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WAVE SCATTERING BY A PARTIAL FLEXIBLE POROUS

BARRIER IN THE PRESENCE OF A STEP-TYPE BOTTOM

TOPOGRAPHY

HAREKRUSHNA BEHERA∗; TRILOCHAN SAHOO†; and CHIU-ON NG‡

A semi-analytic model is presented for oblique wave scattering by a bottom-standing or
surface-piercing flexible porous barrier in water of finite depth with a step-type bottom
topography. The physical problem is solved using the methods of least-squares and multi-
mode approximation associated with the modified mild-slope equation. Effects on the
wave scattering due to bed profile, structural rigidity, compressive force, angle of incidence,
barrier length, porosity, and height of the step are examined. The study reveals that under
some special conditions, nearly zero/full reflection may occur in the case of wave scattering
by a partial flexible porous barrier in the presence of an undulated bottom topography.
Further, the study predicts that the Bragg resonance may not occur in the case of wave
scattering by a topography of sinusoidal profile. The present study provides insights to
help understand how waves are transformed in a marine environment with/without flexible
porous barriers in the presence of a bottom topography. The concept and methodology
can be generalized to analyze problems of similar nature arising in ocean engineering.

Keywords : Wave scattering; step-type bottom; flexible porous barrier; modified mild-slope
equation; reflection coefficient.

1. Introduction

The interaction of surface water waves with an undulating seabed topography is a

problem of fundamental interest in the understanding of wave energy distribution

along the coastal region. Apart from semi-analytic methods, numerous numerical

models have been developed to study various coastal processes associated with wave

motion in the presence of a bottom topography. One of the widely used models

for waves over an uneven bottom is based on the mild-slope equation, which was

originally derived by Berkhoff [1973]. Smith and Sprinks [1975] later deduced a

more precise form of the mild-slope equation similar to that of Berkhoff. Since

then, the mild-slope approximation has been extended to incorporate effects due

to various kinds of bed topography. Chamberlain and Porter [1995] studied wave

scattering by a rippled bed and compared their model with the experimental data
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of Davies and Heathershaw [1984]. Porter and Staziker [1995] derived a modified

mild-slope equation (MMSE) to account for slope discontinuities on the bed. They

introduced the mass conserving jump conditions into the mild-slope equation using

the variational principle. The MMSE with correct interfacial matching conditions

has been found to be an efficient model for a bottom slope as steep as 1.

Meanwhile, a substantial progress has been made on the hydrodynamic analysis

of breakwaters for their importance in coastal engineering, environmental protection,

recreation and military operations. Compared with barriers that extend from the

bottom to the free surface, referred to as complete structures, partial barriers are

more preferable in many situations for their lower costs and more environmental-

friendly designs. For example, fixed bottom-standing barriers are often preferred

in a marine environment that is dominated by long waves. The main advantage

of these bottom-standing barriers is that they do not obstruct marine traffic while

attenuating waves in a near-shore region. Likewise, surface-piercing barriers are

preferred in deep water regions or regions of poor bed conditions. Work on wave

scattering by partial rigid barriers was pioneered by Dean [1945], while work on

wave diffraction by an infinite breakwater was started a few years later by Penney

and Price [1952]. Some of the other notable contributions on wave diffraction by

semi-infinite breakwaters can be found in the book of Wiegel [1964]. Mandal and

Chakrabarti [2000] discussed various mathematical tools to deal with water wave

scattering by partial rigid barriers of different configurations in water of finite and

infinite depths.

In order to reduce wave reflection and loads on coastal structures, perforated

walls and wave absorbing structures are used as alternatives for their enhanced

ability to dissipate wave energy. Further, for removing unwanted waves during ex-

periments, porous structures are often used as absorbers during physical model

tests in laboratories. Isaacson et al. [1998] studied wave interactions with a surface-

piercing partial vertical slotted barrier by using eigenfunction expansion method.

Porous barriers have become an important candidate in the art of wave dissipa-

tion. Sahoo et al. [2000] studied oblique wave scattering by porous barriers using

the least-squares approximation method. Huang et al. [2011] reviewed the hydraulic

performance and wave loadings on perforated/slotted coastal structures. The study

of oblique wave interaction with porous structure of different configurations are

recently studied by Behera and Sahoo [2014].

Besides rigid and permeable structures, flexible and porous structures are also

used as breakwaters as these structures are light in weight, economical, reusable

and environmental friendly. These types of structures are often deployed for tempo-

rary protection of coastal infrastructures/facilities in construction sites, in addition

to their use for chord grass seedling, oil spilling and pollution control. Wang and

Ren [1993] studied the scattering of small-amplitude waves by a flexible and porous

breakwater assuming that the structure is fixed at the seabed and is free near the

free surface. Yip et al. [2002] analyzed wave trapping by partial porous and flexible
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barriers. Karmakar et al. [2013] studied the scattering of surface waves by multi-

ple surface-piercing floating membranes. Karmakar and Soares [2014] studied wave

transformation due to multiple bottom-standing porous and flexible barriers. Koley

et al. [2015a] investigated oblique surface wave scattering by a submerged vertical

flexible porous plate for both the cases of finite and infinite water depths using

Green’s function technique.

In the aforementioned wave–structure interaction problems, the structures are

considered to be placed in water of uniform finite or infinite depths. In contrast,

there exist only a few studies which have considered wave interaction with ver-

tical/horizontal structures in the presence of an undulated bottom. Using the

Galerkin–eigenfunction method, an analytical model was developed by Suh and

Park [1995] for wave interaction with a porous barrier near a perforated-wall in the

presence of a sloping step. A multi-mode approximation method was extended by

Bennetts et al. [2009] to study scattering of flexural-gravity waves with periodic ge-

ometries. Bhattacharjee and Guedes Soares [2011] developed an analytical model to

study wave interaction with a floating structure near a wall with a stepped bottom.

Manam and Kaligatla [2012] studied scattering of flexural and membrane-coupled

gravity waves using the modified mild-slope equation. Oblique wave trapping by a

thin porous barrier near a wall in the presence of a stepped bed of arbitrary profile

was examined by Behera et al. [2015]. Koley et al. [2015b] studied wave interac-

tion with a composite trapezoidal breakwater having an outer perforated layer and

an inner rigid core placed on a sloping type topography using the eigenfunction

expansion and boundary element method.

The present paper is to look into oblique wave scattering by partial porous

and flexible structures in the presence of a step-type bed of various geometrical

profiles. Both the cases of bottom-standing and surface-piercing porous barriers

are considered under the assumption of small-amplitude water waves and structural

response. The modified mild-slope equation along with the methods of eigenfunction

expansions and least-squares approximation are used to solve the boundary value

problem. Two types of partial structures, namely bottom-standing and surface-

piercing structures, are considered under the assumption that the flow through the

porous structures follows Darcy’s law. In the case of a bottom-standing barrier, the

barrier can be (a) clamped near the seabed and free at the submerged end, or (b)

clamped near the seabed and moored at the submerged end. In the case of a surface-

piercing barrier, the barrier is assumed to be (a) clamped near the free surface and

free at the submerged end, or (b) clamped near the free surface and moored at

the submerged end. To analyze the effect of different types of bed profiles, wave

and structural parameters on the wave scattering by the flexible porous barriers,

numerical results for the reflection coefficient and barrier deflection are computed

and analyzed for different cases. The computational results are validated for their

accuracy by comparing with known results in the literature.
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2. Mathematical Formulation

In this section, the problem for oblique wave scattering by thin flexible porous

barriers of two different configurations is formulated for waves over various types of

step-type bottom topography. The two flexible porous barrier configurations are the

bottom-standing and surface-piercing barriers as shown in Fig. 1. On the basis of the

linearized water wave theory and assuming small-amplitude structural response, the

problem is formulated in the three-dimensional Cartesian coordinate system with

the x- and y-axis being in the horizontal directions and the z-axis pointing positive

upward. The fluid domain is divided into four sub-domains according to the change

of the water depth and the position of the porous barrier. A thin partial flexible

porous barrier is kept vertically positioned at a finite distance L1 from the edge

of a step as shown in Fig. 1. The bed profile is divided into three different parts.

The open water region −∞ < x < 0 is assumed to be of uniform depth h1, the

undulated bed region extends over 0 < x < L0 and is of variable depth h(x),

while the water region beyond x > L0 is of uniform depth h2. The flexible porous

barrier is located at a distance L1 beyond x = L0, and the fluid domain is thereby

divided into four different regions. Further, along the y-axis, the fluid domain is

assumed to be horizontally extending over 0 < y < ∞. The fluid is assumed to be

incompressible, inviscid with motion being irrotational and simple harmonic in time

with an angular frequency ω. The problem of obliquely incident waves propagating

toward an undulating bathymetry patch is a quasi-3D problem. If the coordinate

system is so positioned that the bottom changes only in the x-direction, the wave

component will not change in its wave number in the y-direction, as in Toledo and

Agnon [2011]. Thus, the form of the velocity potentials for j = 1, 2, 3, 4 is given by

Φj(x, y, z, t) = Re{φj(x, z)e
−i(kyy+ωt)}, where ky = k0 sin θ with k0 being the wave

number of the incident wave in region 1 and θ is the incident angle with respect to

the x-axis.
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Fig. 1. Schematic diagram for wave scattering by a (a) bottom-standing, or (b) surface-piercing
partial barrier in the presence of bottom undulation.
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Along the vertical z-direction, Sb and Sg represent the regions of the barrier and

the gap, respectively, with b being the length of the bottom-standing barrier, and

a being the length of the surface-piercing barrier. For the bottom-standing barrier

Sb = (−h2,−h2 + b) and Sg = (−h2 + b, 0), while for the surface-piercing barrier

Sb = (−a, 0) and Sg = (−h2,−a). Thus, the spatial velocity potentials φj(x, z) for

j = 1, 2, 3, 4 satisfy

(

∂2

∂x2
+

∂2

∂z2
− k2

y

)

φj = 0, in the respective fluid domain, (1)

along with the linearized free-surface boundary condition

∂φj

∂z
−Kφj = 0 on z = 0, for j = 1, 2, 3, 4, (2)

where K = ω2/g and g is the acceleration due to gravity. Further, φj, for j = 1, 3, 4,

satisfies

∂φj

∂z
= 0, z = −hj on the uniform bed, (3)

while on the undulated bed, φ2 satisfies

∂φ2

∂z
+
dh

dx

∂φ2

∂x
= 0 on z = −h(x). (4)

Assuming that the partial flexible porous barriers are of uniform rigidity, having

fine pores, and oscillating in the horizontal direction with displacement of the form

ζ(y, z, t) = Re{ξ(z)e−i(kyy−ωt)}, where ξ(z) is the complex deflection amplitude of

the flexible porous barrier and is assumed to be small compared with the water

depth. Thus, using Darcy’s law for flow past a porous structure, the boundary

condition on the flexible porous barrier is given by, as in Behera et al. [2013],

∂φj

∂x
= ik0G(φ3 − φ4) − iωξ, (j = 3, 4) on x = γ, z ∈ Sb, (5)

where γ = L0 + L1. The complex porous-effect parameter G is of the form G =

Gr + iGi, and is given by

G =
δ(f + is)

k0ds(f2 + s2)
, (6)

where δ, f , s and ds are the porosity factor, resistance force coefficient, inertial force

coefficient, and thickness of the porous barrier, respectively. Through the real part

Gr and the imaginary part Gi, the complex porous-effect parameter G takes into

account both the resistance and inertial effects of the porous structure in dissipating

wave energy. The resistance force coefficient f and the inertia force coefficient s

depend upon the fluid and structure characteristics and are obtained experimentally,
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the details of which are discussed in Li et al. [2006]. The dynamic equation of motion

for flexible barrier acted upon by fluid pressure yields, as in Behera et al. [2013],

EI(D2 − k2
y)

2ξ +Q(D2 − k2
y)ξ −msω

2ξ = iρω(φ3 − φ4) for x = γ, z ∈ Sb, (7)

where D ≡ d/dz, EI is the uniform flexural rigidity of the barrier, Q is the uniform

compressive force acting on the barrier, ms = ρsds is the uniform mass per unit

length with ρs being the barrier density, and ρ is the density of water. To keep the

flexible barrier in position, the partial barriers are subjected to certain edge condi-

tions at its two ends. In the present study, two different types of edge conditions,

namely clamped–moored and clamped–free are considered. Under the clamped–free

edge condition, the barrier is assumed to be clamped near the seabed at (γ,−h2)

and free near the submerged end at (γ,−h2+b) for a bottom-standing barrier, while

in the case of a surface-piercing barrier, it is assumed that the barrier is clamped

near the free surface at (γ, 0) and is free near the submerged end at (γ,−a). Un-

der the clamped–moored edge condition, the barrier is assumed to be clamped near

the seabed at (γ,−h2) and moored near the submerged end at (γ,−h2 + b) for a

bottom-standing barrier, while in the case of a surface-piercing barrier, it is assumed

that the barrier is clamped near the free surface at (γ, 0) and is moored near the

submerged end at (γ,−a). The various edge conditions at z = u in terms of the

plate deflection are given by

ξ(z) = 0, ξ′(z) = 0, (8)
(

d2

dz2
− νk2

y

)

ξ(z) = 0,

[

EI

{

d2

dz2
− (2 − ν)k2

y

}

d

dz
+Q

d

dz

]

ξ(z) = 0, (9)

(

d2

dz2
−νk2

y

)

ξ(z) = 0,

[

EI

{

d2

dz2
−(2−ν)k2

y

}

d

dz
+Q

d

dz

]

ξ(z) = 2Km sin2 σmξ(z).(10)

Eqs. (8), (9), (10) are the conditions for a clamped edge, free edge and moored

edge respectively. Further, in Eqs. (8)–(10), u being 0,−a,−h2 + b,−h2 as appro-

priate and ν being the Poisson ratio, Km = mooring line stiffness and σm = the

mooring line angle in the static position. The continuity of pressure and normal

velocity along the gap yield

φ3 = φ4,
∂φ3

∂x
=
∂φ4

∂x
, on x = γ, z ∈ Sg. (11)

Finally, the radiation conditions are given by

φ1 =

(

I0e
ip0x +R0e

−ip0x

)

f0(k0, z), as x→ −∞, (12)

φ4 = T0e
iq0xg0(β0, z), as x→ ∞, (13)

where I0 is the known incident wave amplitude, while R0 and T0 are unknown

constants associated with the amplitudes of the reflected and transmitted waves,
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with p0 =
√

k2
0 − k2

y, q0 =
√

β2
0 − k2

y. Further, k0 and β0 are the real roots of the

dispersion relation in regions 1 and 3, respectively, with f0(k0, z) and g0(β0, z) being

the associated vertical eigenfunctions.

3. Method of Solution

In this section, the method of solution for the mixed boundary value problem asso-

ciated with the physical problem is briefly described. The undulated bed profile in

the interval (0, L0) is assumed to be a continuously differentiable function having

a slope discontinuity at x = 0 and x = L0. In region 1 of uniform depth h1, the

velocity potential φ1 is written in the form

φ1(x, z) = I0e
ip0xf0(k0, z) +

∞
∑

n=0

Rne
−ipnxfn(kn, z), (14)

where fn(kn, z) = cosh kn(z + h1)/coshknh1 with pn =
√

k2
n − k2

y for n =

0, 1, 2, 3, · · ·. R0 is an unknown constant associated with the amplitude of the re-

flected wave, and Rn’s are unknown constants to be determined. Here, k0 is the

positive real root and kn for n = 1, 2, 3, · · · are the purely imaginary roots of the

dispersion equation ω2 = gk tanh kh1 in k. For oblique waves, the wave component

does not change in its wave number in the y-direction, as has been discussed in

Section 2. Thus, in variable-depth region 2, the velocity potential φ2 is written as

φ2(x, z) =

∞
∑

n=0

ψn(x) Wn(h(x), z), (15)

where ψn(x)s are unknown functions and Wn = cosh k̃n(z + h)/cosh k̃nh with p̃n =
√

k̃2
n − k2

y. The wave number k̃0 is a positive real root and k̃1, k̃2, k̃3, · · · are purely

imaginary roots of the dispersion equation ω2 = gk̃ tanh k̃h in k̃. On the other hand,

in regions 3 and 4, the velocity potentials φ3 and φ4 are expressed as

φ3(x, z) =

∞
∑

n=0

(Ane
iqnx +Bne

−iqnx)gn(βn, z), (16)

and φ4(x, z) =

∞
∑

n=0

Tne
iqnxgn(βn, z), (17)

respectively, where gn(βn, z) = cosh βn(z + h2)/coshβnh2 with qn =
√

β2
n − β2

y

for n = 0, 1, 2, · · ·, An, Bn, Tn are unknown constants, and β0 is a positive

real root and β1, β2, β3, · · · are purely imaginary roots of the dispersion equation

ω2 = gβ tanhβh2. Hereafter, the infinite series associated with the evanescent modes

for the velocity potentials are truncated after N terms. To obtain ψn(x) in Eq. (15),
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following the procedure of extended modified mild-slope equation (MMSE) as in

Porter and Staziker [1995], it is derived that

d

dx

(

an

dψn

dx

)

+

N
∑

m=0

[(

bmn − bnm

)

dh

dx

dψm

dx
+

{

bmn

d2h

dx2

+ cmn

(

dh

dx

)2

+ dmn − k2
yan

}

ψm

]

= 0, (18)

where

an(h) =

∫ 0

−h

W 2
n dz, bmn(h) =

∫ 0

−h

Wn

∂Wm

∂h
dz, cmn(h) =

dbmn

dh
−

∫ 0

−h

∂Wm

∂h

∂Wn

∂h
dz,

dmn(h) =

∫ 0

−h

Wn

∂2Wm

∂z2
dz for n = 0, 1, 2, · · · , N.

Using the continuity of pressure across the interfaces x = 0 and x = L0, the velocity

potentials in Eqs. (14)–(16) yield

ψ0(x) = I0e
ip0x + R0e

−ip0x

ψn(x) = Rne
−ipnx

}

at x = 0 for n = 1, 2, · · · , N, (19)

and

ψn(x) = Ane
iqnx + Bne

−iqnx at x = L0 for n = 0, 1, 2, · · · , N. (20)

Further, using the conservation of mass across the interface boundaries as in Porter

and Staziker [1995] at x = 0 and L0, Eqs. (19) and (20) yield the jump conditions

given by

a0
dψ0

dx
+ ip0a0ψ0 + h′

N
∑

m=0

bm0ψm = 2ip0a0I0

an

dψn

dx
+ ipnanψn + h′

N
∑

m=0

bmnψm = 0























at x = 0+, n = 1, 2, · · · , N (21)

and

an
dψn

dx
− iqnanψn + h′

N
∑

m=0

bmnψm = −2ianqnBne
−iqnx

at x = L0−, n = 0, 1, 2, · · · , N. (22)

Using the orthogonal characteristics of the eigenfunctions gn(β, z), substituting the

velocity potentials φ3 and φ4 as in Eqs. (16) and (17) into the condition for continuity

of velocity as in Eqs. (5) and (11) along the flexible barrier and the gap at x =

L0 + L1 = γ, it is derived that

An − Bne
−2iqnγ = Tn, for n = 0, 1, 2, · · · (23)
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Next, from Eqs. (7), (16) and (17), the plate deflection ξ(z) is obtained as

ξ(z) =

4
∑

m=1

Cmf̃m(z) +

∞
∑

n=0

vn(An − Tn)eiqnγgn(z), for z ∈ Sb, (24)

where

vn =
2iρω

EIq4n +Qq2n −msω2
, f̃1(z) =

cosh τ1z

cosh τ1h2
, f̃2(z) =

sinh τ2z

sinh τ2h2
,

f̃3(z) =
cos τ3z

cos τ3h2
, f̃4(z) =

sin τ4z

sin τ4h2
,

with Cm being unknown constants to be determined, τn’s being the roots of the

characteristic equation EI(τ2
n − k2

y)
2 + Q(τ2

n − k2
y) −msω

2 = 0 with τn = iτn for

n = 3, 4. Substituting for ξ(z) from Eq. (24) in Eq. (5), a series relation for the

unknowns is obtained as

∞
∑

n=0

(Anrn + JnTn)gn(z) + iω

4
∑

m=1

Cmf̃m(z) = 0, for z ∈ Sb, (25)

where Jn = (iqn + 2ik0G − iωvn)eiqnγ and rn = i(vnω − 2k0G)eiqnγ . Further, using

the continuity of velocity potential of φ as in Eq. (11) and the relations in Eq. (23),

another series relation is obtained as

∞
∑

n=0

(An − Tn)eiqnγgn(z) = 0, for z ∈ Sg. (26)

The series relations in Eqs. (25) and (26) are satisfied in disjoint intervals and are

referred to as dual series relations. These dual series relations in Eqs. (25) and (26)

are rewritten as

D(z) =

∞
∑

n=0

{`1n(z) + Tn`2n} = 0, −h2 < z < 0, (27)

where

`1n(z) =











Ane
iqnγgn(z), for z ∈ Sg,

4
∑

m=1

Cmf̃m(z) + Anrngn(z), for z ∈ Sb,
(28)

`2n(z) =

{

−eiqnγgn(z), for z ∈ Sg,

Jngn(z), for z ∈ Sb.
(29)

In Eq. (27), the N -th partial sum of the series D(z) is given by

DN(z) =
N

∑

n=0

{`1n(z) + Tn`2n(z)} = 0, −h2 < z < 0. (30)
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Using the least-squares approximation method, Eqs. (27) and (30) yield
∫ 0

−h2

D∗

M(z)DTn
(z)dz = 0, for n = 0, 1, 2, 3, · · · ,M, (31)

where ∗ denotes the complex conjugate and DTn
(z) is the derivative of DM(z) with

respect to Tn. Using Eq. (30) in Eq. (31), a system of linear equations is obtained

as follows:

N
∑

m=0

T ∗

mXmn = d̃n, for n = 0, 1, 2, · · · ,M, (32)

with

d̃n =

∫ 0

−h2

`∗1n(z)`1n(z)dz, Xmn =

∫ 0

−h2

`∗2n(z)`2n(z)dz,

for m, n = 0, 1, 2, · · · ,M. (33)

For the determination of the unknown function ψn for specific bed profile h(x), Eq.

(18) is solved numerically using the Runge-Kutta method. The computed results

for ψn’s are used in Eqs. (19)–(21) and (32) to obtain a system of 6N equations.

Another four linear equations are obtained from the edge conditions as in Eqs. (8)

and (10). The set of 6N +4 linear equations are then solved for the various physical

quantities of interest. The computed results are discussed in the next section.

4. Numerical Results and Discussion

In this section, results generated by MATLAB programs which have been devel-

oped to solve the system of equations described above are presented. The aim is

to investigate the effects of various wave and structural parameters on the wave

reflection, plate deflection and hydrodynamic forces on the porous plate. Unless

stated otherwise, the physical parameters are kept fixed at the following values:

wave period T = 8 s, acceleration due to gravity g = 9.81 m/s2, depth ratio

h2/h1 = 0.5, L0/h1 = 0.5, L1/h1 = 3, ϑ = EI/(ρgh4
2) = 0.1, τ = Q/(ρgh2

2) = 0.1,

υ = ms/(ρh2) = 0.1, ν = 0.3, a/h2 = b/h2 = 0.5, σm = 45◦, Km = 103 N m−1,

k0h1 = 0.5 and θ = 30◦. The reflection coefficient Kr is defined as

Kr = |R0/I0|. (34)

In the subsequent discussions, numerical results for various bed profiles are analyzed

separately.

4.1. Bed profile type 1

Here, the bed profiles shown in Figs. 2(a) and (b) are considered using the bed

function h(x) as follows:

h(x) = h1 − b̃{1 − α(1 − x/L0)
2 + (α− 1)(1− x/L0)}, 0 < x < L0, (35)
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Fig. 2. Schematic diagram of different types of bed profiles (the top line being the static water
surface).

where b̃ = h1 −h2. In Eq. (35) for the bed function h(x), α = 0 refers to the sloping

step-type bed as shown in Fig. 2(a). On the other hand, for α > 1, protrusion occurs

above the depth h2 as in Fig. 2(b). Other forms of the bed profile can be considered

with change in α; see Behera et al. [2015]. In Figs. 3(a) and 3(b), the reflection and

transmission coefficients versus the non-dimensional wave number k0h1 are plotted

for a fully extended bottom-standing rigid porous barrier. From Fig. 3(a), it is found

that the curves of Kr and Kt obtained by the present theory for uniform bed are

in close agreement with the experimental and theoretical results of Li et al. [2006].

These comparisons should give a check on the correctness of the results presented in

this paper. On the other hand, the sloping angle decreases with an increase in the

depth ratio h2/h1. Thus, the reflection coefficient decreases whereas the transmission

coefficient increases as a result of the increase of the depth ratio h2/h1, as shown

in Fig. 3(b). Moreover, the reflection and transmission coefficients follow certain

oscillatory pattern with a decrease in the depth ratio h2/h1.

In Figs. 4(a) and 4(b), the reflection and transmission coefficients versus the non-

dimensional wave number k0h1 are plotted for a bottom-standing porous barrier for
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different values of the mooring line angle σm and stiffness Km, respectively. Fig.

4(a) reveals that wave reflection is larger and wave transmission is smaller when

the barrier is clamped near the seabed and moored at the submerged end, when

compared with that under the clamped–free edge condition. This is due to the fact

that more waves get transmitted through the flexible porous barrier when the barrier

is under the clamped–free edge condition. Further, the wave reflection increases, and

the wave transmission decreases, with an increase in the mooring angle σm. As the

stiffness of the mooring line decreases, the flexible barrier deflects to a greater extent.

Thus, with an increase in the mooring line stiffness Km, the reflection coefficient

decreases as shown in Fig. 4(b). The reverse pattern is observed for the transmission

coefficient.
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Fig. 3. The reflection and transmission coefficients as functions of k0h1: (a) a comparison between
present results with the theoretical and experimental results of Li et al. [2006] for h2/h1 = 1, and
(b) effect of the depth ratio h2/h1 in the case of a rigid porous barrier with b/h2 = 1, δ = 0.2,
f = 9, s = 1, ds = 0.0286, α = 0, θ = 0◦, σm = 0◦, τ = 0 and ϑ = 20.

In Figs. 5(a) and 5(b), the reflection coefficient versus the non-dimensional wave

number k0h1 are plotted for a bottom-standing porous barrier for different values

of depth ratio h2/h1 and porous-effect parameter G, respectively. Fig. 5(a) reveals

that the wave reflection decreases with an increase in the depth ratio. However,

for h2/h1 = 1, the pattern in the reflection coefficient is similar to the observation

made previously in Koley et al. [2015a] for wave scattering by a bottom-standing

partial flexible porous barrier in water of uniform depth. Further, Fig. 5(a) reveals

that for k0h1 ≈ 0, zero reflection occurs by a flexible porous barrier in the case of

uniform water depth. However, when waves propagate by a flexible porous barrier

in the presence of a sloping bed, for k0h1 ≈ 0, non-zero wave reflection occurs. On

the other hand, for h2/h1 < 1, oscillatory patterns in wave reflection are observed
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Fig. 4. Effect of the mooring line (a) angle σm, and (b) stiffness Km on the reflection and trans-
mission coefficients as functions of the non-dimensional incident wave number k0h1, with (a)
Km = 103 N m−1, and (b) σm = 45◦, for h2/h1 = 0.5, G = 0.5 + 0.5i, θ = 30◦, and α = 0.

for smaller values of the wave number k0h1 which diminishes for k0h1 > π. This

demonstrates that wave reflection follows certain steady pattern in the case of deep

water waves and is highly oscillatory in case of long waves. Moreover, it may be

noted that the oscillatory pattern in the wave reflection diminishes with an increase

in the depth ratio h2/h1, corresponding to a steeper slope of the step profile. From

Fig. 5(b), it is observed that the reflection coefficient decreases with an increase in

the absolute value of the porous-effect parameter G. Further, it is observed that full

reflection occurs in the case of an impermeable barrier, i.e., G = 0, for k0h1 = 0.4.

The occurrence of this full reflection is possibly due to the combined effect of an

impermeable barrier and a sloping step. On the other hand, nearly zero reflection

occurs for k0h1 = 1.3 with G = 5 + 5i. The occurrence of nearly zero reflection is a

result of the destructive interference of the incoming and reflected waves in the case

of wave scattering by a flexible porous barrier in the presence of a sloping step on

the bed.

In Figs. 6(a) and 6(b), the reflection coefficient versus the non-dimensional wave

number k0h1 are plotted for a bottom-standing porous barrier for different values

of α and length of the porous barrier b/h2, respectively. In these figures, the general

patterns of the wave reflection are similar to those shown in Figs. 5(a) and 5(b). Fig.

6(a) reveals that the wave reflection increases with an increase in α. This is expected

since a protrusion on the bottom will tend to reflect waves back. Further, Fig. 6(b)

reveals that the reflection coefficient increases with an increase in the length of

the porous barrier b/h2 for smaller value of k0h1. In contrast, wave reflection will

decrease with an increase in b/h1 for larger values of k0h1.

In Figs. 7(a) and 7(b), the reflection coefficient versus the non-dimensional wave

number k0h1 are plotted in the case of a bottom-standing porous barrier for different
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Fig. 5. Effect of the (a) depth ratio h2/h1, and (b) porous-effect parameter G on the reflection
coefficient as a function of the non-dimensional incident wave number k0h1, with (a) G = 0.5+0.5i,
and (b) h2/h1 = 0.5, for θ = 30◦, and α = 0.
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Fig. 6. Effect of the (a) bed profile constant α, and (b) length of the porous barrier b/h2 on the
reflection coefficient as a function of the non-dimensional incident wave number k0h1, with (a)
b/h2 = 0.5, and (b) α = 0, for G = 0.5 + 0.5i, and θ = 30◦.

values of non-dimensional flexural rigidity ϑ and compressive force τ , respectively.

These figures depict that the general patterns of the reflection coefficients are similar

to those shown in Figs. 5 and 6. Fig. 7(a) depicts that the reflection is larger in the

case of a stiffer structure. Similar observations are found in Karmakar and Soares

[2014]. This may be due to the fact that as structural rigidity increases flexible

structure tends to behave like a rigid structure. Also, Fig. 7(b) reveals that the

wave reflection increases with an increase in the compressive force acting on the

plate for smaller values of k0h1. This is similar to wave diffraction by a floating
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flexible plate under a compressive force as in Mohapatra et al. [2013]. This is due

to the fact that for smaller values of wave number k0h1, more wave energy which

concentrates near the free surface is reflected by the structure for higher compressive

force. However, the wave reflection decreases with an increase in the compressive

force for larger values of k0h1 for wave propagation in uniform water depth.
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Fig. 7. Effect of the (a) non-dimensional flexural rigidity ϑ, and (b) compressive force τ on the
reflection coefficient as a function of the non-dimensional incident wave number k0h1, with (a)
τ = 0.1, and (b) ϑ = 0.1, for α = 0, G = 0.5 + 0.5i and θ = 30◦.
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Fig. 8. Effect of the (a) porous-effect parameter G, and (b) depth ratio h2/h1 on the reflection
coefficient as a function of the incident angle θ, with (a) h2/h1 = 0.5, and (b) h2/h1, for G =
0.5 + 0.5i, k0h1 = 0.5, and α = 0.

In Figs. 8(a) and 8(b), the reflection coefficients Kr versus the incident angle
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θ are plotted in the case of a bottom-standing porous barrier for different values

of porous-effect parameter G and depth ratio h2/h1, respectively. Fig. 8(a) depicts

that the reflection coefficient decreases with an increase in the absolute value of

the porous-effect parameter G. The decrease in wave reflection results from an in-

creased transmission of wave energy through the porous barrier for larger values of

|G|. Further, the wave reflection attains zero minimum in the case of G = 5 + 5i

for θ = 41◦. The minimum in wave reflection at a certain angle of incidence may

be due to destructive interference of the incoming and reflected waves in the pres-

ence of a step-type bottom, which is similar to wave past a submerged rectangular

impermeable/permeable structure as in Abul-Azm [1994] and Losada et al. [1996].

In addition, Fig. 8(b) reveals that wave reflection decreases with an increase in the

depth ratio h2/h1 having a minimum at a certain angle of incidence θ. After attain-

ing the minimum, with further increase in the angle of incidence, the wave reflection

increases to reach full reflection at 90◦. It is also noted that wave reflection decreases

to zero with an increase in the angle of incidence θ in the case of a uniform depth,

which is similar to oblique wave scattering by porous barriers in uniform depth as

in Sahoo et al. [2000]. The variation in wave reflection for an oblique angle θ ap-

proaching 90◦ is possibly due to the diffraction and shoaling of gravity waves in the

presence of a bottom undulation; these details are, however, beyond the scope of

the present study.
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Fig. 9. Effect of the (a) depth ratio h2/h1, and (b) bed profile constant α on the reflection coef-
ficient as a function of the non-dimensional incident wave number k0h1 and slope length w2L0/g,
respectively, in case of a surface-piercing barrier, for (a) slope length L0/h1 = 0.5 and α = 0, and
(b) w2/g = 0.6, and h2/h1 = 0.5.

In Figs. 9(a) and 9(b), the reflection coefficient versus the non-dimensional wave

number k0h1 and slope length w2L0/g are plotted, respectively, in the case of a

surface-piercing porous barrier for different values of (a) depth ratio h2/h1, and (b)
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α. In Fig. 9(a), the pattern in wave reflection except h2/h1 ≈ 1 is quite similar to that

of a bottom-standing porous barrier as discussed in Figs. 5(a). Further, a comparison

of Figs. 5(a) and 9(a) reveals that for larger values of k0h1, the wave reflection is

smaller for the bottom-standing barrier compared with the surface-piercing plate.

This is a consequence of the fixed edge condition near the free surface for a surface-

piercing barrier, which does not allow plate deflection near the free surface, leading

to larger wave energy reflection. Fig. 9(a) shows that for wave scattering by flexible

barriers over a uniform depth, initially wave reflection increases with an increase

in the wave number k0h1 and attains a steady state for larger values of the wave

number k0h. Similar observations were made before by Koley et al. [2015a] for wave

scattering by a porous and flexible plate in water of uniform depth. Also, in Fig. 9(b),

the pattern in wave reflection is similar to that of the modified mild-slope equation

as in Porter and Staziker [1995]. In general, the reflection coefficient decreases in

an oscillatory pattern with an increase in the slope length. The amplitude of the

oscillatory pattern of the reflection coefficient decreases with an decrease in α, an

effect due to the protrusion of the step profile.

4.2. Bed profile type 2

Here, the bed profile as shown in Fig. 2(c) is considered, with the bed function h(x)

given by

h(x) = h3 − (h3 − h2)[1− ã(1− x/L0)
4 + {2ã+ 2(1− λt)}(1− x/L0)

3

−{ã+ 3(1 − λt)}(1− x/L0)
2], (36)

where c̃ = h3−h1, λt = c̃/(b̃+ c̃) and ã is real and positive, and satisfies the relation

16ã3 − {ã+ 3(1− λt)}
3{ã− (1− λt)} = 0.

In this case, there is a depression in the bed profile for 0 < x < L0. In the following,

numerical results for bottom-standing and surface-piercing barriers are analyzed

separately.

In Figs. 10(a) and 10(b), the reflection and transmission coefficients versus the

non-dimensional wave number k0h1 are plotted for different values of the depth

ratio h2/h1, respectively, in the case of a bottom-standing flexible porous barrier.

Fig. 10(a) depicts that the general patterns of the reflection coefficients are similar

to the results associated with the sloping bed profiles as in Fig. 5(a). However, an

opposite trend is observed for the transmission coefficients, as shown in Fig. 10(b).

Also, owing to the depression of the step profile as shown in Fig. 2(d), the wave

reflection pattern is more oscillatory compared to that shown in Fig. 4(a).

In Figs. 11(a) and 11(b), the reflection and transmission coefficients versus the

non-dimensional wave number k0h1 are plotted for different values of depth ra-

tio h3/h1 and compressive force τ , respectively in the case of a bottom-standing

flexible porous barrier. Fig. 11(a) reveals that the amplitudes of oscillation in the
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Fig. 10. Effect of the depth ratio h2/h1 on the (a) reflection and (b) transmission coefficients as
functions of the non-dimensional wave number k0h1, with h3/h1 = 1.4, and θ = 30◦.

reflection and transmission coefficients are larger with an increase in the bottom de-

pression h3/h1 for 1 ≤ k0h1 ≤ 4, beyond which the wave reflection and transmission

are independent of the depth ratio h3/h1. Moreover, irrespective of the depression,

maximum wave reflection and transmission occur for 1 ≤ k0h1 ≤ 4. From Fig.

11(b), it is observed that with an increase in the compressive force τ , the reflection

coefficients increase whereas transmission coefficients decrease for smaller values of

the wave number k0h1 corresponding to longer waves. A comparison with Fig. 7(b)

reveals that the scattering coefficients are opposite in nature with change in the

compressive force. Moreover, Fig. 11(b) reveals that for larger values of wave num-

ber k0h1, corresponding to deeper water waves, the reflection coefficient decreases

and transmission coefficient increases with an increase in τ .

In Figs. 12(a) and 12(b), the reflection coefficient versus the normalized distance

between the porous barrier and step L1/λ1 are plotted for different values of (a)

porous-effect parameter G, and (b) step length L0/h1, respectively, in the case of a

bottom-standing flexible porous barrier. The figures show that the general pattern

of the wave reflection coefficients varies periodically with an increase in L1/h1. Fig.

12(a) depicts that the wave reflection decreases with an increase in the absolute

value of the porous-effect parameter G. However, with an increase in the absolute

value of the porous-effect parameter, the amplitude of the oscillatory pattern in

wave reflection increases. Fig. 12(b) also shows that the amplitude of the oscillatory

pattern in wave reflection increases with an increase in the length of the step L0/h1.

Further, there is a left shift in the amplitude of the oscillatory pattern in wave

reflection with an increase in the length L0/h1 of the step profile. This may be due

to the decrease in the sloping angle of the step leading to a change of the phase of

the reflected waves.

In Figs. 13(a) and 13(b), the reflection coefficient versus the non-dimensional
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Fig. 11. Effect of the (a) depth ratio h3/h1, and (b) compressive force τ on the reflection and
transmission coefficients as functions of the non-dimensional incident wave number k0h1, with (a)
τ = 0.1 and (b) h3/h1 = 1.4, for L0/h1 = 0.5, G = 0.5 + 0.5i, θ = 30◦, h2/h1 = 0.5, and
h3/h1 = 1.4.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L
1
/h

1

K
r

 

 

G=0

G=0.5+0.5i

G=1+i

G=2+2i

G=5+5i

(a)

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L
1
/h

1

K
r

 

 

L/h
1
=0.5

L/h
1
=2

L/h
1
=3.5

L/h
1
=5

(b)

Fig. 12. Effect of the (a) porous-effect parameter G, and (b) step length L0/h1 on the reflection
coefficient as a function of the normalized distance between the porous barrier and step L1/λ1,
with (a) L0/h1 = 0.5, and (b) G = 0.5 + 0.5i, for θ = 30◦, h2/h1 = 0.5, and h3/h1 = 1.4.

flexural rigidity ϑ are shown for a (a) uniform depth, and (b) step-type bed with

h2/h1 = 0.5 for different values of G, respectively, in the case of a bottom-standing

flexible porous barrier having a depression on the bed. Both the figures depict that

the curve of the wave reflection is more oscillatory for smaller values of the non-

dimensional flexural rigidityϑ and the oscillatory pattern diminishes for larger values

of the structural rigidity, specifically for ϑ = 0.05. One may reason that for smaller

structural rigidity, wave loads on the flexible barrier can cause it to deflect to a larger
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Fig. 13. Effect of the porous-effect parameter G on the reflection coefficient as a function of the
non-dimensional flexural rigidity ϑ. In (a) h2/h1 = 1, and (b) h2/h1 = 0.5, with θ = 30◦ and
h3/h1 = 1.4.

extent. Further, Fig. 13(a) depicts that nearly full reflection occurs near ϑ = 0.09 in

the case of a uniform depth for G = 0. However, full reflection occurs for ϑ ≥ 0.14

in the case of a step-type bed as shown in Fig. 13(b). Moreover, irrespective of the

values of the porous-effect parameter G, in the case of wave motion over uniform

depth in the presence of a depression, minima in wave reflection occur for the same

structural rigidity ϑ, while for wave motion in the presence of a step having a

depression, minima in wave reflection occur for different values of structural rigidity

ϑ. Thus, Figs. 13(a) and 13(b) suggest that, for some particular values of the depth

profile, wave and structural parameters, full wave reflection can be achieved by a

partial bottom-standing flexible barrier.

4.3. Bed profile type 3

Here, the bed profile as shown in Fig. 2(d) is considered, with the bed function h(x)

given by

h(x) = h2 + b̃[1 + 2(x/L0)
3 − 3(x/L0)

2 − (d/b̃){sin(2m1πx/L0)

+ sin(2m2πx/L0)}], 0 < x < L0, (37)

where d is the amplitude of the ripples with m1 and m2 being the number of ripples.

To validate our results, we show in Figs. 14(a) and 14(b) results for the reflection

coefficient versus 2l/λ1 in the absence of the barrier with L0 = m1l, m2 = 0 and

h2/h1 = 1. Fig. 14(a) shows that the present results agree well with the experimental

results by Davies and Heathershaw [1984] and the theoretical results of Chamberlain

and Porter [1995]. From these figures, it is observed that due to the resonant interac-

tion between the incoming waves and the periodic sea bottom, significant reflection
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occurs when 2l/λ1 = 1. Fig. 14(b) depicts that the Bragg reflection increases as the

amplitude of the ripples increases.
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Fig. 14. The reflection coefficient as a function of 2l/λ1: (a) a comparison with the results of Davies
and Heathershaw [1984] and Chamberlain and Porter [1995], for d/h1 = 0.32, and (b) effect of the
amplitude of the ripples d/h1 in the absence of the porous barrier with h2/h1 = 1, m1 = 4, m2 = 0,
and θ = 0◦.

In Figs. 15(a) and 15(b), the reflection coefficient Kr as a function of the non-

dimensional wave number k0h1 in the case of a (a) uniform depth, and (b) step-type

bed with h2/h1 = 0.5 are shown for different values of the step length L0/h1, respec-

tively, in the absence of the barrier. The figures reveal that the reflection coefficient

decreases with an increase in the step length L0/h1. Since an increase in step length

is related to a decrease in the incline of the step, the decrease in wave reflection

may be due to the transmission of more wave energy over the step having a smaller

slope. Further, the number of optima in wave reflection increases with an increase

in the horizontal step length L0/h1. The figures also reveal that, for k0h1 ≈ 0, zero

reflection occurs over a topography of sinusoidal profile in an otherwise uniform wa-

ter depth,while non-zero reflection occurs for a step-type bottom. Moreover, Bragg

resonance occurs for larger values of L0/h1 in the case of uniform depth. In contrast,

Bragg resonance does not occur in the case of a step of sinusoidal profile.

In Figs. 16(a) and 16(b), the reflection coefficient Kr versus the non-dimensional

wave number k0h1 are shown for different values of (a) depth ratio h2/h1, and (b)

amplitude of the ripple d/h1, respectively, in the case of wave scattering by a bottom-

standing partial flexible barrier in the presence of a sinusoidal step. Fig. 16(a) reveals

that wave reflection increases with an increase in step height. Fig. 16(b) shows that

the amplitude of the oscillatory pattern in wave reflection increases with an increase

in the amplitude of the ripples d/h1 for deep water waves, while wave reflection is

independent of the ripple amplitude d/h1 for long waves.
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Fig. 15. Effect of the step length L0/h1 on the reflection coefficient as a function of the non-
dimensional incident wave number k0h1 in the absence of the porous barrier. In (a) h2/h1 = 1, and
(b) h2/h1 = 0.5, with m1 = 5, m2 = 2, θ = 30◦, and d/h1 = 0.16.
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Fig. 16. Effect of the (a) depth ratio h2/h1, and (b) amplitude of the ripple d/h1 on the reflection
coefficient as a function of the non-dimensional wave number k0h1. In (a) d/h1 = 0.16, and (b)
d/h1, with h2/h1 = 0.5, m1 = 5, m2 = 2, θ = 30◦, and G = 0.5 + 0.5i.

In Figs. 17(a) and 17(b), the reflection coefficient versus the normalized distance

between the porous barrier and step L1/λ1 are plotted for different values of (a)

porous-effect parameter G and (b) step length L0/h1 respectively for a bottom-

standing flexible porous barrier. Both the figures reveal that the general pattern of

wave reflection changes periodically with an increase in L1/h1 which is similar to

Figs. 12(a) and 12(b). However, minor changes in the periodicity of wave reflection

occurs with the change in the absolute value of G and L0/h1, which can be caused by

a change of the phase of the reflected wave. Further, the magnitude of the maxima
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Fig. 17. Effect of the (a) porous-effect parameter G, and (b) step length L0/h1 on the reflection
coefficient as a function of the normalized distance between the porous barrier and step L1/λ1. In
(a) L0/h1 = 0.5, and (b) G = 0.5 + 0.5i, with m1 = 5, m2 = 2, d/h1 = 0.16, and θ = 30◦.

in the wave reflection decreases with an increase in the absolute value of the porous-

effect parameter G and step length L0/h1. However, opposite trends are observed

for minima in the wave reflection.
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Fig. 18. Effect of the (a) normalized distance between the porous barrier and step L1/λ1, and (b)
length of the surface-piercing barrier a/h2 on the reflection coefficient as a function of the incident
angle θ. In (a) a/h2 = 0.5, and (b) a/h2 , with L1/h1 = 5.8, and k0h1 = 0.5, m1 = 5, m2 = 2,
d/h1 = 0.15, and G = 0.5 + 0.5i.

In Figs. 18(a) and 18(b), the reflection coefficient versus the incident angle θ are

plotted for different values of (a) normalized distance between the porous barrier

and step L1/λ1 and (b) length of the surface-piercing flexible porous barrier a/h2
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Fig. 19. Effect of the porous-effect parameter G on the plate deflection of a (a) bottom-standing,
and (b) surface-piercing barrier, for ϑ = 0.1 and 0.0001 with L1/h1 = 3, k0h1 = 0.5, m1 = 5,
m2 = 2, d/h1 = 0.15 and a/h2 = 1.

respectively. Both figures reveal that with an increase in the angle of incidence θ,

the wave reflection decreases until reaching a minimum before it increases again.

Fig. 18(a) reveals that nearly zero reflection occurs periodically for L1/h1 = 5.1 and

θ ≈ 39◦, which is referred to as the critical angle and is denoted as θc. Further,

the reflection coefficient increases with a periodic change in the horizontal distance

L1/h1. Furthermore, Fig. 18(b) shows that the wave reflection increases with an

increase in the length of the barrier a/h2 for 0 < θ < θc. However, an opposite

trend is observed for θ > θc. For a/h2 ≥ 0.4, the wave reflection becomes nearly

zero minimum in the range of 39◦–44◦. Moreover, there is a right shift in the wave

reflection with an increase in a/h2 which may be due to the change of phase of the

reflected wave.

Figs. 19(a) and 19(b) show the deflection profiles of a (a) bottom-standing, and

(b) surface-piercing flexible porous barrier for various values of the porous-effect pa-

rameterG. From these figures, it is clearly seen that the deflection of the flexible bar-

rier decreases with an increase in the absolute value of the porous-effect parameter

G. Further, the barrier deflection increases with an increase in the structural rigidity

ϑ. Similar observation has been made previously by Koley et al. [2015a]. Moreover,

Fig. 19(a) confirms that zero deflection occurs at the bottom for a bottom-standing

porous barrier, as is expected. It is also seen from the figure that the barrier deflec-

tion is larger near the submerged free end. On the other hand, for a surface-piercing

porous barrier which is assumed to be fixed at the free surface and free at the

submerged end, an opposite trend is observed for the barrier deflection.
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5. Conclusion

We have presented a study on oblique wave scattering by partial flexible porous

barriers in the presence of a step-type bottom of various profiles. Both the cases

of bottom-standing and surface-piercing barrier configurations are considered, and

three types of bed function h(x) are used to describe the profile of the stepped

bottom: (i) sloping step, (ii) step having a protrusion/depression, and (iii) double

sinusoidal step. The mathematical problems are solved for the physical variables us-

ing the methods of mild-slope and least-squares approximation. The effectiveness of

the bottom-standing and surface-piercing barriers has been determined by looking

into the reflection/transmission coefficients and barrier deflections for various phys-

ical parameters associated with the wave and structure. The computed results are

validated by comparison with known results available in the literature for different

cases. The study reveals that for some particular values of the bed profiles, wave

and structural parameters, nearly zero/full reflection occurs. In particular, in the

case of a sloping step, zero wave reflection will happen at θ = 41◦ for G = 5 + 5i.

Further, for a bottom-standing partial flexible porous barrier, full reflection occurs

for G = 0 with k0h1 = 0.4, while nearly zero reflection occurs for G = 5 + 5i with

k0h1 = 1.3. Also, in the case of a step having a depression, nearly full/zero reflec-

tion occurs. For a step of sinusoidal profile, nearly zero reflection occurs periodically

when L1/h1 = 5.1 at θ ≈ 39◦, while for a/h2 ≥ 0.4, the minimum wave reflection

becomes nearly zero in the range of 39◦–44◦. Moreover, the occurrence of Bragg

resonance has been examined for a step-type bed in the presence/absence of flexi-

ble porous barriers. These findings should promote a better understanding of how

flexible porous barriers over a step-type bed may function to dissipate wave energy

to create a zone of tranquility in the marine environment.
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