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ABSTRACT
Aims Megakaryocyte expansion in myeloproliferative
neoplasms (MPNs) is due to uncontrolled proliferation
accompanied by dysregulation of proapoptotic and
antiapoptotic mechanisms. Here we have investigated
the intrinsic and extrinsic apoptotic pathways of
megakaryocytes in human MPNs to further define the
mechanisms involved.
Methods The megakaryocytic expression of
proapoptotic caspase-8, caspase-9, Diablo, p53 and
antiapoptotic survivin proteins was investigated in bone
marrow specimens of the MPNs (n=145) and controls
(n=15) using immunohistochemistry. The megakaryocyte
percentage positivity was assessed by light microscopy
and correlated with the MPN entity, JAK2V617F/CALR
mutation status and platelet count.
Results The proportion of megakaryocytes in the MPNs
expressing caspase-8, caspase-9, Diablo, survivin and
p53 was significantly greater than controls. A greater
proportion of myeloproliferative megakaryocytes
expressed survivin relative to its reciprocal inhibitor,
Diablo. Differences were seen between myelofibrosis,
polycythaemia vera and essential thrombocythaemia for
caspase-9 and p53. CALR-mutated cases had greater
megakaryocyte p53 positivity compared to those with
the JAK2V617F mutation. Proapoptotic caspase-9
expression showed a positive correlation with platelet
count, which was most marked in myelofibrosis and
CALR-mutated cases.
Conclusions Disruptions targeting the intrinsic
apoptotic cascade promote megakaryocyte hyperplasia
and thrombocytosis in the MPNs. There is progressive
dysfunction of apoptosis as evidenced by the marked
reduction in proapoptotic caspase-9 and accumulation of
p53 in myelofibrosis. The dysfunction of caspase-9,
which is necessary for proplatelet formation, may be the
mechanism for the excess thrombocytosis associated
with CALR mutations. Survivin seems to be the key
protein mediating the megakaryocyte survival signature
in the MPNs and is a potential therapeutic target.

INTRODUCTION
Myeloproliferative neoplasms (MPNs) are a group
of clonal proliferative bone marrow diseases charac-
terised by somatic mutations (eg, JAK2V617F, CALR
frameshift lesions)1–5 and varying hyperplasia of
the myeloid lineages. Megakaryocyte hyperplasia
with clustering and associated morphological atypia
with pleiomorphism are key diagnostic histological

features.6–8 The pathobiological basis underlying
these numerical and morphological megakaryocytic
abnormalities is thought to result from multiple
molecular disruptions promoting proliferation and
enhancing survival.9–13 These megakaryocytes have
impaired death mechanisms conferred by overex-
pression of antiapoptotic Bcl-XL and reductions in
pro-death BNIP-3.9 11–13 These changes are univer-
sal in the MPNs but there are differences between
entities. Megakaryocytes in essential thrombocyth-
aemia (ET) have been shown to have a more
proliferative profile, whereas in myelofibrosis
(MF) they exhibit greater proapoptotic impair-
ments.9 13 These changes occur irrespective of the
JAK2V617F or calreticulin (CALR) driver mutations,
although those with a CALR lesion have greater
proapoptotic dysfunction.13 The mechanisms
driving this apoptotic dysregulation in megakaryo-
cytes in the MPNs have not been explored.
Apoptosis is mediated via extrinsic and intrinsic

apoptotic cascades (figure 1), with both pathways
being capable of inducing programmed cell death
following exposure to apoptotic insults and the
accumulation of excess DNA damage.14–16 These
pathways converge at the cleavage of procaspase-3
to produce active caspase-3, which is capable of
committing the cell to apoptosis.14–16 Alterations in
caspase biology, including caspase-8 (extrinsic) and
caspase-9 (intrinsic), have been implicated in a
number of malignancies in humans and animal
models. In caspase-8-deficient mice, B-lymphocytes
have impaired cytokinesis and chromosomal
instability, and show a tendency towards lymphoma
development.17 Similarly, caspase-9 gene poly-
morphisms and its downregulation are associated
with solid tumours and their malignant progres-
sion.18–20 Both caspase-8 and caspase-9 are poten-
tially important in regulating megakaryocyte
turnover in the MPNs. Frameshift lesions target-
ing CALR may disrupt megakaryocyte apoptosis
through its inability to facilitate caspase-8 activa-
tion and antiapoptotic protein cleavage.21 While
the precise pathogenesis surrounding CALR
lesions and megakaryocyte apoptosis is unknown,
its mutated product is exclusively expressed in
myeloproliferative megakaryocytes.22 23 In mega-
karyocytes, caspase-9 activity appears necessary
for proplatelet formation.24 Some reports suggest
that caspase-9 may be redundant, with CASP9
deletions in ex vivo-cultured mouse megakaryo-
cytes impairing procaspase-3 activation, and
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encouraging both megakaryopoiesis and proplatelet forma-
tion.25 This does not however discount the presence of other
caspases to conduct cytoskeletal proplatelet fragmentation in
the absence of caspase-9. Moreover, caspase-9 loss may
enhance the tumourigenic potential of megakaryocytes as
their proliferative capacity increases.25

Apoptotic cell death via the intrinsic pathway is regulated by
inhibitors of apoptosis proteins (IAP) that specifically constrain
the pro-death actions of caspase-9. One of these IAP, survivin,
restricts the IAP-inhibitor Diablo protein and prevents it from
activating caspase-9.26–29 This impedes the intrinsic apoptotic
pathway and confers a cytoprotective effect. The relevance of
Diablo has been shown in human tumours: downregulation has
been associated with progressive disease and poor survival in
both solid and haematological malignancies.30–33 Survivin over-
expression is well documented in leukaemias34–37 and lymph-
omas38–41 where it increases the survival capacity of affected
tumour cells. On the other hand, survivin loss causes mitotic
catastrophe characterised by cell death or polyploidisation.37 42

Mouse megakaryocytes failing to express survivin have limited
proliferation but increased ploidy, with loss of the IAP

preferentially selecting for those megakaryocytes capable of
escaping intrinsic apoptotic fates.42 Megakaryocytes are known
to express survivin and during anaphase it restricts cytokinesis
to enable polyploidisation.43 The relationship between survivin,
Diablo and caspase-9 is complex and has not been assessed in
megakaryocyte survival in the MPNs.

p53, the ‘master’ regulator of cell cycle, is also involved in
the apoptotic machinery. Its regulatory role involves arresting
the cell cycle, initiating senescence and inducing DNA repair
mechanisms.44 45 Failing these, p53 activates the intrinsic apop-
totic cascade by binding Bak/Bax to induce cytochrome-c release
while simultaneously inhibiting antiapoptotic Bcl-2-related pro-
teins46 47 and survivin.48 The role of p53 in megakaryocytes is
disputed. Ex vivo-cultured megakaryocytes have been shown to
express low levels of p5349 and its absence in p53-null mice has
no effect on megakaryopoiesis.50 However, the in vitro knock-
down of p53 has been reported to increase megakaryocyte pro-
liferation and regulate both its ploidy and differentiation.51–54

This disparity between in vitro and ex vivo experimental settings
ultimately suggests that in vivo, p53 loss is tolerated in the pres-
ence of other compensatory proapoptotic mechanisms. In the

Figure 1 Diagrammatic representation of the extrinsic and intrinsic apoptotic pathways. The extrinsic (receptor-mediated) apoptotic pathway
commences following FasL binding the Fas death receptor. The union forms a death complex that is capable of recruiting FADD and procaspase-8 to
form the DISC. The DISC recruits procaspase-8 proteins that undergo reciprocal cross-proteolysis and proximity-induced dimerisation to form an
active caspase-8 that targets procaspase-3. The intrinsic (mitochondrial-mediated) apoptotic pathway relies on the insertion of homo-oligomerised
pro-death Bcl-2-family proteins (Bak and Bax) into the outer mitochondrial membrane. The release of cytochrome-c subsequently ensues and acts to
recruit procaspase-9 and Apaf-1 to form the heptameric apoptosome. The apoptosome recruits procaspase-9 molecules, which reciprocally cleave
one another to form an active caspase-9 that targets procaspase-3. Both caspase-8 and caspase-9 then cleave procaspase-3 to form the executioner
caspase-3, which brings about coordinated cell death. Survivin aims to inhibit caspase-9 activation while simultaneously competing with the
inhibitory action of cytosolic p53 and Diablo. Nuclear p53 also activates the transcription of pro-death molecules required in both apoptotic
cascades. Apaf-1, apoptotic protease activating factor-1; Bak, Bcl-2 homologous antagonist/killer; Bax, Bcl-2-associated X protein; Casp-3,
caspase-3; Casp-8, caspase-8; Casp-9, caspase-9; Cyt-c, cytochrome-c; DISC, death-inducing signalling complex; FADD, Fas-associated protein with
death domain; Fas, Fas death receptor; FasL, Fas receptor ligand; Procasp-3, procaspase-3; Procasp-8, procaspase-8; Procasp-9, procaspase-9.
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MPNs, alterations in p53 have not been linked to mega-
karyocyte hyperplasia although mutations targeting TP53 do
occur during their leukaemic transformation.55–57

Apoptotic signalling is crucial to megakaryocyte polyploidisa-
tion and platelet production. Limited studies have identified that
apoptotic signalling processes are disrupted in megakaryocytes
of the MPNs.9–13 We intended to further delineate the bio-
logical basis of the apoptotic disturbances affecting megakaryo-
cytes in the MPNs by assessing several biomarkers implicated in
the intrinsic and extrinsic apoptotic pathways. We demonstrate
through immunohistochemical analyses of human MPNs that
the enhanced survival of myeloproliferative megakaryocytes
occurs through inhibition of intrinsic death effectors despite
concurrent extrinsic apoptotic activation.

MATERIALS AND METHODS
Patient samples
Bone marrow trephine (BMT) specimens from patients with
polycythaemia vera (PV), ET and MF (including both primary
MF and post-PV and post-ET MF) (n=145) and normal bone
marrow controls (n=15) were collected from patients through
PathWest Laboratory Medicine (Western Australia, Australia)
and Queen Mary Hospital (Hong Kong SAR, China) between
1999 and 2015. Of the 145 patients with MPNs, 133 were
untreated at the time of bone marrow collection. The PathWest
specimens were formalin-mercury fixed while those from Hong
Kong were fixed in formalin. All BMT specimens were acid dec-
alcified and paraffin embedded. Morphological review of all
cases was undertaken in accordance with WHO criteria7 and
classified according to MPN entity (table 1). PathWest BMT spe-
cimens were processed using a TMA Master tissue microarrayer
(3DHistech, Australia) to create tissue microarrays (TMA) as
outlined in Malherbe et al.13 Whole BMT sections from the
Hong Kong cohort were used for immunohistochemical investi-
gation. JAK2V617F mutation testing was performed by allele-
specific PCR analysis. CALR mutations were detected using
methods outlined by Nangalia et al.5 MPL mutation testing was
not performed and cases negative for JAK2V617F and CALR
mutations were classified as ‘double negative’ (DN). Platelet
counts (×109/L) were recorded for each MPN case at the time
of collection of the BMT specimen.

Immunohistochemical staining
Whole BMT specimens and TMA were sectioned at 4 μm onto
charged glass slides (Hurst Scientific, Australia). Monoclonal
antibodies were to formalin-mercury-resistant epitopes and were

validated on control tissue prior to their application on BMT
sections. Antibodies used were to CD61 (clone 2f2, Leica
Biosystems, Australia), caspase-8 (clone 90A992, Thermo
Scientific Pierce Antibodies, Australia), caspase-9 (clone F-7,
Santa Cruz Biotechnology, USA), p53 (clone DO-7, Leica
Biosystems, Australia), survivin (clone 71G4B7, Cell Signaling
Technologies, USA) and Diablo/Smac (clone D5S3R, Cell
Signaling Technologies, USA). All immunohistochemical staining
was performed on an automated Leica BOND RX immuno-
stainer (Leica Biosystems) as outlined by Malherbe et al.13

Positive and negative megakaryocytes were counted by a
minimum of two observers and the percent positive calculated
for each apoptotic biomarker. Megakaryocyte-rich (≥50) areas
within whole BMT specimens were selected for enumeration of
each biomarker up to a maximum of 200 megakaryocytes.
Observers were blinded to both the diagnostic entity and muta-
tion status of cases. Tissue areas and/or megakaryocytes of inter-
est were photographed using a Pixera Pro 600ES microscope
camera (Pixera, USA).

Statistical analysis
Mean megakaryocyte percentage positivity and SD were calcu-
lated according to the MPN subtype and JAK2V617F/CALR
mutational status for each apoptotic biomarker. Significant dif-
ferences between the MPNs and control megakaryocyte posi-
tivity were assessed using Mann–Whitney U tests. One-way
Kruskal–Wallis analysis of variance (ANOVA) analyses with
post hoc Dunn’s tests were performed to evaluate megakaryo-
cyte positivity variations in relation to subtype and JAK2V617F/
CALR mutation status. Platelet counts for the MPNs stratified
according to subtype and JAK2V617F/CALR mutation status
were correlated with the mean megakaryocyte expression for
all biomarkers using Spearman’s correlation. Significant differ-
ences were set at p<0.05. All statistical analyses were con-
ducted using GraphPad Prism V.6 software (GraphPad
Software, USA).

RESULTS
MPNs versus controls
Megakaryocytes were visually identified on morphology, antigen
expression (red chromogen) and nuclear haematoxylin counter-
stain. All antibodies produced the expected expression profile;
there was no non-specific background staining in any sections.
CD61 was used to confirm the identity of megakaryocytes in
BMT with marked atypia (eg, MF). Mean megakaryocyte posi-
tivity was significantly greater in the MPNs than in controls for
all apoptotic biomarkers, that is, caspase-8, caspase-9, survivin,
Diablo and p53 (figure 2). Caspase-8 showed significantly more
(∼16.8%) positive megakaryocytes in the MPNs than controls,
p=0.0005. A similar significant trend was observed for
caspase-9, although this increase was smaller (∼4.3%),
p=0.023. Of note was that megakaryocytes present within clus-
ters, a key feature of the MPNs, showed strong positivity for
both caspase-8 and caspase-9, whereas single intertrabecular or
paratrabecular megakaryocytes were more commonly negative
(figure 3A–C). There were significantly greater numbers of
Diablo and survivin-positive megakaryocytes in the MPNs than
controls, ∼3.1-fold, p<0.0001 and ∼1.8-fold, p<0.0001,
respectively. When comparing the proportion of Diablo and
survivin-positive megakaryocytes in the MPNs, the balance was
in favour of survivin by ∼19.0%. The cytoplasmic expression of
Diablo was weak and heterogeneous among megakaryocyte clus-
ters in the MPNs (figure 3D). Contrastingly, myeloproliferative
megakaryocytes showed strong nuclear localisation of survivin

Table 1 Summary of the cohort studied

JAK2V617F and CALR mutation status

TotalSubtype JAK2V617F+ CALRMut JAK2V617F−/CALRWT Unknown

Controls – – 15 – 15
PV 20 – – – 20
ET 26 9 6 31 72
MF* 18 14 5 16 53
Total 64 23 26 47 160

JAK2V617F and CALR lesions did not coexist (ie, JAK2V617F+ and CALRMut were
mutually exclusive). All CALR mutations represent frameshift lesions in exon 9 of
CALR.
*Includes both primary MF and ET/PV cases having undergone fibrotic transformation.
CALR, calreticulin; ET, essential thrombocythaemia; JAK2, Janus activated kinase 2;
MF, myelofibrosis; Mut, mutated; PV, polycythaemia vera; WT, wild type.
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(figure 3E, F). p53 was positive (nuclear) in myeloproliferative
megakaryocytes (∼23.1%) and virtually absent from controls,
p<0.0001 (figure 3G, H).

MPNs by disease entity and genotype
Since myeloproliferative megakaryocytes showed increased
expression of apoptosis-associated antigens, we then proceeded
to assess reactivity by morphological entity (ie, PV, ET and MF)
and mutation status (ie, JAK2V617F+, CALRMut and DN:
JAK2V617F−/CALRWT). Using Kruskal–Wallis ANOVA analyses,
significant differences were seen between the MPN subtypes for
caspase-9 and p53, p=0.0015 and p=0.0079, respectively
(figure 4). Post hoc analyses showed caspase-9 expression to be
significantly lower in MF megakaryocytes (∼77.9%) than both
PV (∼90.3%, p=0.0032) and ET (∼85.6%, p=0.019) with a
similar, borderline insignificant trend for survivin, Kruskal–
Wallis ANOVA p=0.073. The number of p53-expressing mega-
karyocytes in MF was ∼2.7-fold greater than in PV trephines,
p=0.0071. The differences in megakaryocyte positivity between
the MPN entities for caspase-8 and Diablo were not significant,
p>0.05 (data not shown).

When apoptotic biomarkers were assessed by mutation status, no
significant differences were seen, p>0.05. The proportion of
p53-expressing megakaryocytes was greater in CALRMut than
JAK2V617F+ trephines, although this difference was borderline insig-
nificant, Kruskal–Wallis ANOVA p=0.0660, post hoc p=0.0667
(figure 5). Caspase-8-positive and caspase-9-positive megakaryo-
cytes in JAK2V617F+ and CALRMut cases were similar and margin-
ally increased when compared with JAK2V617F−/CALRWT (figure 5).
Mean Diablo and survivin megakaryocyte positivity did not differ
by genotype (data not shown).

Apoptotic markers and platelet count
Since proplatelet production requires megakaryocyte apoptotic
signalling,24 25 platelet counts were correlated with megakaryo-
cyte positivity for all apoptotic biomarkers in the MPNs. There
was a significant, weak positive correlation between caspase-9
expression and platelet count for all MPNs, r=0.28, p=0.0018

(figure 6A). This correlation was strongest for cases of MF,
r=0.34, p=0.026 (figure 6B) and most notably those MPNs
with CALRMut, r=0.50, p=0.030 (figure 6C). When cases that
had received prior therapy were excluded from this analysis,
these correlations remained significant (data not shown). No sig-
nificant correlations existed between any of the other apoptotic
biomarkers and platelet count, p>0.05 (data not shown).

DISCUSSION
Previous studies have indicated that there is dysfunction of
apoptotic mediators in the MPNs, that is, increased antiapopto-
tic Bcl-XL and reduced pro-death BNIP-3.9 13 However, the
precise apoptotic disruptions promoting abnormal megakaryo-
cyte accumulation and thrombocytosis remain unclear. Here we
provide insight into these mechanisms and demonstrate that the
enhanced survival of megakaryocytes in the MPNs may be a
result of dysregulation of the intrinsic apoptotic pathway. The
key protein mediating this survival signature appears to be survi-
vin, an inhibitor of the intrinsic apoptotic cascade.27–29 While
survivin impedes megakaryocyte death, the reciprocal increase
of Diablo, its inhibitor,26 is insufficient and unlikely to nullify
its antiapoptotic effect. Further, there is low-level upregulation
of caspase-9, the main effector of the intrinsic apoptotic cascade
(figure 1),16 and its expression correlated with platelet count.
These data suggest that these aberrations facilitate megakaryo-
cyte hyperplasia and thrombocytosis rather than directing apop-
totic execution. The overexpression of pro-death caspase-8
(extrinsic) and p53 may be an attempt to counteract these
changes. The progressive dysfunction of megakaryocyte apop-
tosis, which has previously shown to be most discernible in MF
and CALR-mutated MPNs,9 13 can now be further supported by
marked reductions in pro-death caspase-9 and accumulation of
p53.

Survival advantages gained through inhibition of the intrinsic
apoptotic cascade is a key pathological mechanism promoting
megakaryocyte hyperplasia in the MPNs. We have previously
demonstrated that myeloproliferative megakaryocytes show dis-
rupted expression of the Bcl-2 family of apoptotic biomarkers

Figure 2 Percentage of positive
megakaryocytes in myeloproliferative
neoplasms (MPNs) and controls for
caspase-8, caspase-9, Diablo, survivin
and p53. Mean megakaryocyte
positivity in MPN cases was
significantly greater for all biomarkers
in comparison to controls. Statistically
significant difference, p<0.05 (*),
p<0.001 (***).
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(ie, upregulated antiapoptotic Bcl-XL, diminished pro-death
BNIP-3) that regulate intrinsic apoptosis.13 We further support
this theory by showing that survivin is strongly overexpressed in
myeloproliferative megakaryocytes. Survivin acts to limit
procaspase-9 cleavage, thereby constraining caspase-9 activation
in megakaryocytes and impeding their death (figure 1).27–29

Furthermore, survivin assists megakaryocyte polyploidisation
and its increase in the MPNs may be an obligatory survival

prerequisite as the majority of these megakaryocytes are of high
ploidy (up to 512N).43 58 Myeloproliferative megakaryocytes
attempt to neutralise this survival advantage by expressing
Diablo, which directly competes with the antideath effects con-
ferred by excess survivin.26 However, a greater proportion of
megakaryocytes in both controls (∼26.5%) and the MPNs
(∼19.0%) expressed survivin than those with upregulated
Diablo content. Further, the weak expression intensity of

Figure 3 Representative images (×600) of immunohistochemically stained megakaryocytes in myeloproliferative neoplasms (bone marrow trephine
sections; Fast Red chromogen and haematoxylin counterstain). (A) Caspase-8 in polycythaemia vera and (B) myelofibrosis (MF) and (C) caspase-9 in
MF. (D) Diablo-positive megakaryocytes in essential thrombocythaemia (ET). Clusters of megakaryocytes showing strong positive nuclear expression
for (E) survivin in ET and (F) in MF. In contrast, nuclear p53 was limited to isolated positive megakaryocytes among a negative majority (G) in
ET and (H) in MF.
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Diablo-positive megakaryocytes in the MPNs correlates with
lower concentrations of the IAP-inhibitor in comparison to
stronger survivin signals. This was not seen in control mega-
karyocytes, where the staining intensity of survivin and Diablo
was similar. The survival advantage therefore persists in myelo-
proliferative megakaryocytes, and in conjunction with other
intrinsic apoptotic disturbances is likely to promote their
accumulation.

Our data indicate that myeloproliferative megakaryocytes
attempt to counteract these survival effects by stimulating the
extrinsic apoptotic cascade via caspase-8. This may represent a
protective, death-promoting response against megakaryocyte
oncogenesis following the accumulation of excess molecular
abnormalities. Myeloproliferative megakaryocytes also increase
their nuclear p53 content relative to controls where p53 was,
and has previously been shown to be, mostly absent.49 We
postulate that caspase-8 overactivity induces TP53 gene
transcription to produce p53.44 45 p53 then translocates to
the megakaryocyte nucleus where it activates the transcription
of pro-death biomarkers (eg, Fas, Apaf-1) to stimulate both
extrinsic and intrinsic apoptotic cascades.59 Moreover, mega-
karyocytic p53 is potentially increased to directly abrogate the
antideath effects of survivin.48 Alternatively, this p53 upregula-
tion in myeloproliferative megakaryocytes may be to regulate
their polyploidisation by inducing states of megakaryocyte
senescence.60

There were differences in the megakaryocyte apoptotic pro-
files according to mutation status. Most notably, CALR-mutated
cases showed greater megakaryocytic p53, but not caspase-8
positivity, than those with the JAK2V617F mutation, although the
former was of borderline insignificance. It has previously been
shown that calreticulin is involved in caspase-8 activation.21 Our
data suggest that the mutated calreticulin gene product does not
influence caspase-8 levels. Rather, it appears that CALR lesions
disrupt alternative apoptotic effectors and that affected mega-
karyocytes will attempt a remedial pro-death response domi-
nated by p53 overexpression. We also show that the small
increase in the proportion of caspase-9-positive megakaryocytes
in the MPNs is positively correlated with platelet count, and
that this correlation strengthens with CALR mutations. We
propose two explanations for this data. First, it is likely that
CALR lesions interfere indirectly with caspase-9, rather than
with caspase-8. Second, the minor increase in caspase-9 is
unlikely to enable megakaryocyte apoptosis to be completed via
the intrinsic apoptotic pathway. Rather, several groups have
shown that constitutively activated caspase-9 in the presence of
intrinsic antiapoptotic effectors is necessary for proplatelet syn-
thesis and shedding.24 61–63 Therefore, low-level caspase-9 upre-
gulation and concurrent survivin overexpression, especially
among CALR-mutated MPNs, may drive thrombocytosis instead
of facilitating megakaryocyte apoptosis.

As MPNs progress towards MF, megakaryocytes accumulate
additional morphological, topographical and molecular abnormal-
ities, and show the greatest survival signature.7 13 64 The mega-
karyocytes in MF also have greater apoptotic disturbances than the
other MPNs. This includes lower caspase-9 and greater numbers
of p53-positive megakaryocytes than both PV and ET. It appears
that the megakaryocyte attempts to rectify this apoptotic disrup-
tion by reducing survivin and overactivating the ‘p53-mediated’
transcription of its pro-death effectors required for apoptotic exe-
cution.59 This is consistent with the morphological appearances of
megakaryocytes in MF with their greater nuclear pleiomorphism
and para-apoptotic changes.7 13 65 Further, the reduction in
number of caspase-9-positive megakaryocytes in MF may be the

Figure 4 Percentage of megakaryocytes positive according to
myeloproliferative neoplasm entity for caspase-9, survivin and p53.
Mean megakaryocyte positivity for caspase-9 was significantly lower in
myelofibrosis (MF) than polycythaemia vera (PV) and essential
thrombocythaemia (ET), p=0.0032 and p=0.019, respectively. The per
cent positive megakaryocytes in MF was lower for survivin (p=0.073)
and higher for p53 than PV and ET, p=0.0071 and p=0.18,
respectively. Statistically significant difference, p<0.05 (*), p<0.01 (**).

Figure 5 Caspase-8, caspase-9 and p53 in myeloproliferative neoplasms
by JAK2V617F and CALR mutation status. The percentage of
caspase-8-positive and caspase-9-positive megakaryocytes were similar for
JAK2V617F+ and CALRMut and not significantly different in comparison to
JAK2V617F−/CALRWT cases, p>0.05. p53 megakaryocyte positivity was
greater in CALRMut than JAK2V617F+, p=0.067. DN—double negative
(ie, JAK2V167F−/CALRWT).
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mechanism for the lower platelet counts characteristic of this
phenotype compared with other MPN entities.7 66

In summary, disruptions targeting the intrinsic apoptotic
cascade appear to promote megakaryocyte accumulation and
thrombocytosis in the MPNs. Survivin seems to be a key medi-
ator of this antiapoptotic signature and therefore could be a
potential therapeutic target. Anti-survivin agents have been
developed, which show therapeutic efficacy for many other
malignancies.67–69 As such, targeting survivin in the MPNs
could potentially control megakaryocyte accumulation and
downstream effects (eg, stromal accumulation). Further, a syner-
gistic option could potentially be achieved by including Diablo/
Smac-like mimetics70–72 to augment innate and already upregu-
lated megakaryocytic Diablo in the MPNs.

Take home messages

▸ Dysregulation of intrinsic apoptotic mechanisms in
megakaryocytes in the myeloproliferative neoplasms (MPNs)
promotes their hyperplasia and thrombocytosis.

▸ Survivin, a protein that inhibits the intrinsic pathway of
apoptosis, appears to be a key mediator of apoptotic failure
of megakaryocytes in the MPNs.

▸ Caspase-9 dysfunction may explain the heightened
thrombocytosis in MPNs, especially among those with CALR
mutations.
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