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ABSTRACT
This paper proposes an intersection-movement-based variational
inequality formulation for the multi-class dynamic traffic assign-
ment (DTA) problem involving physical queues using the concept
of approach proportion. An extragradient method that requires only
pseudomonotonicity and Lipschitz continuity for convergence is
developed to solve the problem.We also present a car–truck interac-
tion paradox, which states that allowing trucks to travel or increasing
the truck flow in a network can improve network performance for
cars in terms of the total car travel time. Numerical examples are set
up to illustrate the importance of considering multiple vehicle types
and their interactions in a DTA model, the effects of various param-
eters on the occurrence of the paradox, and the performance of the
solution algorithm.

ARTICLE HISTORY
Received 9 May 2015
Accepted 12 May 2016

KEYWORDS
Multi-class dynamic traffic
assignment; approach
proportion; variational
inequality; extragradient
method; paradox

1. Introduction

Dynamic traffic assignment (DTA) is an important topic due to itswide applications in trans-
port planning and management (Szeto and Lo 2006). In general, DTA can be classified
into the simulation-based approach (e.g. Yagar 1971; Mahmassani, Hu, and Jayakrishnan
1995; Mahut and Florian 2010) and the analytical approach (see Ran and Boyce 1996; Peeta
and Ziliaskopoulos 2001; Szeto and Lo 2005; and Szeto and Wong 2012 for comprehen-
sive reviews). The simulation-based approach focuses on enabling practical deployment
for realistic networks, its applicability in real-life networks, and its ability to capture traf-
fic dynamics and microscopic driver behaviour such as lane-changing behaviour. How-
ever, the solution properties of the corresponding models, such as solution existence and
uniqueness, are not guaranteed and cannot be determined in advance.

In contrast, the analytical approach is more suitable for analysing the properties of DTA
via various frameworks. These frameworks include the optimisation model (Merchant and
Nemhauser 1978a, 1978b; Carey 1987; Carey andWatling 2012), optimal control (Friesz et al.
1989; Ran, Boyce, and LeBlanc 1993; Chow 2009a, 2009b; Ma et al. 2014a, 2014b), vari-
ational inequality (Friesz et al. 1993; Ran and Boyce 1996; Chen and Hsueh 1998; Huang
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and Lam 2002; Lo and Szeto 2002a, 2002b; Szeto and Lo 2004, 2006; Han, Friesz, and Yao
2013c), nonlinear complementarity problem (NCP) (Wie, Tobin, and Carey 2002; Ban et al.
2008), nonlinear equation system (Long et al. 2015b), fixed point problem (Szeto, Jiang, and
Sumalee 2011; Meng and Khoo 2012), differential variational inequality (Friesz et al. 2013;
Friesz and Meimand 2014), and differential complementarity problem (Ban et al. 2012b)
frameworks.

All of the preceding analytical frameworks are formulated as either path-based mod-
els (e.g. Friesz et al. 1993; Huang and Lam 2002; Lo and Szeto 2002a, 2002b; Szeto and Lo
2004, 2006; Perakis and Roels 2006; Szeto 2008; Szeto, Jiang, and Sumalee 2011) or link-
basedmodels (e.g. Carey 1987; Ran and Boyce 1996; Chen and Hsueh 1998; Wie, Tobin, and
Carey 2002; Ban et al. 2008). The merit of path-based models is that the path-related infor-
mation, such as path flows and sets, can be obtained and imported to dynamic network
loading (DNL) models to model flow propagation at merges and diverges and track spill-
back queues. Nevertheless, a path-based model normally suffers from the computational
burden of path enumeration or relies on path-generation heuristics with no guarantee on
convergence to handle huge path sets, even for medium networks. Instead, link-based
models can avoid these two demerits and thus be applied to large networks. However, link-
based models cannot be used to capture realistic traffic dynamics such as queue spillback
(in one exception, Ma et al. (2014b) proposed a link-based dynamic user optimal (DUO)
model that could capture queue spillback for single-destination cases). If it is not captured,
the flow pattern and locations of severe congestion may be estimated incorrectly and the
strategy adopted may actually worsen network performance (Lo and Szeto 2004, 2005).

To retain the benefits of both the link- and path-basedmodels, Long et al. (2013, 2015a)
developed intersection-movement-based DTA models for general networks with multiple
destinations. They formulated the traffic assignment problem in terms of approach propor-
tions, that is, the proportion of traffic on the current link or node that selects a downstream
link when leaving an intersection (or a node). This definition requires either two adjacent
links or one origin link and one outgoing link to define an intersection movement. This is
different from the classical definition, according to which only downstream links are used
to define the proportion. An approach-proportion implicitly contains the traveller’s path
information, as a path can be deduced by checking the downstream links involved in defin-
ing the approach proportions from origin to destination. As a result, this type of model
can retain the advantages of both the link- and path-based models. First, as in link-based
models, path enumeration and path-set generation can be avoided in the solution pro-
cedure for intersection-movement-based models. Second, as in path-based models, the
realistic effects of physical queues can be captured in intersection-movement-based mod-
els when a physical queue DNL model is adopted, as the approach proportions contain
the traveller’s path information. However, compared with link-based models, intersection-
movement-based models have more decision variables, as each link flow or demand rate
is disaggregated by downstream links (which very often number more than one) to define
intersection movements and the corresponding approach proportions.

Most of the preceding models, including the intersection-movement-based DTA mod-
els, consider only a single vehicle class. It is important to capture multiple vehicle classes
in a DTA model and the interactions between different types of vehicles for several rea-
sons. First, interactions between vehicle classes have been identified as a cause of traffic
hysteresis, capacity decreases, and the wide scattering of flow–density relationships in a
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congested regime (Ngoduy 2010). Second, it is clear that trucks have a great influence on
highway capacity, as they travel more slowly than cars and can become moving bottle-
necks. Therefore, without considering different vehicle types and their interactions, realistic
traffic dynamics and queue spillback cannot be modelled properly and the total system
travel time cannot be estimated precisely. Third, many empirical studies have shown that
vehicle emissions are closely related to speed and vehicle type; for example, the emissions
of trucks are greater than those of cars. Therefore, it is important to capture traffic het-
erogeneity in estimating total vehicle emissions. Fourth, it is essential to distinguish user
classes in the applicationof class-specific or priority control orwhendifferent types of traffic
information are available to different user classes (Ngoduy 2010).

This paper develops a multi-class intersection-movement-based DTA model based on
the DUO principle and concept of approach proportion. The problem is formulated as a VI
problem. TheDNLmodel proposed by Bliemer (2007) ismodified and incorporated into the
VI formulation. Unlike some single-class DNLmodels (Ban et al. 2012a; Han, Friesz, and Yao
2013a, 2013b), this DNLmodel can capture car–truck interactions and allow approach pro-
portions tobeusedas inputs. Anextragradientmethod that requires onlymild assumptions
is adopted to solve the problem. Numerical examples are set to illustrate the importance
of considering multiple vehicle classes. In addition, a car–truck interaction paradox, which
states that allowing trucks to travel in a network or increasing the demand of trucks can
improve total car travel time, is proposed, discussed, and examined. The findings have
important implications formanaging roadnetworkswithmultiple types of traffic. For exam-
ple, it is possible to relax road restrictions for trucks or large vehicles so that the total car
travel time can be further improved or vice versa. The findings also open up new research
directions for traffic management such as road restrictions and priority control for specific
vehicle classes. This paper makes two main contributions. First, it proposes a multi-class
intersection-movement-based DTA model that considers interactions between different
types of vehicles and physical queues. Second, it proposes and examines the paradox
associated with the interactions between trucks and cars.

The remainder of this paper proceeds as follows. Section 2 introduces the VI formula-
tion for the intersection-movement-basedmulti-classDTAproblem. It thendepicts theDNL
model encapsulated for calculating the mapping function in the VI formulation. Section 3
presents the extragradient solution method. Numerical examples are given in Section 4.
Finally, Section 5 provides our conclusions and future research directions.

2. Formulation

2.1. Notations

Weconsider anetworkwithmultiple origins anddestinations andvarious classesof vehicles
according to vehicle type. The network is formedbynodes and links. To simplify the presen-
tation of the formulation, the network is designed to have the following properties. First, a
node in a network can only have one status, that is, an origin, a destination, or an interme-
diate node. Second, at least two links are required to connect an origin and a destination.
Third, there is one dummy link coming out from a destination with an infinite capacity.
The first requirement can easily be satisfied by designing the network carefully. The second
requirement is always satisfied for large networks. For small networks, this requirement can
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be satisfied by breaking down each link directly connecting an origin and a destination into
a pair of links: one going into an intermediate node, and one coming out from the node.
The third requirement aims to avoid developing additional sub-models to deal with flow
propagation for the links going into a destination.

The following notations are used throughout this paper.

2.1.1. Sets
M set of vehicle classes.
J set of nodes.
N set of origins, N ⊂ J.
D set of destinations, D ⊂ J.
T set of continuous time indices for the modelling horizon considered, [0, T̄].
T ′ set of discretised time indices.
A set of links.
A+
j (A−

j ) set of links leaving (entering) node j.

2.1.2. Indices
m,m′ class indices,m,m′ ∈ M.
i origin index, i ∈ N.
j,j′ node indices, j, j′ ∈ J.
d,d′ destination indices, d, d′ ∈ D.
t, t’ time indices, t ∈ T , t′ ∈ T ′.
a, b, b′ indices of links.
ta(ha) tail (head) node of link a.

2.1.3. Parameters
T̄ duration of the modelling horizon.
d̃idm(t) classm demand rate between origin i and destination d at time t.
ρm passenger car unit (PCU) for classm vehicles.
La length of link a.
Ja queue density of a single lane on link a.
na number of lanes on link a.
ϑam maximum travel speed of classm vehicles on link a.
Ca design capacity of link a.
β , ξ , ε, λ̄ parameters required for the extragradient method.

2.1.4. Decision variables and functions
ujdam(t) flow rate of classm vehicles to destination d entering link a ∈ A+

j from node j at
time t.

udabm(t) flow rate of classm vehicles entering link a at time t and passing through the next
link b to destination d.

α
jd
am(t) proportion of class m flow to destination d entering link a ∈ A+

j from node j at
time t.

αd
abm(t) proportion of classm flow entering link a at time t and passing through the next

link b to destination d.
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π
jd
m (t) minimum travel time for class m vehicles between node j and destination d

departing at time t.
π
jd
am(t) minimum travel time for class m vehicles to destination d entering link a ∈ A+

j
from node j at time t.

πd
abm(t) minimum travel time for class m vehicles between the tail node of link a and

destination d via link b ∈ A+
ha

departing at time t.
τam(t) travel time on link a for classm vehicles entering at time t.
τ ′
am(t) exit time for classm vehicles entering link a at time t.
Ud
abm(t) cumulative inflow of class m vehicles into link a and going to destination d via

link b ∈ A+
ha

until time t.
Uam(t) cumulative inflow of classm vehicles into link a until time t.
Ua(t) cumulative inflow into link a in terms of PCU until time t.
v̄dabm(t) potential outflow rate of class m vehicles from link a at time t and going to

destination d via the next link b.
v̄abm(t) potential outflow rate of classm vehicles from link a to link b at time t.
vdabm(t) actual outflow rate of class m vehicles leaving link a at time t and going to

destination d via the next link b.
vabm(t) actual outflow rate of classm vehicles from link a to link b at time t.
Vd
abm(t) cumulative flow of classm vehicles leaving link a and going to destination d via

the next link b until time t.
Vam(t) cumulative flow of classm vehicles leaving link a until time t.
Va(t) cumulative outflow from link a in terms of PCU until time t.
Xqam(t) classm flow in the queuing part of link a at time t.
Lfa(t) length of the free-moving part on link a at time t.
Lqa(t) length of the queuing part on link a at time t.
Qd
abm(t) cumulative queue inflow of classm vehicles into link a until time t and travelling

to destination d via the next link b.
Qam(t) cumulative queue inflow of classm vehicles into link a until time t.
Qa(t) cumulative queue inflow into link a in terms of PCU until time t.
Cina (t) inflow capacity of link a at time t.

Similar to the link-node-based DUE models in the literature (e.g. Wie, Tobin, and Carey
2002; Ban et al. 2008), our proposed formulation disaggregates the decision variables and
associated functions by destination.

2.2. Intersection-movement-based formulation

For a node that is neither an origin nor a destination, there is at least one incoming link and
one outgoing link. An intersection can be described by a pair of incoming and outgoing
links. An intersection movement represents flow making through or turning movement at
that intersection. A traveller’s departure fromanorigin can alsobe viewedas an intersection
movement, as the origin can be considered as an intersection and the traveller can select
links for entering the network. For an origin, the movement of travellers entering into the
network is also described by the origin node and the link selected to enter.
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2.2.1. Intersection-movement-basedmulti-class DUO conditions
Based on the preceding definitions, the proposed multi-class intersection-movement-
based DUO conditions can be generalised from those in a study by Long et al. (2013),
expressed as

π id
am(t)

⎧⎨
⎩

= π id
m (t) if uidam(t) > 0;

≥ π id
m (t) if uidam(t) = 0,

∀d ∈ D,m ∈ M, i ∈ N, t ∈ T , a ∈ A+
i (1)

and

πd
abm(t)

⎧⎨
⎩

= π
tad
am (t) if udabm(t) > 0;

≥ π
tad
am (t) if udabm(t) = 0,

∀d ∈ D,m ∈ M, t ∈ T , a ∈ A, b ∈ A+
ha
. (2)

Equation (1) states that if the flowof classm vehicles entering link a fromorigin i at time t
andgoing todestinationd is positive, then theminimumtravel timeof these vehicles equals
the minimum travel time for the same class of vehicles departing at the same time and
travelling between the same origin–destination (OD) pair; otherwise, the minimum travel
time of these vehicles at least equals theminimum travel time for the same class of vehicles
departing at the same time and travelling between the same OD pair. Equation (2) infers
that if the flow of class m vehicles entering link a at time t and passing through the next
link b to destination d is positive, then the minimum travel time of these vehicles equals
the minimum travel time for the same class of vehicles entering the same link at the same
time to the same destination; otherwise, the minimum travel time of these vehicles at least
equals the minimum travel time for the same class of vehicles departing at the same time
from the tail node of link a through that link to destination d.

Following the traditional user equilibrium traffic assignment literature, we assume that
drivers’ route choices depend only on their own travel times. Drivers know their route travel
times based on experience. We do not assume that any drivers know the truck percentage
on the road or that car drivers know the truck travel times. In our study, the travel times
of trucks and cars on a road are functions of traffic flow and mix on it and are determined
by the DNL model described later. The DNL captures the effect of truck speed (and hence
travel time) and truck percentage on car travel times. In other words, truck percentage and
truck travel times are indirectly captured by car travel times, and the latter factor affects
the route choices of car drivers. However, truck speed and percentage are not factors that
directly affect the route choices of car drivers, nor are they factors considered by car drivers.

The minimum travel times, that is, π jd
am(t), πd

abm(t), and π
jd
m (t) in (1) and (2), are respec-

tively defined by

π
jd
am(t) = τam(t) + πhad

m (t + τam(t)), ∀d ∈ D,m ∈ M, j ∈ J, t ∈ T , a ∈ A+
j , (3)

πd
abm(t) = τam(t) + π

had
bm (t + τam(t)), ∀d ∈ D,m ∈ M, t ∈ T , a ∈ A, b ∈ A+

ha
, (4)

and

π
jd
m (t) = min

a∈A+
j

{π jd
am(t)}, ∀d ∈ D,m ∈ M, j ∈ J, t ∈ T . (5)

In addition, the definitional and non-negativity constraints are depicted as follows:

uidam(t) ≥ 0, ∀d ∈ D,m ∈ M, i ∈ N, t ∈ T , a ∈ A+
i (6)
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and

udabm(t) ≥ 0, ∀d ∈ D,m ∈ M, t ∈ T , a ∈ A, b ∈ A+
ha
. (7)

The flow conservation constraints are formulated as

udam(t) =
∑
b∈A+

ha

udabm(t), ∀d ∈ D,m ∈ M, a ∈ A, t ∈ T (8)

and

d̃idm(t) =
∑
a∈A+

i

uidam(t), ∀d ∈ D,m ∈ M, i ∈ N, t ∈ T . (9)

Equation (8) infers that the flow of class m vehicles entering link a at time t and going
to destination d is distributed among the links leaving link a. Equation (9) is the node flow
conservation constraint, stating that the demand of class m vehicles generated at origin i
at time t is split between the links coming out from origin i.

2.2.2. Intersection-movement-basedmulti-class VI formulation
The intersection-movement-based multi-class DUO conditions can be represented as the
following NCP:

(π id
am(t) − π id

m (t))uidam(t) = 0, ∀d ∈ D,m ∈ M, i ∈ N, t ∈ T , a ∈ A+
i , (10)

(πd
abm(t) − π tad

am (t))udabm(t) = 0, ∀d ∈ D,m ∈ M, t ∈ T , a ∈ A, b ∈ A+
ha
, (11)

π id
am(t) − π id

m (t) ≥ 0, ∀d ∈ D,m ∈ M, i ∈ N, t ∈ T , a ∈ A+
i , (12)

πd
abm(t) − π tad

am (t) ≥ 0, ∀d ∈ D,m ∈ M, t ∈ T , a ∈ A, b ∈ A+
ha
, (13)

uidam(t) ≥ 0, ∀d ∈ D,m ∈ M, i ∈ N, t ∈ T , a ∈ A+
i , (14)

and

udabm(t) ≥ 0, ∀d ∈ D,m ∈ M, t ∈ T , a ∈ A, b ∈ A+
ha
. (15)

It is well known that an NCP can be reformulated into a VI problem when the solution
set is non-negative orthant. After taking into account the requirement of flow conservation
conditions, the intersection-movement-based multi-class VI problem is to determine u∗ =
[uid∗

am(t), ud∗
abm(t)] such that

∫ T

0

∑
i∈N

∑
d∈D

∑
a∈A+

i

∑
m∈M

π id∗
am (t)[uidam(t) − uid∗

am(t)]dt

+
∫ T

0

∑
a∈A

∑
d∈D

∑
b∈A+

ha

∑
m∈M

πd∗
abm(t)[udabm(t) − ud∗

abm(t)]dt ≥ 0,
∀udabm(t), uidam(t) ∈ �u,

(16)
where * denotes an optimal solution to the VI problem and�u is the solution space defined
by the non-negativity constraints (6) and (7) and conservation constraints (8) and (9).
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2.2.3. Approach-proportion-basedmulti-class VI formulation
The preceding formulation can alternatively be reformulated using the concept of
approach proportion. An approach proportion is defined as the proportion of vehicles that
select a downstream link to enter after leaving a node or passing through an upstream
link. That is, it is defined as the proportion of vehicles coming out from a link or a node to
enter the relevant approach or the proportion of vehicles selecting a particular intersection
movement. By definition, the approach proportions must satisfy the following conditions:

∑
a∈A+

i

αid
am(t) = 1, ∀d ∈ D,m ∈ M, i ∈ N, t ∈ T , (17)

∑
b∈A+

ha

αd
abm(t) = 1, ∀d ∈ D,m ∈ M, t ∈ T , a ∈ A, (18)

αid
am(t) ≥ 0, ∀d ∈ D,m ∈ M, i ∈ N, t ∈ T , a ∈ A+

i , (19)

and

αd
abm(t) ≥ 0, ∀d ∈ D,m ∈ M, t ∈ T , a ∈ A, b ∈ A+

ha
. (20)

Equations (17) and (18) respectively require that the sum of all of the approach propor-
tions associated with an origin and an intermediate node must equal one. Equations (19)
and (20) impose the restriction that all of the approach proportions must be nonnegative.

Approach proportions must also satisfy the following by definitions:

uidam(t) = αid
am(t)d̃idm(t), ∀d ∈ D,m ∈ M, i ∈ N, t ∈ T , a ∈ A+

i (21)

and

udabm(t) = αd
abm(t)utadam(t), ∀d ∈ D,m ∈ M, t ∈ T , a ∈ A, b ∈ A+

ha
. (22)

The approach-based DUO conditions can be expressed as

π id
am(t)

⎧⎨
⎩

= π id
m (t) if αid

am(t) > 0;

≥ π id
m (t) if αid

am(t) = 0,
∀d ∈ D,m ∈ M, i ∈ N, t ∈ T , a ∈ A+

i , (23)

and

πd
abm(t)

⎧⎨
⎩

= π
tad
am (t) if αd

abm(t) > 0;

≥ π
tad
am (t) if αd

abm(t) = 0,
∀d ∈ D,m ∈ M, t ∈ T , a ∈ A, b ∈ A+

ha
. (24)

It is shown in the Appendix that the approach-based DUO conditions (23) and (24) imply
the link-based DUO conditions (1) and (2).
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The corresponding VI problem is to determine α∗ = [αid∗
am(t),αd∗

abm(t)] such that

∫ T

0

∑
i∈N

∑
d∈D

∑
a∈A+

i

∑
m∈M

π id∗
am (t)[αid

am(t) − αid∗
am(t)]dt

+
∫ T

0

∑
a∈A

∑
d∈D

∑
b∈A+

ha

∑
m∈M

πd
abm(t)[αd

abm(t) − αd∗
abm(t)]dt ≥ 0,

∀αid
am(t),αd

abm(t) ∈ �α ,

(25)
where * denotes an optimal solution and �α is the solution space of the approach pro-
portions defined by Equations (17)–(20). The mapping function of the VI is defined by
π = [π id

am(t),πd
abm(t)], which in turn is a function of [τam(t)], the outputs of a DNL model

given α.

2.3. DNLmodel

ADNLmodel depicts how traffic propagates inside a traffic network andhencegoverns net-
workperformance in termsof travel time. Ingeneral,manyDNLmodels canbeused (e.g. see
Mun 2007). To be more realistic, we modify the model developed by Bliemer (2007), which
captures dynamic queuing, spillback effects, and multiple vehicle types. Bliemer’s model
is divided into two sub-models: a link model and a node model. The link model describes
the flow propagation and outputs queue lengths and queue inflow rates given the inflow
rates. The node model determines the actual outflow rate from each link. Afterwards, the
inflow rate into a downstream link (which equals the actual outflow rate from the upstream
link) and the cumulative inflow into andoutflow fromeach link canbe obtained. Finally, link
travel time can be derived from the cumulative inflow and outflow (Long, Gao, and Szeto
2011). Ourmainmodification is that we incorporate intersectionmovement flows to define
the inflows and outflows of links and nodes. Path and OD information is not used. For the
sake of completeness, we briefly introduce the formulation of the DNL model.

2.3.1. Linkmodel
The link model assumes that a link can be separated into two parts: (i) a free-moving part,
where the flow of each class travels at its maximum free-flow speed, and (ii) a queuing part,
where all of the flow classes travel at the same speed. The lengths of the free-moving and
queuing parts are respectively defined by

Lfa(t) = La − Lqa(t), ∀a ∈ A, t ∈ T (26)

and

Lqa(t) =
∑

m∈M ρmX
q
am(t)

naJa
, ∀a ∈ A, t ∈ T . (27)

Equation (26) means that the length of the free-moving part of link a at time t is calcu-
lated by subtracting the length of the queuing part at that time from the total length of link
a. Equation (27) calculates the length of the queuing part of link a at time t given the flow
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of classm vehicles in the queuing part at that time, Xqam(t), which is defined by

Xqam(t) = Qam(t) − Vam(t), ∀a ∈ A,m ∈ M, t ∈ T . (28)

Equation (28) depicts that the flowof classm vehicles in the queuing part of link a at time
t is the difference between the corresponding cumulative queue inflow and cumulative
outflow at that time. By definition, 0 ≤ Lqa(t), Lfa(t) ≤ La. Note that unlike the point queue
model, the lengths of the free-moving and queuing parts are not fixed.

The cumulative outflow of class m vehicles from link a until time t, Vam(t), is obtained
from the following equations:

Vd
abm(t) =

∫ t

ω=0
vdabm(ω)dω, ∀d ∈ D,m ∈ M, t ∈ T , a ∈ A, b ∈ A+

ha
(29)

and

Vam(t) =
∑
d∈D

∑
b∈A+

ha

Vd
abm(t), ∀a ∈ A,m ∈ M, t ∈ T , (30)

where vdabm(ω) in Equation (29) is derived in thenodemodel described in Section2.3.2. Note
that the outflow of the queuing part can be restricted to the value less than the outflow
capacity due to queue spillback.

The cumulative queue inflow of classm vehicles into link a at time t, Qam(t), is given by

Qd
abm(t) =

∫
ω∈�am(t)

ûdabm(ω)dω, ∀d ∈ D,m ∈ M, t ∈ T , a ∈ A, b ∈ A+
ha

(31)

and

Qam(t) =
∑
d∈D

∑
b∈A+

ha

Qd
abm(t), ∀a ∈ A,m ∈ M, t ∈ T , (32)

where ûdabm(t) is obtained by

ûdabm(t) =

⎧⎪⎪⎨
⎪⎪⎩

αd
abm(t)

∑
b′∈A−

ta

vdb′am(t) if ta /∈ N ∪ D;

αd
abm(t)αtad

a,m(t)d̃tadm (t) if ta ∈ N,

∀a ∈ A, b ∈ A+
ha
, d ∈ D,m ∈ M, t ∈ T .

(33)
In Equation (31),�am(t) is the set of time indices of the flow of classm vehicles that enter

link a and reach the tail of the queue on that link at time t. It is mathematically defined by

�am(t) =
{

ω|ω + Lfa(t)

ϑam
≤ t

}
, ∀a ∈ A,m ∈ M, t ∈ T . (34)

Given Qd
abm(t), the following equation gives the queue inflow rate into link a:

qdabm(t) = dQd
abm(t)

dt
, ∀d ∈ D,m ∈ M, t ∈ T , a ∈ A, b ∈ A+

ha
. (35)
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2.3.2. Nodemodel
The queue inflow rate in Equation (35) is used to determine the potential outflow rate.
The potential outflow rate is the maximum flow rate that can be sent from an upstream
link to a downstream link without considering capacity constraints or queue spillback. It is
formulated as

v̄dabm(t) =

⎧⎪⎪⎨
⎪⎪⎩
qdabm(t∗a(t)) if Lqa(t) = 0;

qdabm(t∗a(t))∑
m′∈M

∑
b′∈A+

ha

∑
d′∈D ρm′qd

′
ab′m′(t∗a(t))

Ca otherwise,

∀d ∈ D,m ∈ M, t ∈ T , a ∈ A, b ∈ A+
ha
. (36)

Equation (36) states that the potential outflow rate of classm vehicles from link a at time
t entering link b and heading to destination d equals the queue inflow at time t∗a(t) if the
length of the queuing part of link a is zero; otherwise, it is proportional to the link capacity.
t∗a(t) is the time at which the vehicles at the head of the queue at time t enter the tail of the
queue. t∗a(t) is mathematically defined by

t∗a(t) = min{ω|Qa(ω) = Va(t)}, ∀a ∈ A, t ∈ T . (37)

Va(t) and Qa(t) are respectively obtained by

Va(t) =
∑
m∈M

ρmVam(t), ∀a ∈ A, t ∈ T (38)

and

Qa(t) =
∑
m∈M

ρmQam(t), ∀a ∈ A, t ∈ T . (39)

The potential outflow rate v̄abm(t) is obtained by

v̄abm(t) =
∑
d∈D

v̄dabm(t), ∀a ∈ A, b ∈ A+
ha
,m ∈ M, t ∈ T . (40)

Based on the potential outflow rate, the nodemodel determines the actual outflow and
inflow rates of each link. Similar to Bliemer’s (2007) formulation, the node model is formu-
lated as an linear programming (LP) problem with the objective of maximising the total
throughput of a node subject to capacity and flow proportion conservation constraints.
The analytical solution to the LP problem can be expressed as

vabm(t) = min
b′∈A+

ha

⎧⎨
⎩v̄abm(t),

v̄abm(t)∑
m′∈M

∑
a′∈A−

tb′
ρm′ v̄a′b′m′(t)

Cinb (t)

⎫⎬
⎭ ,

∀m ∈ M, t ∈ T , a ∈ A, b ∈ A+
ha
. (41)

The preceding equation indicates that the actual outflow of class m vehicles entering
link a at time t and traversing link b either equals the potential outflow rate v̄abm(t) or is
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proportional to the inflow capacity of link b. The inflow capacity is determined by

Cina (t) =

⎧⎪⎪⎨
⎪⎪⎩
Ca if Lqa(t) < La;∑
m∈M

∑
b∈A+

ha

ρmvabm(t) if Lqa(t) = La, ∀a ∈ A, t ∈ T . (42)

Equation (42) indicates that the inflow capacity of a link depends on whether there is
a queue spillback on this link. If there is not, then the inflow capacity equals the design
capacity of the link; otherwise, it is set to the current total outflow rate in terms of the PCU
leaving the link.

Given the outflow rate vabm(t) calculated by Equation (41), the outflow rate to any
destination can be obtained by

vdabm(t) = v̄dabm(t)∑
d′∈D v̄d

′
abm(t)

vabm(t), ∀d ∈ D,m ∈ M, t ∈ T , a ∈ A, b ∈ A+
ha
, (43)

where v̄dabm(t) is given by Equation (36).

2.3.3. Travel time determination
The travel time for classm vehicles on link a entering at time t is derived by

τ ′
am(t) = min {ω|Vam(ω) = Uam(t)}, ∀m ∈ M, t ∈ T , a ∈ A (44)

and

τam(t) = τ ′
am(t) − t, ∀m ∈ M, t ∈ T , a ∈ A. (45)

Note that although conditions (44) and (45) calculate the travel time for each class inde-
pendently, the interactions between different classes are captured during the process in
which the outflow rates are calculated for each class. More specifically, in Equation (24), the
queue length is defined by the sum of the flow of each class. This queue length is used to
define the outflow rate of each class by the node model. Hence, the travel time calculation
indeed considers all of the traffic classes and their interactions.

The cumulative inflow, Uam(t), is obtained from the following equations:

Ud
abm(t) =

∫ t

ω=0
ûdabm(ω)dω, ∀d ∈ D,m ∈ M, t ∈ T , a ∈ A, b ∈ A+

ha
(46)

and

Uam(t) =
∑
d∈D

∑
b∈A+

ha

Ud
abm(t), ∀m ∈ M, t ∈ T , a ∈ A, (47)

where ûdabm(t) is given by Equation (33).

3. Solution algorithm

To solve the problem, time is discretised so that an extragradient method can be adopted.
The advantage of the algorithm is that it only requires mild assumptions for convergence,



890 Y. JIANG ET AL.

that is, the mapping function to be pseudomonotone and Lipschitz continuous, with the
Lipschitz constant not necessarily known a priori. Long et al. (2013) and Szeto and Jiang
(2014) adopted the extragradient method to solve dynamic traffic assignment and transit
assignment, respectively.

Let T ′ be the set of discretised time intervals and t′ ∈ T ′. Denote αid
am(t′), αd

abm(t′),
τam(t′), uidam(t′), π id

am(t′), and π id
m (t′) as corresponding to their counterparts in a continuous

time setting. The algorithm is outlined as follows.

Step 0: Initialisation. Set the iteration counter I = 0. Select the parameters for updating
the stepsizes for the projection method: β , ξ ∈ (0, 1) and λI > 0. Set the convergence
tolerance ε > 0. Set αI = [αid

am(t′),αd
abm(t′)].

Step 1: Check the stopping criterion.

If the gap G(αI) =
∑

m∈M
∑

i∈N
∑

d∈D
∑

a∈A+
i

∑
t′∈T ′ uidam(t′)(π id

am(t′)−π id
m (t′))∑

m∈M
∑

i∈N
∑

d∈D
∑

a∈A+
i

∑
t′∈T ′ uidam(t′)τam(t′)

≤ ε, then termi-

nate;
else proceed to Step 2.

Step 2: Update approach proportions.
Step 2.1: Calculate α̃I = Proj�(αI − λIπ(αI)), where π(αI) = [π id

am(t′),πd
abm(t′)], and

� = {αI| ∑
a∈A+

i

αid
am(t′) = 1, ∀i ∈ N, d ∈ D,m ∈ M, t′ ∈ T ′,

∑
b∈A+

ha

αd
abm(t′) = 1, ∀a ∈

A, d ∈ D,m ∈ M, t′ ∈ T , αid
am(t′) ≥ 0, ∀i ∈ N, d ∈ D, a ∈ A,m ∈ M, t′ ∈ T ′}

Step 2.2: If λI > β
( ‖αI−α̃I‖

‖π(αI)−π(α̃I)‖
)
,

then λI = min
{
ξλI,β ‖αI−α̃I‖

‖π(αI)−π(α̃I)‖
}
, return to Step 2.1;

else go to Step 2.3.

Step 2.3: αI+1 = Pr oj�(αI − λIπ(α̃I)) and set λI+1 = min
{
λ̄,β ‖αI−α̃I‖

‖π(αI)−π(α̃I)‖
}
.

I = I + 1. Return to Step 1.

In Step 0, the initial solution can be generated by the all-or-nothing assignment. In Step
1, the gapmeasuring the closeness of the current solution to a link-based DUO condition is
used to check the convergence. In Step 2, the projection operation canbe effectively solved
by a linear projectionmethod described by Szeto and Jiang (2014). To update themapping
function, we adopt the DNL algorithm similar to that provided by Bliemer (2005).

4. Numerical examples

We conduct four experiments to illustrate the properties of the proposed model and the
performanceof theproposed algorithm.All of the experiments are runonadesktopwith an
Intel (R) 3.40 GHz CPU and 32.00GB of RAM.Without further specification, other parameters
are set as follows: ε = 1.0 × 10−6, β = 0.9, ξ = 0.9, λ̄ = 10, ρcar = 1.0, and ρtruck = 2.0.
Moreover, all of the examples consider two types of demand: car and truck demand. Inmost
of the numerical examples provided in this paper, the term ‘trucks’ can be interpretedmore
generally as vehicles larger than standardprivate cars, vehicleswith slowermaximum travel
speeds than the reference vehicles, and vehicles that follow the DUO principle. However,
we also provide an example that assumes that trucks follow predefined routes in practice.
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0 1 2 3 

Link 0 Link 1 Link 2
4 5

Link 3 Link 4

Link 5

Intersection movement 1  

Intersection movement 2  

Figure 1. Small network.

Table 1. Input data for example 1.

(a) Link data

Link Speed of Speed of Length Density Capacity No. of
No. cars (km/h) trucks (km/h) (km) (veh/km) (veh/h) lanes

0 72.0 36.0 0.02 200 3600 2
1 72.0 36.0 0.10 200 3600 2
2 72.0 36.0 1.30 200 1800 1
3 72.0 36.0 0.04 200 7200 4
4 72.0 36.0 0.06 200 3600 2
5 72.0 36.0 1.60 200 3600 2

(b) Demand data

Car Truck

OD pair Input intervals Demand (veh/h) Input intervals Demand (veh/h)

0–5 1–30 1200 1–30 900
31–50 300 31–50 100

4.1. Approach proportions and travel times under the DUO conditions

Figure 1presents a small network to illustrate that theproposedmodel cangiveDUOresults
and that the route choices of different types of vehicles can differ. The network contains six
nodes and six links. Node 0 is the origin and node 5 is the destination. Links 2 and 4 are
bottleneck links (i.e. links with a limited design capacity) and marked with dashed lines.
Other links are represented by thicker arrows and have a higher capacity. In this network,
two links, that is, links 1 and 5, come out from node 1. At this node, there are two possible
intersection movements: from link 0 to link 1 (intersection movement 1) and from link 0
to link 5 (intersection movement 2). If link 1 is used (i.e. intersection movement 1 is made),
then links 2, 3, and 4 are also usedbefore the destination is reached. If link 5 is used, then the
vehicle reaches the destination directly, as link 5 is directly connected to the destination.
The free-flow travel time on link 5 is longer than the sum of the free-flow travel times on
links 1, 2, 3, and 4.

Two vehicle classes, that is, cars and trucks, travel fromorigin node 0 to destination node
5. The demand for each class lasts for 50 intervals, where the first 30 intervals are peak
intervals with higher demand. Table 1 lists all of the necessary network data.

Table 2demonstrates that the solutionobtained satisfies themulti-classDUOconditions.
To save space, we present only the proportions and travel times from intervals 5–15. The
table shows that at any time interval and for any class of vehicle, if an approachproportion is
positive, then the corresponding travel time to the destination equals the minimum travel
time, implying that the multi-class DUO conditions are satisfied.
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Table 2. Approach proportions and approach travel times under the DUO conditions.

t α5
01,car π5

01,car α5
02,car π5

02,car π05
0,car α5

01,truck π5
01,truck α5

02,truck π5
02,truck π05

0,truck

5 1.00 76.0 0.00 81.0 76.0 1.00 156.0 0.00 162.0 156.0
6 1.00 76.7 0.00 81.0 76.7 1.00 156.6 0.00 162.0 156.6
7 1.00 77.3 0.00 81.0 77.3 1.00 157.1 0.00 162.0 157.1
8 1.00 78.0 0.00 81.0 78.0 1.00 157.0 0.00 162.0 157.0
9 1.00 78.7 0.00 81.0 78.7 1.00 157.0 0.00 162.0 157.0
10 1.00 79.3 0.00 81.0 79.3 1.00 157.0 0.00 162.0 157.0
11 1.00 80.0 0.00 81.0 80.0 1.00 157.0 0.00 162.0 157.0
12 1.00 80.7 0.00 81.0 80.7 1.00 157.0 0.00 162.0 157.0
13 0.56 81.0 0.44 81.0 81.0 1.00 157.0 0.00 162.0 157.0
14 0.00 81.0 1.00 81.0 81.0 1.00 157.0 0.00 162.0 157.0
15 0.00 81.0 1.00 81.0 81.0 1.00 157.0 0.00 162.0 157.0

The bold values emphasise that ‘if an approach proportion is positive, then the corresponding travel time to the destination
equals the minimum travel time’.
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Figure 2. Approach proportions associated with intersection movement 1 and minimum travel times
of cars between nodes 1 and 5.

The approach proportions of the two classes departing during the same time interval
could be different. For example, α5

01,car(13) = 0.57, and α5
01,truck(13) = 1.0, indicating that

the route choices for car and truck drivers are different. Such a distinction can be attributed
to the difference in the travel speeds of different vehicle classes and selfish route choice
behaviour, as different travel speeds result in different travel times associated with each
link and selfish route choice behaviour generates different responses to these travel times.
The discrepancy in the approachproportions and travel times indeedunderlines the impor-
tance of consideringmultiple vehicle classes in a DTAmodel, as single-class models cannot
capture diversity in route choices and travel times across different vehicle types. Without
capturing the route choice of each vehicle type correctly, road restrictions or priority control
for particular vehicle types cannot be implemented effectively.

Table 2 shows that the trucks do not change routes because intersection movement 1
is always chosen. However, the route choices and travel times of the car drivers vary over
time. Figure 2 is plotted to investigate how the travel times and approach proportions of
cars change over time. It is clear that the departure time intervals can be divided into five
periods according to the minimum travel time.
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For the first six intervals, the approach proportions for intersection movement 1 equal
1.0 and theminimumcar travel times associatedwith thismovement are constant, implying
that all of the cars departing during these intervals use intersectionmovement 1 and expe-
rience identical travel times. There are three reasons for this. First, aftermaking intersection
movement 1, the total free-flow travel time on links 1–4 is shorter than that on link 5. Sec-
ond, given that the car demand itself is less than the capacity of either bottleneck link, the
cars do not form a queue. Third, no trucks arrive at either bottleneck link concurrently with
the cars departing before interval 6. Only the cars departing after interval 61 reach the tail of
the first bottleneck link, that is, link 2, simultaneouslywith the trucks departingduring inter-
val 1. Hence, the total inflow (in PCU) is greater than the capacity of link 2. Consequently,
not all of the vehicles can enter link 2, and a queue builds up on link 1.

The growth in queue length explains the increment in the minimum car travel times
after interval 6, as observed in Figure 2. Nevertheless, despite the changes in the minimum
car travel time, the approach proportion for intersection movement 1 is unvaried, as the
travel time associated with intersection movement 1 is still less than that associated with
intersection movement 2.

Until interval 13 (see Table 2), when the travel time associated with intersection move-
ment 1 grows to a value equal to the travel time associated with intersection movement
2, some of the car drivers begin to use link 5 (downstream links for intersection movement
2). Between intervals 14 and 36, all of the car drivers give up link 1 and choose link 5, and
theminimumcar travel timebecomes a constant and equals the travel time associatedwith
intersectionmovement2. There are two reasons for the constantminimumtravel time. First,
link 5 connects the destination node directly. Second, the travel time associated with inter-
sectionmovement 1 is stabilised because there is a queuewith a fixed length on link 1. This
queue comprises only trucks and its fixed length results from the constant truck demand
during peak intervals (i.e. the first 30 intervals). The car travel times and approach propor-
tions do not change immediately after the peak intervals. A six-interval lag is observed
because it takes six intervals for the trucks departing during the last interval of the peak
period, that is, interval 30, to arrive at node 2. Therefore, during these lag intervals, the
queuing delay on link 1 is still the same as that during the peak intervals.

It is only after the interval during which the trucks departing at interval 30 enter link 2
(i.e. after interval 36) that the minimum travel time and approach proportions of the cars
begin to change. Thedemands for trucks and cars drop after interval 30, affecting thequeue
length on link 1. The car travel time drops due to the demand reduction. Car drivers use link
1 when the travel time from nodes 1 to 5 via link 1 is slower than the free-flow travel time
on link 5.

The travel times and approach proportions eventually return to the initial state, that is,
the state in which the network is free of queues, as the queue on link 1 dissipates.

4.2. Effects of truck demand and speed on the approach proportions and travel
times of cars

4.2.1. Effects of truck demand on the approach proportions and travel times of cars
Based on the setting in subsection 4.1, we examine the effects of truck demand on the
approach proportions and travel times of cars. Figure 3 plots the minimum car travel
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Figure 3. Effects of truck demand on the approach proportions and travel times of cars. (a) Effect of
truck demand on the approach proportions of cars. (b) Effect of truck demand on the travel times of cars.

times and approach proportions associated with intersection movement 1 when the truck
demand varies from 600 to 1200 veh/h. The effects can be grouped into three categories.

(1) Truck demand affects the approach proportions of cars. As shown in Figure 3(a), when
the truck demand increases to 900 or 1200 veh/h, all of the car drivers switch from links
1 to link 5 during the middle period, while some cars continue to travel via link 1 when
the truck demand is maintained at 600 veh/h. Both the demands of trucks and cars
using link 1 contribute to the total inflow into that link, decreasing the truck demand
and allowing more cars to travel on link 1.

(2) Truck demand affects the increasing rate of car travel time. Figure 3(b) shows that
during the growth of the minimum car travel time from 76 to 81 intervals, the time
increases faster at a higher demand level. The change in car travel time is rooted in the
variation in theoutflow rate for cars travellingon link 1, onwhich aqueue is formed. The
lower the car outflow rate, the longer the car travel time associatedwith link 1. Accord-
ing to Equation (41), the car outflow rate is directly proportional to the queue inflow
rate and inflow capacity of downstream links and inversely proportional to the total
outflow (in PCU). When the truck demand increases, the total outflow grows. As the car
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demand remains unchanged, the queue inflow rate does not increase compared with
the case involving trucks. The inflow capacity of thedownstream link remains the same.
As a result, the car outflow rate decreases. Meanwhile, the larger the truck demand, the
more the car outflow rate decreases. Therefore, a higher truck demand induces a larger
decrease in the car outflow rate on link 1, raising the increasing rate of car travel time
associated with link 1.

(3) Truck demand influences the start and end time intervals and usage duration for
the vehicles using link 5. Figure 3(a) shows that the approach proportion associated
with intersection movement 1 changes from one to zero during the middle departure
period,meaning that the approach proportion associatedwith intersectionmovement
2 changes from zero to one during the period. As explained in Section 4.1, the middle
period during which the car drivers switch from link 1 to link 5 is the period during
which the travel times associated with two intersection movements are equal. Fol-
lowing the second point, acknowledging that the travel time increases faster when
the truck demand is higher, it takes fewer intervals for the travel time associated with
intersection movement 1 to match that associated with intersection movement 2.
Therefore, the car drivers who depart during earlier time intervals choose link 5 ear-
lier. The end time interval and usage duration for the vehicles using link 5 increasewith
the truck demand because the travel time decreases at a slower rate when the truck
demand is higher, and more time is required to dissipate the queue.

4.2.2. Effects of truck speed on the approach proportions and travel times of cars
The setting in this subsection is the same as that in the previous subsection, except that
the truck demand is fixed at 900 veh/hwhile the truck speed varies from 24 to 48 km/h. The
resultant approach proportions and travel times are plotted in Figure 4(a) and (b), respec-
tively. Figure 4(b) shows that the time interval duringwhich the travel time starts to increase
is different. As the truck travel speed is higher, the trucks arrive at node 2 earlier. Accord-
ingly, the start time intervals for a queue formed on link 1 occur earlier. The travel time
begins to increase earlier, and the time interval duringwhich the travel time associatedwith
intersection movement 1 grows to that associated with intersection movement 2 occurs
earlier. Therefore, the car drivers switch to link 5 during earlier time intervals, as shown in
Figure 4(a).

4.3. Car–truck interaction paradox

4.3.1. Occurrence of the paradox
The following example reveals a car–truck interaction paradox in DTA. It shows that allow-
ing trucks to travel in a network or increasing the demand of trucks travelling in a network
can improve the network performance of cars in terms of their total travel time. We adopt
the same network in Figure 1 and the same link data in Table 1(a). Two OD pairs are
considered in this example, and the demand data are presented in Table 3.

We conduct a before-and-after study. In the before scenario, no trucks are allowed to
travel in the network. In the after scenario, the demand of trucks for OD pair 0–5 is set at
1000 veh/h and lasts for 20 intervals. The total car travel times of the two scenarios are cal-
culated and shown in Table 4. The result states that allowing trucks to enter the network
decreases the total car travel time by 5.7%, from 980.0 to 924.1 intervals, indicating that the
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Figure 4. Effects of truck speed on the approach proportions and travel times of cars. (a) Effect of truck
speed on the approach proportions of cars. (b) Effect of truck speed on the travel times of cars.

Table 3. Demand data.

Truck

Car Before After

OD pair Input intervals Demand (veh/h) Input intervals Demand Demand

0–5 5–30 1200 1–20 0 veh/h 1000 veh/h
0–5 31–40 300 – – –
3–5 75–100 3500 – – –
3–5 100–120 1500 – – –

network performance of cars improves in terms of the total car travel time. The occurrence
of the paradox is explained as follows.

In the before scenario, cars travel via link 1 to the destination under the DUO conditions.
When these cars arrive at node 4, a queue is formed on link 3, as the total inflow (in terms
of the total PCU) into link 4, including the car demands of the two OD pairs, is larger than
the capacity of link 4. Due to this queue, the travel time on link 3 increases. Given that link
3 is the only approach for the cars of OD pair 3–5 to reach the destination node, the car
travel time for OD pair 3–5 rises. Meanwhile, the increase in car travel time for OD pair 3–5
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Table 4. Occurrence of the multi-class paradox.

Before After Improvement

Total car travel time
(No. of intervals)

980.0 924.1 −5.7%

depends on the number of cars entering link 3 fromOD pair 0–5, as the demand of OD pair
3–5 is constant and less than the capacity of link 4. Hence, themore the cars of OD pair 0–5
use link 1, the greater the increase in car travel time for OD pair 3–5.

In the after scenario, all the trucks use link 1, as the resultant travel time to the destina-
tion is shorter for trucks. When the trucks arrive at node 2, a queue is induced on link 1. As
a result, the car travel time associated with intersection movement 1 increases. When the
travel time associated with intersection movement 1 equals that associated with intersec-
tion movement 2, some of the car drivers switch to link 5. The number of cars entering link
3 equivalently decreases compared with the number in the before scenario. The reduction
mitigates the increase in car travel time for OD pair 3–5. In addition, the demand of OD
pair 3–5 is far more than that of OD pair 0–5. Therefore, considering the whole network,
although allowing trucks to travel between OD pair 0–5 increases the car travel time for
OD pair 0–5, it decreases the total car travel time of the network by bringing down the car
travel time for OD pair 3–5.

The trucks directly affect the car travel time for OD pair 0–5 and indirectly affect the car
travel time for OD pair 3–5. The direct effect means that trucks interact with the cars of
OD pair 0–5, and both the car and truck demands are responsible for the queue on link 1.
In contrast, there is no interaction between the trucks of OD pair 0–5 and the cars of OD
pair 3–5, as no trucks enter link 3 before interval 120, the last demand interval of OD pair
3–5, when the truck speed is 36 km/h. Therefore, the effect of trucks on the car travel time
for OD pair 3–5 is considered indirect, that is, they affect the number of car drivers making
intersection movement 1.

In reality, the before scenario may represent a traffic management scheme that restricts
certain links or areas for trucks due to noise, weight, or height restrictions, assuming that
such restrictions would benefit cars. However, the occurrence of the car–truck paradox
implies that it is possible to relax the restriction so that the network performance for cars
can be further improved in terms of the total car travel time.

4.3.2. Effects of truck demand and speed on the occurrence of the paradox
In this subsection, the effects of truck demand and speed on the occurrence of the para-
dox are elaborated based on the setting in the previous subsection. Table 5 presents an
overview of the results. The value in a pair of brackets is the relative change in the total car
travel time in relation to the total car travel time in the before scenario shown in Table 4. A
negative number indicates that the total system car travel time decreases compared with
that in the before scenario shown in Table 4. Table 5 offers three observations, which we
summarise as follows.

First, Table 5 indicates that allowing trucks to enter the network may not change the
total car travel time. This can also be considered a paradox. For instance, when the truck
demand is 200 veh/h, the total car travel time is the same as that in the before scenario. A
low truck demand is insufficient to incur a queue on link 1, and thus the car travel times for



898 Y. JIANG ET AL.

Table 5. Effects of truck demand and speed on the total car travel time.

Total car travel time (No. of intervals)

d̃05truck (veh/h) ϑa,truck = 24 km/h ϑa,truck = 36 km/h ϑa,truck = 48 km/h

200 980.0 (0.0%) 980.0 (0.0%) 980.0 (0.0%)
400 979.2 (−0.1%) 977.9 (−0.2%) 977.8 (−0.2%)
600 971.0 (−0.9%) 962.1 (−1.8%) 963.8 (−1.7%)
800 957.3 (−2.3%) 939.1 (−4.2%) 939.0 (−4.2%)
1000 948.5 (−3.1%) 924.1 (−5.7%) 919.8 (−6.1%)

the two OD pairs are unaffected. In such a case, the network performance of trucks may be
considered improved in terms of throughput.

Second, in addition to allowing trucks to travel in the network, increasing the demand of
trucks may trigger the paradox. Consider the columns for the truck speed of 36 km/h. The
total car travel time decreases when the truck demand increases from 200 to 1000 veh/h.

Third, truck demand and speed influence the magnitude of the changes in the total car
travel time. In general, the difference in magnitude depends on the changes in the travel
times of the two OD pairs. The changes vary under different truck speed and demand com-
binations. Figures 5 and 6 are plotted to clearly illustrate how the travel times of the two
OD pairs vary. In Figure 5, the truck speed is fixed at 36 km/h. In Figure 6, the truck demand
is set at 800 veh/h.

4.3.3. Effects of truck demand and speed on the approach proportions and travel
times of cars

Figures 5 and 6 plot the approach proportions and travel times of cars to visualise how car
travel times and route choices change after trucks are introduced. The setting is basically
the same as that in Subsection 4.3.1. In general, we conclude that truck demand and speed
have similar effects as those observed in Figures 3 and 4. More specifically, Figures 5(a) and
6(a) show that the time interval at which the car drivers change their route is affected. Fur-
thermore, Figures 5(b), 5(c), 6(b), and 6(c) demonstrate that the increasing and decreasing
rates in the car travel times, represented by the slope of the travel time curve, are affected.

The following three observations are worth mentioning.

(1) Figure 5(a) reveals a scenario in which increasing the truck demand may increase the
proportion of cars travelling on the same link for certain intervals. More specifically,
during intervals 23–26, the proportions of cars travelling on link 1 are larger when the
truck demand is 200 veh/h, compared with the proportions when the truck demand is
600 veh/h.

(2) Figure 5(b) indicates that a higher truck demand can decrease the minimum car travel
time for the sameODpair. For example, between intervals 29 and 40, the car travel time
for ODpair 0–5 dropswith the increasing truck demand. Trucks induce different effects
on the links with queues. Although increasing the truck demand directly increases the
car travel time associatedwith link 1, it also indirectly decreases the car travel time asso-
ciated with link 4. Considering the aggregate effect on the car travel time associated
with intersection movement 1, the travel time decreases during intervals 29 and 40
along with the increasing truck demand.
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Figure 5. Effects of truck demand on the occurrence of the paradox. (a) Effect of truck demand on the
approach proportions of cars in OD pair 0–5. (b) Effect of truck demand on the minimum car travel time
for OD pair 0–5. (c) Effect of truck demand on the minimum car travel time for OD pair 3–5.

(3) In Figure 6(b), a kink at interval 12 is observedwhen the truck speed is 24 km/h. Aqueue
is developed on link 1 after interval 12. The cars of OD pair 0–5 that depart before inter-
val 12 encounter only one queue on link 3. There is no queue on link 1, as the cars that
depart before interval 12 do not arrive at node 2 simultaneously with any truck when
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Figure 6. Effects of truck speed on the occurrence of the paradox. (a) Effect of truck speed on the
approach proportions of cars in OD pair 0–5. (b) Effect of truck speed on the minimum travel time for
OD pair 0–5. (c) Effect of truck speed on the minimum car travel time for OD pair 3–5.

the truck speed is low. A queue is developed on link 1 only afterwards, when the trucks
that depart during interval 1 arrive at node 2. Therefore, the car travel time increases
further, as there is a longer queue after interval 12.
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Figure 7. Nine-node small network.

Table 6. Link data for Figure 7.

Link no.
Speed of
cars (km/h)

Speed of trucks
(km/h)

Length
(km)

Density
(veh/km)

Capacity
(veh/h)

No. of
lanes

0–4 Same as the data in Table 1
5 72.0 36.0 0.60 200 3600 2
6 72.0 36.0 0.06 200 7200 4
7 72.0 36.0 0.60 200 7200 4
8 72.0 36.0 0.40 200 7200 4

For OD pair 3–5, Figure 5(c) illustrates that the minimum car travel time drops when the
truckdemand rises. As explained in theoccurrenceof theparadox, theminimumtravel time
for OD pair 3–5 increases because many drivers of the cars in OD pair 0–5 decide to make
intersectionmovement 1. Thus,when the truckdemand increases, thenumber of cars using
links 1–4 decreases, which in turn decreases the car travel time for OD pair 3–5.

Figure 6(c) shows that when the truck speed is 24 km/h, the travel time for OD pair 2
is higher than that when the truck speed is 36 km/h. When the truck speed is low, it takes
more time intervals for trucks to arrive at node 2. Thus, all of the car drivers who depart
earliermake intersectionmovement 1 and enter link 3, increasing the car travel time for OD
pair 3–5 as a result. In addition, a sharp rise in the car travel time for OD pair 3–5 is observed
when the truck speed is 48 km/h. The trucks enter link 3 when their speed is high, directly
increasing the car travel time for OD pair 3–5.

4.3.4. Effects of background traffic levels on the occurrence of the paradox
To investigate the effect of various background traffic levels on the occurrence of the para-
dox, the network in Figure 1 is extended to that in Figure 7. Table 6 shows the link data.
Three OD pairs are considered: OD pairs 0–5, 3–4, and 6–5. For OD pair 0–5, the demand
data are identical to those in the paradox example. For OD pair 6–5, the car demand is
set at 300 veh/h. The truck demand varies from 2400 to 3600 veh/h. Meanwhile, the route
for the trucks travelling between nodes 6 and 5 is fixed, representing the scenario that
trucks deliver goods following predefined tours with multiple stops. Table 7 reports the
total car travel time (including the car travel times of OD pairs 0–5, 3–4, and 6–5) when
the truck demand for OD pairs 0–5 and 6–5 varies. Similar to Table 5, a negative percent-
age in the bracemeans that the total car travel time decreases and the paradox occurs. The
table shows that the paradox still occurs inmost cases, despite the presence of background
traffic.
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Table 7. Effect of background traffic levels on the
occurrence of the paradox.

d̃65truck (veh/h)

d̃05truck (veh/h) 2400 3600

200 1223.6 (−0.0%) 1237.2 (−0.0%)
400 1221.5 (−0.2%) 1234.5 (−0.2%)
600 1207.2 (−1.3%) 1222.4 (−1.2%)
800 1189.2 (−2.8%) 1212.6 (−2.0%)
1000 1181.7 (−3.4%) 1208.6 (−2.3%)

Table 8. Effect of background traffic levels on the performance of the solution algorithm.

Truck demand for OD pairs 12–8, 5–8, and 9–11

150 (veh/h) 300 (veh/h) 450 (veh/h) 600 (veh/h) 750 (veh/h)

Number of intermediate
solutions evaluated

32 37 43 47 56

4.4. Performance of the solution algorithm

4.4.1. Effect of background traffic levels on the performance of the solution algorithm
To test the performance of the solution algorithm under various background traffic lev-
els, we adopt the Nguyen–Dupuis network shown in Figure 8. The link length and density
are the same as those seen in a study by Long et al. (2013). Four OD pairs are considered:
1–2, 1–3, 4–2, and 4–3. The car demand for each OD pair is set at 900 veh/h, and the truck
demand is 600 veh/h. Meanwhile, three OD pairs, that is, 12–7, 5–8, and 9–11, are set as
the OD pairs generating traffic in the network. The car demand for these OD pairs is fixed at
300 veh/h. The truck demand level varies from150 to 750 veh/h. In the test, the stepsizes for
the algorithm are set at ξ = 0.9 and β = 0.9. The algorithm terminates if it does not con-
verge to ε = 0.01 after evaluating 500 generated intermediate solutions. The number of
intermediate solutions evaluated is adopted as themeasurement for computational effort,
as most of the calculation time is spent on evaluating a solution, which requires DNL.

Table 8 presents the effect of background traffic levels on the performance of the
algorithm. In general, the increment in truck demand induces an additional computa-
tional effort for the algorithm to converge. Nevertheless, when the truck demand increases
from 150 to 750 veh/h, only 24 additional intermediate solutions must be generated and
evaluated. Such a computational burden is not significant and believed to be acceptable.

4.4.2. Convergence on the Sioux Falls network
We demonstrate the performance of the solution algorithm using the Sioux Falls network,
shown in Figure 9. The link and demand data aremodified from the transportation network
dataset maintained by Bar-Gera (2015). The link lengths are the same as those of the origi-
nal dataset. For each OD pair and each departure time interval, the car demand (in vph) is
one-sixth and the truck demand is one-twelfth of the original hourly demand (in vph). The
demand lasts for 30 intervals, and each time interval is 30 s long. Density and speed are not
provided in the original data. The density of each link is set at 200 veh/km, and the car and
truck speeds are set at 72 and 54 km/h, respectively. Figure 10 plots the convergence curve.



TRANSPORTMETRICA A: TRANSPORT SCIENCE 903

Figure 8. The Nguyen and Dupuis network.

Figure 9. The Sioux Falls network.
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Figure 10. Convergence of the algorithm on the Sioux Falls network.

After evaluating 210 intermediate solutions, the algorithmconverges below0.01. The curve
fluctuates because the mapping function may not be pseudomonotone.

5. Conclusions

This paper proposes an intersection-movement-based formulation for the multi-class DTA
problem,wherein the adoptedDNLmodel captures dynamic queuing and spillback effects.
The problem is formulated as a VI problem and solved using an extragradientmethod. Path
enumeration and path-set generation can be avoided in the solution procedure. Numer-
ical studies are conducted to illustrate that the resulting solution of the VI satisfies the
multi-classDUOconditions.Meanwhile,wedemonstrate that changes in truckdemandand
speed affect the route choices and travel times of cars. These results underline the impor-
tance of capturingmultiple vehicle types and their interactions in a DTAmodel. In addition,
we demonstrate the performance of the proposed algorithmusing the Nguyen andDupuis
network and the Sioux Falls network.

This paper also illustrates a car–truck interaction paradox in the context of DTA or, more
generally, the interaction paradox between vehicles of different sizes. It states that allow-
ing larger vehicles to travel or increasing the demand of such vehicles in a network can
decrease the total travel time of smaller vehicles. The occurrence of the paradox is elab-
orated and the effects of truck demand and speed on that occurrence are investigated.
Moreover, taking into account the increase in the throughput for trucks in the network, the
overall performance of each class of vehicles improves, although the performancemeasure
for cars is total travel time,which is different from that for trucks. These findings have impor-
tant implications for trafficmanagement andopenupvarious new researchdirections, such
as developing an optimal real-time, multi-class traffic management scheme, detecting the
occurrence of a car–truck interaction paradox in a network, or simultaneously optimising
the overall performance for each vehicle class.

We develop our model based on the classical DUO principle, where the main factor that
affects route choice is travel time. In reality, a driver may consider other factors such as dis-
tance and number of signalised junctions when making route choice decisions. The route
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choice principle in this model can be replaced with more sophisticated and realistic princi-
ples without encountering fundamental difficulties. We leave this generalisation to future
studies.

Note

1. The length betweennodes 0 and 2 is 0.12 km. It takes 12 intervals for cars and 6 intervals for trucks
to travel this length. Thus, the trucks that depart during interval 1 arrive simultaneously with the
cars that depart during interval 6.
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Appendix

This appendix shows that the approach-basedDUOconditions (23) and (24) imply the link-basedDUO
conditions (1) and (2). The proof contains two parts:

Part 1: Condition (23) implies condition (1).
For ODpair id, the demand rate d̃idm(t) is input and known. Thus, we can consider the following two

cases.
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Case 1: d̃idm(t) > 0. By multiplying d̃idm(t) to both sides of the if-conditions in Equation (23), we can
obtain

π id
am(t)

{= π id
m (t) if αid

am(t)d̃idm(t) > 0;

≥ π id
m (t) if αid

am(t)d̃idm(t) = 0,
∀d ∈ D,m ∈ M, i ∈ N, t ∈ T , a ∈ A+

i , (A1)

which can be simplified to condition (1) according to condition (21).
Case 2: d̃idm(t) = 0. In this case, aftermultiplying d̃idm(t) to both sides of the if-conditions in Equation

(23), the two if-conditions reduce to π id
am(t) ≥ π id

m (t), ifαid
am(t)d̃idm(t) = 0, which can be further simpli-

fied to a special case of (A1), that is, π id
am(t) ≥ π id

m (t), if uidam(t) = 0, according to Equation (21).
Combining the above two cases, it is concluded that if condition (23) holds, then no matter the

value of d̃idm(t), condition (1) holds.
Part 2: Condition (24) implies condition (2).
Although utadam(t) is a decision variable and cannot be determined in advance, it can be known by

network loading once an approach-based DUO solution is obtained. Therefore, given an approach-
based DUO solution that satisfies (23) and (24), we can consider two cases.

Case 1: utadam(t) > 0. We can multiply utadam(t) to both sides of the if-conditions in Equation (24) and
obtain

πd
abm(t)

{= π
tad
am (t) if αd

abm(t)utadam(t) > 0;

≥ π
tad
am (t) if αd

abm(t)utadam(t) = 0,
∀d ∈ D,m ∈ M, t ∈ T , a ∈ A, b ∈ A+

ha
, (A2)

which can be simplified to condition (2) according to Equation (22).
Case 2: utadam(t) = 0. In this case, after multiplying utadam(t) to both sides of the if-conditions

in Equation (24), the two if-conditions reduce to πd
abm(t) ≥ π

tad
am (t), if αd

abm(t)utadam(t) = 0, which

can be further simplified to πd
abm(t) ≥ π

tad
am (t), if udabm(t) = 0, a special case of (A2), according to

Equation (22).
Combining the above two cases, it is concluded that if condition (24) holds, then condition (2)

holds.
From the above twoparts, it is concluded that the approach-basedDUOconditions (23)–(24) imply

the link-based DUO conditions (1)–(2). This completes the proof.
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