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Abstract 

A coupled nonlinear boundary value problem arising from a mixed convective flow of a non-

Newtonian fluid at a vertical stretching sheet with variable thermal conductivity is 

investigated in this paper. Casson fluid model is used to describe the non-Newtonian fluid 

behavior. Using a similarity transformation, the governing equations are transformed into a 

system of coupled, nonlinear ordinary differential equations and the analytical solutions for 

the velocity and temperature fields are obtained via a semi-analytical algorithm based on the 

Optimal Homotopy Analysis Method (OHAM). To validate the method, comparisons are 

made with the available results in the literature for some special cases and the results are 

found to be in excellent agreement. The characteristics of the velocity and the temperature 

fields in the boundary layer have been analyzed for several sets of values of the Casson 

parameter, the Prandtl number, the temperature dependent thermal conductivity parameter, 

the velocity exponent parameter and the mixed convection parameter. The presented results 

through graphs and tables reveal substantial effects of the pertinent parameters on the flow 

and heat transfer characteristics. Furthermore, an error analysis is offered using an exact 

residual error and average residual error methods.  

 

Keywords: Mixed convection, Casson fluid, optimal homotopy analysis method, variable 

thermal conductivity 

1. Introduction 

 During the past few decades, several researchers proposed analytical and semi analytical 

methods based on the topological concepts of homotopy which have become very popular 

and efficient in solving nonlinear coupled differential equations [1,2]: these methods depend 

on the ℏ curves. Recently Marinca et al. [3–5] introduced an optimal homotopy asymptotic 

method which controls the convergence of the series solution. In general, the optimal 
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homotopy asymptotic method is based on a generalized zeroth-order deformation equation 

and does not consider the m
th

-order deformation equation as in homotopy analysis method 

(HAM).  Liao [6] was the first to introduce one of the easiest and highly reliable methods 

called the optimal homotopy analysis method (OHAM). This method contains only three 

convergence control parameters at any level of approximation which is computationally 

efficient. Liao [6] further introduced a new kind of averaged residual error, which can be 

used to find the optimal convergence-control parameters efficiently. 

 In recent years, researchers analyzed the coupled nonlinear boundary value problems 

arising in technological industries by numerical methods. The  study of fluid flow over a 

stretching sheet is one such technologically interesting industrial problem which has attracted 

numerous researchers due to its applications to problems such as food processing, petroleum 

drilling, annealing and tinning of copper wires, manufacturing of plastic films, extraction of 

polymer sheets, crystal growing, paper production, and so on. Seminal analysis by Crane [7] 

reveals that, in a polymer industry, it is inevitable to consider plastic stretching sheet and 

hence obtained a similarity solution to the problem of stretching sheet with a linear surface 

velocity. The transfer of heat around these objects has applications in many fields, including 

the design of spacecraft, the nuclear reactors and many types of transformers/generators. In 

view of this, Carragher and Crane [8] analyzed the heat transfer at a stretching sheet under 

the condition that the temperature difference between the surface and the free stream, namely, 

( )wT T is appreciably large (for details see Refs. [9–18]).   

 All the above researchers restricted their analyses to flow and heat transfer over a 

horizontal plate. Most of the problems arising in technological industry, based on mixed 

convection flow over a heated vertical sheet is of considerable interest and are challenge to 

physicists, engineers and Mathematicians. The findings of such a physical phenomenon will 

have a definite bearing on plastics, fabrics, and polymer industries. In view of this, 

Moutsoglou and Chen [19] analyzed numerically the effect of buoyancy parameter on a 

continuously moving inclined stretching surface. Further, Vajravelu [20] obtained exact 

solution for hydromagnetic convection at a continuous moving surface with uniform suction 

and established that when ( )wT T the fluid in the boundary-layer will be heated up and thus 

the free convection currents will set in. Chen [21] extended the model by Vajravelu [20] and 

analyzed the laminar mixed convection in boundary layers adjacent to a vertical stretching 

sheet by assuming the velocity and temperature of the sheet to vary as    

    mwu x Bx  and 

   

  .     nwT x T Ax 
 
Recently, Ali et al. [22] examined mixed convection heat transfer in an 

http://www.jtaphys.com/content/6/1/45#B12
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incompressible viscous fluid over a vertical stretching sheet by taking external magnetic field 

into account.  

 It is interesting to note that, for all practical purposes of the industry, the non-Newtonian 

fluids play a more vital and appropriate role than that of the Newtonian fluids. Some of the 

different types of non-Newtonian fluids are viscoelastic fluids, Rivlin–Erickson fluids, 

Maxwell fluids, couple stress fluids, micro-polar fluids, power law fluids. Fluids such as 

molten plastics, artificial fibers, flows related to the drilling of wells in petroleum industry, 

food stuffs or slurries are considered as non-Newtonian. The complexity of these models has 

made it difficult to report all its properties in a single constitutive equation. This nonlinear 

behavior between the stress and the rate of strain of the non-Newtonian fluids has attracted 

researchers to analyze its characteristic behavior. However, in the literature, the above 

mentioned non-Newtonian fluids were studied under several physical situations (see for 

details Refs. [23-35]). In particular, Prasad et al. [35] studied extensively the power law 

model for three different cases, namely the Newtonian model and non-Newtonian pseudo-

plastic model etc. There is one more non-Newtonian fluid model available in the literature 

namely, Casson fluid model. The best examples for Casson fluid model are jelly, tomato 

sauce, honey, soup and concentrated fruit juices etc. We more often encounter these fluids in 

day to day life. The Casson fluid rheological model is preferred for human blood and 

chocolate. At low shear rates this fluid describes the flow characteristics of blood accurately. 

In the year 1959 Casson [36] presented the model for the flow of viscoelastic fluids with 

prominent and distinct features. Further, Charm and Kurland [37] used Casson’s equation to 

calculate the shear strength of blood and to describe its viscometry at shear rates below 5 

sec
−1

. Recently, Mustafa et al. [38] obtained analytical solution for flow and heat transfer of a 

Casson fluid via homotopy analysis method (HAM). Further, Pramanik [39] used Casson 

fluid model to characterize the non-Newtonian fluid behavior and investigated flow and heat 

transfer past an exponentially stretching surface in presence of thermal radiation. 

 In view of the above studies, in the present paper, we analyze the effect of variable 

thermal conductivity on the heat transfer of a non-Newtonian Casson fluid at a non-

isothermal vertical stretching sheet. This is in contrast to the work of Vajravelu [20] to 

Casson model where the thermal conductivity was treated as constant. The governing 

equations for flow and heat transfer have been nondimensionalized by using a suitable 

similarity transformation and solved the resulting nonlinear coupled differential equations for 

several set of values of the relevant parameters by an optimal homotopy analysis method 

(OHAM). The obtained analytical results are analyzed for the flow and heat transfer 
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characteristics. The analysis reveals that the fluid flow is appreciably influenced by the 

physical parameters. It is expected that the results obtained will not only provide useful 

information for industrial application but also complement the existing literature. 

2. Mathematical Formulation 

 Consider a mixed convective boundary layer flow of a viscous incompressible Casson 

fluid past an impermeable stretching vertical heated sheet. Let the origin be at the slit, 

through which the sheet (see Fig. 1) is drawn in the fluid.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Physical model and coordinate system (heated sheet). 

Two equal and opposite forces are applied along the x-axis so that the sheet is stretched, 

keeping the origin fixed. The coordinate system has its origin located at the centre of the 

sheet with the x-axis extending along the sheet, while the y-axis is measured normal to the 

surface of the sheet and is positive in the direction from the sheet to the fluid.  The 

continuous stretching surface is assumed to have a power law velocity variations 0

n

wU U x  

and a temperature difference r

wT T Ax  . Here, 0 0( 0)U U 
 
is the parameter related to the 

surface stretching speed, the stretching sheet is assumed to be warmer than that of the 

ambient fluid such that 0A   and ,  n r  are the exponents. The positive and negative values of 

n  indicate that the surface is accelerated and decelerated from the slot respectively. The 

rheological equation of state for an isotropic and incompressible Casson fluid is given by (see 

for details Mustafa et al. [38]) 

y 
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 

 

2 / 2 ,
,

2 / 2 ,

B y ij c

ij

B y c ij c

P e

p e

   


   

  


 
 

  

(1) 

where 
ij ije e  and 

ije is the th( , )i j component of deformation rate,  is the product of the 

component of deformation rate with itself, c  is a critical value of this product based on the 

non-Newtonian model, 
B is the plastic dynamic viscosity of non-Newtonian fluid and 

yP is 

the yield stress of the fluid. Using the Boussinesq and boundary layer approximations (see for 

details Prasad et al. [26]), the governing equations for mass, momentum and energy for the 

Casson fluid model are given by 

0,x yu v   (2)

 

 
1

1 ( )x y y Ty
uu vu u g T T 




 
     

 
, (3) 

 ( ) .x y y y
uT vT k T T   (4) 

The suffix denotes partial differentiation with respect to the independent variables, where 

u and v  are the velocity components in the x and y directions respectively, is the kinematic 

viscosity, 2 /B c yP    is the non-Newtonian Casson parameter, g is the gravitational 

acceleration, T  is the thermal expansion coefficient, T  is the temperature, T  
is the 

temperature of the fluid far away from the stretching surface and ( )k T  is the temperature 

dependent thermal conductivity given by  

( )
( ) 1

T T
k T k

T
 



 
  

 
, (5) 

where wT T T   , is a small parameter depending on the nature of the fluid, k are the 

thermal conductivity of the fluid far away from the stretching surface (see for details Chiam 

[40]). The second term on the right hand side of Eq. (3) represents the buoyancy force, and its 

‘+’ and ‘-’ signs indicate buoyancy assisting and opposing the flow respectively. In case of 

buoyancy assisting flow, the x -axis points upwards along the direction of stretching sheet, 

whereas in case of buoyancy opposing flow, the x-axis points vertically downwards. 

Substituting Eq. (5) in Eq. (4), we obtain  
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  .

2

2
1

T Tk T
u v

T yx y

T
k T T

y T

 
 

   
  

    
     

     
 (6) 

The appropriate boundary conditions for the problem are 

 
       

   

0,  ,  , 0, ,  at 0,

, 0, , as .

n r

w wu x y U U x v x y T x y T x T A x y

u x y T x y T y





      

  
 (7) 

Here ,w wU T are the sheet velocity and sheet temperature respectively.  Now we transform the 

system of Eqs. (2)–(5) into a dimensionless form. Let the dimensionless similarity variable be 

 

1

0 2
( 1)

 
2

n
U n

y x





 , (8) 

and the dimensionless stream function ( , )x y , the dimensionless temperature distribution 

   be  

       
1 2

0

2
( , ) ( )   , ,

1

n

wx y f U x T T T T
n

    


    


 (9) 

where  yx,  identically satisfies the continuity Eq. (2). Using (9), the velocity components 

can be written as  

1

2
0

1 1
( ) and   ( ) ( ) .

2 1

n

w

n n
u U f v U x f f

n
    


   

       
  

  (10) 

Here a prime denotes differentiation with respect to  .With the use of Eqs. (8)–(10), Eqs. (3), 

(6) and (7) reduce to 

21 2
1 0,

1

n
f ff f

n




 
       

 
  (11) 

 
2

1 Pr 0,
1

r
f f

n
   

            
 (12) 

where 
2/ Rex xGr    is the mixed convection or buoyancy parameter parameter, 

Pr /pC K    is the Prandtl number,   3 2/x T wGr g T T x  

 

is the local Grashof number 

and Re /x wU x   is the local Reynolds number. It can be shown that   is independent of x, 

if 2 1.r n   Hence, the similarity solutions are obtained under this limitation for 0.   Here, 
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0 and 0    correspond to the assisting flow and opposing flow, respectively, while 

 0 i.e.,  wT T    represents the case when the buoyancy force is absent (pure forced 

convection flow). On other hand, if   is of order greater than one then the buoyancy forces 

will be predominant and the flow will be due to free convection. Hence, combined convection 

flow exists for (1)O  . The appropriate boundary conditions in dimensionless form are: 

         0 0, 0 1 , 0 1, 0, 0.f f f          (13) 

We notice that in the absence of variable thermal conductivity parameter, Casson fluid 

parameter and when n = 1 (linear stretching case), the equations reduce to those of Vajravelu 

[20], while in the absence of Casson fluid parameter and when 1n  the equations reduce to 

those of Vajravelu [12] under different physical situations. Further, with constant thermal 

conductivity parameter and no Casson fluid parameter equations reduce to those of Ishak et 

al. [13].  From the engineering point of view, the important physical quantities are the local 

skin friction fxC  and the local Nusselt number .xNu
 
They are defined as 

 2

0 0

 and ,

where  is the skin friction and  is surface heat flux introduced as 

, .

x

w w
f x

w w x

w w

w w

y y

xq
C Nu

U k T T

q

u T
q k

y y







 
 

 


    
     

    

  

Applying the non-dimensional transformations (9), we obtain 

     

     

1 2

1 2

1
2 1 2 1 Re 0 ,

1 2 Re 0 ,

xf x

x x

C n f

Nu n





 
   

 

  
 

(14) 

where Re /x wU x  is the local Reynolds number. 

3. Exact Solutions for Some Special Cases 

Here we present exact solutions for some special cases. Such solutions are useful, in that they 

serve as a benchmark for comparison with the solutions obtained via numerical /analytical 

schemes. In the absence of Casson parameter and when 1n , the present results are in good 

agreement with those of Hsiao [29] for different values of mixed convection parameter in the 

absence of wedge, magnetic and viscoelastic parameter. 
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3.1. No free convective currents and linear stretching  ( 0   and 1)n   

In the limiting case of 0  and  0 and 1n   the boundary layer flow and heat transfer 

problem degenerates. In this case the solution for the velocity field is given by, namely, 

  1f e 

   
 
where 1/ 1 1 .     (15) 

3.1. Perturbation analysis in the absence of free convection currents s, linear stretching 

( 0   and 1)n   and in the presence of variable thermal conductivity 

We follow a perturbation expansion approach to solve Eq. (12). Suppose 

        2

0 1 2           
 

(16) 

Substituting this into Eq. (12) and equating like powers of  ignoring quadratic and higher 

order terms in  , we obtain 

 0 0 0Pr 0,f r f        (17) 

with boundary conditions    0 00 1, 0,     and 

  2

1 1 1 0 0 0Pr Pr ,f s f                (18) 

with the boundary conditions    1 10 0, 0.     

The solution for the Eq. (17) is expressed in terms of Confluent hypergeometric series, 

namely, Kummer’s function, M, to wit:  

 
   

 
0 0 1 1

0

1 1 0

, ,
exp

2 , ,

a b M a b z

M a b b


  

 
  

 
, (19) 

where    2 2

0 1 0 1 0Pr/ , Pr , Pr 2 / 2, 1z e b a b b b         . We now analyse Eq. 

(18), which gives the first-order correction term 1 . Note that Eq. (12) is linear and 

inhomogeneous and therefore it is possible to obtain a power series solution for 1.  However, 

it becomes very tedious to obtain various values of 1  using this power series solution. 

Instead, we employ the following semi-analytical algorithm based on Optimal Homotopy 

Analysis Method (OHAM) method to solve the coupled boundary value problem. 

4. Semi-Analytical Solution: Optimal Homotopy Analysis Method 
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 In order to obtain optimal HAM solutions for the system (11)–(13), we assume the 

following initial guesses for dimensionless velocity ( )f  and temperature ( ) :   (see for 

details Refs. [41–43])  

0( ) 1 ,f e     (20) 

0 ( ) .e     (21) 

Now we choose linear operators 1L  and 2L  as 

3

1 3
( )

d d
L

d d 
  , 

2

2 2
( ) Pr

d d
L

d d 
  , (22) 

such that 1 1 2 3 0L c c e c e       and 2 4 5 0L c c e      
where 'sic ( 1,2,3,4,5)i   are 

arbitrary constants. Now let us define homotopy operators H1 and H2 as 

           1 0 11
ˆ ˆ ˆ ˆ, 1 , ( ) , , ,f q q L f q f qhN f qH q       

 
(23) 

           2 0 22
ˆˆ ˆ ˆ, 1 , ( ) , , ,q q L q qhN q fH q            (24) 

and by considering the equations  1
ˆ, 0H f q  and  2

ˆ, 0H q  , we have the so-called 

zeroth order deformation equation given by  

1 0 1
ˆ ˆ ˆ(1 ) ( , ) ( ) ( , ), ( , ) ,q L f q f qhN f q q         

   
 (25) 

2 0 2
ˆˆ ˆ(1 ) ( , ) ( ) ( , ), ( , ) ,q L q qhN q f q          

   
 (26) 

with conditions 

ˆ ˆ ˆ(0, ) 0,  (0, ) 1,  ( , ) 0,f q f q f q     ˆ ˆ(0, ) 1,  ( , ) 0.q q     (27) 

where [0,1]q  is an embedding parameter, 0h   is the convergence control parameter and 

1 2,N N are nonlinear operators defined as 

2
3 2

1 3 2

ˆ ˆ ˆ1 ( , ) ( , ) 2 ( , )ˆ ˆ1 ( , ) ( , ),
1

d f q d f q n df q
N f q q

d d n d

  
  

   

   
      

  
 (28) 

  2

ˆˆ( , ) 2 ( , )ˆˆ ˆ ˆ1 ( , ) ( , ) Pr ( , ) Pr ( , ).
1

d q r df q
N q q f q q

d n d

  
    

 

  
      

 
 (29) 
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From Eqs. (23) and (24), at 0,q   we have 1 0
ˆ( ,0) ( ) 0L f f   

   
and 

2 0
ˆ( ,0) ( ) 0L      

 
, which imply that 0

ˆ( ,0) ( )f f   and 0
ˆ( ,0) ( )     respectively. 

Whereas at 1,q   we have 1
ˆ ˆ( ,1), ( ,1) 0N f     

 
 and 2

ˆˆ( ,1), ( ,1) 0N f    
 

 , which imply 

that ˆ( ,1) ( )f f  , and ˆ( ,1) ( ),     respectively.  Hence, by defining 

0

1 ( , )
( )

!

m

m m

q

d f q
f

m d







 ,    

0

1 ( , )
( )

!

m

m m

q

d q

m d

 
 




  , (30) 

we expand ˆ( , )f q , ˆ( , )q  by means of Taylor’s series as  

0

1

ˆ ( , ) ( ) ( ) m

m

m

f q f f q  




  ,  0

1

ˆ( , ) ( ) ( ) .m

m

m

q q     




        (31) 

If the series in Eq. (31) converges at 1q  , we get the homotopy series solution as 

0

1

( ) ( ) ( ),m

m

f f f  




      0

1

( ) ( ) ( ).m

m

     




   (32) 

It should be noted that ( )and ( )f     in Eq. (32) contain an unknown convergence control 

parameter 0h  , which can be used to adjust and control the convergence region and the rate 

of convergence of the homotopy series solution. The 
thm order deformation equations and the 

conditions are  

 1 1( ) ( ) ( )f

m m m mL f f hR     ,  2 1( ) ( ) ( ),m m m mL hR        (33) 

(0) 0,  (0) 0,  ( ) 0,  (0) 0,  ( ) 0m m m m mf f f          , (34) 

where
1 1

1 1 1 1

0 0

1 2
1 ( ) ( )

1

m m
f

m m m k k m k k m

k k

n
R f f f f f

n
  



 

     

 

   
         

  
   (35) 

1 1 1 1

1 1 1 1 1

0 0 0 0

2
( ) Pr Pr

1

m m m m

m m m k k m k k m k k m k k

k k k k

r
R f f

n

         
   

        

   

   
           

  
   

 
(36)

 

and
0,  1

.
1,  1

m

m

m



 


 (37) 

 Appropriate selection of convergence control parameter 0h   plays an important role in 

determining the convergence region and convergence rate. Here we find optimal value of h  
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about which the Eq. (32) not only converges but it also ensures the fastest convergence. Now 

we evaluate squared residual error of governing equation and minimize it over h  in order to 

obtain optimal value of h  and least possible error. 

5. Error Analysis and CPU Time 

 In the process of error analyses two different methods are employed, namely, exact 

residual error and average residual error. For different order approximation, CPU time 

required for evaluation of (0)f   is observed. It is evident that, the values of (0)f  evaluated 

using both the method are almost same (for details see Table 1). As for as CPU time is 

concerned average residual error needs very less time compared to that of exact residual 

error. The time required to calculate average residual error is 28.9%, 9.1%, 14.6%, 15.7%, 

21.0%, and 21.2% for 1, 2, 3, 4, 5, 6m   respectively that of CPU time required to calculate 

exact residual error. Practically, the evaluation of ˆ ( )f

mE h  and ˆ ( )mE h
 is time consuming. In 

order to speed up the calculations we employ average residual error instead of the exact 

residual error. For the 
thm  order deformation equation, the exact residual error is given by 

2

1

00

ˆ ( ) ( )
m

f

m n

n

E h N f d 




  
   

  
 ,  

2

2

00

ˆ ( ) ( )
m

m n

n

E h N d   




  
   

  
  (38) 

 and the average residual error is given by 

2

1

0 0

1
( ) ( ) ,

1

M m
f

m n k

k n

E h N f
M


 

  
      

           

2

2

0 0

1
( ) ( )

1

M m

m n k

k n

E h N
M

  
 

  
      

   (39) 

where / ,  0,1,2, ,k k k M k M     (M = 20 for Blasius flow problem). We minimize 

the error functions ( )f

mE h
 
and ( )mE h

 
in h  and obtain the optimal values of ,h  separately for 

f  and  .  Substituting this optimal value of h  into Eq. (32), we get the approximate 

solutions for Eqs. (11) and (12) satisfying the conditions (13). 

6. Results and Discussion 

 The system in Eqs. (11)–(12) is highly nonlinear and coupled ordinary differential 

equations with variable coefficients. The appropriate analytical solutions for these equations 

with boundary condition (13) are obtained using optimal homotopy analysis method (see for 

details Liao [6, 41, 42], Fan and You [43]). In order to validate the method used in this study 
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and to judge the accuracy of the present analysis, the wall temperature gradient results are 

compared with the previously published results of Grubka and Bobba [9], Chen and Char 

[10], Ali [11], and Mabood et al. [17] for several special cases in which the buoyancy force 

and thermal conductivity are neglected: The obtained results are found to be in excellent 

agreement and are shown in Tables 2 and 3. The computations have been carried out by the 

method of  OHAM as described above for different values of the pertinent parameters, such 

as the mixed convection parameter  , the thermal conductivity parameter , the velocity 

power index parameter n,  the Prandtl number Pr  and the Casson parameter .  We present 

the results graphically for the horizontal velocity profile ( )f  and the temperature profile 

( )   for several sets of values of the parameters in Figs. 2–6. It is observed from these 

figures that both ( )f  and ( )   monotonically decreases and tends to zero asymptotically as 

the distance increases from the boundary. The computed analytical values for the skin friction 

(0)f   and the wall temperature gradient (0)  are presented in Table 4. 

 Figures 2(a) and 2(b) elucidate the effects of   on ( ) and  ( ).f     Here we considered 

the values of   in the range of 1 5.   It is observed that, for increasing values  , fluid 

flow produces resistance, hence ( )f   decreases. That is, as   approach higher values, the 

momentum boundary layer thickness squeezes and the velocity distribution becomes linear 

for higher values of n but the impact is quite the opposite in the case of ( ).    Physically, 

increase in   means, a decrease in the yield stress, in this case the fluid behaves like a 

Newtonian fluid. Further, it is interesting to note that the fluid velocity is prominent for linear 

stretching (for 1n  ) than that of nonlinear stretching sheet (for 2, 5n n  ); where as in the 

case of the temperature field it is more suppressed for linear stretching than that of the 

nonlinear stretching sheet; see Figs. 2(a) and 2(b).  Figures 3(a) and 3(b) exhibit the effect of 

n  on ( ) and ( ). f    It is noticed that both the velocity and the temperature fields decrease 

as n increases leading to thinning the velocity and thermal boundary layer. The effect of n  is 

negligible: That is, the coefficient 2 / ( 1)n n
 
in Eq. (11) approaches 2 as n . This 

phenomenon is true even in the case of skin friction (see Table 4). The effect of the mixed 

convection parameter   on ( ) and ( ) f    is demonstrated in Figs. 4(a) and 4(b), 

respectively. The presence of thermal buoyancy effects are revealed by the finite value of 

 ( 0)   which has a propensity to enhance the flow along the surface. It is seen that an 

increase in the value of   leads to an enhancement in ( )f  .  Physically 0   means 
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heating of the fluid or cooling of the surface, 0  means cooling of the fluid or heating of 

the surface, and 0   corresponds to the absence of the mixed convection parameter. 

Increase in   means an increase in the temperature difference ( )wT T
 
which leads to an 

enhancement in ( )f   due to the enhanced convection, and thus an increase in the 

momentum boundary layer thickness. The effect of   on temperature profile is quite 

opposite. The effect of   on ( )  is illustrated in Fig. 4(b): With an increase in , the 

temperature field is suppressed and consequently thermal boundary layer thickness becomes 

thinner. Hence the magnitude of the rate of heat transfer from the surface increases. This is 

due to effects of buoyancy force.  

 Figures 5 and 6 depict the effects of Pr  and   on ( )  for increasing values of n. 

Increase in Pr leads to a decrease in the temperature: This is due to decrease in the thermal 

conductivity k . That is, as Pr  increases the thermal boundary layer thickness reduces. 

Hence, cooling of the heated surface can gradually be improved by choosing a proper coolant 

with a large Pr . Fluid temperature is found to increase with increasing values of   which 

leads to a fall in the rate of heat transfer. That is, the assumption of temperature dependent 

thermal conductivity suggests a reduction in the magnitude of the transverse velocity by a 

quantity ( )k T y   which can be seen in Eq. (4). Therefore, the rate of cooling is much faster 

for the coolant material with low values for the thermal conductivity parameter. 

 Table 4 is prepared to observe the variations of skin-friction coefficient and wall 

temperature gradient for various values of pertinent parameters. One can observe that both 

(0)f   and (0) decrease with increasing values of n where as in the case of   it is observed 

that (0)f  decreases and quite the opposite in the case of increasing .  For increasing values 

of Pr there is a decrease in (0)  where as in the case of  it is reversed.  

7. Conclusions 

 Heat transfer with variable thermal conductivity in a Casson fluid flow over a vertical 

stretching sheet is analyzed using an analytical method, namely, the optimal homotopy 

analyses method. Some of the interesting findings are as follows. 

 The velocity boundary layer thickness reduces and the thermal boundary layer 

thickness increases with increasing values of the Casson parameter. 
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 The effect of the variable thermal conductivity parameter is to enhance the 

temperature field; whereas for higher values of the Prandtl number the temperature 

field decrease and hence the thermal boundary layer thickness is reduced. 

 Mixed convection parameter has reverse effects on velocity and temperature fields. 

 The effect of the velocity power index parameter is to reduce both the velocity and the 

thermal boundary layers. 

 Average residual error method is less time consuming compared to that of exact 

residual error method. 
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Nomenclature 

 

U0           stretching rate 

u and v   fluid velocity components along the x and                                    

y axes respectively   

A,C         constants   

eij             ij
th

 component of deformation rate     

n             velocity exponent parameter 

r             temperature exponent parameter 

pc               specific heat at constant pressure 

fxC          skin friction coefficient 

f            dimensionless stream function 

g            acceleration due to gravity 

xGr     local Grashof number 

( )k T        temperature-dependent thermal 

               conductivity 

k          thermal conductivity for away from the 

               wall 

xNu         local  Nusselt number 

Pr           Prandtl number 

Py           yield stress of fluid 

Rex         local Reynolds number 

T            fluid temperature 

wT           wall temperature  

 

 

 

 

T           ambient temperature 

u             axial velocity component 

 wU
         

stretching velocity 

 v            radial velocity component 

,x y         Cartesian  coordinates along the surface        

               and normal to it respectively 

Greek symbols 

ij           stress teansor  
            product of the component of deformation         

rate with itself 

c           critical value of  

            Casson parameter 

T           thermal expansion coefficient 

             kinematic viscosity 

            variable thermal conductivity parameter 

            similarity variable  

            dimensionless temperature 

            coefficient of viscosity  

B           plastic dynamic viscosity 

          
 

            buoyancy parameter      

            stream function 

Subscript 

w            conditions at the stretching sheet 
            condition at infinity  

Superscript 

 ‘            differentiation with respect to   

 

Table 1: Comparision of (0)f  and CPU time (sec) incurred to evaluate 
thm order  

 approximation by exact residual error and average residual error when Pr=1.0, 

  =1.0,  =0.5,  =0.1,
 
n =1. 

 

Order 
m  

Using Exact Residual Error Using Average Residual Error 

(0)f   CPU Time (sec) (0)f   CPU Time (sec) 

1 -0.580939 2.28 -0.59442 0.66 

2 -0.576133 25.47 -0.575892 2.31 

3 -0.579912 26.39 -0.577209 3.84 

4 -0.583422 41.59 -0.581493 6.52 

5 -0.581406 73.19 -0.580791 15.37 

6 -0.580714 111.65 -0.580485 23.62 
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Table 2.  Comparison between exact and analytical solution by HAM for  '' 0f  when     

1, 0.n    

 Exact solution HAM 

Solution(15
th

 

Approximation) 

Relative  error 

infinity -1.0000 -1.0000 0 

1.0 -0.70710678 -0.707107 0.00003111269 

2.0 -0.81649658 -0.816497 0.00005143928 

3.0 -0.866025414 -0.866025 0.00004780460 

4.0 -0.894427191 -0.894427 0.0000213544 

5.0 -0.912870929 -0.912871 0.00000777766 

 

 

Table 3. Comparison of wall temperature gradient  0 for different values of     

Prandtl number when 0.0, =0 and =0.    
 

Pr 

n = 0.5 n = 1.0 

Present results 
Grubka and 

Bobba [9] 

Chen and 

Char [10] 
Ali [11] 

Mabood 

 et al. [17] 

Present 

results 

0.01 -0.01017936 -0.0099 0.0091 - - - 

0.72 -0.4631462 -0.4631 -0.46315 -0.4617 - - 

1.0 -0.5826707 -0.5820 -0.58199 -0.5801 -0.95478 -0.954781 

3.0 -1.16517091 -1.1652 -1.16523 -1.1599 -1.86909 -1.86907 

5.0 -1.56800866 - - - -2.50012 -2.50012 

10.0 -2.308029 -2.3080 -2.30796 -2.2960 - - 

100.0 -7.769667 -7.7657 - - - - 
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Table 4. Values of skin friction and wall temperature gradient for different values of the 

physical parameters. 

 Pr β λ 

n = 1 n = 5 

Appr (0)f   (0)  
CPU 

Time 

Appr

. 
(0)f   (0)  

CPU 

Time 

0.1 1.0 1.0 

-0.5 13 -0.845372 -0.976625 301.58 15 -0.946425 -1.53881 696.22 

0.0 13 -0.707107 -1.00656 125.95 15 -0.844632 -1.56073 792.99 

0.5 14 -0.579928 -1.03019 424.36 15 -0.747777 -1.5799 721.75 

1.0 15 -0.459725 -1.05027 601.23 15 -0.654721 -1.59699 712.80 

0.1 10.0 1.0 

-0.5 11 -0.753907 -3.54225 1088 11 -0.880001 -5.37454 1023 

0.0 11 -0.707107 -3.54951 350 11 -0.84464 -5.37727 483 

0.5 11 -0.660577 -3.55579 875 11 -0.809397 -5.38279 1066 

1.0 11 -0.614249 -3.56451 1358 11 -0.774277 -5.38832 5845 

 Pr β λ 

n = 2 n = 5 

Appr (0)f   (0)  
CPU 

Time 
Appr (0)f   (0)  

CPU 

Time 

0.1 1.0 

1.0 

0.5 

15 -0.66945 -1.33033 724.52 16 -0.747772 -1.57987 996.29 

2.0 15 -0.75723 -1.30797 695.01 15 -0.849497 -1.55471 701.00 

5.0 15 -0.831953 -1.28948 728.76 15 -0.936697 -1.53365 746.80 

0.1 

0.72 

2.0 0.5 

11 -0.737844 -1.08703 1082.8 14 -0.832054 -1.29247 3049.13 

1.0 14 -0.757227 -1.30801 935.3 15 -0.849497 -1.55471 702.46 

2.0 13 -0.792554 -1.92103 709.5 15 -0.880876 -2.27851 1520.34 

10.0 14 -0.846589 -4.52862 2460.02 13 -0.928871 -5.35548 1937.44 

0 

1.0 1.0 0.1 

13 -0.756848 -1.40421 533.37 15 -0.825466 -1.67192 767.07 

0.1 14 -0.756231 -1.31363 547.11 15 -0.824918 -1.56474 779.67 

0.2 15 -0.755638 -1.23681 703.57 15 -0.824392 -1.47383 732.30 

0.3 15 -0.755067 -1.17069 727.95 15 -0.823885 -1.39556 766.61 

 Pr λ n 

β = 0 β = 1 

Appr (0)f   (0)  
CPU 

Time 
Appr (0)f   (0)  

CPU 

Time 

0.1 1.0 0.1 

0.5 15 -0.827172 -0.566207 476.97 15 -0.596432 
-

0.617106 
742.04 

1.0 15 -0.949707 -0.944848 456.18 15 -0.680962 -1.0116 645.77 

2.0 14 -1.05818 -1.23834 434.55 14 -0.756231 -1.31363 566.62 

5.0 14 -1.15677 -1.48319 382.32 12 -0.824934 -1.56473 401.19 

10.0 15 -1.19899 -1.58335 519.45 14 -0.854402 -1.6674 532.32 
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                Fig 2(a): Horizontal velocity profile for different values of   and n with 

                                                     = 0.1, Pr = 1.0,  = 0.5

 = 5.0, 2.0, 1.0
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Fig 2(b): Temperature profile for different values of  and n with  = 0.1, Pr = 1.0,  = 0.5
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Fig 3(a): Horizontal velocity profile for different values of n and  with

 = 0.1, Pr =1.0, =0.1

n=10.0, 5.0, 2.0, 1.0, 0.5
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Fig 3(b): Temperature distribution profile for different values of n and  

with  =0.1, Pr =1.0,  =0.1

n=10.0, 5.0, 2.0, 1.0, 0.5
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Fig 4(a): Horizontal profile for different values of  and n with  = 0.1, Pr = 1.0,  = 1.0

= -0.5, 0.0, 0.5, 1.0
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 = 1.0, 0.5, 0.0, -0.5

Fig 4(b): Temperature profile for different values of  and n with  = 0.1, Pr = 1.0,  = 1.0
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Fig 5: Temperature profile for different values of Pr and n with  = 0.1,  = 2.0,  = 0.5

Pr = 10.0, 2.0, 1.0, 0.72
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Fig 6: Temperature profile for different values of  and n with Pr = 1.0,  = 1.0,  = 0.1

= 0.0, 0.1, 0.2, 0.3
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