された次亜塩素酸イオンプローブは、次亜塩素酸イオンと、実質的に反応 することができる。

[0087]

20 「キノン」とは、シクロヘキサジエンジオン部分を含む化合物をいう。キノンのいくつ かの非限定的例は、1,4-ベンゾキノン、1,2-ベンゾキノン、1,4-ナフトキノン、アントラ キノン、フェナントラキノンなどを含む。

[0088]

「反応する」、「添加する」などは、ひとつの反応物、試薬、溶媒、触媒、反応基など と、別の反応物、試薬、溶媒、触媒、反応基などを接触することをいう。反応物、試薬、 溶媒、触媒、反応基などは、個々に、同時に又は個別に添加されることができ、かつ任意 の順番で、添加されることができる。これらは、熱の存在下又は非存在下で添加されるこ とができ、かつ不活性大気下で、任意に添加されることができる。一部の実施態様におい て、「反応する」とは、反応基が同じ分子内にある場合のインサイチュ形成又は分子内反 応をいう。

[0089]

「実質的に反応する」とは、反応の少なくともひとつの反応物が、約75モル%より多い 、約80モル%より多い、約85モル%より多い、又は約90モル%より多い量だけ消費される ことをいう。一部の実施態様において、「実質的に反応する」とは、反応物が、約95モル %より多くだけ消費されることをいう。別の実施態様において、「実質的に反応する」と は、反応物が、約97モル%より多くだけ消費されることをいう。更なる実施態様において 、「実質的に反応する」とは、反応物が、約99モル%より多くだけ消費されることをいう

[0090]

40 「ハイスループット法」とは、非常に数多くの試料を自律的に処理又は評価することが できる方法をいう。一部の実施態様において、ハイスループット法において、インフォマ ティクスシステムが使用されかつ実行されることができる。このインフォマティクスシス テムは、ハイスループット法において使用される物理装置のソフトウェア制御を提供し、 更にはハイスループット法により作製された電子データを組織化しかつ保存することがで きる。

[0091]

(詳細な説明)

ペルオキシナイトライトのような活性窒素種(RNS)又は次亜塩素酸イオンのような活性 酸素種(ROS)の測定、検出又はスクリーニングのための、ルミネセンス消光剤及び/又は発 蛍光型プローブとして使用することができる芳香族アミン化合物が、本明細書において提

30

供される。一部の実施態様において、本明細書において開示された芳香族アミン化合物は、ルミネセンス消光剤として使用することができる。別の実施態様において、本明細書において開示された芳香族アミン化合物は、ペルオキシナイトライト又は次亜塩素酸イオンを選択的かつ特異的に検出、測定又はスクリーニングするために使用することができる。更なる実施態様において、本明細書に開示された芳香族アミン化合物は、¹0₂、0₂・・、NO、H₂0₂、・OH、⁻OC1、ONOO⁻及びアルキルペルオキシルラジカル(ROO⁻)のような、その他の活性酸素及び/又は窒素種の存在下で、ペルオキシナイトライト又は次亜塩素酸イオンと選択的に反応するために使用することができる。

[0092]

本明細書に開示された芳香族アミン化合物は一般に、式(I)により表すことができ: 10 【化7】

式中、Lは、発光団であり;Qは、ルミネセンス消光部分であり;かつ、R¹は、H、アルキル、ハロゲン化アルキル、アルケニル、アルキニル、アルコキシアルキル、ヘテロアルキル、シクロアルケニル、シクロアルキニル、ヘテロシクリル、アミノアルキル、アリール、アルカリル、アリールアルキル、アルキルオキシ、カルボキシアルキル、アルキルアミノ、アルコキシアミノ、アルキルアミド、アルコキシアミド、スルホニルアリール又はアシルである。一部の実施態様においては、R¹及びQの両方が、ルミネセンス消光部分である。別の実施態様においては、R¹及びQは同じである。更なる実施態様において、R¹及びQは異なる。

【0093】

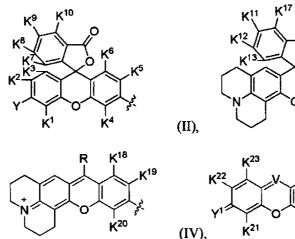
一部の実施態様において、N、Q及びR¹は一緒に、少なくともひとつの窒素を含む、4-、 5-、6-、7-又は8-員の飽和複素環を形成する。別の実施態様において、N、Q及びR¹は一緒 に、少なくともひとつの窒素を含む、5-又は6-員の飽和複素環を形成する。更なる実施態 様において、N、Q及びR¹は一緒に、置換又は非置換のピペリジン、モルホリン、ピロリジ ン、オキサゾリジン、チオモルホリン、チアゾリジン又はピペラジンから選択された、5-又は6-員の飽和複素環を形成する。

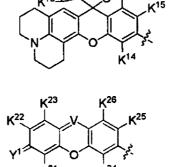
[0094]

ルミネセンス特性を有する任意の発光団を、ここで使用することができる。ある実施態 様において、発光団Lは、発リン光体、発蛍光体、化学発光団、生物発光団、結晶発光団 、電気発光団、応力発光団、光発光団、放射発光団、又は熱発光団である。別の実施態様 において、発光団Lは、発リン光体、発蛍光体又は化学発光団である。 【0095】

一部の実施態様において、発光団Lは、発蛍光基である。好適な発蛍光基のいくつかの 非限定的例は、置換又は非置換のフルオレセイン、BODIPY(ホウ素ジピロメテン)、ポルフ ィリン、スルホローダミン、アクリジンオレンジ、アクリジンイエロー、オーラミン0、 ユーキサンチン(euxanthin)、ルシフェリン、ベンズアントロン、9,10-ビス(フェニルエ チニル)アントラセン、5,12-ビス(フェニルエチニル)ナフタセン、カルセイン、カルボキ シフルオレセイン、1-クロロ-9,10-ビス(フェニルエチニル)アントラセン、7-ヒドロキシ クマリンのようなクマリン、シアニン、4′,6-ジアミジノ-2-フェニルインドール、臭化エ チジウム、ペリレン、フィコビリン、フィコエリトリン、フィコエリトロビリン、ロドー ル、ローダミン、ルブレン、スチルベン、テキサスレッド、ナフトフルオレセイン又はそ れらの誘導体から、H、OH又はアミノ基のようなひとつの原子又は基を除去することによ り誘導された、一価の蛍光基である。好適な発蛍光基の他の非限定的例は、「蛍光プロー ブ及び標識技術の指針に関するハンドブック(The Handbook: a Guide to Fluorescent Pr obes and Labeling Technologies)」(第10版、Molecular Probes社、ユージーン、オレゴ ン州、2006年)に認めることができ、これは引用により本明細書中に組み込まれている。 30

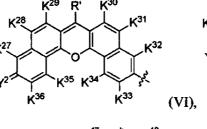
20

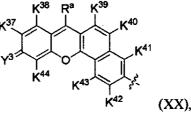

(III),


(V),

[0096]

ある実施態様において、発光団Lは、ロドール、ローダミン、レソルフィン、フルオレ セイン又はそれらの誘導体である。他の実施態様において、Lは、式(II)-(VI)、又はそれ らの誘導体のひとつである:


【化8】



10

20

30

(式中、Yは、O-A、S-A又はNR²R³であり;

К⁵²

Y¹、Y²、Y³及びY⁴の各々は独立して、0、S、NR^{2′}R^{3′}又はN⁺R^{2′}R^{3′}であり;

K⁵⁰

Vは、N又はCR"であり;

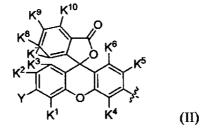
 R^2 、 R^3 、 $R^{2'}$ 及び $R^{3'}$ の各々は独立して、H、アルキル、ハロゲン化アルキル、アルケニ 40 ル、アルキニル、アルコキシアルキル、ヘテロアルキル、シクロアルキル、シクロアルケ ニル、シクロアルキニル、ヘテロシクリル、アミノアルキル、アリール、アルカリル、ア リールアルキル、アルキルオキシ、カルボキシアルキル、アルキルアミド、アルコキシア ミド、スルホニルアリール又はアシルであり;

(XXI)

R、R'、R"、R^a及びR^bの各々は独立して、H、CN、アルキル、ハロゲン化アルキル、アル ケニル、アルキニル、アルコキシアルキル、ヘテロアルキル、シクロアルキル、シクロア ルケニル、シクロアルキニル、ヘテロシクリル、アミノアルキル、アリール、アルカリル 、アリールアルキル、アルキルオキシ、カルボキシアルキル、アルキルアミノ、アルコキ シアミノ、アルキルアミド、アルコキシアミド、スルホニルアリール又はアシルであり; Aは、H、アルキル、アルケニル、アルキニル、アルコキシアルキル、ヘテロアルキル、

シクロアルキル、シクロアルケニル、シクロアルキニル、ヘテロシクリル、アミノアルキ ル、アリール、アルカリル、アリールアルキル、カルボキシアルキル、アルコキシカルボ ニル、アシル又はアミノカルボニルであり;

 $K^{1}-K^{52}$ の各々は独立して、H、ハロ、アルキル、ハロゲン化アルキル、ヘテロアルキル 、アルケニル、アルキニル、アリール、アラルキル、アルカリル、ヘテロシクリル、シク ロアルキル、シクロアルケニル、シクロアルキニル、ヒドロキシアルキル、アミノアルキ ル、アミノ、アルキルアミノ、アリールアミノ、ジアルキルアミノ、アルキルアリールア ミノ、ジアリールアミノ、アシルアミノ、ヒドロキシ、チオ、チオアルキル、アルコキシ 、アルキルチオ、アルコキシアルキル、アリールオキシ、アリールアルコキシ、アシルオ キシ、シアノ、ニトロ、スルフヒドリル、カルバモイル、トリフルオロメチル、フェノキ シ、ベンジルオキシ、スルホニル、ホスホニル、スルホン酸エステル、リン酸エステル、 -C(=0)-P¹又は-C(=0)-Z-P²であり;


P¹及びP²の各々は独立して、水素、ハロ、アルコキシ、ヒドロキシ、チオ、アルキル、 アルケニル、アルキニル、シクロアルキル、シクロアルケニル、シクロアルキニル、アリ ール、アルカリル、アリールアルキル、カルバメート、アミノ、アルキルアミノ、アリー ルアミノ、ジアルキルアミノ、アルキルアリールアミノ、ジアリールアミノ、アルキルチ オ、ヘテロアルキル、又は3~7個の環原子を有するヘテロシクリルであり;かつ

Zは、アルキレン、アルケニレン、アルキニレン、アリーレン、アラルキレン又はアル カリレンである。)。

【0097】

一部の実施態様において、Lは、Y及びK¹-K¹⁰が本明細書において開示されたものである、式(II)又はそれらの互変異性体である:

【化9】

一部の実施態様において、Yは、OH、CH₃C(=0)0又はNR²R³であり;K¹-K¹⁰の各々は独立して、H、ハロ、アルキル、ハロゲン化アルキル、ヘテロアルキル、アルケニル、アルキニル、アリール、アラルキル、アルカリル、ヘテロシクリル、シクロアルキル、シクロアル ケニル、シクロアルキニル、ヒドロキシアルキル、アミノアルキル、アミノ、アルキルア ミノ、アリールアミノ、ジアルキルアミノ、アルキルアリールアミノ、ジアリールアミノ 、アシルアミノ、ヒドロキシ、チオ、チオアルキル、アルコキシ、アルキルチオ、アルコ キシアルキル、アリールオキシ、アリールアルコキシ、アシルオキシ、シアノ、ニトロ、 スルフヒドリル、カルバモイル、トリフルオロメチル、フェノキシ、ベンジルオキシ、ス ルホニル、ホスホニル、スルホン酸エステル、又はリン酸エステルであり;かつ、R²及び R³の各々は独立して、H又はアルキルである。

[0098]

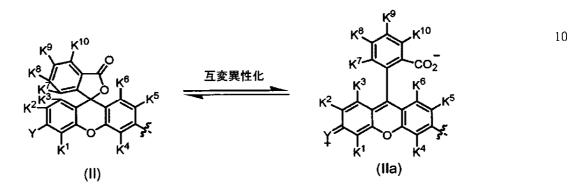
ある実施態様において、 K^1 、 K^3 、 K^4 、 K^6 、 K^7 、 K^8 、 K^9 及び K^{10} の各々はHであり;かつ、 K^2 及び K^5 の各々は独立して、H又はハロである。別の実施態様において、 K^1 - K^{10} の各々はH である。更なる実施態様において、Yは、OH又はCH₃C(=0)0である。なお更なる実施態様において、Yは、OH又はCH₃C(=0)0であり;かつ、 K^1 - K^{10} の各々は、Hである。なお更なる実施態様において、Yは、OH又はCH₃C(=0)0であり; K^1 、 K^3 、 K^4 、 K^6 、 K^7 、 K^8 、 K^9 及び K^{10} の 各々はHであり;かつ、 K^2 及び K^5 の各々は独立して、H又はハロである。

【0099】

一部の実施態様において、Yは、NR²R³である。別の実施態様において、R²は、K²と一緒 50

10

20

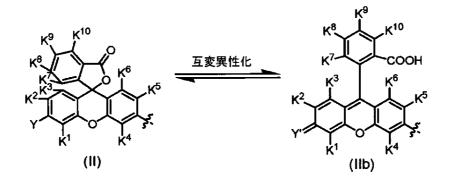

40

に又はR³はK³と一緒に、環が任意に置換されている、5-又は6-員の飽和又は不飽和の環の 一部を形成する。別の実施態様において、R²、R³、K¹及びK²は一緒に、二環式環が置換さ れているか又は置換されていない、飽和又は不飽和の二環式環の一部を形成する。 【0100】

(21)

ある実施態様において、式(II)の互変異性体は、Y及びK¹-K¹⁰が、本明細書において開示されている、式(IIa)を有する:

【化10】

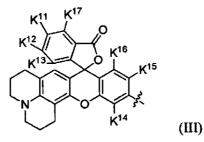


一部の実施態様において、式(IIa)のYは、NR²R³である。

[0101]

他の実施態様において、式(II)の互変異性体は、Yが、OH、SH又はNHR²であり; R²及びK $^{1}-K^{10}$ が、本明細書に開示されており;かつ、Y'が、対応するYから1個の水素を除去することにより誘導される、OH、SH又はNHR²である、式(IIb)を有する:

【化11】


20

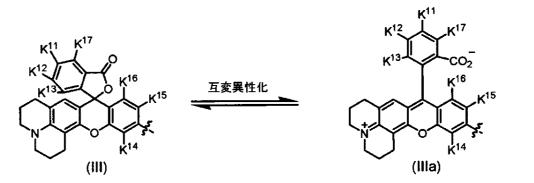
30

[0102]

一部の実施態様において、Lは、K¹¹-K¹⁷が本明細書において開示されている、式(III) 又はそれらの互変異性体を有する:

【化12】

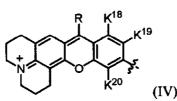
一部の実施態様において、K¹¹-K¹⁷の各々は独立して、H、ハロ、アルキル、ハロゲン化ア
 ルキル、ヘテロアルキル、アルケニル、アルキニル、アリール、アラルキル、アルカリル
 、ヘテロシクリル、シクロアルキル、シクロアルケニル、シクロアルキニル、ヒドロキシ


40

アルキル、アミノアルキル、アミノ、アルキルアミノ、アリールアミノ、ジアルキルアミ ノ、アルキルアリールアミノ、ジアリールアミノ、アシルアミノ、ヒドロキシ、チオ、チ オアルキル、アルコキシ、アルキルチオ、アルコキシアルキル、アリールオキシ、アリー ルアルコキシ、アシルオキシ、シアノ、ニトロ、スルフヒドリル、カルバモイル、トリフ ルオロメチル、フェノキシ、ベンジルオキシ、スルホニル、ホスホニル、スルホン酸エス テル又はリン酸エステルである。別の実施態様において、K¹¹、K¹²、K¹³、K¹⁴、K¹⁶及びK ¹⁷の各々はHであり;かつ、K¹⁵は、H又はハロである。

[0103]

ある実施態様において、式(III)の互変異性体は、K¹¹-K¹⁷が本明細書に開示されている、式(IIIa)を有する:


【化13】

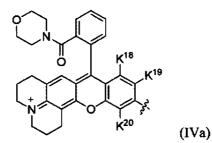
[0104]

ある実施態様において、Lは、R及びK¹⁸-K²⁰が本明細書に開示されている、式(IV)、又はそれらの互変異性体を有する:

【化14】

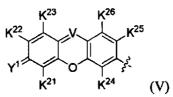
 一部の実施態様において、K¹⁸-K²⁰の各々は独立して、H、ハロ、アルキル、ハロゲン化ア ルキル、ヘテロアルキル、アルケニル、アルキニル、アリール、アラルキル、アルカリル 、ヘテロシクリル、シクロアルキル、シクロアルケニル、シクロアルキニル、ヒドロキシ アルキル、アミノアルキル、アミノ、アルキルアミノ、アリールアミノ、ジアルキルアミ ノ、アルキルアリールアミノ、ジアリールアミノ、アシルアミノ、ヒドロキシ、チオ、チ オアルキル、アルコキシ、アルキルチオ、アルコキシアルキル、アリールオキシ、アリー ルアルコキシ、アシルオキシ、シアノ、ニトロ、スルフヒドリル、カルバモイル、トリフ ルオロメチル、フェノキシ、ベンジルオキシ、スルホニル、ホスホニル、スルホン酸エス テル又はリン酸エステルである。別の実施態様において、K¹⁸及びK²⁰の各々は、Hであり ;かつ、K¹⁹は、H又はハロである。

[0105]


一部の実施態様において、Lは、K¹⁸-K²⁰が本明細書に開示されている、式(IVa)、又は それらの互変異性体を有する:

10

【化15】

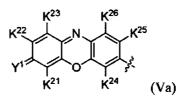


別の実施態様において、K¹⁸及びK²⁰の各々は、Hであり;かつ、K¹⁹は、F、C1、Br又はIの 10 ようなハロである。更なる実施態様において、K¹⁸及びK²⁰の各々は、Hであり;かつ、K¹⁹ は、C1である。

[0106]

一部の実施態様において、Lは、Y¹、V及びK²¹-K²⁶が本明細書に開示されている、式(V)、又はそれらの互変異性体を有する:

【化16】



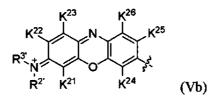
20

[0107]

ある実施態様において、Lは、VがNである、式(V)を有する。別の実施態様において、L は、Y¹及びK²¹-K²⁶が本明細書に開示されている、式(Va)、又はそれらの互変異性体を有 する:

【化17】

30


40

更なる実施態様において、Y¹は、N⁺R^{2'}R^{3'}である。更なる実施態様において、式(Va)のK² 1-K²⁶の各々は独立して、H、ハロ、アルキル、ハロゲン化アルキル、ヘテロアルキル、ア ルケニル、アルキニル、アリール、アラルキル、アルカリル、ヘテロシクリル、シクロア ルキル、シクロアルケニル、シクロアルキニル、ヒドロキシアルキル、アミノアルキル、 アミノ、アルキルアミノ、アリールアミノ、ジアルキルアミノ、アルキルアリールアミノ 、ジアリールアミノ、アシルアミノ、ヒドロキシ、チオ、チオアルキル、アルコキシ、ア ルキルチオ、アルコキシアルキル、アリールオキシ、アリールアルコキシ、アシルオキシ 、シアノ、ニトロ、スルフヒドリル、カルバモイル、トリフルオロメチル、フェノキシ、 る。なお更なる実施態様において、K²¹-K²⁶の各々はHである。

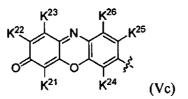
[0108]

ある実施態様において、Lは、VがNであり;かつ、Y¹が、N⁺R^{2'}R^{3'}である、式(V)を有する。別の実施態様において、Lは、R^{2'}、R^{3'}及びK²¹-K²⁶が本明細書に開示されている、式(Vb)、又はそれらの互変異性体を有する:

【化18】

更なる実施態様において、式(Vb)のK²¹-K²⁶の各々は独立して、H、ハロ、アルキル、ハロ ゲン化アルキル、ヘテロアルキル、アルケニル、アルキニル、アリール、アラルキル、ア ルカリル、ヘテロシクリル、シクロアルキル、シクロアルケニル、シクロアルキニル、ヒ ドロキシアルキル、アミノアルキル、アミノ、アルキルアミノ、アリールアミノ、ジアル キルアミノ、アルキルアリールアミノ、ジアリールアミノ、アシルアミノ、ヒドロキシ、 チオ、チオアルキル、アルコキシ、アルキルチオ、アルコキシアルキル、アリールオキシ 、アリールアルコキシ、アシルオキシ、シアノ、ニトロ、スルフヒドリル、カルバモイル 、トリフルオロメチル、フェノキシ、ベンジルオキシ、スルホニル、ホスホニル、スルホ ン酸エステル又はリン酸エステルである。なお更なる実施態様において、K²¹-K²⁶の各々 は、Hである。

【0109】


ー部の実施態様において、式(Vb)のN、R^{2'}及びR^{3'}は一緒に、少なくともひとつの窒素 を含む5-又は6-員の飽和複素環を形成する。なお更なる実施態様において、5-又は6-員の 20 飽和複素環は、置換又は非置換のピペリジン、モルホリン、ピロリジン、オキサゾリジン 、チオモルホリン、チアゾリジン又はピペラジンである。なお更なる実施態様において、 R^{2'}及びR^{3'}の一方は、本明細書に開示されているQ基である。なお更なる実施態様におい て、R^{2'}及びR^{3'}の両方は、Q基であり、かつR^{2'}及びR^{3'}は、同じ又は異なってよい。 【0110】

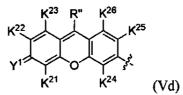
ある実施態様において、 $R^{2'}$ は K^{21} と一緒に及び $R^{3'}$ は K^{22} と一緒に、5-又は6-員の飽和又 は不飽和の環の一部を形成し、ここで該環は任意に置換されている。別の実施態様におい て、 $R^{2'}$ 、 $R^{3'}$ 、 K^{21} 及び K^{22} は一緒に、飽和又は不飽和の二環式環の一部を形成し、ここで 該二環式環は置換されているか又は置換されていない。

[0 1 1 1]

一部の実施態様において、Lは、VがNであり;かつ、Y¹が0である、式(V)を有する。別の実施態様において、Lは、K²¹-K²⁶が本明細書に開示されている、式(Vc)、又はそれらの 互変異性体を有する:

【化19】

40


更なる実施態様において、式(Vc)のK²¹-K²⁶の各々は独立して、H、ハロ、アルキル、ハロ ゲン化アルキル、ヘテロアルキル、アルケニル、アルキニル、アリール、アラルキル、ア ルカリル、ヘテロシクリル、シクロアルキル、シクロアルケニル、シクロアルキニル、ヒ ドロキシアルキル、アミノアルキル、アミノ、アルキルアミノ、アリールアミノ、ジアル キルアミノ、アルキルアリールアミノ、ジアリールアミノ、アシルアミノ、ヒドロキシ、 チオ、チオアルキル、アルコキシ、アルキルチオ、アルコキシアルキル、アリールオキシ 、アリールアルコキシ、アシルオキシ、シアノ、ニトロ、スルフヒドリル、カルバモイル 、トリフルオロメチル、フェノキシ、ベンジルオキシ、スルホニル、ホスホニル、スルホ ン酸エステル又はリン酸エステルである。なお更なる実施態様において、K²¹-K²⁶の各々 は、Hである。 10

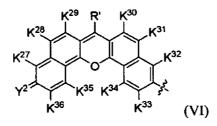
[0112]

一部の実施態様において、Lは、VがCR"である、式(V)を有する。別の実施態様において、Lは、R"、Y¹及びK²¹-K²⁶が本明細書に開示されている、式(Vd)、又はそれらの互変異性体を有する:

(25)

【化20】

更なる実施態様において、Y¹は、0又はN⁺R^{2'}R^{3'}である。更なる実施態様において、式(Vd)のK²¹-K²⁶の各々は独立して、H、ハロ、アルキル、ハロゲン化アルキル、ヘテロアルキル、アルケニル、アルキニル、アリール、アラルキル、アルカリル、ヘテロシクリル、シクロアルキル、シクロアルケニル、シクロアルキニル、ヒドロキシアルキル、アミノアルキル、アミノ、アルキルアミノ、アリールアミノ、ジアルキルアミノ、アルキルアリールアミノ、ジアリールアミノ、アシルアミノ、ヒドロキシ、チオ、チオアルキル、アルコキシ、アルキルチオ、アルコキシアルキル、アリールオキシ、アリールアルコキシ、アシルオキシ、シアノ、ニトロ、スルフヒドリル、カルバモイル、トリフルオロメチル、フェノキシ、ベンジルオキシ、スルホニル、ホスホニル、スルホン酸エステル又はリン酸エステルである。なお更なる実施態様において、K²¹-K²⁶の各々は、Hである。


【0113】

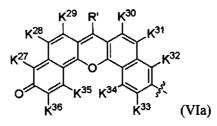
ある実施態様において、式(Va)、(Vb)、(Vc)若しくは(Vd)の K^{22} 及び K^{23} は一緒に、又は 式(Va)、(Vb)、(Vc)若しくは(Vd)の K^{25} 及び K^{26} は一緒に、ベンゾ環のような、5-又は6-員 の飽和又は不飽和の環の一部を形成し、ここで該5-又は6-員の飽和又は不飽和の環は、置 換されているか又は置換されていない。更なる実施態様において、 K^{22} 及び K^{23} は一緒に又 は K^{25} 及び K^{26} は一緒に、ベンゾ環を形成し、ここで該ベンゾ環は、置換されているか又は 置換されていない。

[0114]

一部の実施態様において、Lは、R'、Y²及びK²⁷-K³⁶が本明細書に開示されている、式(V 30
 I)、又はそれらの互変異性体を有する:

【化21】

別の実施態様において、Y²は、0又はN⁺R^{2'}R^{3'}である。

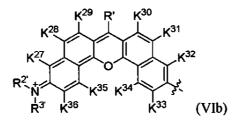

【0115】

ある実施態様において、Lは、Y²が0である、式(VI)を有する。別の実施態様において、 Lは、R'及びK²⁷-K³⁶が本明細書に開示されている、式(VIa)、又はそれらの互変異性体を 有する:

20

40

【化22】


(26)

更なる実施態様において、式(VIa)の $K^{27}-K^{36}$ の各々は、独立して、H、ハロ、アルキル、 ハロゲン化アルキル、ヘテロアルキル、アルケニル、アルキニル、アリール、アラルキル 10 、アルカリル、ヘテロシクリル、シクロアルキル、シクロアルケニル、シクロアルキニル 、ヒドロキシアルキル、アミノアルキル、アミノ、アルキルアミノ、アリールアミノ、ジ アルキルアミノ、アルキルアリールアミノ、ジアリールアミノ、アシルアミノ、ヒドロキ シ、チオ、チオアルキル、アルコキシ、アルキルチオ、アルコキシアルキル、アリールオ キシ、アリールアルコキシ、アシルオキシ、シアノ、ニトロ、スルフヒドリル、カルバモ イル、トリフルオロメチル、フェノキシ、ベンジルオキシ、スルホニル、ホスホニル、ス ルホン酸エステル又はリン酸エステルである。なお更なる実施態様において、 $K^{27}-K^{36}$ の 各々は、Hである。

【0116】

ある実施態様において、Lは、Y²がN⁺R^{2'}R^{3'}である、式(VI)を有する。別の実施態様に 20 おいて、Lは、R'、R^{2'}、R^{3'}、及びK²⁷-K³⁶が本明細書に開示されている、式(VIb)、又は それらの互変異性体を有する:

【化23】

更なる実施態様において、式(VIb)のK²⁷-K³⁶の各々は、独立して、H、ハロ、アルキル、 ハロゲン化アルキル、ヘテロアルキル、アルケニル、アルキニル、アリール、アラルキル 、アルカリル、ヘテロシクリル、シクロアルキル、シクロアルケニル、シクロアルキニル 、ヒドロキシアルキル、アミノアルキル、アミノ、アルキルアミノ、アリールアミノ、ジ アルキルアミノ、アルキルアリールアミノ、ジアリールアミノ、アシルアミノ、ヒドロキ シ、チオ、チオアルキル、アルコキシ、アルキルチオ、アルコキシアルキル、アリールオ キシ、アリールアルコキシ、アシルオキシ、シアノ、ニトロ、スルフヒドリル、カルバモ イル、トリフルオロメチル、フェノキシ、ベンジルオキシ、スルホニル、ホスホニル、ス ルホン酸エステル又はリン酸エステルである。なお更なる実施態様において、K²⁷-K³⁶の 各々は、Hである。

[0 1 1 7]

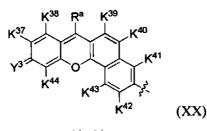
更なる実施態様において、式(VIb)のN、R^{2'}及びR^{3'}は一緒に、少なくともひとつの窒素 を含む、5-又は6-員の飽和複素環を形成する。なお更なる実施態様において、前記5-又は 6-員の飽和複素環は、置換又は非置換のピペリジン、モルホリン、ピロリジン、オキサゾ リジン、チオモルホリン、チアゾリジン又はピペラジンである。なお更なる実施態様にお いて、R^{2'}及びR^{3'}の一方は、本明細書に開示されているQ基である。なお更なる実施態様 において、R^{2'}及びR^{3'}はQ基であり、かつR^{2'}及びR^{3'}は、同じ又は異なってよい。

[0118]

一部の実施態様において、R² はK²⁷と一緒に、及びR³ はK³⁶と一緒に、5-又は6-員の飽 和又は不飽和の環の一部を形成し、ここで該環は任意に置換されている。別の実施態様に 50

30

おいて、R^{2′}、R^{3′}、K²⁷及びK³⁶は一緒に、飽和又は不飽和の二環式環の一部を形成し、ここで該二環式環は、置換されているか又は置換されていない。

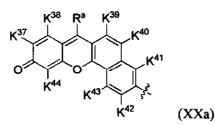

[0119]

ある実施態様において、 K^{28} 及び K^{29} は一緒に、又は K^{30} 及び K^{31} は一緒に、又は K^{33} 及び K^{34} は一緒に、又は K^{35} 及び K^{36} は一緒に、ベンゾ環のような、5-又は6-員の飽和又は不飽和の環を形成し、ここで、該5-又は6-員の飽和又は不飽和の環は、置換されているか又は置換されていない。更なる実施態様において、 K^{28} 及び K^{29} は一緒に、又は K^{30} 及び K^{31} は一緒に、又は K^{33} 及び K^{34} は一緒に、又は K^{35} 及び K^{36} は一緒に、ベンゾ環を形成し、ここで該ベンゾ環は、置換されているか又は置換されていない。

[0120]

一部の実施態様において、Lは、R^a、Y³及びK³⁷-K⁴⁴が本明細書に開示されている、式(X
 X)、又はそれらの互変異性体を有する:

【化24】



別の実施態様において、Y³は、0又はN⁺R^{2'}R^{3'}である。

[0121]

ある実施態様において、Lは、Y³がOである、式(XX)を有する。別の実施態様において、 Lは、R^a、K³⁷-K⁴⁴が本明細書に開示されている、式(XXa)、又はそれらの互変異性体を有 する:

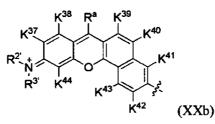
【化25】

30

40

10

20


o

更なる実施態様において、式(XXa)のK³⁷-K⁴⁴の各々は独立して、H、ハロ、アルキル、ハ ロゲン化アルキル、ヘテロアルキル、アルケニル、アルキニル、アリール、アラルキル、 アルカリル、ヘテロシクリル、シクロアルキル、シクロアルケニル、シクロアルキニル、 ヒドロキシアルキル、アミノアルキル、アミノ、アルキルアミノ、アリールアミノ、ジア ルキルアミノ、アルキルアリールアミノ、ジアリールアミノ、アシルアミノ、ヒドロキシ 、チオ、チオアルキル、アルコキシ、アルキルチオ、アルコキシアルキル、アリールオキ シ、アリールアルコキシ、アシルオキシ、シアノ、ニトロ、スルフヒドリル、カルバモイ ル、トリフルオロメチル、フェノキシ、ベンジルオキシ、スルホニル、ホスホニル、スル ホン酸エステル又はリン酸エステルである。なお更なる実施態様において、K³⁷-K⁴⁴の各 々は、Hである。

[0122]

ある実施態様において、Lは、Y³がN⁺R^{2'}R^{3'}である、式(XX)である。別の実施態様において、Lは、R^a、R^{2'}、R^{3'}、及びK³⁷-K⁴⁴が本明細書に開示されている、式(XXb)、又はそれらの互変異性体を有する:

【化26】

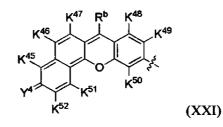
(28)

更なる実施態様において、式(XXb)のK³⁷-K⁴⁴の各々は、独立して、H、ハロ、アルキル、 ハロゲン化アルキル、ヘテロアルキル、アルケニル、アルキニル、アリール、アラルキル 、アルカリル、ヘテロシクリル、シクロアルキル、シクロアルケニル、シクロアルキニル 、ヒドロキシアルキル、アミノアルキル、アミノ、アルキルアミノ、アリールアミノ、ジ アルキルアミノ、アルキルアリールアミノ、ジアリールアミノ、アシルアミノ、ヒドロキ シ、チオ、チオアルキル、アルコキシ、アルキルチオ、アルコキシアルキル、アリールオ キシ、アリールアルコキシ、アシルオキシ、シアノ、ニトロ、スルフヒドリル、カルバモ イル、トリフルオロメチル、フェノキシ、ベンジルオキシ、スルホニル、ホスホニル、ス ルホン酸エステル又はリン酸エステルである。なお更なる実施態様において、K³⁷-K⁴⁴の 各々は、Hである。

【0123】

更なる実施態様において、式(XXb)のN、R^{2'}、R^{3'}は一緒に、少なくともひとつの窒素を 20 含む、5-又は6-員の飽和複素環を形成する。なお更なる実施態様において、前記5-又は6-員の飽和複素環は、置換又は非置換のピペリジン、モルホリン、ピロリジン、オキサゾリ ジン、チオモルホリン、チアゾリジン又はピペラジンである。なお更なる実施態様におい て、R^{2'}及びR^{3'}の一方は、本明細書に開示されているQ基である。なお更なる実施態様に おいて、R^{2'}及びR^{3'}の両方は、Q基であり、かつR^{2'}及びR^{3'}は、同じ又は異なってよい。 【0124】

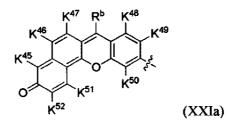
一部の実施態様において、R² はK³⁷と一緒に又はR³ はK⁴⁴と一緒に、5-又は6-員の飽和 又は不飽和の環の一部を形成し、ここで該環は任意に置換されている。別の実施態様にお いて、R²、R³、K³⁷及びK⁴⁴は一緒に、飽和又は不飽和の二環式環の一部を形成し、ここ で該二環式環は、置換されているか又は置換されていない。


[0125]

ある実施態様において、 K^{37} 及び K^{38} は一緒に、又は K^{39} 及び K^{40} は一緒に、又は K^{42} 及び K^{43} は一緒に、マは K^{42} 及び K^{43} は一緒に、ベンゾ環のような、5-又は6-員の飽和又は不飽和の環の一部を形成し、ここで該5-又は6-員の飽和又は不飽和の環は、置換されているか又は置換されていない。更なる実施態様において、 K^{37} 及び K^{38} は一緒に、又は K^{39} 及び K^{40} は一緒に、又は K^{42} 及び K^{43} は一緒に、ベンゾ環を形成し、ここで該ベンゾ環は、置換されているか又は置換されていない。

[0126]

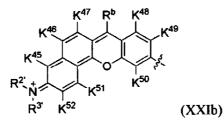
一部の実施態様において、Lは、R^b、Y⁴及びK⁴⁵-K⁵²が本明細書に開示されている、式(X
 XI)、又はそれらの互変異性体を有する:


【化27】

別の実施態様において、Y⁴は0又はN⁺ R^{2'}R^{3'}である。 【0127】

ある実施態様において、Lは、Y⁴がOである、式(XXI)を有する。別の実施態様において、Lは、R^b、K⁴⁵-K⁵²が本明細書に開示されている、式(XXIa)、又はそれらの互変異性体である:

【化28】


10

20

更なる実施態様において、式(XXIa)のK⁴⁵-K⁵²の各々は独立して、H、ハロ、アルキル、ハ ロゲン化アルキル、ヘテロアルキル、アルケニル、アルキニル、アリール、アラルキル、 アルカリル、ヘテロシクリル、シクロアルキル、シクロアルケニル、シクロアルキニル、 ヒドロキシアルキル、アミノアルキル、アミノ、アルキルアミノ、アリールアミノ、ジア ルキルアミノ、アルキルアリールアミノ、ジアリールアミノ、アシルアミノ、ヒドロキシ 、チオ、チオアルキル、アルコキシ、アルキルチオ、アルコキシアルキル、アリールオキ シ、アリールアルコキシ、アシルオキシ、シアノ、ニトロ、スルフヒドリル、カルバモイ ル、トリフルオロメチル、フェノキシ、ベンジルオキシ、スルホニル、ホスホニル、スル ホン酸エステル又はリン酸エステルである。なお更なる実施態様において、K⁴⁶-K⁵¹の各 々は、Hであり、かつK⁴⁵及びK⁵²の少なくともひとつは、独立して、C1又はFである。 【0128】

ある実施態様において、Lは、Y⁴がN⁺R^{2'}R^{3'}である、式(XXI)を有する。別の実施態様において、Lは、R^b、R^{2'}、R^{3'}、及びK⁴⁵-K⁵²が本明細書に開示されている、式(XXIb)、又はそれらの互変異性体を有する:

【化29】

30

更なる実施態様において、式(XXIb)のK⁴⁵-K⁵²の各々は独立して、H、ハロ、アルキル、ハ ロゲン化アルキル、ヘテロアルキル、アルケニル、アルキニル、アリール、アラルキル、 アルカリル、ヘテロシクリル、シクロアルキル、シクロアルケニル、シクロアルキニル、 ヒドロキシアルキル、アミノアルキル、アミノ、アルキルアミノ、アリールアミノ、ジア ルキルアミノ、アルキルアリールアミノ、ジアリールアミノ、アシルアミノ、ヒドロキシ 、チオ、チオアルキル、アルコキシ、アルキルチオ、アルコキシアルキル、アリールオキ シ、アリールアルコキシ、アシルオキシ、シアノ、ニトロ、スルフヒドリル、カルバモイ ル、トリフルオロメチル、フェノキシ、ベンジルオキシ、スルホニル、ホスホニル、スル ホン酸エステル又はリン酸エステルである。なお更なる実施態様において、K⁴⁵-K⁵²の各 々は、Hである。

[0129]

更なる実施態様において、式(XXIb)のN、R^{2'}、及びR^{3'}は一緒に、少なくともひとつの 窒素を含む、5-又は6-員の飽和複素環を形成する。なお更なる実施態様において、前記5-又は6-員の飽和複素環は、置換又は非置換のピペリジン、モルホリン、ピロリジン、オキ サゾリジン、チオモルホリン、チアゾリジン又はピペラジンである。なお更なる実施態様 において、R^{2'}及びR^{3'}の一方は、本明細書に開示されているQ基である。なお更なる実施 態様において、R^{2'}及びR^{3'}の両方は、Q基であり、かつR^{2'}及びR^{3'}は、同じ又は異なって

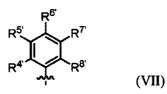
50

よい。

[0130]

一部の実施態様において、R² はK⁴⁵と一緒に又はR³ はK⁵²と一緒に、5-又は6-員の飽和 又は不飽和の環の一部を形成し、ここで該環は、任意に置換されている。別の実施態様に おいて、R²、R³、K⁴⁵及びK⁵²は一緒に、飽和又は不飽和の二環式環の一部を形成し、こ こで該二環式環は、置換されているか又は置換されていない。

(30)


[0131]

ある実施態様において、K⁴⁶及びK⁴⁷は一緒に、又はK⁴⁸及びK⁴⁹は一緒に、又はK⁵¹及びK ⁵²は一緒に、ベンゾ環のような、5-又は6-員の飽和又は不飽和の環を形成し、ここで前記 5-又は6-員の飽和又は不飽和の環は、置換されているか又は置換されていない。更なる実 施態様において、K⁴⁶及びK⁴⁷は一緒に、又はK⁴⁸及びK⁴⁹は一緒に、又はK⁵¹及びK⁵²は、ベ ンゾ環を形成し、ここで該ベンゾ環は、置換されているか又は置換されていない。

[0132]

一部の実施態様において、R、R'、R"、R^a及びR^bの各々は、独立して、式(VII)を有する 、置換又は非置換のフェニルであり:

【化30】

20

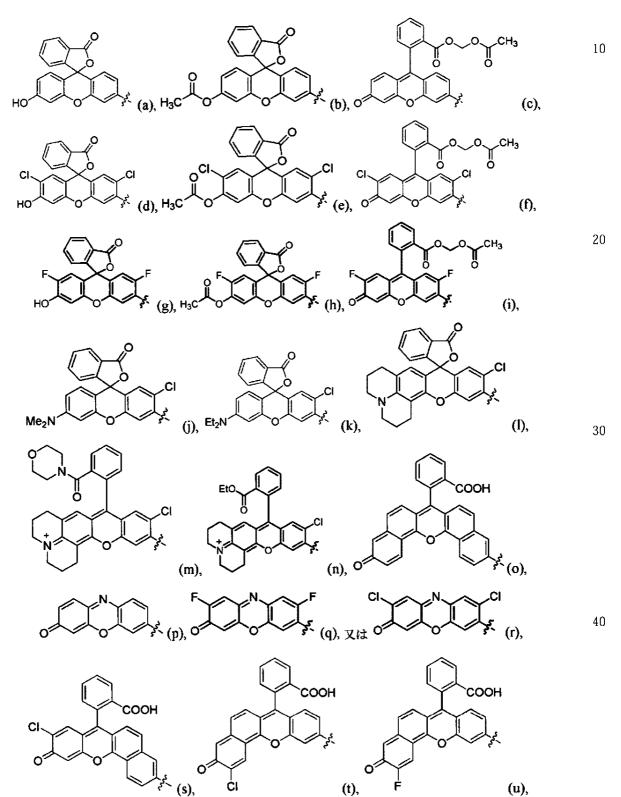
30

40

10

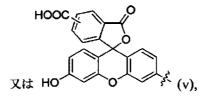
ここで、R⁴、R⁵、R⁶、R⁷及びR⁸の各々は独立して、H、アルキル、アルケニル、ア ルキニル、ヘテロアルキル、シクロアルキル、シクロアルケニル、シクロアルキニル、ア リール、アルキルアリール、アリールアルキル、ヘテロシクリル、ヒドロキシ、アルコキ シ、アルコキシアルキル、アルコキシアルコキシ、アシル、アルキルカルボニルアルキル 、トリフルオロメチルカルボニルアルキルのようなハロゲン化アルキルカルボニルアルキ ル、アミノアルキル、カルボキシアルキル、アルコキシカルボニル、アルコキシカルボニ ルアルキル、アミノカルボニル、若しくはNR⁹R¹⁰であるか、又はR⁴及びR⁵は一緒に、R⁵ をびR⁶は一緒に、R⁶及びR⁷は一緒に又はR⁷及びR⁸は一緒に、式(VII)のフェニル環 に縮合された、5-又は6-員のシクロアルキル、ヘテロシクリル、アリール又はヘテロアリ ール環の一部を形成し;かつ

R⁹及びR¹⁰の各々は、独立して、H、アルキル、アルケニル、アルキニル、アルコキシア ルキル、アルカノイル、アルケノイル、アルキノイル、シクロアルキル、シクロアルケニ ル、シクロアルキニル、アリール、アルカリル、アリールアルキル、アリーロイル、又は ポリエーテルである。


[0133]

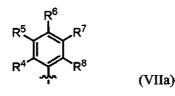
ある実施態様において、R^{4'}、R^{5'}、R^{6'}及びR^{7'}は、独立して、Hであり;かつ、R^{8'}は、 -COOH、-COR¹⁷、-COOR¹⁸、又は-CONR¹⁹R²⁰であり、ここで、R¹⁷、R¹⁸、R¹⁹及びR²⁰は、独 立して、H、アルキル、アルケニル、アルキニル、ヘテロアルキル、シクロアルキル、シ クロアルケニル、シクロアルキニル、アリール、アルキルアリール、アリールアルキル、 、テロシクリル、ヒドロキシ、アルコキシ、アルコキシアルキル、アルコキシアルコキシ 、アシル、アルキルカルボニルアルキル、ハロゲン化アルキルカルボニルアルキル、アミ ノアルキル、カルボキシアルキル、アルコキシカルボニル、アルコキシカルボニルアルキ ル、アミノカルボニル、若しくはNR⁹R¹⁰であるか、又はN、R¹⁹及びR²⁰は一緒に、少なく ともひとつの窒素原子を有する、5-又は6-員の複素環を形成する。別の実施態様において 、R^{8'}は、-CONR¹⁹R²⁰であり、かつN、R¹⁹及びR²⁰は一緒に、5-又は6-飽和複素環を形成す る。更なる実施態様において、前記複素環は、置換又は非置換のピペリジン、モルホリン 、ピロリジン、オキサゾリジン、チオモルホリン、チアゾリジン又はピペラジンである。 なお更なる実施態様において、R^{8'}は、-COOH基である。なお更なる実施態様において、R⁴

′、R^{5′}、R^{6′}及びR^{7′}の各々は、Hであり;かつ、R^{8′}は、-COOH基である。一部の実施態様 において、 $R^{4'}$ 、 $R^{5'}$ 、 $R^{6'}$ 及び $R^{7'}$ の各々は、独立して、Hであり;かつ、 $R^{8'}$ は、キサンテ ン環のような多環式環の面からベンゼン環を生じるのに十分な立体障害を提供し得るよう な、メチル、メトキシ又は任意の他の基である。


[0134]

一部の実施態様において、Lは、式(a)-(v)、又はそれらの互変異性体のひとつを有し: 【化31】

50


(u),

ここで、式(a)-(v)の各々は、独立して、置換されていないか又は置換されている。 【0135】

ある実施態様において、式(I)のQは、式(VIIa)を有する、置換又は非置換のフェニルで 10 あり:

【化32】

ここで、 \mathbb{R}^4 、 \mathbb{R}^5 、 \mathbb{R}^6 、 \mathbb{R}^7 及び \mathbb{R}^8 は、独立して、H、アルキル、アルケニル、アルケニル、アルキニル 、ヘテロアルキル、シクロアルキル、シクロアルケニル、シクロアルキニル、アリール、20 アルキルアリール、アリールアルキル、ヘテロシクリル、ヒドロキシ、アルコキシ、アル コキシアルキル、アルコキシアルコキシ、アシル、アルキルカルボニルアルキル、トリフ ルオロメチルカルボニルアルキルのようなハロゲン化アルキルカルボニルアルキル、アミ ノアルキル、カルボキシアルキル、アルコキシカルボニル、アルコキシカルボニルアルキ ル、アミノカルボニル、若しくは $\mathbb{N}^8 \mathbb{R}^{10}$ であるか、又は \mathbb{R}^4 及び \mathbb{R}^5 は一緒に、 \mathbb{R}^5 及び \mathbb{R}^6 は一 緒に、 \mathbb{R}^6 及び \mathbb{R}^7 は一緒に、又は \mathbb{R}^7 及び \mathbb{R}^8 は一緒に、式(VIIa)のフェニル環に縮合された、 5-又は6-員のシクロアルキル、ヘテロシクリル、アリール又はヘテロアリール環の一部を 形成し;かつ、

R⁹及びR¹⁰の各々は、独立して、H、アルキル、アルケニル、アルキニル、アルコキシア ルキル、アルカノイル、アルケノイル、アルキノイル、シクロアルキル、シクロアルケニ 30 ル、シクロアルキニル、アリール、アルカリル、アリールアルキル、アリーロイル、又は ポリエーテルである。

[0136]

ある実施態様において、式(VIIa)のR⁶は、NR⁹R¹⁰である。別の実施態様において、式(I)のR¹は、H、アルキル、ハロゲン化アルキル、ヘテロアルキル、アルケニル、アルキニル、アリール、アラルキル、アルカリル、ヘテロシクリル、シクロアルキル、シクロアルケニル、及びシクロアルキニルであり;式(VIIa)のR⁴、R⁵、R⁶、R⁷及びR⁸の各々は独立して、H、ハロゲン、アルキル、アルコキシ、又はポリエーテルであり;R⁶は、OR¹¹又はCH₂CH ²COR¹²であり、ここで、R¹¹は、H、アルキル、アルコキシアルキル、アルカノイル、又はポリエーテルであり;R¹²は、CF₃、ハロゲン-置換された低級アルキル(例えば、CF_nH_{3-n}、ここでnは、1、2、又は3である)、又は(C=0)-0-V²から選択された電子求引基であり、ここでV²は、アルキル、アルカリル又はアリールアルキルから選択された基である

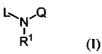
[0137]

ー部の実施態様において、QのR⁶は、-OCH₂OCH₃、OH、NR⁹R¹⁰、-CH₂CH₂C(=0)CF₃、又は-CH₂CH₂C(=0)OCH₃であり、ここでR⁹及びR¹⁰の各々は独立して、H又はアルキルであり;かつ、R⁴、R⁵、R⁷及びR⁸の各々は、Hである。別の実施態様において、R⁶は、OH、NH₂、又は-CH₂CH₂C(=0)CF₃である。

[0138]

50

ある実施態様において、R¹は、H、アルキル、ハロゲン化アルキル、ヘテロアルキル、 アルケニル、アルキニル、アリール、アラルキル、アルカリル、ヘテロシクリル、シクロ アルキル、シクロアルケニル、及びシクロアルキニルであり;R⁴、R⁵、R⁶、R⁷及びR⁸の各 々は独立して、H、ハロゲン、アルキル、アルコキシ、又はポリエーテルであり;R⁶は、0 R¹¹又はCH₂COR¹²であり、ここでR¹¹は、H、アルキル、アルコキシアルキル、アルカノ イル、又はポリエーテルであり;R¹²は、CF₃、ハロゲン-置換された低級アルキル、又は(C=0)-0-V²から選択された、電子求引基であり、ここでV²は、アルキル、アルケニル、ア ルキニル、シクロアルキル、シクロアルケニル、シクロアルキニル、アリール、アルカリ ル又はアリールアルキルから選択された基である。


[0139]

一部の実施態様において、Lが、YがNR²R³である式(II)を有する場合、QのR⁶は、ヒドロキシ、アルケニル、アルキニル、ヘテロアルキル、シクロアルキル、シクロアルケニル、シクロアルキニル、アリール、ヘテロシクリル、アルコキシアルキル、アルコキシアルコキシアルキル、アルコキシアルコキシ、アシル、アルキルカルボニルアルキル、トリフルオロメチルカルボニルアルキルのようなハロゲン化アルキルカルボニルアルキル、カルボキシアルキル、アルコキシカルボニル、アルコキシカルボニルアルキル又はアミノカルボニルであるか、又はR⁴及びR⁵は一緒に、R⁵及びR⁶は一緒に、R⁶及びR⁷は一緒に、又はR⁷及びR⁸は一緒に、式(VIIa)のフェニル環と縮合された、5-又は6-員のシクロアルキル、ヘテロシクリル、アリール又はヘテロアリール環を形成する。

[0140]

一部の実施態様において、本芳香族アミン化合物は、Lが、本明細書に開示されている式(II)-(VI)、(XX)、(XXI)、(Va)-(Vd)、(VIa)-(VIb)、(XXa)-(XXb)、(XXIa)-(XXIb)、及び(a)-(v)のひとつを有し;Qが、本明細書に開示されている式(VIIa)を有し;かつ、R¹が、本明細書に開示されている、式(I)を有する:

【化33】

 $\begin{bmatrix} 0 & 1 & 4 & 1 \end{bmatrix}$

式(IVa)、式(Vb)、式(VIIIb)、式(IXb)又は化合物3のような、芳香族アミン化合物のいずれかが、正帯電されている場合、この正電荷は、当業者に公知のいずれか好適な対陰イオンにより平衡とされることができる。好適な対陰イオンのいくつかの非限定的例は、フッ化物イオン、塩化物イオン、臭化物イオン及びヨウ化物イオンのようなハロゲン化物イオン、ギ酸イオン及び酢酸イオンのようなカルボン酸イオン、炭酸水素イオン、硝酸イオン、亜硝酸イオンなどである。一部の実施態様において、この対陰イオンは、塩化物イオンである。一部の実施態様において、この対陰イオンである。

【0142】

ある実施態様において、本明細書に開示された芳香族アミン化合物は、化合物1a-1d、2、3、4a-4e及び5a-5d、又はそれらの互変異性体を含み:

10

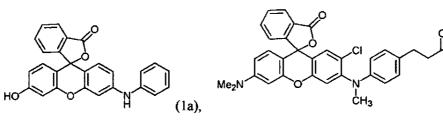
OMe

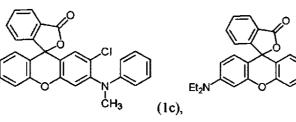
ОМе

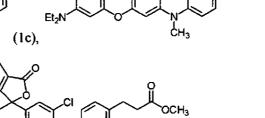
(1b),

(1d),

(4b),

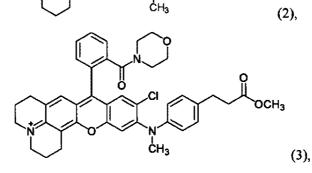

(4d),

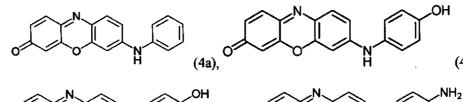

N − CH3

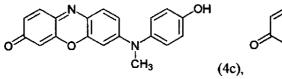

【化34】

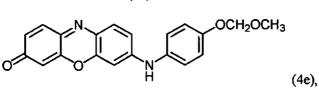
C

но

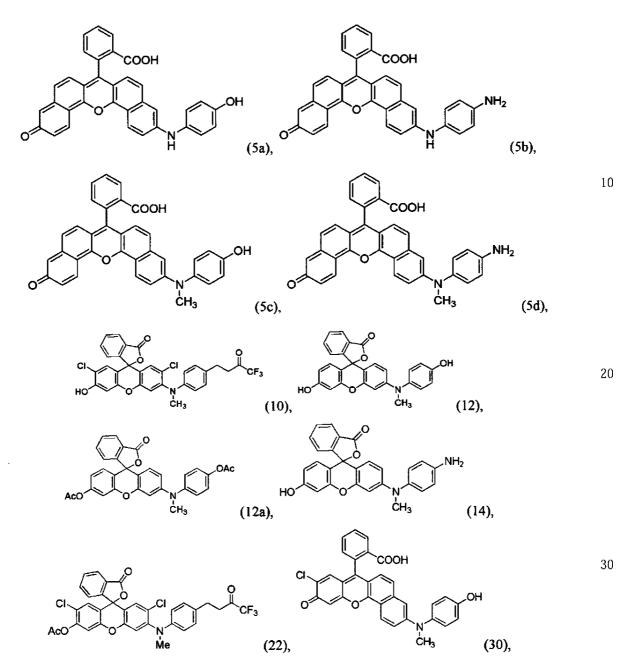






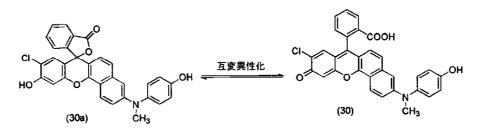

20

N⁻ CH₃



30

40

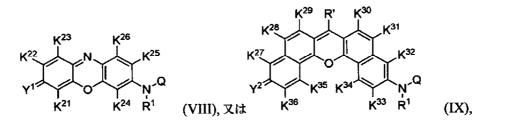

ここで化合物1a-1d、2、3、4a-4e、5a-5d、10、12、12a、14、22及び30の各々は独立して 、置換されているか又は置換されていない。

【0143】

ある実施態様において、本芳香族アミン化合物は、化合物(10)である。別の実施態様に おいて、本芳香族アミン化合物は、化合物(12)である。更なる実施態様において、本芳香 族アミン化合物は、化合物(12a)である。なお更なる実施態様において、本芳香族アミン 化合物は、化合物(14)である。なお更なる実施態様において、本芳香族アミン化合物は、 化合物(22)である。別の実施態様において、本芳香族アミン化合物は、化合物(30)である

[0144]

一部の実施態様において、本芳香族アミン化合物は、化合物(30)である。別の実施態様 において、化合物(30)の互変異性体は、以下に示した式(30a)を有する。 【化35】



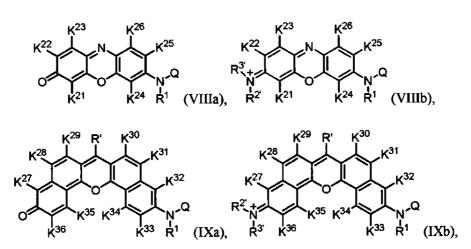
[0145]

(ルミネセンス消光剤としての芳香族アミン化合物)

ある実施態様において、式(I)を有する芳香族アミン化合物は、ルミネセンス消光剤又 はルミネセンス消光化合物として使用することができる。ある実施態様において、このル ミネセンス消光化合物は、式(VIII)又は(IX)を有し:

【化36】

20


30

10

ここで、 Y^1 、 Y^2 、Q、R'、 R^1 及び $K^{21}-K^{36}$ は、本明細書に開示されている。 【0146】

ある実施態様において、Y¹又はY²の各々は独立して、0である。別の実施態様において、Y¹又はY²の各々は独立して、N⁺R^{2'}R^{3'}である。更なる実施態様において、Y¹又はY²の各々は独立して、NR^{2'}R^{3'}である。なお更なる実施態様において、本ルミネセンス消光化合物は、Q、R'、R¹及びK²¹-K³⁶が本明細書に開示されている、式(VIIIa)、(VIIIb)、(IXa) 又は(IXb)を有する:

【化37】

40

[0147]

ある実施態様において、式(VIIIb)又は(IXb)のN、R² 及びR³ は一緒に、少なくともひ とつの窒素を含む、4-、5-、6-、7-又は8-員の飽和複素環を形成する。別の実施態様にお いて、式(VIIIb)又は(IXb)のN、R² 及びR³ は一緒に、5-又は6-員の飽和複素環を形成す る。更なる実施態様において、式(VIIIb)又は(IXb)のN、R² 及びR³ は一緒に、置換又は

10

非置換のピペリジン、モルホリン、ピロリジン、オキサゾリジン、チオモルホリン、チア ゾリジン又はピペラジンから選択された、5-又は6-員の飽和複素環を形成する。なお更な る実施態様において、式(VIIIb)又は(IXb)のR^{2′}及びR^{3′}のひとつは、本明細書に開示され ているQである。なお更なる実施態様において、R^{2′}及びR^{3′}の両方は、Qであり、かつR^{2′} 及びR^{3′}は、同じ又は異なってよい。

[0148]

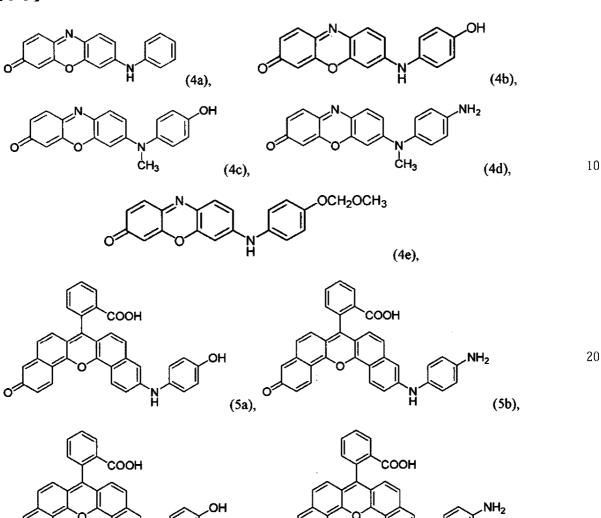
一部の実施態様において、式(VIII)、(VIIIa)、(VIIIa)、(VIIIb)、(IXa)又は(IXb)のN 、Q及びR¹は一緒に、少なくともひとつの窒素を含む、5-又は6-員の飽和複素環を形成す る。別の実施態様において、前述の5-又は6-員の飽和複素環は、置換又は非置換のピペリ ジン、モルホリン、ピロリジン、オキサゾリジン、チオモルホリン、チアゾリジン又はピ ペラジンである。更なる実施態様において、R¹は、本明細書に開示されているQ基である 。なお更なる実施態様において、R¹及びQ基の両方は、同じ又は異なってよい。

【0149】

ある実施態様において、式(VIIIb)の $R^{2'}$ は K^{21} と一緒に、又は $R^{3'}$ は K^{22} と一緒に、5-又 は6-員の飽和又は不飽和の環の一部を形成し、ここで該環は任意に置換されている。別の 実施態様において、 $R^{2'}$ 、 $R^{3'}$ 、 K^{21} 及び K^{22} は一緒に、飽和又は不飽和の二環式環の一部を 形成し、ここで該二環式環は置換されているか又は置換されていない。

[0150]

一部の実施態様において、式(IXb)のR² はK²⁷と一緒に、又はR³ はK³⁶と一緒に、5-又は6-員の飽和又は不飽和の環の一部を形成し、ここで該環は任意に置換されている。別の 20
 実施態様において、R²、R³、K²⁷及びK³⁶は一緒に、飽和又は不飽和の二環式環の一部を
 形成し、ここで該二環式環は置換されているか又は置換されていない。


[0151]

ある実施態様において、K²²及びK²³は一緒に又はK²⁵及びK²⁶は一緒に、ベンゾ環のよう な、5-又は6-員の飽和又は不飽和の環の一部を形成し、ここで該5-又は6-員の飽和又は不 飽和の環は、置換されているか又は置換されていない。更なる実施態様において、K²²及 びK²³は一緒に又はK²⁵及びK²⁶は一緒に、ベンゾ環を形成し、ここで該ベンゾ環は、置換 されているか又は置換されていない。

【0152】

一部の実施態様において、本ルミネセンス消光化合物は、化合物4a-4e及び5a-5dを含み 30:

【化38】

(5c), 又は

ĊΗ₃

30

(5d),

ćн₃

ここで、化合物4a-4e及び5a-5dの各々は、独立して、置換されているか又は置換されていない。

【0153】

ー部の実施態様において、式(I)の芳香族アミン化合物のL、R¹及びQ基の少なくともーつは、反応基(Rg)又は共役基(Cg)により置換されており、ここでRg又はCgは、連結基-X-を介して、本明細書に開示された芳香族アミン化合物に任意に結合されている。別の実施態様において、本明細書に開示された芳香族アミン化合物のL、R¹及びQ基の少なくとも一つは、-X-Rg基又は-X-Cg基により置換されている。別の実施態様において、式(I)の芳香族アミン化合物のL基は、-X-Rg基又は-X-Cg基により置換されている。

40

【0154】

ー部の実施態様において、Xは、0、S、アミニレン基(例えばRが、H、アルキル基、アル ケニル基、アルキニル基、カルボキシル基、アシル基、芳香族基、又は複素環基であるよ うな、NR基)、スルホニル基、有機連結基、若しくはそれらの組合せのような、結合又は 連結基であるか、又はこれらを含んでいる。本明細書に開示された有機連結基は、一緒に 化学式のL、R¹、Q、Rg又はCgのような、任意の二つの断片を結合する二価の連結有機基で あることができる。二価の有機連結基のいくつかの非限定的例は、カルボニル基、アルキ レン基、アリーレン基、二価の複素環基、及びそれらの組合せを含む。二価の有機連結基 の別の非限定的例は、-(CH₂)_m-基を含み、ここでmは、1~50までの整数であり、かつこの

メチレン基の1個以上は、0、S、N、C、B、Si、P、C=0、0=S=0、複素環基、芳香族基、NR_a 基、CR_b基、CR_cR_d基、SiR_eR_f基、BR_g基、又はP(=0)R_h基により任意に置換されており、こ こでR_a、R_b、R_c、R_d、R_e、R_f、R_g、及びR_hは、各々独立して、結合、H、ヒドロキシル基 、チオール基、カルボキシル基、アミノ基、ハロゲン、アシル基、アルコキシ基、アルキ ルスルファニル基、ビニル基、アリル基及び2-フェニルエテニル基のようなアルケニル基 、アルキニル基、複素環基、芳香族基、シクロアルキル基、複素環基及びベンゾ基のよう な環基の一部、又はアルキル基の水素の1個以上が、芳香族基、ヒドロキシル基、チオー ル基、カルボキシル基、アミノ基、又はハロゲンにより任意に置換されている、アルキル 基である。アミニレン基の非限定的例は、NR基を含み、ここでRは、H、アルキル基、アル ケニル基、アルキニル基、アシル基、芳香族基、及び複素環基である。

ある実施態様において、前述の有機連結基は、価数3以上を有することができ、その結 果一緒に化学式のL、R¹、Q、Rg又はCgのような、3種以上の断片のいずれかに連結するこ とができる。価数3を有する有機連結基の非限定的例は、 $-(CH_2)_m$ -基のメチレン基をCR_b基 と交換することにより作製された三価の有機連結基である。価数4を有する有機連結基の 他の非限定的例は、 $-(CH_2)_m$ -基のメチレン基を炭素原子と交換することにより作製された 四価の有機連結基である。価数3を有する有機連結基の別の非限定的例は、 $-(CH_2)_m$ -基の メチレン基を、N、P、又はBと交換することにより作製された三価の有機連結基である。 価数4を有する有機連結基の更なる非限定的例は、 $-(CH_2)_m$ -基の2個のメチレン基を2個のC R_b基と交換することにより作製された四価の有機連結基である。本明細書の開示を基に、 当業者は、 $-(CH_2)_m$ -基の少なくとも1個のメチレン基を、N、P、B、C、Si、CR_b基のような 、3以上の価数を有する労香族基、並びに2よりも大きい価数を有する複素環基と交換 することにより、2よりも大きい価数を有する有機連結基を作製することができる。 【0156】

別の関心のある実施態様において、前述の有機連結基は、 $-(R_b=N-結合、二重結合又は$ 三重結合のような少なくともひとつの不飽和結合を含むことができる。二重結合を有する $有機連結基の非限定的例は、<math>-(CH_2)_n$ -基の2個の隣接メチレン基を2個の CR_b 基と交換する ことにより作製された、不飽和の有機連結基である。この二重結合は、2個の隣接 CR_b 基の 間に位置している。別の三重結合を有する有機連結基の非限定的例は、 $-(CH_2)_n$ -基の2個 の隣接メチレン基を、各々2個の炭素原子と交換することにより作製された、不飽和の有 機連結基である。この三重結合は、2個の隣接炭素原子の間に位置している。 $-CR_b=N-$ 結合 を有する有機連結基の別の非限定的例は、 $-(CH_2)_n$ -基の2個の隣接メチレン基を、1個のCR $_b$ 基及びN原子と交換することにより作製された、不飽和の有機連結基である。本明細書の 開示を基に、当業者は、 $-(CH_2)_n$ -基の隣接メチレン基の少なくとも一つの対を、各々独立 して、N、P、B、C、Si、 CR_b 基からなる群から選択される原子又は基、2よりも大きい価数 を有する芳香族基、並びに2よりも大きい価数を有する複素環基と交換することにより、 少なくともひとつの不飽和結合を有する有機連結基を作製することができる。

[0157]

ある実施態様において、R'、R^{2'}、R^{3'}、R¹-R¹²、及びK²¹-K³⁶の1つ以上は、-Cv-Rg基又 40 は-Cv-Cg基により、独立して置換されている。別の実施態様において、Q、R'、R^{2'}、R^{3'} 、及びR¹¹-R¹²の1つ以上は、-Cv-Rg基又は-Cv-Cg基により、独立して置換されている。 【0158】

反応基(Rg)を有するルミネセンス消光化合物は、-Cv-Rgにより表される、反応基(Rg)の 化学結合を生じるRg基に対し好適な反応性を持つ少なくとも1つの官能基を含んでいるか 又は含むように修飾される多種多様な有機物質又は無機物質を含むことができる。一部の 実施態様において、反応基(Rg)及び官能基は、共有結合を作製するように反応する、各々 、求電子試薬及び求核試薬である。反応基(Rg)と共役された物質(Cg)の官能基との間の共 役反応により、反応基(Rg)の1個以上の原子が連結Cvに組み込まれ、反応基(Rg)を有する 本化合物を共役された物質(Cg)へ結合する。反応基(Rg)及び各々の官能基のいくつかの非 10

20

30

限定的例を、表1に列挙している。この表は、溶媒、共溶媒、化学量論的な比、温度、圧 カ、反応時間、pH、触媒などの適切な選択により、他の官能基を、ここに開示された反応 部位と反応させることができ一方で、ここに開示された官能基は、他の反応部位と反応さ せることができるので、化学反応性を含むことを意味しない。好適な反応基(Rg)の一部の 非限定的例は、アクリルアミド、アシルアジド、ハロゲン化アシル、ニトリル、アルデヒ ド、ケトン、ハロゲン化アルキル、スルホン酸アルキル、アンヒドリド、ハロゲン化アリ ール、アルキン、アルコール、アミン、カルボン酸、カルボジイミド、ジアゾアルカン、 エポキシド、ハロアセトアミド、ヒドロキシルアミン、ヒドラジン、イミドエステル、イ ソチオシアネート、マレイミド、スルホン酸エステル又はハロゲン化スルホニルを含む。 【表1】

反応基(求電子試薬)	官能基 (求核試 薬)	得られる連結
活性化されたエステル(スクシンイミジルエステル)	アミン/アニリン	アミド
アクリルアミド	チオール	チオエーテル
アシルアジド	アミン/アニリン	アミド
ハロゲン化アシル	アミン/アニリン	アミド
ハロゲン化アシル	アルコール/フェノール	エステル
アシルニトリル	アルコール/フェノール	エステル
アシルニトリル	アミン/アニリン	アミド
アルデヒド	アミン/アニリン	イミン
アルデヒド又はケトン	ヒドラジン	ヒドラゾン
アルデヒド又はケトン	ヒドロキシルアミン	オキシム
ハロゲン化アルキル	アミン/アニリン	アルキルアミン
ハロゲン化アルキル	カルボン酸	エステル
ハロゲン化アルキル	チオール	チオエーテル
ハロゲン化アルキル	アルコール/フェノール	エーテル

表1.

30

20

······································		
スルホン酸アルキル	チオール	チオエーテル
スルホン酸アルキル	カルボン酸	エステル
スルホン酸アルキル	アルコール/フェノール	エステル
アンヒドリド	アルコール/フェノール	エステル
アンヒドリド	アミン/アニリン	アミド
ハロゲン化アリール	チオール	チオフェノール
ハロゲン化アリール	アミン	アリールアミン
アルキン	アジド	トリアゾール
アルコール	酸誘導体	エステル
アミン	カルボン酸	アミド
アミン	ハロゲン化物	アルキルアミン
アミン	アルデヒド/ケトン	イミン
カルボン酸	アミン/アニリン	アミド
カルボン酸	アルコール	エステル
カルボン酸	ヒドラジン	ヒドラジド
カルボジイミド	カルボン酸 N-7	アシル尿素又はアンヒドリド
ジアゾアルカン	カルボン酸	エステル
エポキシド	チオール	チオエステル
ハロアセトアミド	チオール	チオエーテル
ヒドロキシルアミン	アルデヒド/ケトン	オキシム
ヒドラジン	アルデヒド/ケトン	ヒドラゾン
イミドエステル	アミン/アニリン	アミジン
イソチオシアネート	アミン/アニリン	
イソチオシアネート	アルコール/フェノール	イソウレタン
マレイミド	チオール	チオエーテル
マレイミド	アミン	アミン
スルホン酸エステル	アミン/アニリン	アルキルアミン
スルホン酸エステル	チオール	チオエステル
スルホン酸エステル	 カルボン酸	エステル
スルホン酸エステル	アルコール	エーテル
ハロゲン化スルホニル	アミン/アニリン	スルホンアミド
ハロゲン化スルホニル	フェノール/アルコール	スルホン酸エステル

10

20

30

40

50

[0159]

本明細書に開示されたルミネセンス消光化合物中の反応基は、それら二つの共有結合に 適した官能基を持つ任意の共役された物質の調製に有用である。好適な共役のいくつかの 非限定的例は、抗原、ステロイド、ビタミン、薬物、ハプテン、代謝産物、毒素、アミノ 酸、ペプチド、ヌクレオチド、オリゴヌクレオチド、核酸、炭水化物、脂質などの共役を

(41)

含む。本明細書に開示されたルミネセンス消光化合物の共役されるべき物質への結合に使 用される反応基の選択は、典型的には共役されるべき物質上の官能基及び望ましい共有結 合の種類又は長さによって決まる。典型的に物質上に存在する官能基の種類は、アミン、 チオール、アルコール、フェノール、アルデヒド、ケトン、リン酸エステル、イミダゾー ル、ヒドラジン、ヒドロキシルアミン又はこれらの基の組合せを含むが、これらに限定さ れるものではない。

[0160]

一部の実施態様において、前述の共役物質は追加的に、同じ又は異なってよい1種以上 の発光団に共役される。別の実施態様において、発光団から消光化合物へのエネルギー移 動が発生し、ルミネセンスの著しい消光を生じる。

[0 1 6 1]

前記ルミネセンス消光化合物の適用は、単純に共役物質のための熱量測定標識物として 、又は蛍光共鳴エネルギー移動(FRET)技術において、よく説明されている。このような適 用のいくつかの非限定的例は、米国特許第6,399,392号;及び、「蛍光プローブ及び標識 技術の指針に関するハンドブック(The Handbook: a Guide to Fluorescent Probes and L abeling Technologies)」(第10版、Molecular Probes社、2006年)に認めることができ、 これら両方は引用により本明細書中に組み込まれている。

[0162]

(活性酸素/窒素種のための発蛍光型プローブとしての芳香族アミン化合物)

20 ある実施態様において、式(I)を有する芳香族アミン化合物は、発蛍光型プローブ化合 物又は発蛍光型プローブ組成物として使用することができる。本発蛍光型プローブ化合物 は、 ${}^{1}O_{2}$ 、 O_{2} ・⁻、NO、H₂O₂、・OH、 ${}^{-}$ OC1、ONOO⁻及びアルキルペルオキシルラジカル(ROO ・)のような、活性酸素種(ROS)又は活性窒素種(RNS)のための発蛍光型プローブとして使 用することができる。一部の実施態様において、式(I)のQは、置換されたフェニルであり 、これはある種のROS又はRNSにより酸化的に切断され、強力なルミネセンス又は蛍光特性 を有する対応するL-NHR¹発光団又は発蛍光体を放出することができる。

[0163]

一部の実施態様において、本発蛍光型プローブ化合物は、式(X)を有し: 【化39】

ここで、L、R¹及びR⁴-R⁸は、本明細書に開示されているものである。一部の実施態様にお

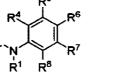
いて、Lは発蛍光体である。別の実施態様において、Lは、本明細書において開示された式 (II)-(VI)、(XX)、(XXI)、(Va)-(Vd)、(VIa)-(VIb)、(XXa)-(XXb)、(XXIa)-(XXIb)、及び (a)-(v)のひとつを有する。

[0164]

ある実施態様において、R¹及びR⁴は一緒に又はR¹及びR⁸は一緒に、式(X)のフェニル環 と縮合された、5-又は6-又は7-員のシクロアルキル、ヘテロシクリル、アリール又はヘテ ロアリール環の一部を形成する。

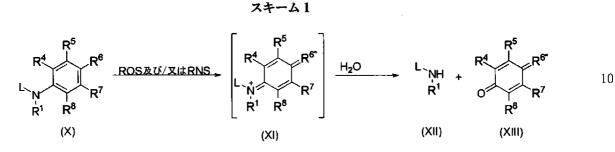
[0165]

一部の実施態様において、 $R^4 - R^8$ の各々は、Hである。一部の実施態様において、 $R^4 ~ R^5$ 、R⁷及びR⁸の各々は、Hであり;かつ、R⁶は、H、ヒドロキシ、メトキシル、トリフルオロ メチルカルボニルエチル、メチオキシカルボニルアルキル又はメトキシメトキシである。 [0166]


概して、本明細書に開示された式(X)を有する発蛍光型プローブは、活性酸素種及び/又 は活性窒素種と反応し、四置換されたアンモニウム(XI)を形成し、これは加水分解を受け

(X)

40


50

10

、L-誘導体化された発蛍光体(XII)及びキノン型副産物(XIII)を生成することができる。 この一般的反応は、下記スキーム1に示されており、ここでL、R¹、及びR⁴-R⁸は、本明細 書に開示されており、かつR^{6^{*}}は、R⁶から水素又はアルキルのような一価の基を除去する ことにより、R⁶から誘導される。

【化40】

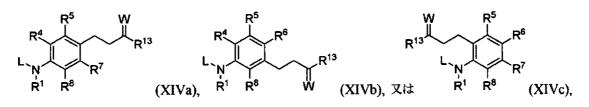
[0167]

一部の実施態様において、本明細書に開示された式(X)を有する発蛍光型プローブは、 わずかに1又は2又は3種の活性酸素種又は活性窒素種と反応し、他のものよりも実質的に より高い収率で式(X)を有する発蛍光体を生成することができる。ある実施態様において 、式(X)を有する発蛍光型プローブは、ペルオキシナイトライト、次亜塩素酸イオン又は ヒドロキシラジカルと、いずれか他のROS及びRNSの収率よりもより高い収率で反応するこ とができる。別の実施態様において、式(X)を有する発蛍光型プローブは、ペルオキシナ イトライトと、いずれか他のROS及びRNSの収率よりもより高い収率で反応することができ る。更なる実施態様において、式(X)を有する発蛍光型プローブは、次亜塩素酸イオンと 、いずれか他のROS及びRNSの収率よりもより高い収率で反応することができる。なお更な る実施態様において、式(X)を有する発蛍光型プローブは、ヒドロキシラジカルと、いず れか他のROS及びRNSの収率よりもより高い収率で反応することができる。

[0168]

ある実施態様において、式(X)を有する発蛍光型プローブは、ペルオキシナイトライト 、次亜塩素酸イオン又はヒドロキシラジカルと、いずれか他のROS及びRNSの収率よりも、 約5%より高い、約10%より高い、約15%より高い、約20%より高い、約25%より高い、 約30%より高い、約35%より高い、約40%より高い、約45%より高い、約50%より高い、 約50%より高い、約65%より高い、約70%より高い、約75%より高い、 約80%より高い、約85%より高い、約90%より高い又は約95%より高い収率で反応する。

[0169]


本明細書に提供された発蛍光型プローブは、ペルオキシナイトライトを特異的に検出す るために使用することができる。一部の実施態様において、式(X)の式(X)のR⁴、R⁵、R⁶、 R⁷及びR⁸の少なくともひとつは、 $-CH_2CH_2C(=W)R^{13}$ であり、ここでR¹³は、CF₃、ハロゲン-置換された低級アルキル(例えば、CF_nH_{3-n}、ここでnは、1、2又は3である)、 $-O-V^1$ 又は(C =0)- $O-V^2$ から選択された電子求引基であり、ここでV¹及びV²は、アルキル、アルケニル、 アルキニル、シクロアルキル、シクロアルケニル、シクロアルキニル、アリール、アルカ リル又はアリールアルキルから選択された基である。 【0170】

40

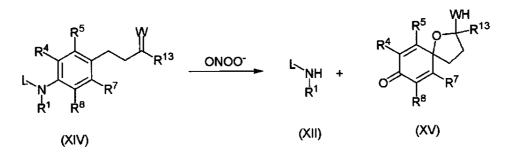
30

20

ある実施態様において、本明細書に開示された発蛍光型プローブは、式(XIVa)、(XIVb) 又は(XIVc)を有し: 【化41】

ここで、L、 R^1 、 R^4 、 R^5 、 R^7 、 R^8 は、本明細書に定義されており; Wは、0又はSであり;かつ

 R^{13} は、 CF_3 、ハロゲン-置換された低級アルキル(例えば、 CF_nH_{3-n} 、ここでnは、1、2又は3である)、 $-0-V^1$ 又は(C=0)- $0-V^2$ から選択された電子求引基であり、ここで V^1 及び V^2 は、アルキル、アルケニル、アルキニル、シクロアルキル、シクロアルケニル、シクロアルキニル、シクロアル キニル、アリール、アルカリル又はアリールアルキルから選択された基である。 【0171】

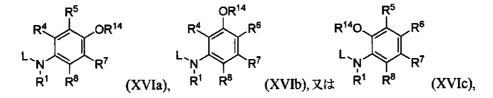

一部の実施態様において、Wは、Oである。別の実施態様において、 R^{13} は、 CF_3 である。 更なる実施態様において、 R^1 は、メチルである。更なる実施態様において、Wは、Oであり ; R^{13} は、 CF_3 であり; R^4 、 R^5 、 R^7 及び R^8 の各々は、Hであり;かつ、 R^1 は、メチルである

[0172]

ある実施態様において、式(XIV)を有する発蛍光型プローブは、ペルオキシナイトライトと特異的に反応し、ジオキシラン中間体を形成し、これは引き続き式(XIV)のフェニル環を酸化し、C-N結合切断を引き起こし、その結果下記スキーム2に示されたようにL誘導体(XII)を放出する。L誘導体(XII)は、励起時に、強力な蛍光シグナルを放出することができる。

【化42】

スキーム2


30

10

20

[0173]

本明細書に開示された発蛍光型プローブは、ペルオキシナイトライトを高感度で検出す るために使用することができる。一部の実施態様において、式(X)の発蛍光型プローブのR ⁴、R⁵、R⁶、R⁷及びR⁸の少なくともひとつは、OR¹⁴であり、ここでR¹⁴は、H、アルキル、 アルコキシアルキル、アルカノイル又はポリエーテルである。別の実施態様において、本 明細書に提供された発蛍光型プローブは、式(XVIa)、(XVIb)又は(XVIc)を有し: 【化43】

50

40

(44)

ここで、L、 R^1 、 R^4 、 R^5 、 R^6 、 R^7 及び R^8 は、本明細書に開示されており;かつ、 R^{14} は、H、アルキル、アルコキシアルキル、アルカノイル又はポリエーテルである。 【0174】

(45)

ー部の実施態様において、R⁵及びR¹⁴は一緒に又はR⁷及びR¹⁴は一緒に、式(XVIa)のフェ ニル環と縮合された5-又は6-又は7-員のシクロアルキル、ヘテロシクリル、アリール又は ヘテロアリール環を形成する。別の実施態様において、R⁴及びR¹⁴は一緒に又はR⁶及びR¹⁴ は一緒に、式(XVIb)のフェニル環と縮合された5-又は6-又は7-員のシクロアルキル、ヘテ ロシクリル、アリール又はヘテロアリール環を形成する。更なる実施態様において、R⁵及 びR¹⁴は一緒に、式(XVIc)のフェニル環と縮合された5-又は6-又は7-員のシクロアルキル 、ヘテロシクリル、アリール又はヘテロアリール環を形成する。

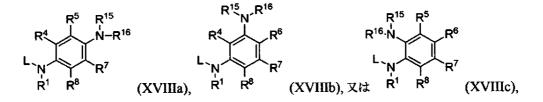
[0175]

ある実施態様において、式(XVIa)のR⁴、R⁵、R⁷、R⁸及びR¹⁴の各々は、Hであり;かつ、 R¹は、メチルである。別の実施態様において、式(XVIb)のR⁴、R⁶、R⁷、R⁸及びR¹⁴の各々 は、Hであり;かつ、R¹は、メチルである。更なる実施態様において、式(XVIc)のR⁵、R⁶ 、R⁷、R⁸及びR¹⁴の各々は、Hであり;かつ、R¹は、メチルである。

[0176]

一部の実施態様において、式(XVIa)を有する発蛍光型プローブは、特異的にペルオキシ ナイトライトと実質的に反応し、ジオキシラン中間体を形成し、これは引き続き式(XVIa) のフェニル環を酸化し、C-N結合切断を引き起こし、その結果下記スキーム3に示されたよ うにL誘導体(XII)を放出する。L誘導体(XII)は、励起時に、強力な蛍光シグナルを放出す ることができる。

【化44】


 $\begin{array}{c} R^{5} \\ R^{4} \\ R^{7} \\ R^{1} \\ R^{8} \end{array} \xrightarrow{R^{7}} R^{7} \\ (XVIa) \end{array} \xrightarrow{ONOO} \begin{array}{c} L \\ NH \\ R^{1} \\ R^{1} \\ R^{8} \end{array} \xrightarrow{R^{5}} R^{7} \\ R^{1} \\ R^{1} \\ R^{8} \\ (XVI) \\ (XII) \\ (XVII) \end{array}$

スキーム3

[0177]

本明細書に開示された発蛍光型プローブは、次亜塩素酸イオンを高感度で検出するため に使用することができる。一部の実施態様において、式(X)の発蛍光型プローブのR⁴、R⁵ 、R⁶、R⁷及びR⁸の少なくともひとつは、NR¹⁵R¹⁶であり、ここでR¹⁵及びR¹⁶の各々は、H、 アルキル、アルケニル、アルキニル、アルコキシアルキル、アルカノイル、アルケノイル 、アルキノイル、シクロアルキル、シクロアルケニル、シクロアルキニル、アリール、ア ルカリル、アリールアルキル、アリーロイル、又はポリエーテルである。別の実施態様に おいて、本明細書に提供された発蛍光型プローブは、式(XVIIIa)、(XVIIIb)又は(XVIIIc) を有し:

【化45】

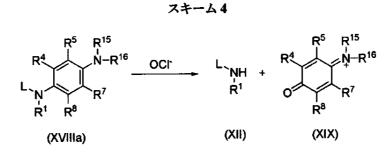
ここで、L、R¹、R⁴、R⁵、R⁶、R⁷及びR⁸は、本明細書に開示されており;かつ、 R¹⁵及びR¹⁶の各々は独立して、H、アルキル、アルケニル、アルキニル、アルコキシア 50

10

20

30

ルキル、アルカノイル、アルケノイル、アルキノイル、シクロアルキル、シクロアルケニ ル、シクロアルキニル、アリール、アルカリル、アリールアルキル、アリーロイル又はポ リエーテルである。


[0178]

一部の実施態様において、R⁵及びR¹⁵は一緒に又はR⁷及びR¹⁶は一緒に、式(XVIIIa)のフェニル環と縮合された5-又は6-又は7-員のシクロアルキル、ヘテロシクリル、アリール又はヘテロアリール環を形成する。別の実施態様において、R⁴及びR¹⁵は一緒に又はR⁶及びR¹⁶は一緒に、式(XVIIIb)のフェニル環と縮合された5-又は6-又は7-員のシクロアルキル、ヘテロシクリル、アリール又はヘテロアリール環を形成する。更なる実施態様において、R⁵及びR¹⁵は一緒に、式(XVIIIc)のフェニル環と縮合された5-又は6-又は7-員のシクロアルキル、ヘテロシクリル、アリール又はヘテロアリール環を形成する。

[0179]

一部の実施態様において、式(XVIIIa)を有する発蛍光型プローブは、特異的に次亜塩素酸イオンと実質的に反応し、C-N結合切断を引き起こし、その結果下記スキーム4に示されたようにL誘導体(XII)を放出する。L誘導体(XII)は、励起時に、強力な蛍光シグナルを放出することができる。

【化46】

20

10

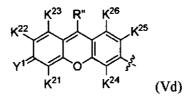
[0180]

ある実施態様において、式(XVIIIa)の \mathbb{R}^4 、 \mathbb{R}^5 、 \mathbb{R}^7 、及び \mathbb{R}^8 の各々は、Hであり;かつ、R¹⁵及び \mathbb{R}^{16} の各々は独立して、H又はメチルである。ある実施 態様において、式(XVIIIb)の \mathbb{R}^4 、 \mathbb{R}^6 、 \mathbb{R}^7 、及び \mathbb{R}^8 の各々は、Hであり; \mathbb{R}^1 は、メチルであ り;かつ、 \mathbb{R}^{15} 及び \mathbb{R}^{16} の各々は独立して、H又はメチルである。ある実施態様において、 式(XVIIIc)の \mathbb{R}^5 、 \mathbb{R}^6 、 \mathbb{R}^7 及び \mathbb{R}^8 の各々は、Hであり; \mathbb{R}^1 は、メチルであり;かつ、 \mathbb{R}^{15} 及び \mathbb{R}^{16} の各々は独立してH又はメチルである。

[0181]

本明細書に開示された活性酸素種及び/又は活性窒素種のための発蛍光型プローブは、 ロドール、ローダミン、レソルフィン、及びナフトフルオレセイン発蛍光体を含む。一部 の実施態様において、本明細書に開示された化合物又はペルオキシナイトライトプローブ 又は次亜塩素酸イオンプローブは、実質的に非蛍光である。別の実施態様において、本明 細書に開示された化合物又はペルオキシナイトライトプローブ又は次亜塩素酸イオンプロ ーブは、生理的条件下で、ペルオキシナイトライト又は次亜塩素酸イオンと効率的に反応 し、強力な蛍光シグナルを発生することができる。更なる実施態様において、ペルオキシ ナイトライト又は次亜塩素酸イオンの量は、これらの酸化されたプローブの蛍光シグナル を測定することにより、非常に高い特異性及び感受性で決定することができる。 【0182】

40

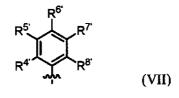

30

ー部の実施態様において、式(I)の発蛍光型プローブのLは、当業者に公知の発蛍光体の いずれかであることができる。別の実施態様において、Lは、ロドール、ローダミン、レ ソルフィン、ナフトフルオレセイン、セミナフトフルオレセイン又はそれらの誘導体に由 来することができる。

[0183]

ー部の実施態様において、Lは、ロドール、ローダミン又はそれらの誘導体に由来し、 50

ここでLは、Y¹及びK²¹-K²⁶が本明細書に開示されている、式(Vd)を有する: 【化 4 7】

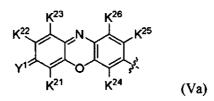

[0184]

10

30

40

一部の実施態様において、式(Vd)のR"は、R^{4'}、R^{5'}、R^{6'}、R^{7'}及びR^{8'}が、本明細書に
 開示されている、式(VII)を有する、置換又は非置換のフェニルである:
 【化48】

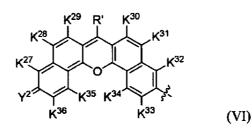


ある実施態様において、式(V11)のR^{4'}、R^{5'}、R^{6'}、R^{7'}及びR^{8'}の一つ以上は、ハロゲン化 20 アルキルである。別の実施態様において、式(V11)のR^{4'}、R^{5'}、R^{6'}、R^{7'}及びR^{8'}の一つ以 上は、クロロメチルであり、これは、細胞内のスルフィド基と反応し、細胞の内側に、か つ該発蛍光型プローブを漏出しないよう、維持することができる。別の実施態様において 、式(V11)のR^{4'}、R^{5'}、R^{6'}、R^{7'}及びR^{8'}の少なくとも一つは、トリフェニルホスホニウム のような、細胞小器官局在化部分に連結されている。更なる実施態様において、式(V11) のR^{4'}、R^{5'}、R^{6'}、及びR^{7'}の各々は、Hであり;かつ、R^{8'}は、-C00H基、メチル、又はメ トキシである。

[0185]

ある実施態様において、Lは、レソルフィン又はそれらの誘導体に由来し、かつ、Y¹及びK²¹-K²⁶が本明細書に開示されている、式(Va)を有する:

【化49】

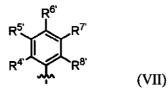


一部の実施態様において、Y¹は、0である。別の実施態様において、Y¹は、N⁺R^{2'}R^{3'}であ る。更なる実施態様において、式(Va)のK²¹-K²⁶の各々は独立して、H、ハロ、アルキル、 ハロゲン化アルキル、ヘテロアルキル、アルケニル、アルキニル、アリール、アラルキル 、アルカリル、ヘテロシクリル、シクロアルキル、シクロアルケニル、シクロアルキニル 、ヒドロキシアルキル、アミノアルキル、アミノ、アルキルアミノ、アリールアミノ、ジ アルキルアミノ、アルキルアリールアミノ、ジアリールアミノ、アシルアミノ、ヒドロキ シ、チオ、チオアルキル、アルコキシ、アルキルチオ、アルコキシアルキル、アリールオ キシ、アリールアルコキシ、アシルオキシ、シアノ、ニトロ、スルフヒドリル、カルバモ イル、トリフルオロメチル、フェノキシ、ベンジルオキシ、スルホニル、ホスホニル、ス ルホン酸エステル又はリン酸エステルである。別の実施態様において、K²¹-K²⁶の各々は 、Hである。別の実施態様において、K²²及びK²⁵の各々は独立して、塩素又はフッ素であ る。

[0186]

ー部の実施態様において、Lは、ナフトフルオレセイン又はそれらの誘導体に由来し、 かつ、Y²及びK²⁷-K³⁶が本明細書に開示されている、式(VI)を有する:

【化50】

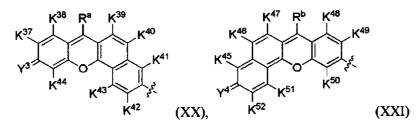


別の実施態様において、 Y^2 は、 $R^{2'}$ 及び $R^{3'}$ が本明細書に開示されている、 $N^+ R^{2'} R^{3'}$ である。更なる実施態様において、 Y^2 は0である。

[0187**]**

一部の実施態様において、R'は、R^{4'}、R^{5'}、R^{6'}、R^{7'}及びR^{8'}が本明細書に開示されている、式(VII)を有する、置換又は非置換のフェニルである:

【化51】

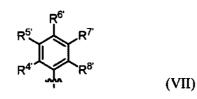

20

10

ー部の実施態様において、式(VII)のR^{4'}又はR^{8'}は、-COOH基である。更なる実施態様において、式(VII)のR^{4'}、R^{5'}、R^{6'}、及びR^{7'}の各々は、Hであり;かつ、R^{8'}は、-COOH基、メチル又はメトキシである。

[0188]

一部の実施態様において、Lは、セミナフトフルオレセイン又はそれらの誘導体に由来 30
 し、かつ、Y³、Y⁴及びK³⁷-K⁵²が本明細書に開示されている、式(XX)又は(XXI)を有する:
 【化52】

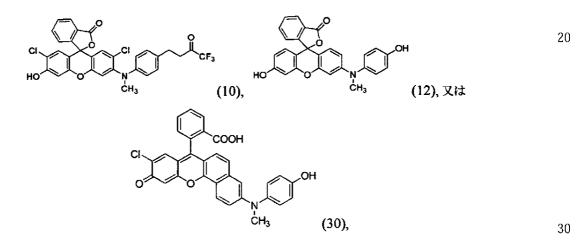


40

別の実施態様において、 Y^3 及び Y^4 の各々は、独立して、 $R^{2'}$ 及び $R^{3'}$ が本明細書に開示されている、 $N^+ R^{2'} R^{3'}$ である。更なる実施態様において、 Y^3 及び Y^4 の各々は、0である。一部の実施態様において、 K^{37} は、塩素又はフッ素である。一部の実施態様において、 K^{45} 及び K^{52} の少なくとも一方は、塩素又はフッ素である。

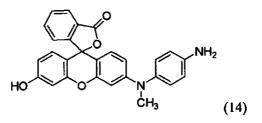
[0189]

一部の実施態様において、R^a又はR^bは、R^{4'}、R^{5'}、R^{6'}、R^{7'}及びR^{8'}が本明細書に開示 されている、式(VII)を有する置換又は非置換のフェニルである: 【化53】



ー部の実施態様において、式(VII)の $R^{4'}$ 又は $R^{8'}$ は、-COOH基である。更なる実施態様において、式(VII)の $R^{4'}$ 、 $R^{5'}$ 、 $R^{6'}$ 、及び $R^{7'}$ の各々は、Hであり;かつ、 $R^{8'}$ は、-COOH基、メチル又はメトキシである。

[0190]


ある実施態様において、前記発蛍光型プローブ組成物は、ペルオキシナイトライトを測 定、検出又はスクリーニングするために使用することができ、ここで該発蛍光型プローブ 組成物は、本明細書に開示された芳香族アミン化合物を含有する。ある実施態様において 、本芳香族アミン化合物は、化合物(10)、化合物(12)又は化合物(30)、又はそれらの互変 異性体、又はそれらの組合せである:

【化54】

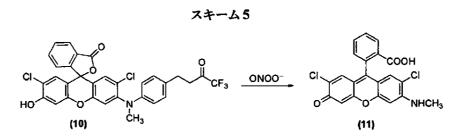
[0191]

一部の実施態様において、前記発蛍光型プローブ組成物は、次亜塩素酸イオンを測定、 検出又はスクリーニングするために使用することができ、ここで該発蛍光型プローブ組成 物は、本明細書に開示された芳香族アミン化合物を含有する。ある実施態様において、本 芳香族アミン化合物は、化合物(14)、又はそれらの互変異性体である: 【化55】

40

10

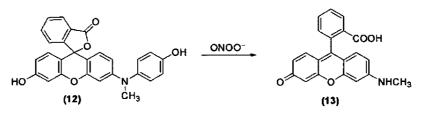
[0192]


ある実施態様において、本明細書に開示された発蛍光型プローブ組成物は、溶媒、酸、 塩基、緩衝溶液又はそれらの組合せを更に含有する。

[0193]

一部の実施態様において、前記芳香族アミン化合物は、下記スキーム5に示されたよう に、0N00⁻と反応し、強力な蛍光特性を持つ化合物(11)を形成する、化合物(10)である。

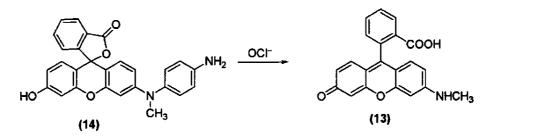
様々な波長で様々な濃度の0N00⁻に反応した化合物10の蛍光強度を示す蛍光スペクトルは、図1-2に示されている。様々なROS及びRNSに反応した化合物10の蛍光強度は、図3に示されている。


【化56】

[0194]

別の実施態様において、前記芳香族アミン化合物は、下記スキーム6に示されたように、0N00⁻と反応し、強力な蛍光特性を持つ化合物(13)を形成する、化合物(12)である。様々な波長で様々な濃度の0N00⁻に反応した化合物12の蛍光強度を示す蛍光スペクトルは、図4に示されている。様々なROS及びRNSに反応した化合物12の蛍光強度は、図5に示されている。

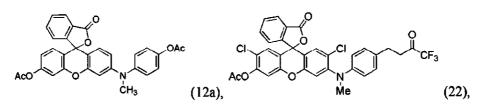
【化57】



[0195]

更なる実施態様において、前記芳香族アミン化合物は、下記スキーム7に示されたよう に、0C1⁻と反応し、強力な蛍光特性を持つ化合物(13)を形成する、化合物(14)である。様 々な波長で様々な濃度の0C1⁻に反応した化合物14の蛍光強度を示す蛍光スペクトルは、図 6に示されている。様々なROS及びRNSに反応した化合物14の蛍光強度は、図7に示されてい る。

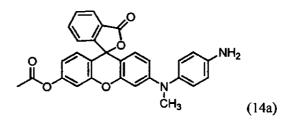
【化58】


40

[0196]

一部の実施態様において、ペルオキシナイトライトを測定、検出又はスクリーニングす るための発蛍光型プローブ組成物は、化合物(22)、化合物(12a)又はそれらの組合せを含 有している。化合物(22)及び化合物(12a)の各々は、それぞれ、化合物(10)及び化合物(12))のエステル誘導体である。ある実施態様において、化合物(22)及び化合物(12a)は、望ま しい細胞膜透過性を提供する。

(50)


【化59】

(51)

[0197]

一部の実施態様において、次亜塩素酸及び/又は次亜塩素酸イオンを測定、検出又はス 10
 クリーニングするための発蛍光型プローブ組成物は、化合物(14)のエステル誘導体である、化合物(14a)を含有している。化合物(14a)は、望ましい細胞膜透過性を提供する。
 【化60】

20

[0198]

ある実施態様において、本明細書に開示された発蛍光型プローブ組成物は、本明細書に 開示された発蛍光型プローブ化合物の酢酸エステル又はアセトキシメチル(AM)エステル誘 導体を含有する。これらの発蛍光型プローブ化合物の中性型は、細胞膜透過性に関して有 利である。

[0199]

ある実施態様において、本明細書に開示された発蛍光型プローブ組成物は、溶媒、酸、 塩基、緩衝溶液又はそれらの組合せを更に含有する。

[0200]

化学試料中、又は微生物、若しくは動物由来の細胞若しくは組織のような生物試料中の ペルオキシナイトライト又は次亜塩素酸イオンを直接的又は間接的に測定するための試薬 組成物も提供される。この試薬組成物は、本明細書に開示された発蛍光型プローブを含有 する。一部の実施態様において、本試薬組成物は、溶媒、酸、塩基、緩衝溶液若しくはそ れらの組合せを、又は塩基、緩衝溶液若しくはそれらの組合せを、更に含有する。 【0201】

試料中のペルオキシナイトライト又は次亜塩素酸イオンを測定する方法も提供される。 一部の実施態様において、これらの方法は、a)本明細書に開示された発蛍光型プローブを、 試料と接触させ、蛍光化合物を形成する工程;及び、b)この蛍光化合物の蛍光特性を測 定する工程:を含む。一部の実施態様において、これらの蛍光特性は、本明細書に開示された方法又は当業者に公知の任意の方法により測定される。別の実施態様において、前記 試料は、化学試料又は生物試料である。更なる実施態様において、前記試料は、微生物、 又は動物由来の細胞若しくは組織を含む、生物試料である。

[0202]

試料中のペルオキシナイトライト又は次亜塩素酸イオンを検出するためのハイスループ ットスクリーニング蛍光法も提供される。一部の実施態様において、このハイスループッ トスクリーニング蛍光法は、a)本明細書に開示された発蛍光型プローブを、試料と接触さ せ、1種以上の蛍光化合物を形成する工程;及び、b)この蛍光化合物の蛍光特性を測定す る工程:を含む。別の実施態様において、これらの蛍光特性は、本明細書に開示された方 法又は当業者に公知の任意の方法により測定される。 30

[0203]

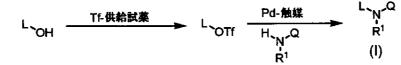
ペルオキシナイトライト又は次亜塩素酸イオンのレベルを増加又は減少することができ る1種以上の標的化合物をスクリーニングするためのハイスループット法も提供される。 一部の実施態様において、このハイスループット法は、a)本明細書に開示された発蛍光型 プローブを、標的化合物と接触させ、1種以上の蛍光化合物を形成する工程;及び、b)こ の蛍光化合物の蛍光特性を測定し、標的化合物を定性的又は定量的に決定する工程:を含 む。別の実施態様において、これらの蛍光特性は、本明細書に開示された方法又は当業者 に公知の任意の方法により測定される。

[0204]

一部の実施態様において、インフォマティクスシステムが使用され、かつ本明細書に開 10 示されたハイスループット法において実行されることができる。別の実施態様において、 このインフォマティクスシステムは、該ハイスループット法で使用される、物理装置のソ フトウェア制御を提供する。別の実施態様において、このインフォマティクスシステムは、 該ハイスループット法により作製された電子データを組織化する。更なる実施態様にお いて、このインフォマティクスシステムは、該ハイスループット法により作製された電子 データを保存する。

[0205]

(全般的合成手順)


本明細書に開示された芳香族アミン化合物又は発蛍光型プローブは、公知の有機合成に より、更には本明細書に開示された様々な全般的又は具体的合成手順により、当業者によ 20 り作製されることができる。

[0206]

一般に、前記芳香族アミン化合物の合成の重要な工程は、下記スキーム8に示されたような、一般にトリフラートを使用するヒドロキシ活性化工程、及び引き続きのアミノ化工程を含み:

【化61】

30

ここで、L、R¹、及びQは、本明細書に開示されており;Tfは、トリフリルであり;Pd-触 媒は、C-N結合形成のためのパラジウム-リガンド触媒システムである。最初に、発光団(L -OH)のOH基が、トリフルオロメタンスルホン酸無水物(triflic anhydride)のようなトリ フリル-供給試薬との反応により、活性化され、トリフラート基を形成する。次にこのト リフラート基は、引き続き式HNR¹Qを有するアミンと、Pd触媒のような触媒の存在下で、 クロスカップリング反応を受け、式(I)の芳香族アミン化合物を形成する。

【0207】

好適な合成法のいくつかの非限定的例は、2008年4月3日に出願された米国特許出願第61 40 /041923号に認めることができ、これは引用により本明細書中に組み込まれている。

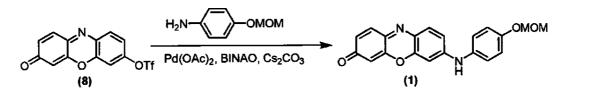
【実施例】

[0208]

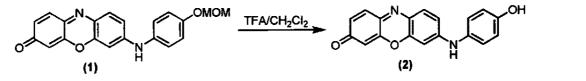
(実施例)

下記実施例1-13及び図1-11は、本発明において開示された対象化合物の製造法及び使用 法の詳細な説明である。この詳細な開示は、本開示の一部を形成している本明細書に開示 された合成スキーム又は手順の範囲内であり、かつこれらを例示するために役立つ。これ らの実施例、図面及びスキームは、単に例証目的で提示されており、本開示の範囲を限定 することは意図されていない。

[0209]


(実施例1-化合物1-4の合成スキーム)
 (化合物8の合成)
 【化62】

(53)


無水ジメチルホルムアミド50mL中のレソルフィン(2.13g, 10mmol)の溶液へ、水素化ナ トリウム(437mg, 11mmol, 鉱油中60%分散液)を、0℃で添加した。0℃で30分間攪拌した 後、次にこの溶液に、N-フェニルビス-トリフルオロメタンスルホンイミド(4.3g, 12mmol)を添加した。得られた混合物を、室温で一晩攪拌し、次に水でクエンチした。その後、 この混合物へ1N塩酸を添加し、この溶液をpH2まで酸性とした。次に酢酸エチルを添加し た。有機層を分離し、かつブラインで洗浄し、無水硫酸ナトリウム上で乾燥し、真空で蒸 発させた。残渣をシリカゲルカラムクロマトグラフィーにより精製し、化合物8を生じた

【0210】 (化合物1の合成) 【化63】

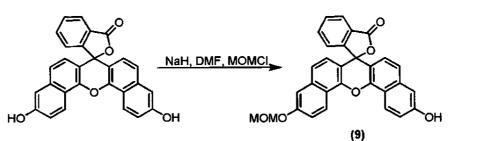
炉で乾燥したシュレンク管に、酢酸パラジウム(II)(2mg, 1% nmol)、2,2′-ビス(ジフェ ニルホスフィノ)-1,1′-ビナフチル(BINAP)(9mg, 1.5% nmol)及び炭酸セシウム(Cs₂CO₃)(9 1mg, 0 28nmol)を充填し、アルゴンガスを5分間フラッシュした。トルエン(2mL)中の化合 物8(69mg, 0.2mmol)及び4-(メトキシメトキシ)アニリン(37mg, 0.24nmol)の溶液を添加し 、得られた混合物を最初にアルゴンガス下で、室温で30分間、次に100℃で20時間攪拌し た。この反応混合物を、室温まで冷却し、ジクロロメタンで希釈し、セライトパッドを通 して濾過した。フィルターケーキを、ジクロロメタン10mLで3回洗浄した。その後濾液を 濃縮し、残渣をシリカゲルカラムクロマトグラフィーにより精製し、化合物1を生じた。

(化合物2の合成) 【化64】

乾燥ジクロロメタン(1mL)中の化合物1(35mg, 0.1mmol)の溶液に、トリフルオロ酢酸(1mL)を、0℃で滴下した。得られた溶液を、薄層クロマトグラフィーが全ての出発材料が消費されたことを示すまで、室温で攪拌した。次にこの混合物を、真空下で濃縮し、トルエンと3回共沸した。残渣を、シリカゲルカラムクロマトグラフィーにより精製し、化合物2を生じた。

[0212]

(化合物3及び4の合成)


化合物3及び4は、トリフラート化反応及びそれに続くアミノ化反応を含む、化合物1及び2に関して示されたものに類似したスキームで合成することができる。

30

20

40

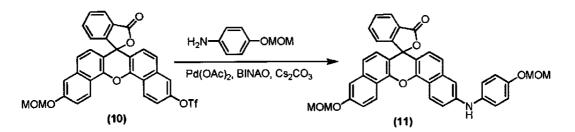
【0213】 (実施例2-化合物5-7の合成スキーム) (化合物9の合成) 【化65】

(54)

無水ジメチルホルムアミド50mL中のナフトフルオレセイン(4.3g, 10mmol)の溶液へ、水 素化ナトリウム(437mg, 11mmol, 鉱油中60%分散液)を、0℃で添加した。0℃で30分間攪 拌した後、次にこの溶液に、塩化メトキシメチル(MOMC1)(0.76mL, 10mmol)を添加した。 得られた混合物を、室温で一晩攪拌し、次に水でクエンチした。その後、この混合物へ1N 塩酸を添加し、この溶液をpH2まで酸性とした。次に酢酸エチルを添加した。有機層を分 離し、かつブラインで洗浄し、無水硫酸ナトリウム上で乾燥し、真空で蒸発させた。残渣 をシリカゲルカラムクロマトグラフィーにより精製し、化合物9を生じた。 【0214】

(化合物10の合成)

【化66】


30

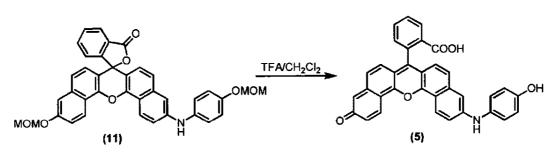
20

乾燥ジクロロメタン中の化合物9(476mg, 1mmol)及びピリジン(0.32mL, 4mmol)の溶液に 、アルゴンガス下で、トリフルオロメタンスルホン酸無水物(0.34mL, 2mmol)を0℃で滴下 した。得られた溶液を、室温で2時間攪拌し、その後水でクエンチした。この混合物へ、 ジクロロメタンを添加し、有機層を分離し、1N塩酸、引き続き水及びブラインで洗浄した 。その後有機層を、無水硫酸ナトリウム上で乾燥し、濃縮した。残渣をシリカゲルカラム クロマトグラフィーにより精製し、化合物10を生じた。

[0215]

(化合物11の合成)【化67】

炉で乾燥したシュレンク管に、酢酸パラジウム(II)(2mg, 1% nmol)、2,2'-ビス(ジフェ ニルホスフィノ)-1,1'-ビナフチル(BINAP)(9mg, 1.5% nmol)及び炭酸セシウム(Cs₂CO₃)(9 1mg, 0 28nmol)を充填し、アルゴンガスを5分間フラッシュした。トルエン(2mL)中の化合


10

50

物10(122mg, 0.2mmo1)及び4-(メトキシメトキシ)アニリン(37mg, 0.24mmo1)の溶液を添加 し、得られた混合物を最初にアルゴンガス下で、室温で30分間、次に100℃で20時間攪拌 した。この反応混合物を、室温まで冷却し、ジクロロメタンで希釈し、セライトパッドを 通して濾過した。フィルターケーキを、ジクロロメタン10mLで3回洗浄した。その後濾液 を濃縮し、残渣をシリカゲルカラムクロマトグラフィーにより精製し、化合物11を生じた

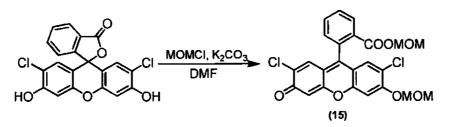
(55)

【0216】 (化合物5の合成) 【化68】

乾燥ジクロロメタン(1mL)中の化合物11(61mg, 0.1mmol)の溶液に、トリフルオロ酢酸(1mL)を、0℃で滴下した。得られた溶液を、薄層クロマトグラフィーが全ての出発材料が消 2 費されたことを示すまで、室温で攪拌した。次にこの混合物を、真空下で濃縮し、トルエ ンと3回共沸した。残渣を、シリカゲルカラムクロマトグラフィーにより精製し、化合物5 を生じた。

[0217]

(化合物6及び7の合成)


化合物6及び7は、トリフラート化反応及びそれに続くアミノ化反応を含む、化合物5に 関して示されたものに類似したスキームで合成することができる。

【0218】

(実施例3-消光化合物の蛍光の評価)

実施例1及び2で得られた化合物1-7の各々を、濃度10mMとなるようDMFに溶解し、その後 30 この溶液を、0.1Mリン酸緩衝液(pH7.4)により、10µMまで希釈した。この化合物の10µM 溶液の蛍光スペクトルを、日立F2500蛍光分光光度計を使用し測定し、かつ光電子増倍管 の電圧を、700Vであるように設定した。スリット幅は、励起及び発光の両方に関して2.5n mであった。測定は、励起波長600nmで実行した。結果は、化合物1-7に関する蛍光強度の 絶対値は、全て10未満であることを示している。従って、化合物1-7は、事実上非蛍光で あると考えられる。

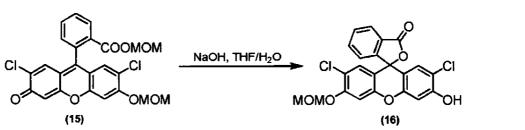
【0219】 (実施例4-化合物10の合成スキーム) (化合物15の合成) 【化69】

ジメチルホルムアミド(DMF)中の2,7-ジクロロフルオレセイン(1.0g, 2.5mmol)及び炭酸 カリウム(860mg, 6.2mmol)の溶液に、クロロメチルメチルエーテル(0.57mL, 7.5mmol)を

10

20

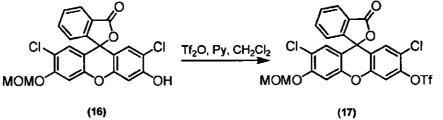
40


(56)

添加した。室温で3時間攪拌した後、反応混合物を、酢酸エチルで希釈し、次に1N塩酸溶 液、水及びブラインで洗浄した。有機層を、無水硫酸ナトリウム上で乾燥し、かつ濃縮し 、赤色固形物である化合物15を生じた。

[0220]

(化合物16の合成)


【化70】

化合物15の赤色固形物を、水酸化ナトリウム(3g, 7.5mmol)を含有するテトラヒドロフ ラン(30mL)及び水(10mL)の混合液中に溶解した。この溶液を、1時間還流加熱した。室温 に冷却後、反応溶液を、1N塩酸で中和しpH2とし、次に酢酸エチルで抽出した。有機層を 、ブラインで洗浄し、無水硫酸ナトリウム上で乾燥し、かつ真空で蒸発させた。残渣を、 シリカゲルカラムクロマトグラフィーにより精製し、化合物16(830mg, 収率75%)を生じ た。化合物16は、下記の分光学的データにより特徴づけられた: 【化71】

¹H NMR(300 MHz, CDCl₃) δ 8.07 (d, J = 6.7 Hz, 1H), 7.75 – 7.67 (m, 2H), 7.17 (d, J = 7.0 Hz, 1H), 7.11 (s, 1H), 6.91 (s, 1H), 6.73 (d, J = 9.6 Hz, 2H), 6.44 (br, 1H), 5.33 – 5.28 (m, 2H), 3.53 (s, 3H); ¹³C NMR (75.5 MHz, CDCl₃) δ 169.2, 154.3, 153.4, 152.1, 151.0, 150.5, 135.6 (CH), 130.4 (CH), 128.7 (CH), 128.0 (CH), 126.2, 125.5 (CH), 123.9 (CH), 119.1, 116.3, 112.6, 112.0, 104.2 (CH), 104.1 (CH), 95.0 (CH₂), 82.5, 56.6 (CH₃); LRMS (EI) m/z (%) 444 (M⁺; 5), 355 (100);

及び、C₂₂H₁₄Cl₂O₆のHRMS(EI):理論分子量は444.0167であり、かつ実測分子量は444.01 70であった。 【0221】 (化合物17の合成) 【化72】

40

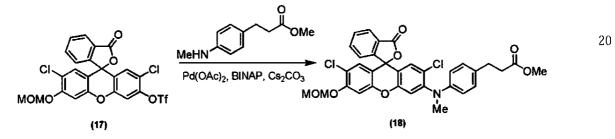
乾燥ジクロロメタン(CH₂Cl₂)中の化合物16(830mg, 1.87mmo1)及びピリジン(0.6mL, 7.5 mmo1)の溶液に、アルゴンガス下で、トリフルオロメタンスルホン酸無水物(0.63mL, 3.74 mmo1)を0℃で滴下した。得られた溶液を、室温で2時間攪拌し、次に水でクエンチした。 この混合物へ、ジクロロメタンを添加し、かつ有機層を分離し、1N塩酸、引き続き水及び ブラインで洗浄した。その後有機層を、無水硫酸ナトリウム上で乾燥し、かつ濃縮した。 残渣を、シリカゲルカラムクロマトグラフィーにより精製し、白色固形物である化合物17 (1.06g, 収率98%)を生じた。化合物17は、下記の分光学的データにより特徴づけられた

50

20

. 【化73】

> ¹H NMR (400 MHz, CDCl₃) δ8.09 (d, J = 7.2 Hz, 1H), 7.79 – 7.70 (m, 2H), 7.35 (s, 1H), 7.21 – 7.17 (m, 2H), 6.95 (s, 1H), 6.80 (s, 1H), 6.44 (br, 1H), 5.34 – 5.29 (m, 2H), 3.53 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ168.4, 154.6, 151.6, 150.0, 149.8, 146.1, 135.8 (CH), 130.7 (CH), 130.0 (CH), 128.6 (CH), 125.7 (CH), 123.7 (CH), 122.0, 120.4, 120.1, 119.9, 118.5 (q, $J_{C-F} = 319.0$ Hz), 112.2 (CH), 112.0, 104.1 (CH), 95.1 (CH₂), 80.3, 56.5 (CH₃); ¹⁹F NMR (377 MHz, CDCl₃) δ -73.1; LRMS (EI) *m/z* (%) 577 (M⁺; 20), 400 (100);

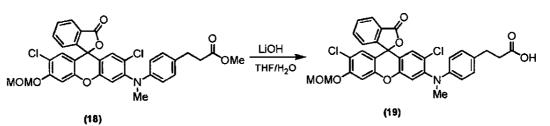

10

30

40

及び、C₂₃H₁₃Cl₂F₃O₈SのHRMS(EI):理論分子量は575.9660であり、かつ実測分子量は575. 9660であった。 【0222】 (化合物18の合成)

【化74】

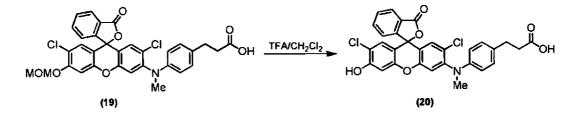

炉で乾燥したシュレンク管に、酢酸パラジウム(II)(6mg, 2.5% nmol)、2,2′-ビス(ジフ エニルホスフィノ)-1,1′-ビナフチル(BINAP)(24mg, 3.75% nmol)及び炭酸セシウム(Cs₂CO ₃)(228mg, 0.7mmol)を充填し、アルゴンガスを5分間フラッシュした。トルエン(5mL)中の 化合物17(289mg, 0.5mmol)及び3-(4-(メチルアミノ)フェニル)プロピオン酸メチルエステ ル(116mg, 0.6mmol)の溶液を添加した。得られた混合物を最初にアルゴンガス下で、室温 で30分間、次に100℃で20時間攪拌した。この反応混合物を、室温まで冷却し、ジクロロ メタンで希釈し、セライトパッドを通して濾過した。フィルターケーキを、ジクロロメタ ン10mLで3回洗浄した。その後濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィ ーにより精製し、化合物18(264mg, 収率85%)を生じた。化合物18は、下記の分光学的デ ータにより特徴づけられた: 【化75】

¹**H** NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 7.5 Hz, 1H), 7.77 – 7.67 (m, 2H), 7.23 (d, J = 7.5 Hz, 1H), 7.17 (s, 1H), 7.11 (s, 1H), 7.06 (d, J = 8.4 Hz, 2H), 6.82 (s, 1H), 6.78 (s, 1H), 6.67 (d, J = 8.4 Hz, 2H), 5.30 (m, 2H), 3.66 (s, 3H), 3.52 (s, 3H), 3.26 (s, 3H), 2.88 (t, J = 7.8 Hz, 2H), 2.59 (t, J = 7.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 173.4, 168.7, 154.4, 151.9, 150.5, 150.4, 148.1, 146.6, 135.5, 131.7, 130.4, 129.6, 128.9, 128.7, 127.1, 126.2, 125.5, 123.9, 119.1, 116.6, 116.2, 116.1, 112.5, 104.1, 95.0, 81.4, 56.5, 51.5, 39.8,

35.9, 30.0; LRMS (EI) *m/z* (%) 619 (M⁺; 9), 540 (42), 136 (100); 及び、C₃₃H₂₇Cl₂NO₇のHRMS(EI):理論分子量は619.1165であり、かつ実測分子量は619.11 88であった。 【0223】

(化合物19の合成)

【化76】


テトラヒドロフラン(6mL)及び水(2mL)中の化合物18(264mg, 0.43mmol)の溶液に、水酸 化リチウム(95mg, 2.2mmol)を0℃で添加した。この反応混合物を、全ての出発材料が消費 されるまで、0℃で攪拌した。その後、この混合物を、1N塩酸で酸性とした。この溶液を 、塩化ナトリウムで飽和し、酢酸エチル15mLで3回抽出した。一緒にした有機層を、無水 硫酸ナトリウム上で乾燥し、かつ濃縮した。残渣を、シリカゲルカラムクロマトグラフィ ーにより精製し、化合物19(237mg, 収率92%)を生じた。化合物19は、下記の分光学的デ ータにより特徴づけられた: 【化77】

¹**H** NMR (400 MHz, CDCl₃) δ 8.08 (d, J =

7.5 Hz, 1H), 7.77 – 7.68 (m, 2H), 7.23 (d, J = 7.5 Hz, 1H), 7.17 (s, 1H), 7.11 (s, 1H), 7.07 (d, J = 8.4 Hz, 2H), 6.83 (s, 1H), 6.78 (s, 1H), 6.67 (d, J = 8.4 Hz, 2H), 5.29 (m, 2H), 3.51 (s, 3H), 3.26 (s, 3H), 2.88 (t, J = 7.5 Hz, 2H), 2.64 (t, J = 7.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 178.8, 168.8, 154.4, 151.9, 150.5, 150.4, 148.1, 146.6, 135.5, 131.3, 130.4, 129.6, 128.9, 128.7, 127.2, 126.2, 125.5, 123.9, 119.1, 116.6, 116.3, 116.0, 112.5, 104.1, 95.0, 81.5, 56.5, 39.8, 35.7, 29.7; LRMS (FAB) m/z (%) 607 (M+H⁺; 8), 570 (35), 219 (100);

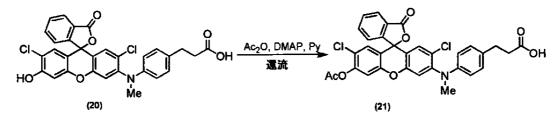
及び、C₃₂H₂₅C1NO₇ (M⁺-C1)のHRMS(EI):理論分子量は570.1320であり、かつ実測分子量 は570.1307であった。 (化合物20の合成)

【化78】

乾燥ジクロロメタン(3mL)中の化合物19(237mg, 0.39mmol)の溶液に、トリフルオロ酢酸 (3mL)を0℃で滴下した。得られた溶液を、薄層クロマトグラフィーが全ての出発材料が消 費されたことを示すまで、室温で攪拌した。次にこの混合物を、真空下で濃縮し、トルエ ンと3回共沸し、化合物20(250mg, 収率100%)を生じ、これを更に精製することなく、直 接次工程に供した。化合物20は、下記の分光学的データにより特徴づけられた: 【化79】

¹**H** NMR (400 MHz, CD₃OD) δ 8.05 (d, J = 7.6 Hz, 1H), 7.83 – 7.72 (m, 2H), 7.26 (d, J = 7.6 Hz, 1H), 7.19 (s, 1H), 7.05 (d, J = 8.6 Hz, 2H), 6.84 (s, 1H), 6.77 (s, 1H), 6.66 (s, 1H), 6.65 (d, J = 8.6 Hz, 2H), 3.24 (s, 3H), 2.81 (t, J = 7.6 Hz, 2H), 2.53 (t, J = 7.6 Hz, 2H).

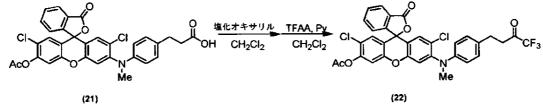
10


20

10

20

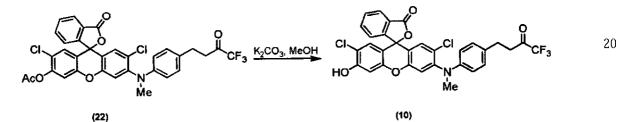
30


(化合物21の合成)【化80】

ビリジン(8mL)中の化合物20(250mg, 0.39mmol)の溶液へ、無水酢酸(3mL)及び4-ジメチ ルアミノピリジン(DMAP)(10mg, 0.08mmol)を添加した。得られた混合物を、2時間還流加 熱した。次にこの反応混合物を、水でクエンチし、酢酸エチルで希釈した。有機溶液を、 飽和炭酸水素ナトリウム(NaHCO₃)及びブラインで洗浄し、無水硫酸ナトリウム上で乾燥し 、濃縮した。残渣を、シリカゲルカラムクロマトグラフィーにより精製し、化合物21(172 mg, 収率73%)を生じた。化合物21は、下記の分光学的データにより特徴づけられた: 【化81】

¹H NMR (300 MHz, CDCl₃) δ 8.07 (d, J = 7.5 Hz, 1H), 7.74 – 7.68 (m, 2H), 7.26 (d, J = 7.5 Hz, 1H), 7.19 (s, 1H), 7.12 (s, 1H), 7.08 (d, J = 8.3 Hz, 2H), 6.87 (s, 1H), 6.84 (s, 1H), 6.68 (d, J = 8.3 Hz, 2H), 3.26 (s, 3H), 2.89 (t, J = 7.8 Hz, 2H), 2.64 (t, J = 7.8 Hz, 2H), 2.37 (s, 3H); ¹³C NMR (75.5 MHz, CDCl₃) δ 178.0, 168.6, 168.0, 151.7, 150.2, 150.0, 148.4, 148.3, 146.6, 135.7 (CH), 131.5, 130.6 (CH), 129.6 (CH), 129.0 (CH), 128.9 (CH), 127.5, 126.0, 125.7 (CH), 124.0 (CH), 122.4, 117.8, 116.4, 116.3 (CH), 116.2 (CH), 112.7 (CH), 80.9, 39.9 (CH₃), 35.6 (CH₂), 29.8 (CH₂), 20.6 (CH₃); LRMS (EI) *m/z* (%)569/568 (M⁺ – Cl; 10), 482 (40), 219 (100);

及び、C₃₂H₂₃C1NO₇ (M⁺-C1)のHRMS(EI):理論分子量は568.1163であり、かつ実測分子量 は568.1160であった。 【0225】 (化合物22の合成) 【化82】



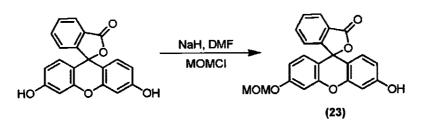
乾燥ジクロロメタン(4mL)中の化合物21(172mg, 0.28mmol)の溶液へ、塩化オキサリル(0 40.12mL, 1.4mmol)を添加し、室温で2時間攪拌した。その後溶媒及び過剰量の塩化オキサリルを、減圧下で蒸発させた。得られた酸塩化物を、乾燥ジクロロメタン(10mL)中に再溶解した。前記溶液へ、アルゴンガス下、-40℃で、無水トリフルオロ酢酸(0.24mL, 1.7mmol)及びピリジン(0.17mL, 2.2mmol)を連続して添加した。得られた混合物を、-20℃までゆっくり温め、この温度で4時間攪拌した。その後、この反応を、水(5mL)をゆっくり添加することにより、クエンチした。その後この混合物を、ジクロロメタンで希釈し、ブラインで洗浄し、無水硫酸ナトリウム上で乾燥し、かつ濃縮した。得られた残渣を、シリカゲルカラムクロマトグラフィーにより精製し、化合物22(116mg, 収率63%)を生じた。化合物22 は、下記の分光学的データにより特徴づけられた: 【化83】

¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 7.5 Hz, 1H), 7.79 – 7.69 (m, 2H), 7.26 (d, J = 7.5 Hz, 1H), 7.19 (s, 1H), 7.12 (s, 1H), 7.05 (d, J = 8.6 Hz, 2H), 6.87 (s, 1H), 6.85 (s, 1H), 6.67 (d, J = 8.6 Hz, 2H), 3.27 (s, 3H), 3.01 (t, J = 7.3 Hz, 0.85 × 2H, -COCF₃), 2.92 (t, J = 7.3 Hz, 0.85 × 2H, -COCF₃), 2.92 (t, J = 7.3 Hz, 0.85 × 2H, -COCF₃), 2.82 (t, J = 7.3 Hz, 0.15 × 2H, -C(OH)₂CF₃), 2.37 (s, 3H), 2.13 (t, J = 7.3 Hz, 0.15 × 2H, -C(OH)₂CF₃), 2.37 (s, 3H), 2.13 (t, J = 7.3 Hz, 0.15 × 2H, -C(OH)₂CF₃); ¹³C NMR (75.5 MHz, CDCl₃) δ 190.5 (q, J = 35.2 Hz), 168.5, 167.9, 151.7, 150.3, 150.0, 148.4, 148.2, 146.9, 135.7, 130.6, 130.4, 129.7, 129.0, 128.9, 127.6, 126.0, 125.7, 124.0, 122.4, 117.8, 116.6, 116.5, 116.1, 115.8 (q, $J_{C-F} = 297.7$), 112.7, 80.8, 39.8, 38.3, 27.5, 20.6; LRMS (EI) *m/z* (%) 656 (M⁺; 17), 534 (100);

及び、C₃₃H₂₂Cl₂F₃NO₆のHRMS (EI):理論分子量は655.0776であり、かつ実測分子量は655.0783であった。

【0226】 (化合物10の合成) 【化84】

メタノール(3mL)中の化合物22(66mg, 0.1mmol)の溶液へ、水(1mL)中の炭酸カリウム(41 mg, 0.3mmol)の溶液を添加した。室温で3時間攪拌した後、得られた混合物を、酢酸エチルで希釈し、希塩酸及びブラインで洗浄した。次に有機溶液を、無水硫酸ナトリウム上で乾燥し、濃縮した。残渣を、シリカゲルカラムクロマトグラフィーにより精製し、化合物10(60mg, 収率98%)を生じた。化合物10は、下記の分光学的データにより特徴づけられた:

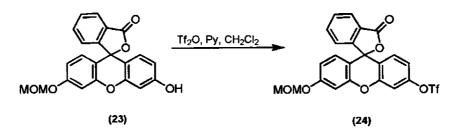

【化 8 5】

¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 7.5 Hz, 1H), 7.79 – 7.69 (m, 2H), 7.25 (d, J = 7.5 Hz, 1H), 7.18 (s, 1H), 7.05 (d, J = 8.3 Hz, 2H), 6.92 (s, 1H), 6.82 (s, 1H), 6.74 (s, 1H), 6.68 (d, J = 8.3 Hz, 2H), 3.26 (s, 3H), 3.01 (t, J = 7.0 Hz, 2H), 2.91 (t, J = 7.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 190.9 (q, J = 35.0 Hz), 169.0, 153.5, 151.9, 151.0, 150.5, 148.0, 146.9, 135.7, 130.5, 130.3, 129.7, 128.9, 128.0, 127.2, 126.2, 125.6, 123.9, 116.7, 116.5, 116.1, 116.3, 115.5 (q, $J_{C-F} = 290.3$), 112.0, 104.2, 81.7, 39.8, 38.3, 27.4; LRMS (EI) m/z (%) 614 (M⁺; 16), 535 (100);

及び、C₃₁H₂₀Cl₂F₃NO₅のHRMS(EI):理論分子量は613.0671であり、かつ実測分子量は613.0682であった。 【0227】 (実施例5-化合物12及び12aの合成スキーム) (化合物23の合成) 10

30

【化86】


(61)

無水ジメチルホルムアミド50mL中のフルオレセイン(3.3g, 10mmol)の溶液へ、水素化ナ トリウム(437mg, 11mmol, 鉱油中60%分散液)を、0℃で添加した。0℃で30分間攪拌した 後、次にこの溶液に、塩化メトキシメチル(MOMCl)(0.76mL, 10mmol)を添加した。得られ た混合物を、室温で一晩攪拌し、次に水でクエンチした。その後、この混合物へ1N塩酸を 添加し、この溶液をpH2まで酸性とした。次に酢酸エチルを添加した。有機層を分離し、 かつブラインで洗浄し、無水硫酸ナトリウム上で乾燥し、真空で蒸発させた。残渣をシリ カゲルカラムクロマトグラフィーにより精製し、化合物23(3.2g, 収率85%)を生じた。化 合物23は、下記の分光学的データにより特徴づけられた: 【化87】

¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 7.6 Hz, 1H), 7.66 – 7.59 (m, 2H), 7.14 (d, J = 7.6 Hz, 1H), 6.92 (d, J = 1.7 Hz, 1H), 6.73 (d, J = 1.9 Hz, 1H), 6.68 – 6.67 (m, 2H), 6.55 – 6.54 (m, 2H), 5.18 (s, 2H), 3.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 158.7, 158.6, 152.8, 152.4, 152.3, 135.3 (CH), 129.8 (CH), 129.0 (CH), 128.9 (CH), 126.5, 125.0 (CH), 124.0 (CH), 112.9 (CH), 112.6 (CH), 112.0, 110.2, 103.5 (CH), 103.1 (CH), 94.1 (CH₂), 85.2, 56.1 (CH₃); **LRMS (EI)** m/z (%) 376 (M⁺; 7), 332 (100);

及び、C₂₂H₁₆O₆のHRMS (EI):理論分子量は376.0947であり、かつ実測分子量は376.0949 であった。

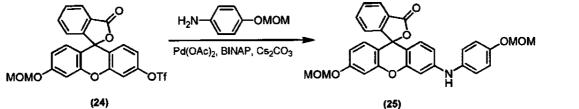
【0228】 (化合物24の合成) 【化88】

乾燥ジクロロメタン中の化合物23(3.2g, 8.5mmol)及びピリジン(2.74mL, 34mmol)の溶 液に、アルゴンガス下で、トリフルオロメタンスルホン酸無水物(2.86mL, 17mmol)を0℃ で滴下した。得られた溶液を、室温で2時間攪拌し、その後水でクエンチした。この混合 物へ、ジクロロメタンを添加し、有機層を分離し、1N塩酸、引き続き水及びブラインで洗 浄した。その後有機層を、無水硫酸ナトリウム上で乾燥し、濃縮した。残渣をシリカゲル カラムクロマトグラフィーにより精製し、化合物24(4.2g, 収率98%)を生じた。化合物24 は、下記の分光学的データにより特徴づけられた: 20

30

【化89】

¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 7.5 Hz, 1H), 7.72 - 7.65 (m, 2H), 7.27 (d, J = 2.3 Hz, 1H), 7.18 (d, J = 7.4 Hz, 1H), 7.01 – 6.93 (m, 3H), 6.77 – 6.73 (m, 2H), 5.19 (s, 2H), 3.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 159.0, 152.3, 151.9, 151.5, 149.8, 135.3 (CH), 130.1 (CH), 129.9 (CH), 128.8 (CH), 126.0, 125.1 (CH), 123.7 (CH), 123.0, 120.1, 119.7, 116.9, 116.5 (CH), 113.6 (CH), 111.6, 110.3 (CH), 103.5 (CH), 94.1 (CH₂), 81.3, 55.9 (CH₃); ¹⁹F NMR (377 MHz, CDCl₃) δ -72.7; LRMS (EI) m/z (%) 508 (M⁺; 23), 331 (100);


(62)

及び、C₂₃H₁₅F₃O₈SのHRMS(EI):理論分子量は508.0440であり、かつ実測分子量は、508.

(化合物25の合成)

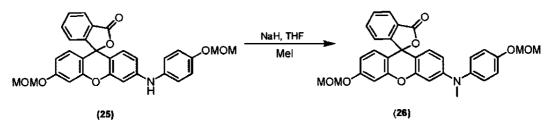
0438であった。 [0229]

【化90】

炉で乾燥したシュレンク管に、酢酸パラジウム(II)(2mg, 1% mmol)、2,2'-ビス(ジフェ ニルホスフィノ)-1,1'-ビナフチル(BINAP)(9mg, 1.5%mmol)及び炭酸セシウム(Cs₂CO₃)(9 1mg, 0.28mmol)を充填し、アルゴンガスを5分間フラッシュした。トルエン(2mL)中の化合 物24(102mg, 0.2mmol)及び4-(メトキシメトキシ)アニリン(37mg, 0.24mmol)の溶液を添加 し、得られた混合物を最初にアルゴンガス下で、室温で30分間、次に100℃で20時間攪拌 した。この反応混合物を、室温まで冷却し、ジクロロメタンで希釈し、セライトパッドを 通して濾過した。フィルターケーキを、ジクロロメタン10mLで3回洗浄した。その後濾液 を濃縮し、残渣をシリカゲルカラムクロマトグラフィーにより精製し、化合物25(84mg. 収率82%)を生じた。化合物25は、下記の分光学的データにより特徴づけられた: 【化91】

¹**H NMR** (300 MHz, CDCl₃) δ 7.99 (d, J =

7.4 Hz, 1H), 7.66 – 7.58 (m, 2H), 7.16 (d, J = 7.4 Hz, 1H), 7.08 (d, J = 8.9 Hz, 2H), 6.99 (d, J= 8.9 Hz, 2H), 6.91 (s, 1H), 6.73 (s, 1H), 6.67 (s, 2H), 6.57 - 6.48 (m, 2H), 5.94 (s, br, 1H), 5.16 (s, 2H), 5.14 (s, 2H), 3.48 (s, 3H), 3.45 (s, 3H); ¹³C NMR (75.5 MHz, CDCl₃) δ 169.6, 158.8, 153.5, 153.1, 152.6, 152.5, 147.6, 135.3, 134.9, 129.6, 129.1, 129.0, 127.0, 124.9, 124.0, 123.2, 117.4, 112.7, 112.6, 111.9, 109.0, 103.6, 100.8, 94.9, 94.3, 83.8, 56.1, 56.0; **LRMS (EI)** m/z (%) 511 (M⁺; 47), 467 (100);


及び、C₃₀H₂₅NO₇のHRMS(EI):理論分子量は511.1631であり、かつ実測分子量は、511.16 32であった。 [0230](化合物25の合成)

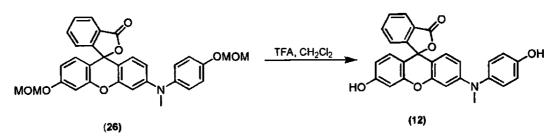
10

20

30

【化92】

(63)


テトラヒドロフラン(4nL)中の化合物25(84mg, 0.16mmol)の溶液へ、水素化ナトリウム(10mg, 0.24mmol, 鉱油中60%分散液)を、0℃で添加した。この懸濁液を30分間攪拌した後 、次にヨウ化メチル(20µL, 0.32mmol)を導入した。この混合物を、室温で一晩攪拌し、 次に水でクエンチした。この混合物を、酢酸エチルで希釈し、1N塩酸及びブラインで洗浄 した。無水硫酸ナトリウム上で乾燥した後、有機溶液を真空で濃縮し、残渣をシリカゲル カラムクロマトグラフィーにより精製し、化合物26(64mg, 収率76%)を生じた。化合物26 は、下記の分光学的データにより特徴づけられた: 【化93】

¹H NMR

(300 MHz, CDCl₃) δ 7.98 (d, J = 7.2 Hz, 1H), 7.66 – 7.58 (m, 2H), 7.15 (d, J = 7.2 Hz, 1H), 7.14 – 7.08 (m, 2H), 7.04 (d, J = 9.0 Hz, 2H), 6.92 (s, 1H), 6.67 (s, 1H), 6.52 (d, J = 9.0 Hz, 2H), 6.36 – 6.34 (m, 2H), 5.16 (s, 4H), 3.48 (s, 3H), 3.45 (s, 3H), 3.25 (s, 3H); ¹³C NMR (75.5 MHz, CDCl₃) δ 169.5, 158.7, 155.0, 153.1, 152.6, 152.4, 151.5, 141.7, 134.8, 129.5, 129.1, 128.4, 127.7, 127.1, 124.8, 124.0, 117.5, 112.8, 112.6, 110.9, 107.5, 103.6, 100.5, 94.6, 94.3, 83.8, 56.1, 56.0, 40.4; LRMS (EI) *m/z* (%) 526 (M⁺; 8), 482 (100);

及び、C₃₁H₂₇NO₇のHRMS(EI):理論分子量は525.1788であり、かつ実測分子量は525.1792 であった。

【0231】 (化合物12の合成) 【化94】

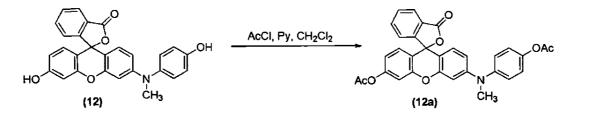
乾燥ジクロロメタン(CH₂Cl₂)(2nL)中の化合物26(64ng, 0.12nnol)の溶液に、トリフル オロ酢酸(2nL)を0℃で滴下した。得られた溶液を、薄層クロマトグラフィーが全ての出発 材料が消費されたことを示すまで、室温で攪拌した。次にこの混合物を、真空で濃縮し、 トルエンと3回共沸した。残渣を、酢酸エチルに溶解し、飽和炭酸水素ナトリウム(NaHCO₃)、引き続き水及びブラインで洗浄した。有機溶液を真空で濃縮し、次に残渣をシリカゲ ルカラムクロマトグラフィーにより精製し、化合物12(47ng, 収率90%)を生じた。化合物 12は、下記の分光学的データにより特徴づけられた:

10

20

30

20

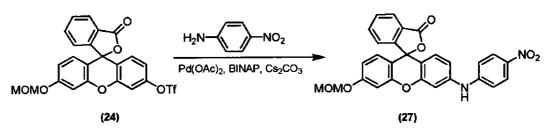

30

【化95】

¹H NMR (500 MHz, CD₃OD) δ 8.26 (d, J = 7.7 Hz, 1H), 7.83 - 7.75 (m, 2H), 7.35 (d, J = 7.7 Hz, 1H), 7.13 (d, J = 8.7 Hz, 2H), 7.09 (d, J = 9.0 Hz, 1H), 7.04 - 7.02 (m, 2H), 6.92 - 6.88 (m, 4H), 6.80 (d, J = 9.4 Hz, 1H), 3.52 (s, 3H); ¹³C NMR (125.8 MHz, CD₃OD) δ 169.1, 168.2, 159.3, 159.1, 158.7, 158.0, 139.2, 138.1, 134.6, 132.3, 132.1, 131.7, 131.6, 131.3, 130.1, 130.0, 128.9, 118.1, 118.0, 117.4, 115.9, 115.4, 103.6, 99.1, 42.3; LRMS (EI) m/z (%) 437 (M⁺; 6), 393 (100);

及び、C₂₇H₁₉NO₅のHRMS(EI):理論分子量は437.1263であり、かつ実測分子量は437.1266 10 であった。

【0232】 (化合物12aの合成) 【化96】

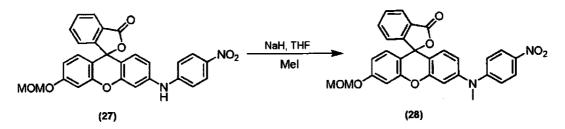


乾燥ジクロロメタン(CH₂Cl₂)(4mL)中の化合物12(108mg, 0.25mmol)の溶液に、ピリジン (0.4mL)及び塩化アセチル(0.8mL)を連続して添加した。得られた溶液を、薄層クロマトグ ラフィーが全ての出発材料が消費されたことを示すまで、室温で攪拌した。その後この反 応物を、飽和NH₄Cl溶液によりクエンチし、かつ酢酸エチルで抽出した。有機溶液を真空 で濃縮し、その後残渣をシリカゲルカラムクロマトグラフィーにより精製し、化合物12a(110mg, 収率85%)を生じた。化合物12aは、下記の分光学的データにより特徴づけられた :

【化97】

¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 7.2 Hz, 1H), 7.66 – 7.60 (m, 2H), 7.19 – 7.17 (m, 3H), 7.08 (d, J = 9.0 Hz, 2H), 7.02 (d, J = 1.8 Hz, 1H), 7.78 – 7.76 (m, 2H), 6.66 (d, J = 1.8 Hz, 1H), 6.56 (d, J = 9.0 Hz, 1H), 6.48 (dd, J = 9.0, 1.8 Hz, 1H), 3.31 (s, 3H), 2.30 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 169.3, 168.9, 152.9, 152.2, 152.1, 151.8, 151.0, 147.5, 145.2, 135.0, 129.7, 129.0, 128.5, 126.8, 126.3, 125.0, 124.1, 122.8, 117.2, 116.9, 112.4, 110.2, 108.4, 102.1, 83.0, 40.4, 21.1; LRMS (EI) m/z (%) 521 (M⁺; 26), 477 (100);

及び、C₃₁H₂₃NO₇のHRMS(E1):理論分子量は521.1475であり、かつ実測分子量は521.1471 40 であった。 【0233】 (実施例6-化合物14の合成スキーム) (化合物27の合成) 【化98】


(65)

炉で乾燥したシュレンク管に、酢酸パラジウム(II)(2mg, 1%mmol)、2,2'-ビス(ジフェ ニルホスフィノ)-1,1'-ビナフチル(BINAP)(9mg, 1.5%mmol)及び炭酸セシウム(Cs₂CO₃)(9 1mg, 0 28mmol)を充填し、アルゴンガスを5分間フラッシュした。トルエン(2ml)中の化合 物24(102mg, 0.2mmol)及び4-ニトロアニリン(33mg, 0.24mmol)の溶液を添加し、得られた 混合物を最初にアルゴンガス下で、室温で30分間、次に100℃で20時間攪拌した。この反 応混合物を、室温まで冷却し、ジクロロメタンで希釈し、セライトパッドを通して濾過し た。フィルターケーキを、ジクロロメタン10mLで3回洗浄した。その後濾液を濃縮し、残 渣をシリカゲルカラムクロマトグラフィーにより精製し、化合物27(79mg, 収率80%)を生 じた。化合物27は、下記の分光学的データにより特徴づけられた: 【化99】

¹H NMR (300 MHz, CDCl₃) δ 8.06 – 8.01 (m, 3H), 7.72 – 7.63 (m, 2H), 7.19 (d, *J* = 7.2 Hz, 1H), 7.06 – 7.03 (m, 3H), 6.93 (s, 1H), 6.80 – 6.64 (m, 4H), 5.18 (s, 2H), 3.46 (s, 3H); ¹³C NMR (75.5 MHz, CDCl₃) δ 169.8, 159.0, 152.8, 152.2, 148.8, 142.6, 140.3, 135.4, 130.0, 129.1, 129.0, 126.5, 126.0, 125.1, 124.0, 115.9, 115.1, 113.2, 112.0, 106.9, 103.7, 94.3, 83.4, 56.2; LRMS (FAB) *m/z* (%) 496 (M⁺; 20), 154 (100);

及び、C₂₇H₂₀N₂O₅ (M⁺-CO₂)のHRMS(EI):理論分子量は452.1372であり、かつ実測分子量 は452.1366であった。

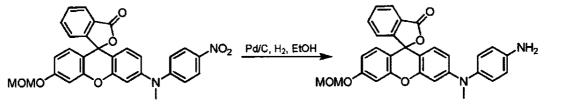
【0234】 (化合物28の合成) 【化100】

テトラヒドロフラン(4nL)中の化合物27(79ng, 0.16nmol)の溶液へ、水素化ナトリウム(10ng, 0.24nmol, 鉱油中60%分散液)を、0℃で添加した。この懸濁液を30分間攪拌した後 、次にヨウ化メチル(20µL, 0.32nmol)を導入した。この混合物を、室温で一晩攪拌し、 次に水でクエンチした。この混合物を、酢酸エチルで希釈し、1N塩酸及びブラインで洗浄 した。無水硫酸ナトリウム上で乾燥した後、有機溶液を真空で濃縮し、残渣をシリカゲル カラムクロマトグラフィーにより精製し、化合物28(67mg, 収率83%)を生じた。化合物28 は、下記の分光学的データにより特徴づけられた: 20

30

40

¹H NMR


(300 MHz, CDCl₃) δ 8.10 – 8.04 (m, 3H), 7.80 – 7.63 (m, 2H), 7.24 (d, J = 7.4 Hz, 1H), 7.14 (d, J = 2.0 Hz, 1H), 6.98 (d, J = 2.0 Hz, 1H), 6.90 – 6.82 (m, 4H), 6.76 – 6.73 (m, 2H), 5.20 (s, 2H), 3.48 (s, 3H), 3.44 (s, 3H); ¹³C NMR (75.5 MHz, CDCl₃) δ 159.0, 153.0, 152.7, 152.4, 152.1, 148.5, 139.4, 135.2, 130.0, 129.6, 129.1, 126.6, 125.7, 125.2, 124.0, 120.8, 116.5, 114.5, 113.3 (2C), 112.1, 103.7, 94.4, 85.3, 56.2, 40.4; LRMS (FAB) m/z (%) 510 (M⁺; 20), 109 (100);

(66)

10

20

及び、C₂₈H₂₂N₂O₅ (M⁺-CO₂)のHRMS(EI):理論分子量は466.1522であり、かつ実測分子量 は466.1529であった。 【0235】 (化合物29の合成) 【化102】

(28)

(29)

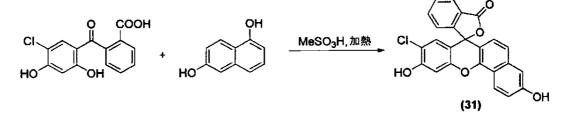

エタノール(10mL)中の化合物28(67mg, 0.13mmol)の溶液に、パラジウム(活性炭粉末上 に担持された10%, 7mg)をゆっくり添加した。この混合物を、室温で2時間水素化した。 その後この混合物を、セライトパッドを通して濾過し、濾液を真空で濃縮した。残渣をシ リカゲルカラムクロマトグラフィーにより精製し、化合物29(48mg, 収率77%)を生じた。 化合物29は、下記の分光学的データにより特徴づけられた: 【化103】

¹H NMR (300 MHz, CDCl₃) δ 7.99 (d, J =

7.5 Hz, 1H), 7.64 – 7.57 (m, 2H), 7.17 (d, J = 7.5 Hz, 1H), 6.98 (d, J = 8.6 Hz, 2H), 6.91 (s, 1H), 6.710 – 6.67 (m, 4H), 6.51 – 6.48 (m, 2H), 6.35 – 6.32 (m, 1H), 5.18 (s, 2H), 3.68 (br, 2H), 3.47 (s, 3H), 3.24 (s, 3H); ¹³C NMR (75.5 MHz, CDCl₃) δ 169.6, 158.7, 153.2, 152.7, 152.4, 151.8, 144.5, 138.7, 134.7, 129.4, 129.1, 128.3, 128.0, 127.2, 124.8, 124.0, 116.2, 112.8, 112.5, 110.5, 106.8, 103.6, 99.8, 94.4, 84.0, 56.1, 40.4; LRMS (EI) m/z (%) 481 (M⁺; 24), 437 (100);

及び、C₂₉H₂₄N₂O₅のHRMS(EI):理論分子量は480.1685であり、かつ実測分子量は480.168 8であった。 【0236】 (化合物14の合成) 30

【化104】

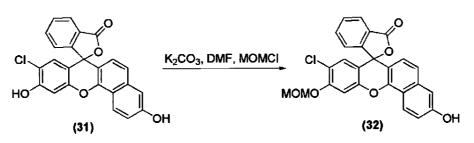

乾燥ジクロロメタン(2mL)中の化合物29(48mg, 0.10mmol)の溶液に、トリフルオロ酢酸(102mL)を0℃で滴下した。得られた溶液を、薄層クロマトグラフィーが全ての出発材料が消費されたことを示すまで、室温で攪拌した。その後混合物を真空で濃縮し、トルエンと3回共沸した。この残渣を酢酸エチルに溶解し、飽和炭酸水素ナトリウム(NaHCO₃)、引き続き水及びブラインで洗浄した。有機溶液を真空で濃縮し、その後残渣をシリカゲルカラムクロマトグラフィーにより精製し、化合物14(40mg, 収率91%)を生じた。化合物14は、下記の分光学的データにより特徴づけられた:

【化105】

¹H NMR (400 MHz, CD₃OD) δ 8.02 (d, J = 7.2 Hz, 1H), 7.70 – 7.64 (m, 2H), 7.16 (d, J = 7.2 Hz, 1H), 6.92 (d, J = 8.6 Hz, 2H), 6.76 (d, J = 8.6 Hz, 2H), 6.69 (d, J = 8.8 Hz, 1H), 6.64 (d, J = 2.2 Hz, 1H), 6.59 – 6.52 (m, 3H), 6.42 (dd, J = 8.8, 2.2 Hz, 1H), 3.26 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 164.6, 154.5, 153.7, 153.6, 153.5, 147.5, 146.2, 137.3, 133.7, 129.5, 129.4, 128.5, 127.6, 127.3, 125.9, 125.4, 116.1, 114.6, 114.1, 111.4, 108.5, 102.3, 98.6, 76.0, 39.7; LRMS (ESI) m/z (%) 437 (M+H⁺; 100);

及び、C₂₇H₂₀N₂O₄のHRMS(EI):理論分子量は436.1423であり、かつ実測分子量は436.1424 であった。

【0237】 (実施例7-化合物30の合成スキーム) (化合物31の合成) 【化106】

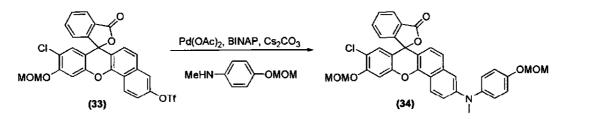

40

20


30

2'-カルボキシ-5-クロロ-2,4-ジヒドロキシベンゾフェノン及び1,6-ジヒドロキシナフ タレンを、メタンスルホン酸中で一緒にし、かつ壁の厚いガラス管内に密封した。得られ た混合物を90℃で24時間攪拌した後、この反応物を、氷冷水へと注ぎ、沈殿を濾過し、水 で洗浄し、かつ真空で乾燥した。粗生成物31を、更に精製することなく、次工程で使用し た。

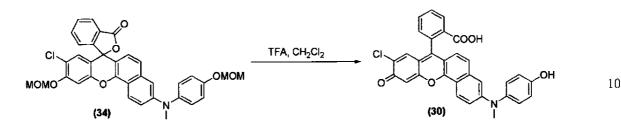
【0238】 (化合物32の合成) 【化107】



ジメチルホルムアミド(DMF)中の化合物31(1.23g, 2.95nmol)及び炭酸カリウム(407ng, 10 2.95nmol)の溶液へ、クロロメチルメチルエーテル(0.22nL, 2.95nmol)を添加した。室温 で3時間攪拌した後、反応混合物を酢酸エチルで希釈し、その後1N塩酸溶液、水及びブラ インで洗浄した。有機層を無水硫酸ナトリウム上で乾燥し、濃縮した。残渣をシリカゲル カラムクロマトグラフィーにより精製し、化合物32(680ng, 収率50%)を生じた。 【0239】 (化合物33の合成) 【化108】

乾燥ジクロロメタン(CH₂Cl₂)中の化合物32(340ng, 0.75mmol)及びピリジン(0.36mL, 4. 48mmol)の溶液へ、アルゴンガス下で、トリフルオロメタンスルホン酸無水物(0.38mL, 2. 24mmol)を0℃で滴下した。得られた溶液を、室温で2時間攪拌し、その後水でクエンチし た。この混合物へジクロロメタンを添加し、有機層を分離し、1N塩酸、引き続き水及びブ ラインで洗浄した。その後有機層を無水硫酸ナトリウム上で乾燥し、濃縮した。残渣をシ リカゲルカラムクロマトグラフィーにより精製し、化合物33を白色固形物(436mg, 収率98 %)として生じた。

【0240】 (化合物34の合成) 【化109】



炉で乾燥したシュレンク管に、酢酸パラジウム(II)(5mg, 0 02mmol)、2,2'-ビス(ジフ エニルホスフィノ)-1,1'-ビナフチル(BINAP)(19mg, 0 03mmol)及び炭酸セシウム(Cs₂C0₃) (79mg, 0.24mmol)を充填し、アルゴンガスを5分間フラッシュした。トルエン(3mL)中の化 合物33(120mg, 0.2mmol)及び4-(メトキシメトキシ)-N-メチルアニリン(36mg, 0.21mmol) の溶液を添加した。得られた混合物を最初にアルゴンガス下で、室温で30分間、次に100 ℃で20時間攪拌した。この反応混合物を、室温まで冷却し、ジクロロメタンで希釈し、セ ライトパッドを通して濾過した。フィルターケーキを、ジクロロメタン10mLで3回洗浄し 30

た。その後濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィーにより精製し、化 合物34(104mg,収率85%)を生じた。

【0241】 (化合物30の合成)

【化110】

乾燥ジクロロメタン(2mL)中の化合物34(104mg, 0.17mmol)の溶液へ、トリフルオロ酢酸 (2mL)を0℃で滴下した。得られた溶液を、薄層クロマトグラフィーが全ての出発材料が消 費されたことを示すまで、室温で攪拌した。次にこの混合物を、真空で濃縮し、トルエン と3回共沸した。残渣を、酢酸エチルに溶解し、飽和炭酸水素ナトリウム(NaHCO₃)、引き 続き水及びブラインで洗浄した。有機溶液を真空で濃縮し、次に残渣をシリカゲルカラム クロマトグラフィーにより精製し、化合物30(72mg, 収率82%)を生じた。化合物30は、下 記の分光学的データにより特徴づけられた:

【化111】

¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 9.3 Hz, 1H), 8.09 (dd, J = 6.8,

1.1 Hz, 1H), 7.71 – 7.63 (m, 2H), 7.23 (d, J = 8.8 Hz, 1H), 7.16 (dd, J = 6.8, 1.1 Hz, 1H), 7.08 – 7.04 (m, 3H), 6.99 (s, 1H), 6.91 – 6.86 (m, 3H), 6.80 (s, 1H), 6.61 (d, J = 8.8 Hz, 1H), 3.33 (s, 3H), 3.18 (br, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 154.5, 152.0, 149.5, 147.5, 140.3, 136.5, 135.0, 129.9, 128.4, 127.2, 126.9, 125.7, 124.6, 123.8, 122.6, 122.5, 118.1,

116.4, 116.2, 111.9, 108.2, 107.3, 104.1, 40.6; LRMS (EI) *m/z* (%) 521 (M⁺; 16), 476 (100); 及び、C₃₁H₂₀C1NO₅のHRMS(EI):理論分子量は521.1030であり、かつ実測分子量は521.103 30 3であった。

 $\begin{bmatrix} 0 & 2 & 4 & 2 \end{bmatrix}$

(実施例8-ペルオキシナイトライトの化合物10による特異的検出)

(化合物10のUV-可視吸収スペクトル)

実施例4において得られた化合物10を、共溶媒として0.1%DMFを含有するpH7.4の0.1Mリン酸緩衝液に溶解し、10µM溶液を作製した。この化合物10の10µM溶液の吸収スペクトルを測定し、かつ化合物10は約520nmに最大吸収を持つことが示された。

 $\begin{bmatrix} 0 & 2 & 4 & 3 \end{bmatrix}$

(化合物10の発光スペクトル)

実施例4において得られた化合物10を、DMF中に濃度10mMとなるよう溶解し、次にこの溶 40 液を、0.1Mリン酸緩衝液(pH7.4)により、10µMに希釈した。化合物10の10µM溶液の蛍光 スペクトルを、日立F2500蛍光分光光度計を用いて測定し、かつ光電子増倍管の電圧は700 Vであった。スリット幅は、励起及び発光の両方に関して2.5nmであった。測定は、励起波 長520nmで実行した。図1に示された結果は、化合物10それ自身は非蛍光であることを示し た。

[0244]

(ペルオキシナイトライトの化合物10による検出)

実施例4において得られた化合物10を、DMF中に濃度10mMとなるよう溶解し、次にこの溶 液を、0.1Mリン酸カリウム緩衝液(pH7.4)により、10μMに希釈した。0.1M NaOH中のペル オキシナイトライト溶液を、Keith及びPowellの方法により調製し(Keith, W.G.及びPowel

50

1, R.E.の論文、「ペルオキシナイトライト分解の速度論(Kinetics of decomposition of peroxynitrous acid)」、J. Chem. Soc. A, 1969, 1, 90)、かつ使用したストック溶液中のその濃度は、302nmでの $1670cm^{-1}$ (mol/L)⁻¹の励起係数を用いて概算した(Hughes及びNicklinの論文、「過亜硝酸の化学、パートI:過亜硝酸分解の速度論(The chemistry of pernitrites. Part I. Kinetics of decomposition of pernitrious acid)」、J. Chem. Soc. A, 1968, 2, 450-452)。ペルオキシナイトライトストック溶液を、化合物10の溶液へ添加し、0、2、6、10、20、30、50、100、及び200 μ Mのような、様々な最終濃度を提供した。これらの溶液の蛍光スペクトルを、5分後に、前述の条件と同じ条件下で測定した。蛍光スペクトルを図1に示した。図1に明確に示されたように、化合物10の蛍光強度は、ペルオキシナイトライトの添加後、著しく増加する。更に図2は、541nmでの蛍光強度は、ペルオキシナイトライトの濃度の増加により、線形に増加することを示している。

(70)

10

(異なるROS及びRNSによる化合物10の特異性の比較)

0C1⁻、H₂0₂、¹0₂、N0、0₂⁻⁻、⁻OH、0N00⁻、及びアルキルペルオキシルラジカル(R00 ⁻)を含む、様々な活性酸素種(R0S)及び活性窒素種(RNS)に対する化合物10の反応性を、 比較した。異なる活性酸素種及び活性窒素種を、化合物10の溶液(0.1Mリン酸カリウム緩 衝液中10μM)5mLへ、独立して添加した。この処理前後の蛍光強度の変化を、測定した。 結果を図3に示している。活性酸素種及び活性窒素種は、下記のように調製した:

a. H₂0₂(最終100µM)を添加し、その後25℃で1時間攪拌した。

b. (3-(1,4-ジヒドロ-1,4-エピジオキシ-1-ナフチル)プロピオン酸)(最終100µM)を添 20 加し、その後25℃で1時間攪拌した。

c. 2,2'-アゾビス(2-アミジノプロパン)二塩酸塩(最終100µM)を添加し、その後25℃で 1時間攪拌した。

d. SNP(ニトロフェリシアニド(III)ナトリウム二水和物)(最終100µM)を添加し、その後25℃で1時間攪拌した。

e. 02[·]は、キサンチン及びキサンチンオキシダーゼにより生成した。キサンチンオキシダーゼを最初に添加した。キサンチンオキシダーゼが溶解した後、キサンチン(最終100 μM)を添加し、この混合物を25℃で1時間攪拌した。

f. 塩化第一鉄(最終10µM)を、10当量のH,0,(100µM)の存在下で添加した。

g. 0N00⁻(最終10µM)を、25℃で添加した。

h. NaOC1(最終10µM)を25℃で添加した。市販の漂白剤は、NaOC1の給源であった。

[0246]

図3は、ペルオキシナイトライトは、他のROS及びRNSのいずれよりも、化合物10のはる かに強力な蛍光増強につながることを示している。これらの結果は、化合物10は、無生物 システムにおいて、ROS及びRNSの中でペルオキシナイトライトに対しはるかに高い反応性 を有することを明らかにしている。更に生物学的システムの存在下では、同様の反応は、 化合物10のトリフルオロメチル誘導体と他の活性酸素種又は活性窒素種のいずれの間でも 進行しない。

 $\begin{bmatrix} 0 & 2 & 4 & 7 \end{bmatrix}$

(実施例9-細胞アッセイにおける化合物22の適用)

マウスのJ744.1マクロファージ(ATCC,米国)を使用し、生存細胞におけるペルオキシナ イトライトの検出に関する化合物22(化合物10由来の酢酸エステル)の能力を調べた。J744 .1マクロファージは、ペニシリン100U/m1及びストレプトマイシン100µg/m1を補充した10 %の熱で失活したウシ胎仔血清(Gibco社)を含有する、ダルベッコ変法イーグル培地(DMEM)(Gibco社)において、37℃、5%CO2で培養した。これらは、製造業者の指示に従い、擦過 し、かつ6-ウェルプレートに播種することにより継代した。増殖培地は、2~3日毎に交換 した。細胞は、実験前に集密になるまで増殖した。マウスJ744.1マクロファージを、化合 物22(20µM)と共に1時間インキュベーションし、その後PBS緩衝液で3回洗浄した。刺激が 存在しない場合は、非常に弱い蛍光のみが認められた(図8A)。蛍光は、LPS(リポ多糖、1 µg/m1)及び1FN-y(インターフェロン-y、50ng/m1)で4時間処理した後に、誘導され(図8 30

B)、かつPMA(ホルボール12-ミリステート13-アセテート、10nM)の30分間添加後に、強力 な蛍光が認められた(図8C)。従って本発明者らは、化合物22は、刺激されたマウスJ744.1 マクロファージにおいて生成されたペルオキシナイトライトの検出に適していると結論し た。

[0248]

(実施例10-化合物12によるペルオキシナイトライトの高感度検出)

(化合物12のUV-可視吸収スペクトル)

実施例5において得られた化合物12を、共溶媒として0.1%DMFを含有するpH7.4の0.1Mリン酸緩衝液に溶解し、1µM溶液を作製した。この化合物12の1µM溶液の吸収スペクトルを 測定し、かつ化合物12は約515nmに最大吸収を持つことが示された。

【0249】

(化合物12の発光スペクトル)

実施例5において得られた化合物12を、DMF中に濃度1mMとなるよう溶解し、次にこの溶 液を、0.1Mリン酸緩衝液(pH7.4)により、1µMに希釈した。化合物12の1µM溶液の蛍光ス ペクトルを、日立F2500蛍光分光光度計を用いて測定し、かつ光電子増倍管の電圧は700V であった。スリット幅は、励起及び発光の両方に関して2.5nmであった。測定は、励起波 長515nmで実行した。図4に示された結果は、化合物12それ自身は非蛍光であることを示し た。

[0250]

(ペルオキシナイトライトの化合物12による検出)

実施例5において得られた化合物12を、DMF中に濃度1mMとなるよう溶解し、次にこの溶 液を、0.1Mリン酸カリウム緩衝液(pH7.4)により、1 μ Mに希釈した。0.1M NaOH中のペルオ キシナイトライト溶液を、Keith及びPowellの方法により調製し(Keith, W.G.及びPowell, R.E.の論文、「ペルオキシナイトライト分解の速度論(Kinetics of decomposition of p eroxynitrous acid)」、J. Chem. Soc. A, 1969, 1, 90)、かつ使用したストック溶液中 のその濃度は、302nmでの1670cm⁻¹(mol/L)⁻¹の励起係数を用いて概算した(Hughes及びNic klinの論文、「過亜硝酸の化学、パートI:過亜硝酸分解の速度論(The chemistry of per nitrites. Part I. Kinetics of decomposition of pernitrious acid)」、J. Chem. Soc . A, 1968, 2, 450-452)。ペルオキシナイトライトストック溶液を、化合物12の溶液へ添 加し、0、1、2、3、4、5、6及び7 μ Mのような、様々な最終濃度を提供した。これらの溶 液の蛍光スペクトルを、5分後に、前述の条件と同じ条件下で測定した。蛍光スペクトル を図4に示した。図4に明確に示されたように、化合物12の蛍光強度は、ペルオキシナイト ライトの添加後、著しく増加する。更に、535nmでの蛍光強度は、ペルオキシナイトライ トの濃度の増加により、線形に増加する(データは示さず)。

30

10

20

[0251]

(異なるROS及びRNSによる化合物12の特異性の比較)

0C1⁻、H₂O₂、¹O₂、NO、O₂⁻、⁻OH、ONOO⁻、及びアルキルペルオキシルラジカル(ROO ⁻)を含む、様々な活性酸素種(ROS)及び活性窒素種(RNS)に対する化合物12の反応性を、 比較した。異なる活性酸素種及び活性窒素種を、化合物12の溶液(0.1Mリン酸カリウム緩 衝液中1μM)5mLへ、独立して添加した。この処理前後の蛍光強度の変化を、測定した。結 果を図5に示している。活性酸素種及び活性窒素種は、下記のように調製した:

i. H₂0₂(最終100μM)を添加し、その後25℃で1時間攪拌した。

j. (3-(1,4-ジヒドロ-1,4-エピジオキシ-1-ナフチル)プロピオン酸)(最終100µM)を添加し、その後25℃で1時間攪拌した。

k. 2,2'-アゾビス(2-アミジノプロパン)二塩酸塩(最終100µM)を添加し、その後25℃で 1時間攪拌した。

SNP(ニトロフェリシアニド(III)ナトリウム二水和物)(最終100µM)を添加し、その後25℃で1時間攪拌した。

m. 02^{·-}は、キサンチン及びキサンチンオキシダーゼにより生成した。キサンチンオキ シダーゼを最初に添加した。キサンチンオキシダーゼが溶解した後、キサンチン(最終100

50

10

30

40

µM)を添加し、この混合物を25℃で1時間攪拌した。

n. 塩化第一鉄(最終10µM)を、10当量のH₂O₂(100µM)の存在下で添加した。

o. ONOO⁻(最終10µM)を、25℃で添加した。

p. NaOC1(最終10µM)を25℃で添加した。市販の漂白剤は、NaOC1の給源であった。 【0252】

図5は、ペルオキシナイトライトは、他のROS及びRNSのいずれよりも、化合物12のはる かに強力な蛍光増強につながることを示している。これらの結果は、化合物12は、無生物 システムにおいて、ROS及びRNSの中でペルオキシナイトライトに対しはるかに高い反応性 を有することを明らかにしている。更に生物学的システムの存在下では、同様の反応は、 化合物12のフェノール誘導体と他の活性酸素種又は活性窒素種のいずれの間でも進行しな い。

【0253】

(実施例11-化合物14による次亜塩素酸イオンの高感度検出)

(化合物14のUV-可視吸収スペクトル)

実施例6において得られた化合物14を、共溶媒として0.1%DMFを含有するpH7.4の0.1Mリン酸緩衝液に溶解し、1µM溶液を作製した。化合物14の1µM溶液の吸収スペクトルを測定し、かつ化合物14は約515nmに最大吸収を持つことが示された。

【0254】

(化合物14の発光スペクトル)

実施例6において得られた化合物14を、DMF中に濃度1mMとなるよう溶解し、次にこの溶 20 液を、0.1Mリン酸緩衝液(pH7.4)により、1µMに希釈した。化合物14の1µM溶液の蛍光ス ペクトルを、日立F2500蛍光分光光度計を用いて測定し、かつ光電子増倍管の電圧は700V であった。スリット幅は、励起及び発光の両方に関して2.5nmであった。測定は、励起波 長515nmで実行した。図6に示された結果は、化合物14それ自身は非蛍光であることを示し た。

【 O 2 5 5 】

(化合物14によるペルオキシナイトライトの検出)

実施例6において得られた化合物14を、DMF中に濃度1mMとなるよう溶解し、次にこの溶 液を、0.1Mリン酸カリウム緩衝液(pH7.4)により、1 μ Mに希釈した。市販の漂白剤は、Na0 C1の給源であった。Na0C1の濃度は、K10₃による滴定により標準化された、チオ硫酸ナト リウム溶液による滴定により決定した。その後、Na0C1を添加し、0、2、3、4、5、6、7、 及び8 μ Mのような最終濃度を提供した。これらの溶液の蛍光スペクトルを、5分後に、前 述の条件と同じ条件下で測定した。蛍光スペクトルを図6に示した。図6に明確に示された ように、化合物14の蛍光強度は、次亜塩素酸イオンの添加後、著しく増加する。更に、53 5nmでの蛍光強度は、次亜塩素酸イオンの濃度の増加により、線形に増加する。 【0256】

(異なるROS及びRNSによる化合物14の特異性の比較)

 0C1⁻、H₂0₂、¹0₂、N0、0₂⁻⁻、'0H、0N00⁻、及びアルキルペルオキシルラジカル(R00
 ⁻)を含む、様々な活性酸素種(R0S)及び活性窒素種(RNS)に対する化合物14の反応性を、 比較した。異なる活性酸素種及び活性窒素種を、化合物14の対応する溶液(0.1Mリン酸カ リウム緩衝液中1µM)5mLへ、独立して添加した。この処理前後の蛍光強度の変化を、測定 した。結果を図7に示している。活性酸素種及び活性窒素種は、下記のように調製した:
 a. H₂0₂(最終100µM)を添加し、その後25℃で1時間攪拌した。

b. (3-(1,4-ジヒドロ-1,4-エピジオキシ-1-ナフチル)プロピオン酸)(最終100µM)を添加し、その後25℃で1時間攪拌した。

c. 2,2'-アゾビス(2-アミジノプロパン)二塩酸塩(最終100µM)を添加し、その後25℃で1時間攪拌した。

d. SNP(ニトロフェリシアニド(III)ナトリウム二水和物)(最終100µM)を添加し、その後25℃で1時間攪拌した。

e. 0^{,-}は、キサンチン及びキサンチンオキシダーゼにより生成した。キサンチンオキ 50

10

20

シダーゼを最初に添加した。キサンチンオキシダーゼが溶解した後、キサンチン(最終100 μM)を添加し、この混合物を25℃で1時間攪拌した。

f. 塩化第一鉄(最終10µM)を、10当量のH₂O₂(100µM)の存在下で添加した。

g. 0N00⁻(最終10µM)を、25℃で添加した。ペルオキシナイトライトは、実施例4に示したように調製した。

h. NaOC1(最終10µM)を25℃で添加した。

[0257]

図7は、次亜塩素酸イオンは、他のROS及びRNSのいずれよりも、化合物14のはるかに強力な蛍光増強につながることを示している。これらの結果は、化合物14は、無生物システムにおいて、ROS及びRNSの中で次亜塩素酸イオンに対しはるかに高い反応性を有することを明らかにしている。更に生物学的システムの存在下では、同様の反応は、化合物14のアニリン誘導体と他の活性酸素種又は活性窒素種のいずれの間でも進行しない。

[0258]

(実施例12-細胞アッセイにおける化合物12及び12aの適用)

マウスのJ744.1マクロファージ(ATCC, 米国)を使用し、生存細胞におけるペルオキシナ イトライトの検出に関する化合物12及び12aの能力を調べた。J744.1マクロファージは、 ペニシリン100U/m1及びストレプトマイシン100 μ g/m1を補充した10%の熱で失活したウシ 胎仔血清(Gibco社)を含有する、ダルベッコ変法イーグル培地(DMEM)(Gibco社)において、 37℃、5%C0₂で培養した。これらは、製造業者の指示に従い、擦過し、かつ6-ウェルプレ ートに播種することにより継代した。増殖培地は、2~3日毎に交換した。細胞は、実験前 に集密になるまで増殖した。マウスJ744.1マクロファージを、化合物12又は12a(20 μ M)と 共に1時間インキュベーションし、その後PBS緩衝液で3回洗浄した。刺激が存在しない場 合は、非常に弱い蛍光のみが認められた(図9B及び図10A)。蛍光は、LPS(リポ多糖、1 μ g/ m1)で4時間処理した後に、誘導された(図9D及び図10B)。同じく化合物12からの緑色が、 ミトコンドリア色素MitoTracker Red CMXRosからの赤色により共局在化された(図9F)。こ れらの結果は、化合物12は、ミトコンドリア内に選択的に局在化することを示している。

(実施例13-化合物30によるペルオキシナイトライトの高感度検出)

(化合物30のUV-可視吸収スペクトル)

実施例7において得られた化合物30を、共溶媒として0.1%DMFを含有するpH7.4の0.1Mリ 30 ン酸緩衝液に溶解し、10µM溶液を作製した。この化合物30の10µM溶液の吸収スペクトル を測定した。化合物30の最大吸収は、約540nmに認められた。

[0260]

(化合物30の発光スペクトル)

実施例7において得られた化合物30を、DMF中に濃度10mMとなるよう溶解し、次にこの溶液を、0.1Mリン酸緩衝液(pH7.4)により、10µMに希釈した。化合物30の10µM溶液の蛍光スペクトルを、日立F7000蛍光分光光度計を用いて測定し、かつ光電子増倍管の電圧は900Vであった。スリット幅は、励起及び発光の両方に関して2.5nmであった。測定は、励起波長520nmで実行した。図11に示された結果は、化合物30それ自身は非蛍光であることを示した。

[0261]

(化合物30によるペルオキシナイトライトの検出)

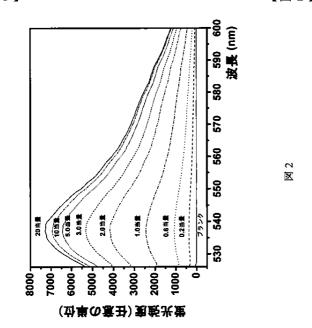
実施例7において得られた化合物30を、DMF中に濃度10mMとなるよう溶解し、次にこの溶 液を、0.1Mリン酸カリウム緩衝液(pH7.4)により、10µMに希釈した。0.1M NaOH中のペル オキシナイトライト溶液を、Keith及びPowellの方法により調製し(Keith, W.G.及びPowel I, R.E.の論文、「ペルオキシナイトライト分解の速度論(Kinetics of decomposition of peroxynitrous acid)」、J. Chem. Soc. A, 1969, 1, 90)、かつ使用したストック溶液 中のその濃度は、302nmでの1670cm⁻¹(mol/L)⁻¹の励起係数を用いて概算した(Hughes及びN icklinの論文、「過亜硝酸の化学、パートI:過亜硝酸分解の速度論(The chemistry of p ernitrites. Part I. Kinetics of decomposition of pernitrious acid)」、J. Chem. S

50

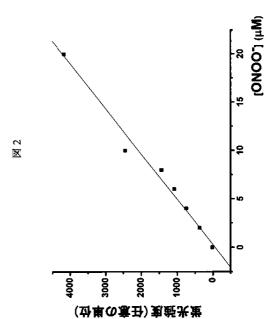
oc. A, 1968, 2, 450-452)。ペルオキシナイトライトストック溶液を、化合物30の溶液へ添加し、様々な最終濃度を提供した。これらの溶液の蛍光スペクトルを、5分後に、前述の条件と同じ条件下で測定した。蛍光スペクトルを図11に示した。図11に明確に示されたように、化合物30の蛍光強度は、ペルオキシナイトライトの添加後、著しく増加する。 【0262】

前述のように、本明細書に開示された実施態様は、ペルオキシナイトライトの検出、測 定及び/又はスクリーニングのための発蛍光型プローブとして使用することができる様々 な化合物を提供する。本開示は、限られた数の実施態様に関して説明されているが、ひと つの実施態様の具体的特徴は、別の実施態様に帰するものではない。単独の実施態様が、 本開示の全ての態様を代表するものではない。一部の実施態様において、組成物又は方法 は、本明細書において言及されない多くの化合物又は工程を含み得る。別の実施態様にお いて、組成物又は方法は、本明細書に列挙された化合物又は工程を、含まないか、又は実 質的に無関係である。説明された実施態様の変化及び修飾が存在する。例えば本明細書に 開示された試薬組成物は、本明細書に開示された発蛍光型プローブのみを含有する必要は ない。これは、一般に発蛍光型プローブに適した任意の種類の化合物を含有することがで きる。本明細書に開示された発蛍光型プローブの作製法及び使用法は、多くの工程に関し て説明されていることは注目される。これらの工程は、いずれかの順番で実践することが できる。1以上の工程を、省くか、又は組み合わせ、依然実質的に同じ結果を実現するこ とができる。添付された「特許請求の範囲」は、本開示の範囲内に収まるようそのような 変化及び修飾の全てを対象とすることが意図されている。

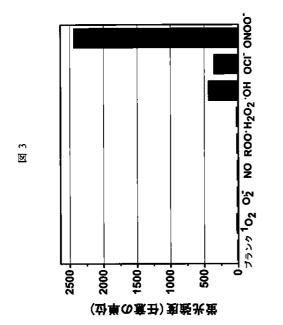
[0263]


本明細書において言及された全ての刊行物及び特許出願は、各々個別の刊行物及び特許 出願が具体的かつ個別に引用により本明細書中に組み込まれていることを示したのと同程 度に、引用により本明細書中に組み込まれている。本開示は、本発明、その原理、及びそ の実践的適用を当業者に知らせるために、例証及び実施例により詳細に説明されているこ とは理解されるべきである。更に、説明されたように本明細書に提供される具体的実施態 様が、本開示を網羅するか又は限定することは意図されず、かつ多くの代替、修飾、及び 変化が、前記実施例及び詳細な説明を考慮し、当業者に明らかである。従って本開示は、 下記「特許請求の範囲」の精神及び範囲内に収まるそのような代替、修飾、及び変化を全 て包含することが意図されている。先の実施例及び説明の一部は、化合物、組成物及び方 法が機能し得る様式に関するいくつかの結論を含むが、本発明者らは、そのような結論及 び機能により結びつけることを意図するものではないが、現時点の理解を考慮し、それら を可能な説明としてのみ提供する。

30


20

<u></u>[]

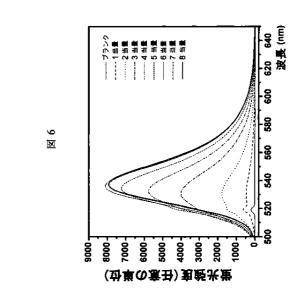


【図3】

X 5

2000-

1600-


1200-

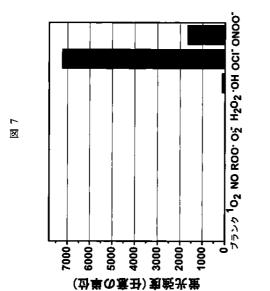
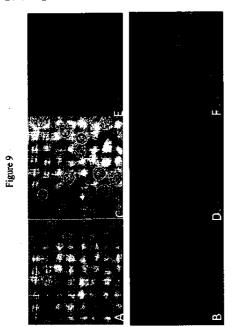
800-

(立単の意丑) 変設光堂

100

01 ブランク 102 NO ROO O2 H202 OH OCT ONOO 【図6】

【図7】

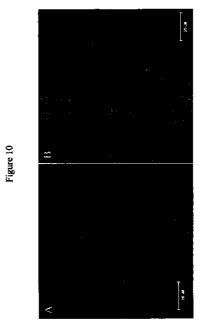
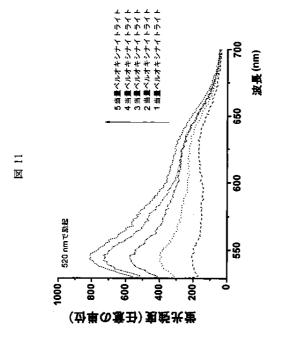


Figure 8



【図11】

フロントページの続き

(51)Int.Cl.		FΙ	
C 0 7 D 493/10	(2006.01)	CO7D 493	B/10 C
GO1N 21/64	(2006.01)	G O 1 N 21	/64 F
G01N 33/50	(2006.01)	GO1N 33	3/50 Z
G01N 33/52	(2006.01)	G O 1 N 33	3/52 C
GO1N 33/58	(2006.01)	GO1N 33	3/58 Z

(74)代理人 100143971

弁理士 藤井 宏行

(72)発明者 ダン ヤング

中華人民共和国 香港 ルイトテルトン ロード 52 グロリ ヘイグフトス フラト 16デ ィー

- (72)発明者 タオ ペング
 - 中華人民共和国 香港 クイーンズ ロード ウエスト 395 3/エフ

合議体

- 審判長 三崎 仁
- 審判官 郡山 順
- 審判官 渡戸 正義

(56)参考文献 国際公開第04/078030(WO, A2) 国際公開第00/064988(WO, A1) 国際公開第06/124560(WO, A2) 国際公開第04/078479(WO, A2) 米国特許出願公開第2006/0293523(US, A1) 米国特許出願公開第2004/0171817(US, A1) 米国特許出願公開第2006/0021546(US, A1) 特開昭57-165387 (JP, A) 特開昭63-61056 (JP, A) 特開昭61-137876 (JP, A) 特開昭56-98196 (JP, A) 特開昭63-203374 (JP, A) 特開平7-76587 (JP, A) 特開平2-251484 (JP, A) 特開平3-236989 (JP, A) 特開平2-28263 (JP, A) 英国特許出願公告第1273454(GB, A)

(58)調査した分野(Int.Cl., DB名)

CAPLUS∕REGISTRY (STN) C07D G01N33/00-33/98 G01N21/64