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a b s t r a c t 

This study develops link-based and approach-based variational inequality (VI) formulations 

for the frequency-based transit assignment with supply uncertainty, where link flows and 

flow on each outgoing link from each node are decision variables, respectively. Both the 

mean and variance of travel cost, including the covariance of in-vehicle travel costs, are 

captured in both formulations. To address the covariance of in-vehicle travel costs between 

different links on the same transit line, an augmented route-section network representa- 

tion is developed, allowing us to apply the dynamic programming method to compute the 

value of the mapping function of the VI. The approach-based formulation can be solved by 

an extragradient method that only requires mild assumptions for convergence. It is found 

that the number of links carrying flow and equilibrium cost can be underestimated if sup- 

ply uncertainty is not considered. 

The study also introduces and examines the capacity paradox, a phenomenon in which 

the network maximum throughput may be reduced after new transit lines are added to 

a transit network or after the frequency of an existing line is increased. It is found that 

the capacity paradox may or may not occur simultaneously with the Braess-like paradox, 

a phenomenon in which providing new transit lines to a network may deteriorate the 

network performance in terms of the total weighted sum of the mean and variance of 

travel cost of all of the passengers. The demand level and the degree of risk aversion of 

passengers are the key factors that determine the occurrence of the capacity paradox. 

© 2016 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 

 

 

 

 

 

1. Introduction 

1.1. Motivations and objectives 

This research was motivated by two problems. First, due to various factors such as road incidents, signal breakdown, and

weather conditions, the cost components of transit assignment problems are stochastic. Although some studies (e.g., Yang

and Lam, 2006; Li et al., 20 08, 20 09b; Sumalee et al., 2011; Meng and Qu, 2013; Szeto et al., 2013; Fu et al., 2014 ) have

developed models to capture the stochastic costs of transit assignment problems, these models have some of the following

drawbacks: (1) their formulations require specific travel time distributions, which may not be validated in reality; (2) their
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algorithms require strong conditions (e.g., monotonicity) for convergence, which may not be satisfied by the cost function

of the problem; and (3) their formulations (e.g., Szeto et al., 2013 ) are path-based. A traditional drawback of path-based

models has been the large memory and storage requirements of path enumeration. Recently, efficient methods, such as

event dominance ( Florian, 1998, 2004 ) or equilibrated choice sets ( Watling et al., 2015; Rasmussen et al., 2015 ), have been

developed to overcome these issues and have been applied to commercial software packages (e.g., Emme). However, to

the best of our knowledge, most existing path set generation methods assume deterministic travel costs, and the variance

and covariance of travel costs are not addressed. These methods are sometimes heuristic and cannot be easily extended to

capture the covariance terms in the variance path travel cost. Szeto et al. (2011, 2013 ) used a k -shortest path algorithm to

generate paths as needed; however, from the perspective of efficiency, it is hard to determine a good choice for the value

of k in advance and they did not demonstrate their solution methods using a large, realistic network. 

Our second motivation is related to the use of transit assignment models to evaluate the effectiveness of network design

strategies, such as adjustments to transit itineraries or service frequencies. Without the consideration of the demand and

supply uncertainties, Szeto and Jiang (2014) revealed a Braess-like paradox, in which the system performance may deterio-

rate, in terms of the expected total system travel cost, after new transit lines are provided to a transit network or after the

frequency of an existing transit line is increased. Other than the total system travel cost, which is a level of service measure,

the network performance can also be measured by the network capacity, defined as the maximum throughput of a network,

which determines whether the transit network can handle all of the demand. Thus, it is necessary to investigate how transit

network design strategies affect network capacity, and whether there is a paradox from the perspective of transit network

capacity; that is, the network capacity can be worse off after new transit lines are provided to a transit network or after the

frequency of an existing transit line is increased, i.e., the capacity paradox. 

The objectives of this study are as follows. 

• To develop formulation approaches to model the transit assignment problem, in which stochasticities in the in-vehicle

travel cost, dwell cost, and congestion cost caused by supply uncertainty are considered. To formulate the problem, these

approaches only require the mean and variance of these cost components (and the covariance of in-vehicle travel costs)

without specifying their distributions. 

• To analyze the properties of the problem. 

• To develop a convergent solution method under milder conditions that does not rely on path enumeration and generation

techniques, and illustrate its performance to solve large transit networks. 

• To introduce and examine the capacity paradox. 

1.2. Literature review 

Some of the early works in transit assignment or related areas, such as Lampkin and Saalmans (1967), Dial (1967) , and

Fearnside and Draper (1971) , computed the shortest path and assigned passengers on it after accounting for waiting times

at transit stops. However, these early models did not consider the route choice problem of passengers traveling between a

pair of stops served by several competing, direct lines, where some of the routes may be overlapped. 

Le Clercq (1972) did consider the route choice problem, but assumed that passengers consider all of the direct lines

and board the first arriving bus. Chriqui (1974) and Chriqui and Robillard (1975) assumed that a passenger only considers

a subset of these direct lines, so as to minimize his or her expected travel time. They solved the problem of selecting the

optimal subset of direct lines analytically, a problem referred to as the common line problem. 

The idea of a set of attractive lines has been generalized to the optimal strategy concept ( Spiess, 1984; Spiess and Florian,

1989 ). Assuming that a passenger will use his or her individual optimal strategy in traveling, Spiess and Florian (1989) de-

veloped a linear programming model to tackle the common line problem; their proof demonstrated that their model’s dual

solutions satisfy the user equilibrium conditions. Subsequently, two modeling streams were derived from the abovemen-

tioned behavioral assumption using two different network representations: the hyperpath graph network representation 

( Nguyen and Pallottino, 1988; Wu et al., 1994; Cominetti and Correa, 2001; Cortés et al., 2013; Sun et al., 2013 ) and the

route-section network representation ( de Cea and Fernández, 1993; Lam et al., 1999, 2002; Li et al., 2009b; Szeto et al.,

2011, 2013 ). Although both of these modeling approaches are based on the same behavioral assumption, they have differ-

ent pros and cons. The merit of the hyperpath graph representation is that the optimal set of attractive lines can be easily

determined, but at the cost of creating more boarding and alighting nodes. The route-section representation can reduce

the number of links required to form the network when the number of common lines is large. Moreover, the route-section

representation allows the development of a link-based formulation and the adoption of available algorithms to solve for

solutions. 

Other network representations were developed from the hyperpath or route-section network representations, including: 

(a) state augmented network ( Lo et al., 2003, 2004; Lozano and Storchi, 2001 ); (b) space time network ( Nguyen et al.,

2001; Hamdouch and Lawphongpanich, 2008; Hamdouch et al., 2014 ); (c) diachronic network ( Nuzzolo et al., 2001; Sumalee

et al., 2009 ); and (d) star network ( Tong and Wong, 1999; Zhang et al., 2010 ). In general, a more complicated network

representation requires more memory storage and computation time; however, it captures more of the cost components

considered by passengers, such as non-linear transit fare, transfer cost, and congestion cost. 
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Among these cost components, the congestion cost due to capacity constraints has received the most attention in the

literature. Existing studies adopt two approaches to address capacity constraints: the soft capacity constraint approach (e.g.,

Spiess and Florian, 1989; de Cea and Fernández, 1993; Nielsen, 20 0 0, 20 04; Cominetti and Correa, 20 01; Lam et al., 20 02; Lo

et al., 2002; Nielsen and Frederiksen, 2006; Teklu 2008; Ren et al., 2009; Leurent, 2012; Liu and Meng, 2014 ) and the hard

capacity constraint approach (e.g., Last and Leak, 1976; Lam et al., 1999; Cepeda et al., 2006; Li et al., 2009a; Szeto et al.,

2013; Chen et al., 2015 ). The difference is that the soft capacity constraint approach allows a passenger to board a fully

occupied transit vehicle, whereas the hard capacity constraint approach does not. The hard capacity constraint approach

is more realistic in some situations (e.g., the high-frequency minibus service in Hong Kong where no standing is allowed).

However, there may be no solution to the problems that result from insufficient capacity. The advantage of the soft capacity

constraint approach is that a solution must exist to the resultant transit assignment problem under the condition that the

solution set is compact and convex and the mapping function is continuous (see, e.g., theorem 1.4 of Nagurney, 1993; Szeto

et al., 2013 ), but there is a risk of generating unrealistic link flows that exceed the link capacities. 

Most of the preceding transit assignment models consider the concept of user equilibrium; that is, passengers are as-

sumed to use the shortest path formed by a sequence of transfer stops. However, these models assume that the passengers

have perfect knowledge about the network condition, which may not be realistic. Some researchers (e.g., Lam et al., 1999;

2002 ) extended the consideration to logit-based stochastic user equilibrium. However, they did not consider the path over-

lapping issue. To address this issue, researchers ( Hoogendoorn-Lanser et al., 2005; Hoogendoorn-Lanser, 2005; Anderson,

2013; Anderson, et al., 2014 ) developed path-size logit models and probit-based models ( Nielsen, 20 0 0, 20 04; Nielsen and

Frederiksen, 2006 ) for transit assignment. 

Most of the abovementioned studies assume that the cost components are deterministic, and thus ignore the variability

in the travel cost components. However, the cost components are stochastic because of road incidents, signal breakdown, and

weather conditions. Indeed, various empirical studies have demonstrated that passengers’ route choice behavior is affected

by variations in trip time caused by the supply uncertainty of transit networks ( Chen et al., 2009; Casello et al., 2009;

Habib et al., 2011; Frumin and Zhao, 2012; Carrel et al., 2013; Diab and El-Geneidy, 2013 ). Although some studies (e.g.,

Yang and Lam, 2006; Li et al., 2008, 2009b; Sumalee et al., 2011; Meng and Qu, 2013; Szeto et al., 2013; Fu et al., 2014 )

have developed stochastic models to capture the effects of supply uncertainty, they suffer from the drawbacks mentioned

in Section 1.1 . These issues are addressed by the first three objectives of this study. 

The third objective, to develop a convergent solution method under milder conditions, is also motivated by the desire to

improve the solution methods for transit assignment models even without considering uncertainty. Existing models are of-

ten solved by methods that require strong conditions to be satisfied to guarantee convergence. For example, the symmetric

linear method (e.g., Wu et al., 1994 ) requires that the link cost function is strictly monotone 1 for convergence. The methods

of de Cea and Fernández (1993) (i.e., the diagonalization method) and of Szeto et al. (2013) (i.e., self-adaptive projection and

contraction algorithm with column generation) assumed monotonic 2 mapping to ensure convergence. Kurauchi et al. (2003),

Cepeda et al. (2006), Sumalee et al. (2009) , Schmöcker et al. (2011) , and Cortés et al. (2013) adopted the MSA, whose conver-

gence requires the cost or mapping function to be strictly pseudo-contractive ( Johnson, 1972 ) or to satisfy the assumptions

in Blum’s theorem ( Blum, 1954 ). However, these conditions are not always satisfied, especially when asymmetric link cost

functions are used in transit assignment. Szeto and Jiang (2014) used the extragradient method to solve their transit assign-

ment problem. This method only requires the mapping function to satisfy the pseudomonotone 3 and Lipschitz continuity 4

conditions for convergence. However, this method cannot be used to handle our problem directly. Liu et al. (2009) devel-

oped the self-regulated averaging method (SAM), which includes the method of successive averages (MSA) as a special case,

to solve stochastic user equilibrium assignment problems. The SAM has the same convergence requirements as the MSA, but

was shown to have a faster convergence speed than the MSA. The SAM has not been used to solve our studied problem. 

The final objective is actually motivated by the Braess paradox in traffic assignment, the Braess-like paradox in transit

assignment ( Szeto and Jiang, 2014 ), and the capacity paradox in traffic assignment, as introduced by Yang and Bell (1998) . 

1.3. Contributions and organization 

The contributions of this research are as follows: 

• proposes link- and approach-based equilibrium conditions for transit assignment that capture supply uncertainty and the

corresponding VI formulations for the problem; 

• develops an augmented route-section network representation to internalize the covariance of the in-vehicle travel costs

between different links on the same transit line and prevent irrational transfers, where a passenger alights from one line

and boards back onto the same line; 

• proves that the mapping function in the link-based VI formulation is not strictly monotone and multiple solutions exist

to the problem; 
1 A vector function F is strictly monotone on a non-empty set C if for all x, y ∈ C , x � = y , ( y − x ) T ( F ( y ) −F ( x ) ) > 0 . 
2 A vector function F is monotone on a non-empty set C if for all x, y ∈ C , x � = y , ( y − x ) T ( F ( y ) −F ( x ) ) ≥ 0 . 
3 A vector function F is pseudomonotone on a non-empty set C if for all x, y ∈ C , ( y − x ) T F (x ) ≥ 0 implies that ( y − x ) T F (y ) ≥ 0 . 
4 A vector function F is Lipschitz continuous with Lipschitz constant L f on a subset I of R n if there is a nonnegative constant L f such that | F (x ) −f (y ) | ≤

L f | x − y | , ∀ x , y ∈ I. 
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• shows that the SAM may not obtain a convergent solution to the link-based formulation; 

• illustrates the existence of a capacity paradox in transit assignment in addition to a Braess-like paradox under supply

uncertainty; 

• identifies the factors that affect the occurrence of the capacity paradox, and illustrates their effects with examples; and 

• demonstrates that the capacity paradox may not occur simultaneously with the Braess-like paradox, indicating a need to

solve a bi-objective bilevel network design problem. 

In terms of formulation, although this study extends the link-based formulation and approach-based formulation intro-

duced by Szeto and Jiang (2014) to capture supply uncertainty, the extensions are not straightforward due to the need to

consider the covariance of link travel costs in the variance path travel cost. Variance path travel cost is not simply equal to

the sum of the variance of link travel costs associated with the path; it also includes the covariance travel costs between

links on the path. This non-additive property of variance path travel cost can be captured easily if a path-based formu-

lation for the problem with soft (e.g., Szeto et al., 2011 ) or hard capacity constraints ( Szeto et al., 2013 ) is used, because

paths are clearly defined in the formulation. However, paths are not used in formulating link-based and approach-based

transit assignment problems. This prevents us from directly capturing the covariance of link travel costs in the link-based

and approach-based formulation approaches. To address this issue, we introduce an augmented route-section network rep-

resentation that prevents irrational transfers, formulate the studied transit assignment problem based on this presentation,

and mathematically prove that the covariance terms can be internalized into the resultant formulations under a realistic

assumption that passengers do not make irrational transfers. 

The formulation approach actually determines the choice of solution method, which might affect convergence and com-

putation speed. Based on the approach-based formulation, we can solve the studied transit assignment problem without

relying on column (i.e., path) generation heuristics or using a time-consuming path enumeration process to determine

paths, which may be an advantage for two reasons. First, to the best of our knowledge, although smarter column gener-

ation techniques exist, most existing path set generation methods assume deterministic travel costs, and thus the variance

and covariance of travel costs are not addressed. These methods are sometimes heuristic and cannot be easily extended

to capture the covariance terms that occur in variance path travel cost. Second, although Szeto et al. (2011, 2013 ) used a

k -shortest path algorithm to generate paths when needed, from the perspective of efficiency, a good choice of the value of k

is hard to determine in advance. Szeto et al. did not demonstrate their solution methods using a large, realistic network. In

contrast, the approach-based formulation allows us to solve the resulting problem (with soft capacity constraints) using the

extragradient method, which guarantees convergence under milder conditions than the solution method developed by Szeto

et al. (2011 ). The extragradient method only requires pseudomonotonicity and Lipschitz continuity of the mapping function

for convergence, whereas the method of Szeto et al. (2011 ) requires monotonicity of the mapping function. This study proves

that monotonicity is not satisfied at the level of link effective travel cost. The solution approach is demonstrated using the

Winnipeg network, which consists of 1067 nodes, 3647 origin destination pairs, and 133 transit lines. 

In contrast to the path-based formulations introduced by Szeto et al. (2011, 2013 ), this study develops link-based and

approach-based formulations for the reliability-based transit assignment problem with soft capacity constraints; it adopts

the extragradient method, which allows convergence under milder assumptions and avoids using column generation heuris-

tics and the time-consuming path enumeration approach. The performance of the solution algorithm is demonstrated using

a large network. Unlike Szeto and Jiang (2014) , this study captures the supply uncertainty, which is not a straightforward

extension due to the consideration of covariance between different sections. Unlike the literature, this study introduces and

analyzes the capacity paradox, develops a new network representation that avoids irrational transfers, and proves that the

travel cost is not monotone. 

The remainder of this paper proceeds as follows. Section 2 introduces the augmented route-section network represen-

tation for a transit network, followed by the notation and assumptions used in this paper. The section then presents the

path-, link-, and approach-based VI formulations. Section 3 discusses the solution algorithm for solving the approach-based

VI formulation. Section 4 illustrates and analyzes the occurrence of the capacity paradox, and demonstrates the computation

performance. Finally, Section 5 presents our conclusions and discusses future research directions. 

2. Formulation 

This section first introduces the new augmented route-section network representation, followed by our notation, assump-

tions, formulation of link cost components, and definition of effective travel cost. Path-based and link-based formulations

are then presented for the sake of completeness. Finally, the approach-based formulation is derived. 

2.1. Network representations 

A general transit network is considered. The network consists of a set of transit lines and a set of transit stops (nodes),

where passengers can board, alight, or transfer. The transit network can be formed using the route information provided by

operators. For example, Fig. 1 (a) illustrates a transit network using the lines’ information provided in Table 1 . For modeling

purposes, the transit network is further transformed into a route-section network representation. 
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Fig. 1. Transit network representations. 

Table 1 

Transit line information. 

Line Stops 

L1 A, B 

L2 A, X, Y 

L3 X, Y , B 

L4 Y, B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.1. Route-section network representation 

Fig. 1 (b) shows the route-section network that corresponds to the line-node network presented in Fig. 1 (a). The route-

section network was introduced by de Cea and Fernández (1993) . The aim of the route-section network representation is to

classify passengers waiting at transit stops (including origins or transfers) into different groups based on their next alighting

nodes (which may be their next transfer locations or their destinations). For passengers boarding at the same transit stop

and traveling to the identical alighting node without a transfer, a link called a section is created to connect the boarding

and alighting stops. On each section, if there is more than one line, a set of attractive lines is determined via the method

introduced by Chriqui and Robillard (1975) . Afterwards, the flow on an attractive bus line is obtained by splitting the section

flow according to the line’s relative frequency. 

The transit assignment over a traditional route section network may overestimate the number of transfers and generate

irrational transfers within the same line. For example, if 100 passengers travel from A to Y in Fig. 1 (b) and if 60 passengers

select the route that passes section S5, then the remaining 40 passengers select the route that passes S2(L2) and S3(L2, L3).

Assuming that the frequencies of L2 and L3 are identical, the 40 passengers traveling on S3(L2, L3) are equally assigned

to L2 and L3. This result means that on S2, there are 20 passengers on L2 and 20 passengers on L3. More precisely, the

results imply that 20 passengers board L2 at node A, alight at node X, then board L2 again. Such transfers are rarely found

in reality, as passengers can travel to node Y directly via L2. Thus, it should be eliminated from the results. 

2.1.2. Augmented route-section network representation 

To address this issue, a new augmented route-section network representation is proposed, as shown in Fig. 1 (c). The aim

is to create a dummy (route) section with a large travel cost to penalize transfers within the same line; at the same time,

a dummy node is created to allow transfers between different lines. For example, in Fig. 1 (c), dummy sections S10 and S11,

represented by dashed lines, are created to connect X 

′ to X and Y 

′ to Y, respectively, where X 

′ and Y 

′ are dummy nodes

representing transfer stops between different lines. In addition, new sections, denoted by dotted lines, S7(L3), S8(L4), and
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S9(L3), are constructed to model transfers between different lines. For example, if passengers using S2(L2) want to transfer

to L3, they can alight at dummy node X 

′ and transfer to the new sections S7(L3) and S9(L3) to arrive at nodes B and Y,

respectively. Similarly, passengers using S3(L2, L3) can transfer to L4 at node Y 

′ 
On the augmented network, any route containing an irrational transfer must pass at least one dummy section, and any

route not containing any irrational transfer must not pass any dummy section. For example, if passengers want to travel

from A to Y via S2(L2) and S3(L2, L3), they must pass dummy section S10. Because the travel cost on S10 is high, no

passengers are assigned to route S2(L2)-S3(L2, S3) and irrational transfers are avoided. In fact, passengers boarding L2 can

directly arrive at node Y, represented by S5(L2), or transfer to L3 at X 

′ , represented by S9(L3). In these two cases, no dummy

sections and no irrational transfers are involved. 

As shown in Appendix A , in addition to eliminating the routes containing irrational transfers, using the augmented route-

section network representation under the assumption that passengers do not make irrational transfers allows the internal-

ization of the covariance of the in-vehicle travel costs between different sections of the same line into the variance of one

section. Thus, the resultant problem can be solved as a traditional transit assignment problem without considering supply

uncertainty; thus, the dynamic programming method can be applied to solve the resultant formulation. Note that it is im-

portant to model the covariance between different sections of the same line, as the in-vehicle travel costs associated with

the same line on different sections are dependent. For example, a delay on one section can lead to a delay on a subsequent

section of the same line in reality. 

Although the augmented route-section network representation has advantages for handling covariance and rational and 

irrational transfers properly, it requires more computational time and storage due to the additional dummy links and dummy

nodes created. Therefore, the choice to use the augmented network depends on the trade-off between the requirements of

modeling accuracy and computational efficiency. 

In addition, it is worth mentioning that the augmented route-section network representation was initially motivated by

the need for link-based and approach-based formulations. There is no conceptual difficulty in applying it to a path-based

formulation. Nevertheless, if a path-based formulation is developed, irrational transfers could be alternately addressed by

event-dominance principles ( Florian, 2004 and Nielsen, 2006 ) or transfer penalties ( Nuzzolo et al., 2012 ). 

2.2. Notation 

2.2.1. Set 

N set of nodes or stops 

S set of sections, links, or approaches 

O set of origins 

D set of destinations 

Q set of origin-destination (OD) pairs 

L s , ̄L s set of lines and attractive lines on section s , respectively 

A + 
i 

, A −
i 

set of sections coming out from and going into node i , respectively 

P od set of paths connecting an OD pair ( o, d ) ∈ Q
� f solution space in terms of path flows 

�v solution space in terms of link flows 

�α solution space in terms of approach proportions 

2.2.2. Indices 

r origin index 

d destination index 

s section index 

l line index 

p path index 

t ( s ), h ( s ) tail and head nodes of section s , where s = ( t( s ) , h ( s ) ) 

2.2.3. Parameters 

b s, 1 , b s, 2 , b s, 3 , n calibrated perceived congestion parameters for section s 

γk unit conversion parameter for capacity; when the unit of headway is minutes and that of bus capacity 

is passengers per hour, γk = 60 minutes per hour 

γf unit conversion parameter for frequency; when the unit of frequency is vehicles per hour and that of 

waiting is minutes, γf = 60 minutes per hour 

ρ parameter representing the risk-aversion of passengers 

f l mean frequency of line l 

k l capacity of a single vehicle traversing route l 

g od demand of an OD pair od or demand between nodes o and d 

μT , μW , μ� value of in-vehicle travel time, value of waiting time, and value of congestion, respectively 
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2.2.4. Variables and functions 

C s travel cost associated with section s 

C id travel cost between nodes i and d 

C od 
p travel cost from origin o to destination d via path p 

T l s in-vehicle travel time of line l on section s 

T s weighted average in-vehicle travel time on section s 

T l s, 0 dwell time of line l on section s 

T s, 0 weighted average dwell time on section s 

W s waiting time of passengers for the first arriving transit vehicle on section s 

w 

l 
s relative frequency of line l on section s 

�s perceived congestion cost on section s because of insufficient capacity 

f s mean frequency of section s 

K s capacity of section s 

E[ ·] expectation of a random variable 

Var[ ·] variance of a random variable 

Cov [ ·, ·] covariance between two random variables 

v s number of passengers on section s 

ˆ v s total number of passengers on the competing sections of section s 

v d 
sl 

number of passengers on section s using line l in the direction of destination d 

v d s number of passengers on section s moving toward destination d 

v vector of ( v d s ) with dimension | S| × | D | 
�s 

p element in the path-section incidence matrix; if route p passes section s , �s 
p = 1 , otherwise �s 

p = 0 

f od 
p flow on path p connecting OD pair od 

f vector of ( f od 
p ) with dimension 

∑ 

(o,d) ∈ Q | P od | 
u id s minimum effective travel cost from node i to destination d via section s ∈ A + 

i 

u id minimum effective travel cost between nodes i and d 

u vector of ( u id s ) with dimension | N| × | D | 
αd 

s proportion of passengers leaving node t ( s ) via approach s to destination d 

α vector of ( αd 
s ) with dimension | S| × | D | 

π od 
p effective travel cost associated with path p connecting OD pair od 

π od minimum effective travel cost between OD pair od 

q id number of passengers leaving node i toward destination d 

2.3. Assumptions 

As in previous studies (e.g., Spiess and Florian, 1989; de Cea and Fernández, 1993; Szeto et al., 2013; Szeto and Jiang,

2014 ), the following classical assumptions are made throughout this paper. 

A1. The travel demand between each OD pair in the system is assumed to be known and fixed. This assumption is rea-

sonable for strategic planning when day-to-day variation is small and negligible, and the demand for public transport

is stable in the long term. 

A2. Passengers are assumed to arrive at transit stops randomly. 

A3. Passengers know the mean and variance of in-vehicle travel time for each section. This assumption is reasonable for

frequent commuters who are well aware of the level of service. 

A4. Each passenger selects the transit route that minimizes his/her effective travel cost, where the effective travel cost is

defined in the next section. 

A5. Each passenger waiting at a transfer node considers a set of attractive lines and boards the first arriving bus belonging

to this set of attractive lines. Traditionally, the set of attractive lines can be obtained by the method developed by de

Cea and Fernández (1993) , in which an integer optimization model that minimizes a passenger’s expected travel cost

is solved to determine whether a transit line is attractive. In this study, we revise the integer optimization model

using effective travel cost. For simplicity, the set of attractive lines is only determined once and assumed to be fixed

despite congestion levels. 

A6. The values of in-vehicle travel time, waiting time, and congestion are assumed to be independent and constant.

Although it has been pointed out that these values could be random and correlated ( Nielsen et al., 2002; Mabit

and Nielsen, 2006 ), they are not considered, because the focus of this study is the stochasticity in the supply side

components. 

A7. Stochastic vehicle headways with the same distribution function (i.e., exponential) are assumed for vehicles servicing

different lines. 

A8. The in-vehicle travel costs of different lines are independent, whereas the in-vehicle travel costs associated with the

same line on different sections are dependent and their covariances are known. 

A9. The waiting time for a transit line on a section is independent of the waiting times for other lines on the same

section. 

A10. The in-vehicle travel, waiting, congestion, and dwell time costs of a section are independent of each other. This

assumption requires that there is no interaction between different cost components. However, as the waiting time

depends on the frequency of transit lines and the frequency is determined by the in-vehicle travel time, these cost

components may not be independent. Thus, the relaxation of this assumption is left for future study. 
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A11. The in-vehicle travel time on a section is subject to randomness due to supply uncertainty. 

A12. The waiting, congestion, and dwell costs of a section are independent of those of other sections. 

2.4. Cost components 

The travel cost associated with section s, C s , is defined by 

C s = μT T s + μW 

W s + μ��s + μT T s, 0 , ∀ s ∈ S. (1) 

Eq. (1) means that the travel cost on section s comprises the in-vehicle travel cost μT T s , the waiting cost of passengers

for the first arriving vehicle μW 

W s , the perceived congestion cost μ��s caused by insufficient vehicle capacity, and the

dwell time cost μT T s, 0 , where �s = b s, 1 ( 
b s, 2 v s + b s, 3 ̂ v s ∑ 

l∈ ̄L s f l k l 
) 

n 

. Note that the coefficient associated with a section flow is different

from that associated with a competing section, because the congestion cost of a passenger due to waiting time at a stop

may be higher than that due to in-vehicle congestion. Due to supply uncertainty, these cost components are stochastic and

modeled as random variables. Based on the assumptions given in Section 2.3 , their means and variances are derived as

follows: 

E [ μT T s ] = E 

[ 

μT 

∑ 

l∈ ̄L s 
w 

l 
s T 

l 
s 

] 

= μT 

∑ 

l∈ ̄L s 
w 

l 
s E 

[
T l s 

]
, ∀ s ∈ S , (2) 

V ar [ μT T s ] = μ2 
T 

∑ 

l∈ ̄L s 

(
w 

l 
s 

)2 
V ar 

[
T l s 

]
+ μ2 

T 

∑ 

l∈ ̄L s 

∑ 

l ′ ∈ ̄L s 
Cov 

[
T l s , T 

l ′ 
s 

]
, ∀ s ∈ S, (3) 

E [ W s ] = μW 

γf 

f s 
, ∀ s ∈ S, (4) 

V ar [ W s ] = μ2 
W 

(
γf 

f s 

)2 

, ∀ s ∈ S, (5) 

E [ �s ] = μ�b s, 1 n ! 

(
b s, 2 v s + b s, 3 ̂  v s ∑ 

l∈ ̄L s f l k l γk 

)n 

, ∀ s ∈ S, (6) 

Var [ �s ] = μ2 
�( b s, 1 ) 

2 
(
( 2 n ) ! − ( n ! ) 

2 
)(b s, 2 v s + b s, 3 ̂  v s ∑ 

l∈ ̄L s f l k l γk 

)2 n 

, ∀ s ∈ S, (7) 

E [ T s, 0 ] = μT 

∑ 

l∈ ̄L s 
w 

l 
s E 

[
T l s, 0 

]
, ∀ s ∈ S , and (8) 

V ar [ T s, 0 ] = μ2 
T 

∑ 

l∈ ̄L s 

(
w 

l 
s 

)2 
V ar 

[
T l s, 0 

]
, ∀ s ∈ S, (9) 

where w 

l 
s is the relative frequency of line l on section s and defined by 

w 

l 
s = 

f l 

f s 
, ∀ s ∈ S, l ∈ L̄ s and (10) 

f s is the mean frequency associated with section s and is given by 

f s = 

∑ 

l∈ ̄L s 
f l , ∀ s ∈ S. (11) 

The details of the derivations and discussions on the means and variance of W s and �s can be found in Szeto et al.

(2011 ). The other derivations are straightforward. 

2.5. Effective travel cost 

The variability in the in-vehicle travel time and the waiting time, along with the delay due to congestion, cause variability

in trip time (see, e.g., Lo et al., 2006 ) and in the value of travel time (see, e.g., Senna, 1994; Fosgerau and Engelson, 2011 ).

Consequently, a passenger cannot determine the exact trip time/cost to complete his or her journey. The passenger counters

the variability in trip time/cost by an early departure to allow for additional time for the trip and avoid being late. The

additional time is commonly referred to as a safety margin, and depends on both the purpose of the trip and the individual’s

risk taking behavior. Lo et al. (2006), Shao et al. (2008), Lam et al. (2008) , and Siu and Lo (2008) calculate the effective travel

time as the safety margin plus the expected trip time. However, this concept does not consider the fact that the monetary
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value of in-vehicle travel time differs from that of the waiting time. Szeto et al. (2011 ) proposed the concept of effective

travel cost (or travel cost budget), which generalizes the concept of travel time budget by using the trip travel cost (including

in-vehicle travel time cost and waiting time cost) instead of the trip travel time. The safety margin in terms of travel time or

cost can be represented by a linear function of either standard deviation or variance. Most studies have adopted the former

but this study adopts the latter due to its computational efficiency. Mathematically, the effective travel cost associated with

route p between OD pair od , π od 
p , can be expressed as 

π od 
p = E 

[
C od 

p 

]
+ ρV ar 

[
C od 

p 

]
, ∀ ( o, d ) ∈ Q, p ∈ P od , (12)

where ρ is the parameter that represents the degree of risk aversion of passengers and the unit is equal to the reciprocal

unit of the mean route travel time; this can be calibrated using the method in Jackson and Jucker (1982) . C p 
od represents

the travel cost associated with route p connecting OD pair od and is defined by 

C od 
p = 

∑ 

s ∈ S 
�s 

p C s , ∀ ( o, d ) ∈ Q, p ∈ P od . (13)

By substituting Eq. (13) into Eq. (12) , the effective travel cost is expressed as 

π od 
p = E 

[ ∑ 

s ∈ S 
�s 

p C s 

] 

+ ρV ar 

[ ∑ 

s ∈ S 
�s 

p C s 

] 

, ∀ ( o, d ) ∈ Q, p ∈ P od . (14)

By substituting Eq. (1) into Eq. (14) and simplifying the resultant expression, the effective travel cost can be obtained as

shown in the following equation: 

π od 
p = 

∑ 

s ∈ S 
�s 

p ( E [ μT T s ] + E [ μW 

W s ] + E [ μ��s ] + E [ μT T s, 0 ] ) 

+ ρ
∑ 

s ∈ S 
�s 

p ( V ar [ μT T s ] + V ar [ μW 

W s ] + V ar [ μ��s ] + V ar [ μT T s, 0 ] ) 

+ ρ
∑ 

s ∈ S 

∑ 

s ′ ∈ S,s ′ � = s 
�s 

p �
s ′ 
p Cov [ μT T s , μT T s ′ ] , ∀ ( r, d ) ∈ Q, p ∈ P od . (15)

Eq. (15) assumes that each cost component is independent, and only the covariance of the in-vehicle travel costs between

different links on the same transit line is non-zero. 

2.6. Path-based formulation 

Under the assumption that all of the passengers choose their lowest effective travel cost routes, the reliability-based user

equilibrium (RUE) condition in terms of path flows is defined as follows: 

π od 
p 

{
= π od , f od 

p > 0 

≥ π od , f od 
p = 0 

, ∀ ( o, d ) ∈ Q, p ∈ P od . (16)

Eq. (16) indicates that if a route between OD pair od carries flow, then its effective travel cost must equal the minimum

effective cost of that OD pair; otherwise, the cost is not less than the minimum effective travel cost. 

The path-based RUE conditions can also be represented in a nonlinear complementarity problem (NCP) format: 

(π od 
p − π od ) f od 

p = 0 , ∀ p ∈ P od , ( o, d ) ∈ Q, (17)

π od 
p − π od ≥ 0 , ∀ p ∈ P od , ( o, d ) ∈ Q, (18)

f od 
p ≥ 0 , ∀ p ∈ P od , ( o, d ) ∈ Q . (19)

Furthermore, path flows must satisfy the flow conservation conditions: ∑ 

p∈ P od 

f od 
p = g od , ∀ ( o, d ) ∈ Q . (20)

The reliability-based transit assignment problem finds a path flow vector to satisfy (2) –(11) , (14) , and (16) –(19) ; it can

be reformulated as a variational inequality (VI) problem. The VI problem determines f ∗ = [ f od∗
p ] ∈ � f , such that 

( f − f ∗) π( f ∗) ≥ 0 , ∀ f ∈ � f , (21)

where � f = { f od 
p | f od 

p ≥ 0 , ∀ ( o, d ) ∈ Q, p ∈ P od and 

∑ 

p∈ P od f od 
p = g od , ∀ ( o, d ) ∈ Q } , π(f ) =[ π od 

p ] , and π od 
p is defined by (2) –(11)

and (14) . It is not difficult to see that the solution set is closed and compact, and the mapping function is continuous.

Hence, a solution exists to the problem. 
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2.7. Link-based formulation 

The path-based formulation requires path set information, which can be obtained by path enumeration algorithms. One

method for reducing the computational burden in generating and maintaining path set is to use column generation tech-

niques. In that case, paths are only generated when needed. The second method is to reformulate the problem into a link-

based formulation, so that path enumeration is replaced by a shortest path determination procedure during the computation

process. This section considers the second method. 

The link-based RUE condition is defined as 

u 

id 
s 

{
= u 

id , v d s > 0 

≥ u 

id , v d s = 0 

, ∀ s ∈ A 

+ 
i 
, i ∈ N, d ∈ D , (22) 

where u id s is the minimum effective travel cost from node i to destination d via section s ∈ A 

+ 
i 

and u id is the minimum

effective travel cost between nodes i and d . u id s and u id are respectively defined by, 

u 

id 
s = E 

[
C s + C h ( s ) d 

]
+ ρVar 

[
C s + C h ( s ) d 

]
, ∀ i ∈ N, d ∈ D, s ∈ A 

+ 
i 

and (23) 

u 

id = min 

s ∈ A + 
i 

u 

id 
s , ∀ i ∈ N, d ∈ D. (24) 

If all of the travel costs components are assumed to be independent, Eq. (23) allows us to directly apply the dynamic

programming approach to easily obtain solutions. However, in this study, the covariances between different sections of the

same line are considered, making our model more realistic. In this case, the covariances prevent a straightforward appli-

cation of the dynamic programming method. To address this issue, we introduce the realistic assumption that passengers

do not transfer within the same line. Under this assumption and using the augmented route-section network, u id s can be

expressed as 

u 

id 
s = u 

h (s ) d + E [ C s ] + ρV ar [ C s ] , ∀ i ∈ N, s ∈ A 

+ 
i 
, d ∈ D, (25)

where E [ C s ] and Var [ C s ], respectively, equal E[ μT T s ] + E[ μW 

W s ] + E[ μ��s ] + E[ μT T s, 0 ] and V ar[ μT T s ] + V ar[ μW 

W s ] +
V ar[ μW 

�s ] + V ar[ μT T s, 0 ] , and can be easily obtained using Eqs. (2) to (11) . The derivation of the above equation is presented

in Appendix A . 

The link-based RUE conditions can be represented as an NCP: 

(u 

id 
s − u 

id ) v d s = 0 , ∀ s ∈ A 

+ 
i 
, i ∈ N, d ∈ D, (26)

u 

id 
s − u 

id ≥ 0 , ∀ s ∈ A 

+ 
i 
, i ∈ N, d ∈ D, and (27) 

v d s ≥ 0 , ∀ s ∈ A 

+ 
i 
, i ∈ N, d ∈ D. (28)

In addition, the flow conservation constraint is defined by ∑ 

s ∈ A −
i 

v d s + g id = 

∑ 

s ∈ A + 
i 

v d s , ∀ i ∈ N, d ∈ D. (29) 

The link-based NCP formulation can be reformulated as a VI problem: to find v ∗ = [ v d∗
s ] ∈ �v such that 

( v − v ∗) T u ( v ∗) ≥ 0 , ∀ v ∈ �v , (30) 

where �v = { v d s | v d s ≥ 0 , ∀ s ∈ S, d ∈ D and 

∑ 

s ∈ A + 
i 

v d s = g id + 

∑ 

s ∈ A −
i 

v d s , ∀ i ∈ N, d ∈ D } , u (v ) =[ u id s ] , and the elements in u ( v ) can

be obtained by Eqs. (2) –(11) and (24) –(25) . 

For the link-based VI formulation, the following propositions can be proved. 

Proposition 1. The mapping function u ( v ) in the link-based VI formulation is not strictly monotone. 

Proof: See Appendix B . 

Proposition 1 implies that the solution methods that require the strictly monotone condition for convergence (i.e., Wu

et al., 1994 ) may not give an RUE solution to the studied problem. Therefore, it is necessary to develop solution algorithms

that only require mild assumptions to solve the problem. From proposition 1 , we can easily derive the following proposition.

Proposition 2. Multiple solutions exist to the link-based VI formulation. 
Proof: See Appendix B . 
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Fig. 2. Network representation of the approach-based formulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.8. Approach-based formulation 

Following Szeto and Jiang (2014) , the preceding link-based formulation can be reformulated as an approach-based for-

mulation in which the approach of a node is defined by the section coming out from that node, and an approach proportion

is defined as the proportion of passengers leaving a node via the approach considered. If the approach proportion, αd 
s , is

denoted as the proportion of the passengers per hour going to destination d via section s , the proportion must then satisfy

the following conditions: 

0 ≤ αd 
s ≤ 1 , ∀ s ∈ S, d ∈ D and (31)

∑ 

s ∈ A + 
i 

αd 
s = 1 , ∀ i ∈ N, d ∈ D, (32)

where A 

+ 
i 

is the set of sections coming out from node i . The approach-based RUE equilibrium conditions can be formulated

as 

(h 

t ( s ) d 
s − h 

t ( s ) d ) αd 
s = 0 , ∀ s ∈ A 

+ 
i 
, i ∈ N, d ∈ D, (33)

h 

t ( s ) d 
s − h 

t ( s ) d ≥ 0 , ∀ s ∈ A 

+ 
i 
, i ∈ N, d ∈ D, and (34)

αd 
s ≥ 0 , ∀ s ∈ S, d ∈ D, (35)

where h t(s ) d 
s represents the effective travel cost from the tail node of section s to destination d via approach s , and h t ( s ) d is

the minimum effective travel cost between the tail node of section s and d . Note that they are functions of α = [ αd 
s ] . 

Additionally, the following flow conservation constraint must hold: ∑ 

s ∈ A −
i 

αd 
s q 

t(s ) d + g t ( s ) d = 

∑ 

s ∈ A + 
i 

αd 
s q 

t ( s ) d , ∀ i ∈ N, d ∈ D. (36)

The link-based transit assignment formulation in terms of approach proportions can be reformulated as a VI problem

that determines α∗ = [ αs 
d∗] ∈ �α such that 

( α−α∗) T h ( α∗) ≥ 0 , ∀ α ∈ �α, (37)

where α = [ αd 
s ] , h (α) = [ h t(s ) d 

s ] , and 

�α = 

{ 

αd 
s | 0 ≤ αd 

s ≤ 1 , ∀ s ∈ S, d ∈ D, 
∑ 

s ∈ A + 
i 

αd 
s = 1 , 

∑ 

s ∈ A −
i 

αd 
s q 

t(s ) d + g t ( s ) d = 

∑ 

s ∈ A + 
i 

αd 
s q 

t ( s ) d , 

∀ i ∈ N, d ∈ D 

} 

. 

Although we use the term “approach proportion”, the definition we use is different from that proposed by Bar-Gera

(2002) . We define “approach proportion” using outgoing links from nodes, whereas Bar-Gera’s definition is based on in-

coming links. Using outgoing links as decision variables in the definition of the proportion of flows allows the resulting

formulation to easily capture the common line feature and determine how passengers select transit lines from the set of

attractive lines. 

The approach-based formulation is further explained in Fig. 2 . Fig. 2 (a) is the original transit network and Fig. 2 (b)

is the corresponding route-section representation. The dotted line represents the minimum effective cost path connecting
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node j ( j ′ ) to destination d ; its cost, h jd ( h j 
′ d ) , is marked next to node j ( j ′ ). Assuming that L1, L2, …, L ξ are the attractive

lines connecting node i = t(s ) to node j , these lines are combined into one section, referred to as section s without loss

of generality, with a section cost C s . Similarly, section s ′ aggregates the set of attractive lines L ξ ′ , L( ξ ′ + 1 ) , …, L ζ , which

connect node t ( s ) and node j ′ . 
In Fig. 2 (b), there are two paths from node t ( s ) to destination d . One path is via section s and the other is via section

s ′ . The former is denoted as approach s and the latter is denoted as approach s ′ . The proportions of these two approaches

are denoted as αd 
s and αd 

s ′ , respectively. The effective travel cost from node t ( s ) to node d via approach s is obtained by

adding the effective route-section cost c s = E[ C s ] + ρVar [ C s ] to the minimum effective cost from the head node of section s

(i.e., node j ) to destination d . Similarly, the effective travel cost from node t ( s ) = t ( s ′ ) to node d via s ′ is obtained by adding

the effective route-section cost c s ′ =E[ C s ′ ] + ρV ar[ C s ′ ] to the minimum effective cost from the head node of section s ′ (i.e.,

node j ′ ) to destination d . 

Under the preceding supposition, if approach s carries a flow (i.e., 1 ≥ αd 
s > 0 ), then the effective travel cost from node

t ( s ) to node d via approach s must equal the minimum effective path cost from node t ( s ) to destination d (i.e., h t(s ) d 
s = h t(s ) d ),

and approach s must be on another lowest effective cost path from node t ( s ) to node d (i.e., h t(s ) d 
s = h t(s ) d 

s ′ = h t(s ) d ); other-

wise, conditions (33) –(35) are violated. If section s carries no flow (i.e., αd 
s = 0 ) under the preceding supposition, approach 

s may or may not be on one of the lowest effective cost paths. Approach s is on one of these paths only if the effective cost

associated with path t(s ) − j − d equals the effective cost associated with the lowest effective cost path t(s ) − j ′ − d. Nev-

ertheless, in most cases, the effective cost associated with path t(s ) − j − d is larger than that associated with t(s ) − j ′ − d,

and then approach s is NOT on the lowest effective cost path t(s ) − j ′ − d. 

3. Solution method 

To solve the VI problem, we adopt a projection method belonging to the class of extragradient methods introduced by

Korpelevich (1976) . The advantage of the extragradient method is that it does not require knowing the Lipschitz constant in

advance and only requires the mapping function to satisfy mild conditions, i.e., pseudomonotonicity and Lipschitz continuity,

for convergence. In each iteration of this method, one projection is performed to get an approximate solution, then a second

projection is performed to refine the solution. These two steps are iteratively carried out until an optimal (or acceptable)

solution is found. However, this projection method cannot be directly applied to solve the transit assignment problem,

because the method does not account for the specific features of the problem, such as the common line problem. Hence,

Szeto and Jiang (2014) developed a revised extragradient method, in which a cost-updating algorithm was introduced. In this

study, the cost-updating algorithm is further extended by incorporating the variance of travel cost into the link cost. This

modification does not affect the computation complexity provided the cost components are link additive after the covariance

term is internalized using the augmented route-section network. Therefore, following a procedure similar to Szeto and Jiang

(2014) , it can be shown that given a directed graph and the topological ordering of its nodes, the complexity of the single

destination case to update expected travel cost is O ( V + E ) , where V is the total number of vertices (i.e., nodes) and E is the

number of edges (i.e., route-sections or links). Due to space limitations, the details of the algorithm are not reported in this

paper, but can be found in Szeto and Jiang (2014) . 

4. Numerical examples 

This section has six subsections. Sub section 4.6 uses the Winnipeg network to illustrate the computation performance

of the developed solution method and SAM. Subsections 4.1–4.5 use the small network presented in Fig. 3 to illustrate and

examine the capacity paradoxical phenomenon and the importance of considering supply uncertainty. 

In Fig. 3 , four lines are in service, namely, L1, L2, L3, and L4. Fig. 3 (a) represents the transit network using transit

line representation and Fig. 3 (b) represents the network using route-section representation. Section S5(L4) is represented

with a dashed line, as it is assumed that line L4 does not exist initially. Table 2 (a) lists the required data. As line L2

passes two links, its mean (variance) is the sum of two numbers, where each number represents the mean (variance)

of one section. For the small network, two OD pairs are considered. Table 2 (b) lists the path information for each OD

pair. The other parameters, unless specified otherwise, are set as g OD = 500 and g BD = 100 passengers/hour; ρ = 0 . 05 ;

k = 120 passengers/vehicle; γk = γf = 60 minutes per hour; n = 2 , b s, 2 = b s, 3 = 1 , b s, 1 = 1 . 0 , b s, 2 = b s, 3 = 0 . 1 , b s, 4 = 0 . 5 , and

b s, 5 = 0 . 1 , ∀ s ∈ S; μT = μW 

= μ� = 1 . 0 . For simplicity, the dwell time is assumed to be one minute for each section and the

variance of the dwell time is assumed to be zero. 

Similar to the network capacity defined by Yang and Bell (1998) , the network capacity here refers to the maximum

throughput of the network at which all of the bottleneck links just reach their capacities under the reliability-based user equi-

librium condition , where a bottleneck link is the link with the lowest capacity on a path. For the ease of explanation, the

network residual capacity, which is defined by the difference between the sum of the capacities on all of the bottleneck

links and the flows on these bottleneck links, is presented. If the network residual capacity reduces with no change in the

total demand on the network, then this indicates that the network capacity is reduced. In our case, we consider critical

sections instead of bottleneck links, and define a critical section as the section with flow at least equal to expected section

capacity. 
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Fig. 3. Small network for the capacity paradox. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We want to emphasize that the network capacity is defined under the reliability-based user equilibrium condition. It

is selfish behavior that leads to the reduction in throughput. Without considering the reliability-based user equilibrium

condition, the maximum throughput can simply be determined by solving the maximum flow problem. In that case, adding

a new line or increasing the frequency of an existing line will not lead to a reduction in throughput. 

4.1. Occurrence of the capacity and Braess-like paradoxes 

This section illustrates the occurrence of the capacity and the Braess-like paradoxes in the studied transit assignment

problem, which includes the classical frequency-based transit assignment problem (e.g., de Cea and Fernández, 1993 ) as a

special case. For the capacity paradox, the following points need to be clarified. First, unlike Yang and Bell (1998) , in this

study, the network capacity is the expected network capacity, as the capacity is modeled as a random variable due to the

supply uncertainty. Second, the section flow is the effective section flow, which incorporates the flows on the competing

sections due to the common line issue. This issue is the characteristic in transit assignment. 

Table 3 presents the results of a before-after study, which reveals the capacity paradox. Before line L4 is provided, the

network residual capacity is 360, meaning that the network can serve an additional 360 passengers without using up the

capacities of all of the bottleneck sections. However, when line L4 is added and its frequency is set to be 9.0 buses/hour,

the network residual capacity reduces to zero. Such a phenomenon is referred to as the capacity paradoxical phenomenon,

as it is paradoxical that adding a new line may reduce the network maximum throughput. At the same time, the Brass-like

paradox also occurs: the total effective travel cost increases from $44,932.8 to $45,076.9 after the new line is added. This

simultaneous occurrence does not always happen; it depends on the starting and ending frequencies. 

4.1.1. Causes of the paradoxes 

To investigate the causes of the paradoxes and the effect of the starting and ending frequencies on the occurrence of the

paradoxes, the frequency of line L4 is varied from 7.4 buses/hour to 9.4 buses/hour. The resultant network residual capacities
Table 2 

Input data of the small network for the capacity paradox. 

(a) Line data (b) Path data 

Line no. Travel time Frequency (no. of buses/hour) OD pair Path No. Section sequence 

Mean (min) Variance (min 2 ) 

L1 6 3 3 (1) OD Path 1 S1(L1)-S3(L3) 

L2 5 + 50 ∗ 2 + 3 ∗∗ 4 Path 2 S2(L2) 

L3 8 2 4 Path 3 S4(L2)-S5(L4)-S3(L3) 

L4 3 2 – (2) BD Path 4 S3(L3) 

∗ The mean travel time between nodes O and A is 5 minutes, and that between A and D is 50 minutes. 
∗∗ The variance in travel time between nodes O and A is 2 min 2 , and that between A and D is 3 min 2 . 
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Fig. 4. Total effective travel costs and network residual capacities under various frequencies of L4. 

Fig. 5. Equilibrium effective travel costs of the two OD pairs under various frequencies of L4. 

Table 3 

Occurrence of the paradoxes. 

Before L4 is added After L4 is added 

Frequency of L4 – 9.0 buses/hour 

Network residual capacity 360 0.0 

Total effective travel cost $44,932.8 $45,076.9 

 

 

 

 

 

 

 

 

 

 

 

and the total effective travel costs are plotted in Fig. 4 . The corresponding equilibrium effective travel costs of the two OD

pairs and the flows on the three paths connecting OD pair 1 are plotted in Figs 5 and 6 , respectively. The following discus-

sions focus on the intuitive interpretation of the capacity paradox, and Appendix C provides the mathematical derivations

of the condition for the existence of a more general parameter setting. 

To clearly illustrate the results, five regions of the frequency of L4 are marked in Figs 4, 5 , and 6: (1) less than 7.7

buses/hour (and greater than 0 buses/hour); (2) between 7.7 and 7.9 buses/hour; (3) between 7.9 and 8.5 buses/hour; (4)

between 8.5 and 9.35 buses/hour; and (5) more than 9.35 buses/hour. 

In the first region, the total effective travel cost and network residual capacity remain stable, indicating that increasing

the frequency of line L4 does not affect the network performance in terms of the total effective travel cost or the network

capacity. When the frequency of line L4 is less than 7.7 buses/hour, the route consisting of line L4 (i.e., path 3) has a higher

effective travel cost than other routes. Therefore, none of the passengers travel on path 3. Fig. 6 illustrates this route choice

behavior, showing that the flow on path 3 is zero and the flows on paths 1 and 2 do not change. Such a phenomenon

implies that the line L4 buses would be vacant, and the operator would lose money by providing the L4 service at a low

frequency. 
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Fig. 6. Number of passengers on the paths connecting OD pair 1 under various frequencies of L4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the second region, the capacity paradox occurs; the total effective travel cost decreases as the frequency increases. The

capacity paradox occurs because of the selfish route choice behavior of the passengers of OD pair 1. A number of passengers

of OD pair 1 switch their routes from paths 1 and 2 to path 3 when the frequency of line L4 increases, because using path

3 can reduce the equilibrium effective travel cost of OD pair 1. However, the increment in the flow on path 3 increases the

flows of all of the critical sections of the network simultaneously, as path 3 passes one of the critical sections, S3, and section

S4, which competes with another critical section, S2. Consequently, the residual capacity of the network is reduced and the

capacity paradox occurs. Meanwhile, the selfish behavior of the passengers of OD pair 1 generates additional congestion

costs to the passengers of OD pair 2, as reflected by the increasing curve of the equilibrium effective travel cost of OD pair 2

in Fig. 5 . Nevertheless, the increment in the equilibrium effective travel cost of OD pair 2 is mild compared to the reduction

in that of OD pair 1, and the demand of OD pair 1 is higher than that of OD pair 2. Therefore, the reduction in the total

effective travel cost of the system is driven by the reduction in the total effective travel cost of OD pair 1. This result implies

that improving the network capacity can conflict with the aim of reducing the total effective travel cost of a network. 

The third region is the region wherein the capacity and the Braess-like paradoxes occur simultaneously. The capacity

paradox occurs because of the selfish behavior of passengers. With the increasing frequency of line L4, the effective travel

cost on path 3 is reduced; thus, more passengers who were originally traveling on path 1 or 2 switch to path 3, as observed

in Fig. 5 . As a result, the flows on the critical sections (i.e., sections S3 and S2) keep increasing, resulting in a reduction in

the network residual capacity. At the same time, the increased flow on path 3 induces higher congestion cost on section

S3, and thus the equilibrium effective travel cost of OD pair 2, as shown in Fig. 5 . Interestingly, the equilibrium effective

travel cost of OD pair 1 in Fig. 5 shows various patterns. It first decreases when the frequency increases from the 7.9 to 8.0

buses/hour, then remains unchanged when the frequency is between 8.0 and 8.5 buses/hour. Such a trend can be explained

as follows. A higher frequency can reduce waiting and congestion costs, resulting in a lower effective travel cost associated

with path 3. In turn, a lower effective travel cost attracts more passengers from paths 1 and 2. However, more flow leads to

a higher congestion cost. Therefore, the trend in the equilibrium effective travel cost of an OD pair depends on the overall

effects of the reduction on the waiting and congestion costs due to the frequency increment, and the increment in the

congestion cost due to the growth in the passenger flow. To be more specific, when the frequency increases from 7.9 to 8.0

buses/hour, the increment in the congestion cost caused by the growth in the passenger flow is larger than the reduction in

waiting and congestion costs caused by the increment in the frequency; thus the equilibrium effective travel cost increases.

When the frequency increases from 7.9 to 8.5 buses/hour, the reductions in the waiting and congestion costs caused by the

increase in frequency counteract the increment in the congestion cost due to the growth in the passenger flow; thus, the

equilibrium effective travel cost of OD pair 1 remains unchanged. 

In the fourth region, the network residual capacity reduces to zero and the total effective travel cost keeps increasing.

As the soft capacity constraint approach is adopted, passengers are still allowed to board fully occupied vehicles at the cost

of bearing additional congestion cost. Therefore, in Fig. 6 , the flow on path 3 keeps increasing and the equilibrium effective

travel cost of OD pair 1 increases in Fig. 5 . In contrast, the equilibrium effective travel cost of OD pair 1 remains stable

until the end of this region, where the frequency equals 9.35 buses/hour, for reasons similar to those explained above. At

the end of this region, when the frequency is 9.35 buses/hour, the total effective travel cost reaches its peak value, which is

$45,113.5, because all of the passengers that originally traveled on path 1 or 2 have switched to path 3. 

In the last region, where the frequency is greater than 9.35 buses/hour, the total effective travel cost begins to decrease.

On the one hand, the increasing frequency pulls down the waiting cost. On the other hand, the congestion cost ceases

increasing, as all of the passengers have changed their route to path 3, as observed in Fig. 6 . The congestion cost decreases
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Fig. 7. Effect of the degree of risk aversion on the occurrence of the capacity paradox. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with the increasing frequency. Because the capacity of section S5 increases with frequency, the congestion cost obtained by

the BPR type function is reduced. Therefore, the equilibrium travel cost of OD pair 1 reduces dramatically. 

4.2.2. Implications 

Fig. 4 shows three possible cases: (1) neither paradox occurs; (2) both paradoxes occur simultaneously; and (3) only one

of the paradoxes occurs. Which case occurs depends on the initial and final frequencies. For example, if both frequencies fall

in the second (fourth) region, then only the capacity (Braess-like) paradox occurs. However, if both fall in the third region,

both paradoxes occur. 

The above results imply that focusing on a single objective when improving the transit network (such as the total effec-

tive travel cost) may actually worsen the performance of another objective (such as network capacity). Hence, to improve

transit networks, transit network design should simultaneously consider the total effective travel cost, network capacity, and

route choice behavior, to avoid the occurrence of any of the two paradoxes. This calls for a need to solve a bilevel transit

network design problem, which is left for future study. 

4.2. Effect of the degree of risk aversion on the occurrence of the capacity paradox 

Fig. 7 presents the changes in the network residual capacities when the degree of risk aversion parameter increases from

0.025 to 0.075. The network residual capacity decreases in the cases of ρ = 0 . 025 and ρ = 0 . 05 . As the frequency of L4

increases, the waiting time cost is reduced, and the flow on path 3 increases. Hence, the capacity is reduced. The capacity is

constant when ρ = 0 . 075 , because path 3 still has a higher effective travel cost than path 2, the only path that carries flow,

even if the waiting time cost is reduced. Therefore, when the value of ρ is high, the flow on path 3 is zero and the capacity

paradox does not occur. Interestingly, it can be observed that the value of ρ also affects the shape of each of the curves

depicting the changes in the network residual capacity. For example, when ρ = 0 . 025 , the network residual capacity linearly

reduces as the frequency increases, whereas it reduces nonlinearly when ρ = 0 . 05 . Moreover, when ρ = 0 . 05 , the network

residual capacity reduces to zero, whereas it does not when ρ = 0 . 025 . Furthermore, the value of ρ affects the width of

the paradox region. For example, when ρ = 0 . 05 , the paradox region starts at a frequency of 7.6 buses/hour and ends at 8.6

buses/hour, whereas the paradox region starts at a frequency of 7.4 buses/hour and continues to end of the tested region

when ρ = 0 . 025 . Essentially, the value of ρ determines the effective travel cost, the route choice, and network residual

capacity and hence the occurrence of the capacity paradox (including the starting and ending frequencies). Therefore, it

is important to accurately calibrate the degree of risk aversion parameter to determine whether the capacity paradox will

occur. If it is unavoidable, managers should consider alternative methods to enhance system performance. 

4.3. Effect of the perceived congestion parameter on the occurrence of the capacity paradox 

The effect of the perceived congestion parameter, n , on the occurrence of the capacity paradox is demonstrated in Fig. 8 ,

where the value of the perceived congestion parameter n is varied from 1 to 3. It can be seen that the network residual

capacity is reduced when the frequency increases. The reduction in the (residual) network capacity is due to flow shift from

paths 1 or 2 to path 3. Moreover, different trends in the reduction in the network capacity reveal different rates of flow

shift. Fig. 8 indicates that when the perceived congestion cost is low, i.e., n is small, passengers change their routes more

rapidly than in a heavily congested network, because path 3 is perceived as less congested than the other routes. Hence,

more flow shifts to route 3 when n is small. 
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Fig. 8. Effect of the perceived congestion parameter on the occurrence of the capacity paradox. 

Fig. 9. Effect of demand on the occurrence of the capacity paradox. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As with the value of ρ , the value of the perceived congestion parameters should be properly calibrated to detect the

existence of the capacity paradox, as these parameters also affect effective travel cost and hence route choice. 

4.4. Effect of demand on the occurrence of the capacity paradox 

Fig. 9 shows the effect of demand on the occurrence of the capacity paradox. In the figure, the demand of OD pair 1

varies from 450 to 550 passengers/hour. As expected, the demand level affects the initial residual capacity (i.e., the residual

capacity when frequency equals 7.4 buses per hour). The higher the demand level, the lower the initial residual capacity.

Furthermore, the lower the initial residual capacity, the smaller the frequency at which the network residual capacity re-

duces to zero. For example, when demand is 450 passengers/hour, the initial residual capacity is 410 passengers, and the

residual capacity reduces to zero when the frequency is 8.8 buses/hour, whereas when the initial residual capacity is 310

passengers and the demand is 550 passengers, the residual capacity reduces to zero when the frequency is 8.4 buses/hour.

Moreover, the range of frequency for the occurrence of the capacity paradox is wider for a lower demand. This is reasonable,

as the initial residual network capacity is higher but the starting frequency is the same in all three cases. These results seem

to indicate that the capacity paradox is more likely to occur when the demand is lower. 

4.5. Comparison of the results with and without supply uncertainty 

Table 4 demonstrates the effect of supply uncertainty on equilibrium flow and cost and the difference between the link-

based and approach-based solutions. In this test, the value of ρ is set to 0.05. The frequency of the new line is set to

8.0 buses/hr. The table shows that only one section (i.e., section S1) leaving the origin carries flow when no supply uncer-

tainty is considered, whereas two sections leaving the origin are used when supply uncertainty is considered. This implies
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Table 4 

Effect of supply uncertainty. 

With uncertainty Without uncertainty 

Solution Equilibrium cost Solution Equilibrium cost 

Link-based formulation v S1 = 0 . 0 u OD 
S1 = 82 . 9 v S1 = 500 . 0 u OD 

S1 = 53 . 7 

v S2 = 316 . 2 u OD 
S2 = 82 . 7 v S2 = 0 . 0 u OD 

S2 = 72 . 9 

v S3 = 183 . 8 u BD 
S3 = 35 . 7 v S3 = 500 . 0 u BD 

S3 = 24 . 8 

v S4 = 183 . 8 u OD 
S4 = 82 . 7 v S4 = 0 . 0 u OD 

S4 = 57 . 3 

v S5 = 183 . 8 u AD 
S5 = 50 . 2 v S5 = 0 . 0 u AD 

S5 = 36 . 3 

Approach-based formulation αd 
S1 = 0 . 00 u OD 

S1 = 82 . 9 αd 
S1 = 1 . 00 u OD 

S1 = 53 . 7 

αd 
S2 = 0 . 63 u OD 

S2 = 82 . 7 αd 
S2 = 0 . 00 u OD 

S2 = 72 . 9 

αd 
S3 = 1 . 00 u BD 

S3 = 35 . 7 αd 
S3 = 1 . 00 u BD 

S3 = 24 . 8 

αd 
S4 = 0 . 37 u OD 

S4 = 82 . 7 αd 
S4 = 1 . 00 u OD 

S4 = 57 . 3 

αd 
S5 = 1 . 00 u AD 

S5 = 50 . 2 αd 
S5 = 1 . 00 u AD 

S5 = 36 . 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

that if uncertainty is not considered, the number of sections carrying flow could be underestimated and thus the flow on

used bus routes could be overestimated. Nevertheless, the overestimation of the flow does not necessarily lead to a higher

equilibrium cost, as the variance of the path travel cost is not captured in the equilibrium cost calculation. 

A comparison of the solutions for the link-based and approach-based formulations shows that their equilibrium costs

are equal, because the approach-based formulation is theoretically derived from the link-based formulation. However, the

solutions of the two formulations are different. Specifically, a zero link flow may not result in a zero approach proportion,

due to the definitional constraint of approach proportions (i.e., Eq. (32) ). For example, under the column “Without Uncer-

tainty,” the link flow of section S4, v S4 , is zero in the link-based formulation, whereas in the approach-based formulation

the proportion of section S4, αd 
S4 

, is 1.0. 

4.6. Computational performance 

The proposed solution method is tested using the Winnipeg network. The data for this network are obtained from the

base scenario in Emme3, which consists of 1067 nodes, 3647 OD pairs, and 133 transit lines. As the original network is used

for a multimodal assignment, some OD pairs are not connected by transit lines. For simplicity, these OD pairs are eliminated.

The proposed algorithm is compared to the self-regulated averaging method (SAM) developed by Liu et al. (2009), which is

used to solve the link-based problem. The SAM includes the method of successive averages (MSA) as a special case. Similar

to the extragradient method, the SAM method uses two stepsize parameters for solution updates to increase the convergence

speed. When both stepsizes are equal to 1, the SAM becomes equal to the MSA. 

In the test, the following two gap measures are evaluated: 

G 1 = max 

[ 
δt ( s ) d 

s 

(
u 

t ( s ) d 
s − u 

t ( s ) d 
)
, ∀ s ∈ S, d ∈ D 

] 
, and (38) 

G 2 = 

| v I − v I−1 | 
v I−1 

, (39) 

where δt(s ) d 
s equals 1 if section s carries flow (i.e., flow proportions greater than zero), and otherwise zero, and v I is the I th 

intermediate solution. G 1 is defined using the equilibrium conditions, whereas G 2 measures the difference in the link flow

vectors between two consecutive iterations and is widely used in the MSA (e.g., Cantarella et al., 2015a,b ). 

The convergence curves of the two measures are presented in Fig. 9 . The x-axis plots the number of intermediate solu-

tions evaluated and the y-axis represents the value of G 1 ( Fig. 10 a) or G 2 ( Fig. 10 b). Fig. 10 demonstrates that both measures

converge faster with the extragradient method than with the SAM. More importantly, the SAM fails to converge using G 1 ,

implying that the solution obtained from SAM might not satisfy the user equilibrium conditions. In addition, it is noted

that the convergence curves of the extragradient method are not smooth, probably because the stepsizes can be too large

in some iterations, leading to worse gap values. 

5. Conclusions 

This study develops a link-based variational inequality (VI) formulation for the reliability-based transit assignment prob-

lem that captures the stochasticity in the travel cost caused by supply uncertainty. An augmented route-section network

representation is developed to internalize the covariance of the in-vehicle travel costs of the same line between different

sections so that the resultant problem can be solved as if it was a link-based VI without supply uncertainty. This study also

proves that in the link-based VI formulation, the mapping function is not strictly monotone. Thus, to solve the problem, the
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Fig. 10. Comparison of convergence with the extragradient method and the SAM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

link-based formulation is first reformulated as an approach-based formulation in which the proportion of flow on each out-

going link from each node is a decision variable, and then an extragradient method, which only requires mild assumptions

for convergence, is used. The result shows that the developed solution method can achieve a convergent solution, whereas

the self-regulated averaging method, which includes the method of successive averages as a special case, may not. In ad-

dition, the result shows that without considering supply uncertainty, the number of route-sections carrying flow and the

equilibrium cost could both be underestimated. 

This study also introduces and investigates a capacity paradoxical phenomenon, in which adding a new line to a transit

network or increasing the frequency of an existing transit line may reduce the network maximum throughput. The numerical

results illustrate that the capacity paradox may or may not occur simultaneously with the Braess-like paradox. Moreover,

both the degree of risk aversion of passengers and the demand level not only affect the occurrence of the capacity paradox

but also determine the range of frequency of an existing line within which the capacity paradox could be observed. 

This study opens up the following future research directions. 1) The BRP-type function implicitly assumes that all pas-

sengers have the same congestion cost, which may not be true given the different perceptions of sitting and standing pas-

sengers. Thus, one future direction is to explore and calibrate other cost functions, such as spline functions, that can capture

this feature. Once a calibrated function that satisfies the pseudomonotonicity requirement is developed, it can be used in our

proposed framework without conceptual difficulty. 2) This study only captures the first and second moments of travel time

distribution. Empirical studies have pointed out that the transit travel time distribution can be highly skewed ( Mazloumi

et al., 2009; Xue et al., 2011 ). Thus, it is necessary to develop a transit assignment model that incorporates the third or

even higher moments of travel time distribution, and to develop an efficient solution method to solve for solutions. 3) The

demonstration of the capacity paradox calls for a bilevel multi-objective transit network design formulation to determine

an optimal frequency to improve system performance in terms of the network maximum throughput and the total effective
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travel cost. For example, the upper level could determine a Pareto optimal frequency that simultaneously minimizes the

total effective travel cost and maximizes the network’s reserved capacity, whereas the lower level is the approach-based

transit assignment problem. 4) The model could also be extended to consider the stochastic user equilibrium. 
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Appendix A. Proof of the internalization of covariance using an augmented route-section network 

Without loss of generality, let a path from node n e to destination d be p = ( n e 
s e n e +1 

s e +1 · · · n e ′ 
s 
e ′ n e ′ +1 · · ·

s n p −1 n n p = d ) .

n e , n e +1 , ..., n n p represent the nodes on path p . s e , s e +1 ..., s n p −1 represent the sections on path p , where s e and s e ′ indicate

that these two sections contain the same line l . 

In the link-based formulation, the random travel cost from nodes n e to d via path p , C n e d s e , is defined by 

C n e d s e 
= C s e + C n e +1 d , (A.1) 

where C s e represents the random travel cost on section s e and C 
n e +1 d is the random travel cost between node n e +1 and

destination d . Eq. (A.1) means that the travel cost from node n e to d via section s e is the sum of the cost associated with

section s e and the travel cost from node n e +1 , which is the head node of section s e , to destination d . 

The effective travel cost is defined by 

u 

n e d 
s e 

= E[ C n e d s e 
] + ρV ar[ C n e d s e 

] , (A.2) 

where the expectation and variance are respectively derived as 

E[ C n e d s e 
] = E[ C s e + C 

n e +1 d 

] = E[ C s e ] + E[ C n e +1 d ] (A.3) 

and 

V ar[ C n e d s e 
] = V ar[ C s e + C n e +1 d ] = V ar[ C s e ] + V ar[ C n e +1 d ] + 2 C ov [ C s e , C n e +1 d ] . (A.4)

By substituting Eqs (A.3) and (A.4) into Eq. (A.2), it can be obtained that 

u 

n e d 
s e 

= E[ C s e ] + E[ C n e +1 d ] + ρ

(
V ar[ C s e ] + V ar[ C n e +1 d ] 

+2 C ov [ C s e , C n e +1 d ] 

)
= ( E[ C s e ] + ρV ar[ C s e ] ) + ( E[ C n e +1 d ] + ρV ar[ C n e +1 d ] ) 

+2 ρC ov [ C s e , C n e +1 d ] . (A.5) 

The first round bracket term E[ C s e ] + ρV ar[ C s e ] in the last equality is the effective cost associated with section s e , the

second round bracket term is the effective cost between nodes n e +1 and d , or u n e +1 d , and the third term is the covariance

between the travel cost associated with section s e and the travel cost from node n e +1 to d . 

The following shows how to address the covariance term using the augmented route-section network under the assump-

tion that passengers prefer a direct service and do not transfer within the same line. 

First, the variance V ar[ C n e d s e ] in Eq. (A.5) can be rewritten in the following format: 

V ar 
[
C n e d s e 

]
= V ar 

[ ∑ 

s ′ 
�n e d,p 

s ′ C s ′ 

] 

, (A.6) 

where �n e d,p 

s ′ = 1 if section s ′ is on path p connecting nodes n e and d ; otherwise �n e d,p 

s ′ = 0 . Then, the variance can be

expressed as 

V ar 
[
C n e d s e 

]
= V ar 

[ ∑ 

s ′ 
�n e d,p 

s ′ C s ′ 

] 

= 

∑ 

s ′ 
�n e d,p 

s ′ V ar [ C s ′ ] + 

∑ 

s ′ 

∑ 

s ′′ � = s ′ 
�n e d,p 

s ′ �n e d,p 
s ′′ Cov [ C s ′ , C s ′′ ] . (A.7) 

Second, based on the assumptions that only the covariance of the same line between different sections are non-zero and

that all of the other waiting times, in-vehicle travel times, and perceived congestion costs are independent, Eq. (A.7) can be

reduced to 

V ar [ C s e 
n e d ] = 

∑ 

s ′ 
�s ′ 

n e d,p V ar [ C s ′ ] + Cov [ T s e , T s e ′ ] 

http://dx.doi.org/10.13039/501100001809
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Fig. A. The small network for the proof of Proposition 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 

∑ 

s ′ 
�s ′ 

n e d,p V ar [ C s ′ ] + Cov 

[ ∑ 

l ′ 
w s e 

l ′ T s e 
l ′ 
, 
∑ 

l ′ 
w s e ′ 

l ′ T s e ′ 
l ′ 
] 

= 

∑ 

s ′ 
�s ′ 

n e d,p V ar [ C s ′ ] + w s e 
l w s e ′ Cov [ T s e , T s e ′ ] (A.8)

Cov [ T s e , T s e ′ ] is incorporated, as sections s e and s e ′ contain the same line l . Cov [ 
∑ 

l ′ w 

l ′ 
s e 

T l 
′ 

s e 
, 
∑ 

l ′ w 

l ′ 
s 
e ′ T 

l ′ 
s 
e ′ ] is obtained based

on Eq. (2) . 

To analyze Eq. (A.8) , the following two scenarios are considered. 

Scenario 1: If w 

l 
s e 

w 

l 
s 
e ′ = 0 , the term w 

l 
s e 

w 

l 
s 
e ′ Cov [ T l s e 

, T l s 
e ′ ] becomes zero and is eliminated. In fact, such a scenario implies

that line l is not an attractive line on section s e or s e ′ or both s e and s e ′ . 
Scenario 2: If w 

l 
s e 

w 

l 
s 
e ′ � = 0 , the term w 

l 
s e 

w 

l 
s 
e ′ Cov [ T l s e 

, T l s 
e ′ ] can be addressed by the augmented route-section network and

under the assumption that passengers prefer a direct service and do not transfer within the same line. The explanation is

as follows. 

In the augmented route-section network, there must exist a dummy section to penalize a transfer within the same line.

Hence, path p has a large cost and is eliminated by passengers if there is another path. However, in the augmented route-

section network, there must exist a section connecting nodes n e and n e ′ +1 directly, as line l traverses both nodes. Hence,

a new path p ′ that avoids transfers and connects n e and n e ′ +1 must exist. Therefore, the variance of the new path p ′ is

analyzed instead of that of path p . Path p ′ is represented as p ′ = ( n e 
s ′ e n e ′ +1 · · ·

s 
n p−1 

n p = d ) , where s ′ e is the section that

connects nodes n e and n e ′ +1 directly. The variance of the cost associated with path p ′ is given by 

V ar 
[
C n e d 

s ′ e 

]
= V ar 

[ ∑ 

s ′ 
�n e d,p ′ 

s ′ C s ′ 

] 

= 

∑ 

s ′ 
�n e d,p ′ 

s ′ V ar[ C s ′ ] . (A.9)

Note that there is no covariance term in (A.9) because only section s ′ e contains line l , and its in-vehicle travel time is

assumed to be independent of that of other lines. Hence, w 

l 
s e 

w 

l 
s 
e ′ Cov [ T l s e 

, T l s 
e ′ ] does not need to be considered, as the path

including this term carries no flow at optimality. In fact, the covariance of line l between sections s e and s e ′ has been

internalized into the variance of section s ′ e , which can be computed in advance. 

To sum up, in the augmented route-section network under the assumption that passengers prefer a direct ser-

vice and do not make a transfer within the same line, if there is path p connecting nodes n e and d , such as p =
( n e 

s e n e +1 
s e +1 · · · n e ′ 

s 
e ′ n e ′ +1 · · ·

s n p −1 n n p = d ) , a new route p ′ = ( n e 
s ′ e n e ′ +1 · · ·

s 
n p−1 

n p = d ) is adopted to replace route p . As

a result, any route can only include a line at most once. Hence, the expectation and variance can be respectively computed

by 

E 
[
C n e d 

s ′ e 

]
= E 

[
C s ′ e + C n e ′ +1 d 

]
= E[ C s ′ e ] + E[ C n e ′ +1 d ] and (A.10)

V ar 
[
C n e d 

s ′ e 

]
= V ar 

[
C s ′ e + C n e ′ +1 d 

]
= V ar[ C s ′ e ] + V ar 

[
C n e ′ +1 d 

]
. (A.11)

The effective travel cost from node n e to d via section s ′ e is obtained by 

u 

n e d 
s ′ e 

= ( E[ C s ′ e ] + ρV ar[ C s ′ e ] ) + u 

n e ′ +1 d . (A.12)

Appendix B. Proof of the non-monotonicity of the mapping function and the existence of multiple solutions 

This appendix gives the proofs of Propositions 1 and 2. 

Proposition 1. The mapping function in the link-based VI formulation is not strictly monotone. 

Proof: In this appendix, a small network is created in Fig. A to demonstrate that the mapping function in the link-based

VI formulation is not strictly monotone. 
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The network contains two lines: L1 and L2. Fig. A (a) is network representation using transit lines and Fig. A (b) is the

route-section network representation. Consider OD pair AC, there are two sections emanating from origin A heading to

destination C. One is via section S1 and the other is via section S2. Denote v = ( 
v C 

1 
v C 

2 

) as the vector of link flows and u as

the vector of the corresponding mapping functions. 

If the mapping function is strictly monotone, then the following condition should be satisfied: (
u − u 

′ )T (
v − v ′ 

)
> 0 , ∀ v , v ′ ∈ �v , (B.1) 

where �v = (v C 
1 
, v C 

2 
| v C 

1 
, v C 

2 
≥ 0 , and v C 

1 
+ v C 

2 
= g AC ) is the solution space and g AC is the demand of OD pair AC. 

To demonstrate that the mapping function is not strictly monotone, we will show that the following equation holds

under a certain parameter setting: (
u − u 

′ )T (
v − v ′ 

)
= 0 , ∀ v , v ′ ∈ �v . (B.2) 

Our proof contains the following steps. 

Step 1. Derive the mapping functions 

The mapping function can be defined as 

u = 

(
u 

C 
1 

u 

C 
2 

)
, (B.3) 

where u C 
1 

and u C 
2 

are obtained by 

u 

C 
1 = E [ C 1 ] + ρV ar [ C 1 ] and (B.4) 

u 

C 
2 = E [ C 2 + C 3 ] + ρV ar [ C 2 + C 3 ] . (B.5) 

Based upon Eqs. (1) to ( 9 ), the cost components are expressed as 

E [ C 1 ] = E [ T 1 + W 1 + �1 + T 1 , 0 ] = E [ T 1 ] + E [ W 1 ] + E [ T 1 , 0 ] + E [ �1 ] (B.6) 

V ar [ C 1 ] = V ar [ T 1 + W 1 + �1 + T 1 , 0 ] = V ar [ T 1 ] + V ar [ W 1 ] + V ar [ T 1 , 0 ] + V ar [ �1 ] (B.7)

E [ C 2 + C 3 ] = E [ T 2 ] + E [ W 2 ] + E [ T 2 , 0 ] + E [ �2 ] 

+ E [ T 3 ] + E [ W 3 ] + E [ T 3 , 0 ] + E [ �2 ] , and (B.8) 

V ar [ C 2 + C 3 ] = V ar [ T 2 ] + V ar [ W 2 ] + V ar [ T 2 , 0 ] + V ar [ �2 ] 

+ V ar [ T 3 ] + V ar [ W 3 ] + V ar [ T 3 , 0 ] + V ar [ �3 ] . (B.9) 

As only the expectation and variance of the congestion cost are flow dependent, we further derive the expectation and

variance of congestion cost as 

E [ �1 ] = μ�b 1 , 1 n ! 

(
b 1 , 2 v 

C 
1 + b 1 , 3 w 

1 
2 v 

C 
2 

f 1 γk k 

)n 

, (B.10) 

V ar [ �1 ] = μ2 
�

(
b 1 , 1 

)2 (
( 2 n ) ! − ( n ! ) 

2 
)(b 1 , 2 v C 1 + b 1 , 3 w 

1 
2 v 

C 
2 

f 1 γk k 

)2 n 

, (B.11) 

E [ �2 + �3 ] = E [ �2 ] + E [ �3 ] 

= μ�

(
b 2 , 1 n ! 

(
b 2 , 2 v 

C 
2 + b 2 , 3 v 

C 
1 

f 1 γk k 

)n 

+ b 3 , 1 n ! 

(
b 3 , 2 v 

C 
3 + b 3 , 3 v 

C 
1 

f 1 γk k 

)n )
, and (B.12) 
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V ar [ �2 + �3 ] = V ar [ �2 ] + V ar [ �3 ] 

= μ2 
�

(
b 2 , 1 

)2 (
( 2 n ) ! − ( n ! ) 

2 
)(b 2 , 2 v 

C 
2 + b 2 , 3 v 

C 
1 

f 2 γk k 

)2 n 

+ μ2 
�

(
b 3 , 1 

)2 (
( 2 n ) ! − ( n ! ) 

2 
)(b 3 , 2 v 

C 
3 + b 3 , 3 v 

C 
1 

f 3 γk k 

)2 n 

, (B.13)

where v C 
3 

in Eq. (B.13) is the flow on Section 3 going to destination C and it equals v C 
2 

according to the flow conversation.

w 2 
1 is the relative frequency of line 1 on Section 2 . 

Step 2. Define a specific parameter setting 

For the small example, the parameters are specified as μ
�

= 1 , b 2 , 2 = b 2 , 3 = b 3 , 2 = b 3 , 3 = b 1 , 2 = 1 , f 1 = f 2 = 4

buses/hour, and b 
1 , 3 

= 2 . Accordingly, the means and variances in Eqs. (B.10)–(B.13) reduce to 

E [ �1 ] = b 1 , 1 n ! 

(
v C 1 + v C 2 

f 1 γk k 

)n 

, (B.14)

V ar [ �1 ] = 

(
b 1 , 1 

)2 (
( 2 n ) ! − ( n ! ) 

2 
)(v C 1 + v C 2 

f 1 γk k 

)2 n 

, (B.15)

E [ �2 + �3 ] = b 2 , 1 n ! 

(
v C 2 + v C 1 

f 2 γk k 

)n 

+ b 3 , 1 n ! 

(
v C 3 + v C 1 

f 3 γk k 

)n 

, and (B.16)

V ar [ �2 + �3 ] = 

(
b 2 , 1 

)2 (
( 2 n ) ! − ( n ! ) 

2 
)(v C 2 + v C 1 

f 2 γk k 

)2 n 

+ 

(
b 3 , 1 

)2 (
( 2 n ) ! − ( n ! ) 

2 
)(v C 3 + v C 1 

f 3 γk k 

)2 n 

. (B.17)

In addition, based on the flow conservation conditions, we have 

v C 1 + v C 2 = g AC and (B.18)

v C 3 + v C 1 = g AC . (B.19)

By substituting Eqs. (B.18) and (B.19) into Eqs. (B.14) to (B.17) , it is obtained that the mean and variance of the congestion

cost become functions of demand g AC and independent of v ∈ �v . Therefore, u C 
1 

and u C 
2 

become functions of demand g AC

and independent of v ∈ �v . Hence, when the demand g AC is fixed, for any v ∈ �v , we can represent the mapping function

as 

u ( v ) = φ
(
g AC 

)
= K , ∀ v ∈ �v , (B.21)

where φ( g AC ) is a function of demand and K represents a vector of constants. 

Therefore, we have (
u (v ) − u (v ′ ) 

)T (
v − v ′ 

)
= ( K − K ) 

T 
(
v − v ′ 

)
= 0 , ∀ v , v ′ ∈ �v . (B.22)

This completes the proof. �

Proposition 2. Multiple solutions exist to the link-based VI formulation. 

Proof: Consider the same network and parameter setting as in the proof of Proposition 1 . As the mapping function only

depends on the demand level, any flow pattern satisfying the flow conservation constraint and nonnegativity constraint

results in the same value for the mapping function. Therefore, multiple solutions exist to the problem. 

This completes the proof. �

Appendix C. Conditions for the occurrence of the capacity paradox 

This appendix derives the conditions for the occurrence of the capacity paradox by comparing the following two scenar-

ios. The first is the scenario before the new line is provided (i.e., the frequency of line L4 is zero), and the second is the

scenario after the new line is added (i.e., the frequency of line L4 is positive). 

Scenario 1: Before adding the new line 
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In this scenario, there are two used routes, paths 1 and 2, connecting nodes O and D. Denote f OD 
1 

and f OD 
2 

as the flow

on paths 1 and 2, respectively. The following flow conservation and nonnegativity constraints hold: 

f OD 
1 + f OD 

2 = g OD . (C.1) 

For path 2, the flow passes only one section, S2; thus, S2 is the critical section. For path 1, w.l.o.g., let section S3 be the

critical section by setting E [ K S1 ] > E [ K S3 ], where E [ K S3 ] and E [ K S1 ] represent the expected capacity of sections S1 and S3,

respectively. The network residual capacity in scenario 1, E [ K 

residual 
] 1 , is calculated by 

E 
[
K residual 

]
1 

= E [ K S3 ] − v S3 + E [ K S2 ] − v S2 , (C.2) 

where v S3 and v S2 are, respectively, the flows on sections S3 and S2 in scenario 1 and are determined by 

v S3 = f OD 
1 and (C.3) 

v S2 = f OD 
2 . (C.4) 

By substituting Eqs. (C.3) and (C.4) into Eq. (C.2), the network residual capacity of scenario 1 can be represented as 

E [ K residual ] 1 = E [ K S3 ] + E [ K S2 ] − f 1 
OD − f 2 

OD = E [ K S3 ] + E [ K S2 ] − g OD . (C.5) 

The above equation implies that the network residual capacity is determined by the expected capacities of the two

critical sections, E [ K S3 ] and E [ K S2 ], and demand g OD . 

Scenario 2: After adding the new line 

Once the frequency of line L4 is greater than zero, nodes A and B are connected, and route 3 is available. Denote f OD 
3 

as

the flow on route 3. The flow conservation and nonnegativity constraints can be revised as 

f OD 
1 + f OD 

2 + f OD 
3 = g OD (C.6) 

Furthermore, the effective section flows on sections S2 and S3 in scenario 2 are also obtained by 

v S3 = f OD 
1 + f OD 

3 and (C.7) 

v S2 = f OD 
2 + f OD 

3 . (C.8) 

Eq. (C.7) means that section S3 contains the flows on paths 1 and 3. Eq. (C.8) states that the effective flow on

Section 2 contains the flows on paths 2 and 3. 

By substituting Eqs (C.7) and (C.8) into Eq. (C.2), the network residual capacity in scenario 2 can be expressed as 

E [ K residual ] 2 = E [ K S3 ] − f OD 
1 − f OD 

3 + E [ K S2 ] − f OD 
2 − f OD 

3 

= E [ K S3 ] + E [ K S2 ] − g OD − f OD 
3 . (C.9) 

Comparing Eq. (C.9) with Eq. (C.5), it is observed that the difference between E [ K residual ] 1 and E [ K residual ] 2 is f OD 
3 

. It is

concluded that if f OD 
3 

> 0 , E [ K residual ] 2 < E [ K residual ] 1 , indicating the occurrence of the capacity paradox. Furthermore, it is

also concluded that if the network residual capacity is reduced, then the reduction in the residual capacity must equal f OD 
3 

.
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