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Abstract
Entanglement is one of themost striking features of quantummechanics, and yet it is not specifically
quantum.More specific to quantummechanics is the connection between entanglement and
thermodynamics, which leads to an identification between entropies andmeasures of pure state
entanglement. Here we search for the roots of this connection, investigating the relation between
entanglement and thermodynamics in the framework of general probabilistic theories.We first
address the questionwhether an entangled state can be transformed into another bymeans of local
operations and classical communication. Under two operational requirements, we prove a general
version of the Lo–Popescu theorem, which lies at the foundations of the theory of pure-state
entanglement.We then consider a resource theory of purity where free operations are random
reversible transformations,modelling the scenariowhere an agent has limited control over the
dynamics of a closed system.Our key result is a duality between the resource theory of entanglement
and the resource theory of purity, valid for every physical theorywhere all processes arise frompure
states and reversible interactions at the fundamental level. As an application of themain result, we
establish a one-to-one correspondence between entropies andmeasures of pure bipartite entangle-
ment. The correspondence is then used to define entanglementmeasures in the general probabilistic
framework. Finally, we show a duality between the task of information erasure and the task of
entanglement generation, whereby the existence of entropy sinks (systems that can absorb arbitrary
amounts of information) becomes equivalent to the existence of entanglement sources (correlated
systems fromwhich arbitrary amounts of entanglement can be extracted).

1. Introduction

The discovery of quantum entanglement [1, 2] introduced the revolutionary idea that a composite system can be
in a pure state while its components aremixed. In Schrödinger’s words: ‘maximal knowledge of a total system does
not necessarily implymaximal knowledge of all its parts’ [2]. This new possibility, in radical contrast with the
paradigmof classical physics, is at the root of quantumnon-locality [3–6] in all its counterintuitive
manifestations [7–13].With the advent of quantum information, it quickly became clear that entanglementwas
not only a source of foundational puzzles, but also a resource [14]. Harnessing this resource has been the key to
the invention of groundbreaking protocols such as quantum teleportation [15], dense coding [16], and secure
quantumkey distribution [17, 18], whose implications deeply impacted physics and computer science [19, 20].

The key to understand entanglement as a resource is to consider distributed scenarios where spatially
separated parties perform local operations (LOs) in their laboratories and exchange classical communication
(CC) fromone laboratory to another [21–23]. The protocols that can be implemented in this scenario, known as
LOCCprotocols, provide ameans to characterize entangled states and to compare their degree of entanglement.
Precisely, a state is (i) entangled if it cannot be generated by an LOCCprotocol, and (ii)more entangled than
another if there exists an LOCCprotocol that transforms the former into the latter.
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Comparing the degree of entanglement of two quantum states is generally a hard problem [24–30].
Nevertheless, the solution is simple for pure bipartite states, where themajorization criterion [31] provides a
necessary and sufficient condition for LOCC convertibility. The criterion identifies the degree of entanglement
of a bipartite systemwith the degree ofmixedness of its parts: themore entangled a pure bipartite state is, the
moremixed itsmarginals are.Mixed states are compared here according to their spectra, with a state beingmore
mixed than another if the spectrumof the lattermajorizes the spectrumof the former [32–35].

Themajorization criterion shows that for pure bipartite states the notion of entanglement as a resource
beautifullymatches Schrödinger’s notion of entanglement as non-maximal knowledge about the parts of a pure
composite system.Moreover,majorization establishes an intriguing duality between entanglement and
thermodynamics [36–40], whereby the reduction of entanglement caused by LOCCprotocols becomes dual to
the increase ofmixedness (and therefore entropy [41]) caused by thermodynamic transformations. This duality
has far-reaching consequences, such as the existence of a uniquemeasure of pure state entanglement in the
asymptotic limit [36, 37, 42]. In addition, it has provided guidance for the development of entanglement theory
beyond the case of pure bipartite states [39].

The duality between entanglement and thermodynamics is a profound and fundamental fact. As such, one
might expect it to follow directly frombasic principles. However, what these principle are is far from clear: up to
now, the relation between entanglement and thermodynamics has been addressed in away that depends heavily
on theHilbert space framework, using technical results that lack an operational interpretation (such as, e.g. the
singular value decomposition). It is then natural to search for a derivation of the entanglement-thermodynamics
duality that uses only high-level quantum features, such as the impossibility of instantaneous signalling or the
no-cloning theorem. In the same spirit, one can askwhether the duality holds for physical theories other than
quantummechanics, adopting the broad framework of general probabilistic theories [43–52]. In the landscape of
general probabilistic theories, entanglement is a generic feature [44, 53], which provides powerful advantages for
a variety of information-theoretic tasks [54–59]. But what about its relationwith thermodynamics? Is it also
generic, or rather constitutes a specific feature of quantum theory?

In this paperwe explore the relation between entanglement and thermodynamics in an operational, theory-
independent way. Ourwork is part of a larger project that aims at establishing a common axiomatic foundation
to quantum information theory and quantum thermodynamics.Within this broad scope, we start our
investigation from the resource theory of entanglement, askingwhich conversions are possible under LOCC
protocols. Our first result is a generalization of the Lo–Popescu theorem [23]: we show that under suitable
assumptions every LOCCprotocol acting on a pure bipartite state can be simulated by a protocol using only one
round of CC.Our assumptions are satisfied by quantum theory on both real and complexHilbert spaces, and
also by all bipartite extreme no-signalling boxes studied in the literature [60–63].

In order to establish the connectionwith thermodynamics, we thenmove our attention tomixed states.We
consider the scenariowhere an agent has limited control over the dynamics of a closed system, thus causing it to
undergo a randommixture of reversible transformations and degrading it to amore disordered state. This
notion of degradation coincideswith the notion of ‘adding noise’ put forward byMüller andMasanes for the
problemof encoding spatial directions into physical systems [64], and represents a natural generalization of the
notion ofmajorization [65]. Provided that that every pure state can be reached fromany other pure state through
some reversible dynamics, we show that the relevant resource in this scenario can be identifiedwith the purity of
the state. This observation leads to an operational theory of purity, which in the quantum case turns out to be
equivalent to the theory of purity defined byHorodecki andOppenheim [66].

Once the resource theories of entanglement and purity are put into place, we set out to establish a duality
between them. To this purpose, we consider physical theories that admit a fundamental level of description
where all states are pure and all interactions are reversible. Such theories are identified by the purification
principle [47], which expresses a strengthened version of the conservation of information [67, 68]. The
possibility of a pure and reversilble description is particularly appealing for the foundations of thermodynamics,
as it reconciles themixedness of thermodynamic ensembles with the pure and reversible picture provided by
fundamental physics. In the quantum case, purification is the starting point for all recent proposals to derive
thermodynamic ensembles from the typicality of pure entangled states [69–75], an idea that has been recently
explored also in the broader framework of general probabilistic theories [76, 77]. Building on the purification
principle, we establish the desired duality between entanglement and thermodynamics, showing that the degree
of entanglement of a pure bipartite system coincides with the degree ofmixedness of its parts. As a consequence,
everymeasure of single-systemmixedness becomes equivalent to ameasure of pure bipartite entanglement.
Exploiting this result, we define a class ofmeasures of entanglement, which can be extended to frompure to
mixed state via the the convex roof construction [22, 78, 79], exactly in the sameway as in the quantum case.

Finally, we apply the duality to the task of information erasure [80], namely the task of converting amixed
state into a fixed pure state via a set of allowed operations (in our case, the set of random reversible (RaRe)
operations). As a result, erasing information becomes equivalent to generating entanglement. Quite
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surprisingly, wefind out that the impossibility of erasing informationwith the assistance of a catalyst implies the
existence of a special type of purification, where the purifying system is a twin of the purified system. This
observation completes the physical picture of the entanglement-thermodynamics duality, which appears to be a
consequence of the possibility to describe every physical process in terms of pure states, reversible interactions,
and puremeasurements—in particular,modelling physical systems inmixed states through the introduction of
amirror image that completes the description.

The paper is organized as follows. In section 2we introduce the framework. The resource theory of
entanglement is discussed in section 3. In section 4we prove an operational version of Lo–Popescu theorem,
which provides the starting point for the entanglement-thermodynamics duality. In section 5we formulate an
operational resource theory of dynamical control, which gives rise to a resource theory of purity under the
condition that all pure state are equivalent under the allowed reversible dynamics. In section 6we prove the
duality between entanglement and thermodynamics, focussing our attention to theories that admit a
fundamental level where all processes are pure and reversible. The consequences of the duality are examined in
section 7: specifically, we discuss the equivalence betweenmeasures ofmixedness andmeasures of entanglement
for pure bipartite states, andwe establish the relation between information erasure and entanglement
generation. In section 8we show that the requirement that information cannot be erased for free leads to the
requirement of symmetric purification. Finally, section 9 draws the conclusions and highlights the implications
of our results.

2. Framework

In this paper we adopt the framework of operational-probabilistic theories (OPTs) [47, 48, 52], which combines
the toolbox of probability theory with the graphical language of symmetricmonoidal categories [81–84]. Here
we give a quick recap, referring the reader to [47, 48, 52] and toHardy’s works [50, 51] for amore extended
presentation.

TheOPT framework describes circuits that can be built up by combining physical processes in sequence and
in parallel, as in the following example

Here, A, A,¢ A , B, B¢ label physical systems, ρ is a bipartite state, , ¢ and  are transformations, a and b are
effects. The two transformations  and¢ are composed in sequence, while the transformations  and  and
the effects a and b are composed in parallel. The circuit has no external wires—circuits of this form are associated
with probabilities. Two transformations that give the same probabilities in all circuits are identified. The short-
hand notation a( ∣ )r is used to indicate the probability that the effect a takes place on the state ρ,
diagrammatically represented as

The set of all possible physical systems, denoted by ,Sys is closed under composition: given two systemsA
andBone can form the composite system A B.Ä Wedenote the trivial system as I,which represents ‘nothing’
(or,more precisely, nothing that the theory cares to describe). The trivial system satisfies the obvious conditions
A I I A A,Ä = Ä = A .Sys" Î For generic systemsA and B,we denote as

• St(A) the set of states of systemA.

• Transf(A,B) the set of transformations from systemA to systemB.

• Eff(A) the set of effects on systemA.

The sets of states, transformations, and effects span vector spaces over the real numbers, denoted by A ,( )St
A, B ,( )Transf and A ,( )Eff respectively.We denote by DA the dimension of the vector space A( )St and say

that systemA is finite iff D .A < +¥ Transformations and effects act linearly on the vector space of states. For
every system A,we assume the existence of an identity transformation ,A which does nothing on the states of
the system.

A test is a collection of transformations that can occur as alternatives in an experiment. Specifically, a test of
type A to B is a collection of transformations i i{ } X Î with input A and output B.A transformation is called
deterministic if it belongs to a test with a single outcome.Wewill often refer to deterministic transformations as
channels, following the standard terminology of quantum information. A channel  fromA to B is called
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reversible if there exists a channel 1- fromB toA such that 1
A  =- and .1

B =- Wedenote by
A, B( )RevTransf the set of reversible transformations fromA to B. If there exists a reversible channel

transforming A into Bwe say that A andB are operationally equivalent, denoted by A B.
The composition of systems is required to be symmetric [81–84], meaning that A B B A.Ä Ä The

reversible channel that implements the equivalence is the swap channel, ,SWAP and satisfies the condition

ð1Þ

for every pair of transformations  and  and for generic systems A, A , B, B ,¢ ¢ aswell as the conditions

thewires in the rhs representing identity transformations, and

In this paperwe restrict our attention to causal theories [47], namely theories where the choice of future
measurement settings does not influence the outcome probability of present experiments.Mathematically,
causality is equivalent to the fact that for every system A there is only one deterministic effect, whichwe denote
here by Tr ,A in analogywith the trace in quantummechanics. The uniqueness of the deterministic effect
provides a canonical way to definemarginal states:

Definition 1.Themarginal state of a bipartite state ABr on systemA is the state TrA B AB≔r r obtained by applying
the deterministic effect on B.

Moreover, one can define the norm of a state ρ as

Tr .≔r r

The set of normalized states of A will be denoted by

A : A 1 .1( ) { ( )∣ }St Str r= Î =

In a causal theory, every state is proportional to a normalized state [47]. In quantummechanics, A1( )St is the set
of normalized densitymatrices of system A,while A( )St is the set of all sub-normalized densitymatrices. In a
causal theory channels admit a simple characterization, whichwill be useful later in the paper:

Proposition 1. Let A, B .( )Transf Î  is a channel if and only if Tr Tr .B A =

The proof can be found in lemma 5 of [47].

2.1. Pure states and transformations
In every probabilistic theory one can define pure states, and,more generally, pure transformations. Both
concepts are based on the notion of coarse-graining, i.e. the operation of joining two ormore outcomes of a test.
More precisely, a test i i{ } X Î is a coarse-graining of the test j j{ } Y


Î

if there is a partition i i{ }Y XÎ of Y such that

i j j
iY

 å= Î
for every i .XÎ In this case, we say that j j{ } Y


Î

is a refinement of .i i{ } X Î The refinement of a

given transformation is defined via the refinement of a test: if j j{ } Y


Î
is a refinement of ,i i{ } X Î then the

transformations j j i
{ } Y


Î
are a refinement of the transformation .i

A transformation is called pure if it has only trivial refinements:

Definition 2.The transformation A, B( )Transf Î is pure if for every refinement j{ } one has p ,j j =

where pj{ }is a probability distribution.
Pure transformations are those forwhich the experimenter hasmaximal information about the evolution of

the system.We assume as part of the framework that tests satisfy a pure decomposition property:
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Definition 3.A test satisfies the pure decomposition property if it admits a refinement consisting only of pure
transformations.

Later in the paper, wewill assume one axiom—purification—that implies the validity of the pure
decomposition property for every possible test [47].

The set of pure transformations fromA to Bwill be denoted as A, B .( )PurTransf In the special case of states
(transformations with no input), the above definition coincides with the usual definition of pure state.We
denote the set of pure states of system A as A .( )PurSt As usual, non-pure states will be calledmixed.

Pure states will play a key role in this paper. An elementary property of pure states is that they are preserved
by reversible transformations.

Proposition 2. Let A, B( )Transf Î be a reversible channel. Then a state A( )Sty Î is pure if and only if the state
B( )Sty Î is pure.

The proof is standard and is reported in appendix A for convenience of the reader.

3. The resource theory of entanglement

The resource theory of quantum entanglement [14] is based on the notion of LOCCprotocols, that is, protocols
inwhich distant parties are allowed to communicate classically to one another and to performLOs in their
laboratories [21, 22]. Being operational, the notion of LOCCprotocol can be directly exported to arbitrary
theories.

In this paperwe consider protocols involving only two parties, Alice and Bob. A generic LOCCprotocol
consists of a sequence of tests, performed byAlice and Bob, with the property that the choice of the test at a given
step can depend on all the outcomes produced at the previous steps. For example, consider a two-way protocol
where

(1)Alice performs a test i1{ } and communicates the outcome to Bob.

(2)Bob performs a test i
i
2

1{ }( ) and communicates the outcome toAlice.

(3)Alice performs a test .i
i i,
3

1 2{ }( )

An instance of the protocol is identified by the sequence of outcomes i i i, ,1 2 3( ) and can be represented by a
circuit of the form

where the dashed arrows represent CC. By coarse-graining over all possible outcomes, one obtains a channel,
given by

.
i i i

i
i i

i i
i

, ,

,

1 2 3

3

1 2

1 2

1( ) ( )⎡
⎣⎢

⎤
⎦⎥   å= Ä

Entangled states are those states that cannot be generated using an LOCCprotocol. Equivalently, they can be
characterized as the states that are not separable, i.e. not of the form

p ,
i

i
i i( ) ( )år a b= Ä

where pi{ } is a probability distribution allowed by the theory, i( )a is a state of A, and i( )b is a state of B.
Like in quantum theory, LOCCprotocols can be used to compare entangled states.

Definition 4.Given two states A B( )Str Î Ä and A B ,( )Str¢ Î ¢ Ä ¢ we say that ρ ismore entangled than ,r¢
denoted by ,entr r¢ if there exists an LOCCprotocol that transforms ρ into ,r¢ i.e. if r r¢ = for some LOCC
channel .

Mathematically, the relation ent is a preorder, i.e. it is reflexive and transitive.Moreover, it is stable under
tensor products, namely entr s r sÄ ¢ Ä ¢whenever entr r¢ and .ents s¢ In otherwords, the relation
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ent turns the set of all bipartite states into a preorderedmonoid, the typicalmathematical structure arising in all
resource theories [85]. The resource theory of entanglement here fits completely into the framework of [85],
with the LOCC channels as free operations. The states which can be prepared by LOCC (i.e. the separable states)
are free by definition, and all the other states represent resources. If entr r¢ and ,entr r¢ thenwe say that ρ
and r¢ are equally entangled, denoted by .entr r¢ Note that entr r¢ does not imply that ρ and r¢ are equal:
for example, every two separable states are equally (un)entangled.

4. An operational Lo–Popescu theorem

Given two bipartite states, it is natural to askwhether one ismore entangled than the other.Apriori, answering
the question requires one to check all possible LOCCprotocols. However, the situation ismuch simpler when
the initial state is pure: herewe prove that in this case every LOCCprotocol can be replacedwithout loss of
generality by a protocol involving only one round of CC—i.e. a one-way LOCCprotocol. Our argument is based
on two basic operational requirements and provides a generalized version of the Lo–Popescu theorem [23], the
key result at the foundation of the quantum theory of pure-state entanglement.

4.1. Two operational requirements
Our derivation of the operational Lo–Popescu theorem is based on two requirements, the first being

Axiom1 (Purity preservation [45, 48, 68]).The composition of two pure transformations yields a pure
transformation, namely

for every choice of systems A, A , B, B , C.¢ ¢

As a special case, purity preservation implies that the product of two pure states is a pure state. This
conclusion could also be obtained from the local tomography axiom [43–45, 47]. Nevertheless,
counterexamples exist of theories that satisfy purity preservation and violate local tomography. An example is
quantum theory on real vector spaces [86–88]. In general, we regard purity preservation asmore fundamental
than local tomography. Considering the theory as an algorithm tomake deductions about physical processes,
purity preservation ensures that, when presentedwithmaximal information about two processes, the algorithm
outputsmaximal information about their composition [68].

Our second requirement imposes a symmetry of pure bipartite states:

Axiom2 (Local exchangeability). For every pure bipartite state A B ,( )PurStY Î Ä there exist two channels
A, B( )Transf Î and B, A( )Transf Î such that

ð2Þ

whereSWAP is the swap operation (see equation (1)).

Note that, in general, the two channels depend on the specific pure stateΨ.
Local exchangeability is trivially satisfied by classical probability theory, where all pure states are of the

product form. Less trivially, it is satisfied by quantum theory, both on complex and on realHilbert spaces. This
fact is illustrated in the following

Example 1. Suppose that A andB are quantum systems, and let A and B be the correspondingHilbert spaces.
By the Schmidt decomposition, every pure state in the tensor productHilbert space can bewritten as

p ,
i

r

i i i
1

∣ å a bYñ = Ä
=

where i i
r

1 A{∣ } a ñ Ì= and i i
r

1 B{∣ } b ñ Ì= are orthonormal vectors. The Schmidt decomposition implies the
relation
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C D ,∣ ( )∣SWAP Yñ = Ä Yñ

whereC andD are the partial isometries C :
i

r
i i1

∣ ∣å b a= ñá= and D : .
i

r
i i1

∣ ∣å a b= ñá= From the partial isometries
C andD it is immediate to construct the desired channels  and , which can be defined as

C C I C C I C C

D D I D D I D D

:

: ,

A A

B B

( )

( )

† † †

† † †





r r r

s s s

= + - -

= + - -

where ρ andσ are generic input states of systemsA and B, respectively.With this definition, one has

,( )(∣ ∣) ∣ ∣SWAP SWAP Ä YñáY = YñáY

which is theHilbert space version of the local exchangeability condition of equation (2).

Local exchangeability is also satisfied by all the extreme bipartite non-local correlations characterized in the
literature [60–63]:

Example 2.Consider a scenario where two space-like separated parties, Alice and Bob, performmeasurements
on a pair of systems, A and B, respectively. Let x (y) be the index labelling Alice’s (Bob’s)measurement setting
and let a (b) the index labelling the outcome of themeasurement done byAlice (Bob). In the theory known as
boxworld [44, 89] all no-signalling probability distributions pab xy are physically realizable and represent states

of the composite system A B.Ä Such probability distributions form a convex polytope [62], whose extreme
points are the pure states of the theory.

For x y a b, , , 0, 1{ }Î the systemsA andB are operationally equivalent.Wewill denote by  the reversible
transformation that converts A into B.The extreme non-local correlations have been characterized in [60] and
are known to be equal to the standard PR-box correlation [61]

p
a b xy

1

2
mod 2

0 otherwise

3ab xy ( )∣

⎧
⎨⎪
⎩⎪

=
+ º

up to exchange of 0with 1 in the local settings of Alice and Bob and in the outcomes of theirmeasurements. In
the circuit picture, these operations are described by local reversible transformations: denoting byΦ the standard
PR-box state, one has that every other pure entangled state A B( )PurStY Î Ä is of the form

where  and  are reversible transformations.
To see that local exchangeability holds, note that swapping systemsA andB is equivalent to exchanging x

with y and awith b. Now, the standard PR-box correlation of equation (3) is invariant under exchange x y,«
a b,« meaning that one has

Then it is clear that every pure state of A BÄ can be swapped by LOs: indeed, one has

ð4Þ

where : 1   = - and .1 1≔   - - This proves the local exchangeability property for all pure bipartite
states in the two-setting/two-outcome scenario.
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The situation is analogous in the case of two settings and arbitrary number of outcomes. Let us denote the
setting by x y, 0, 1{ }Î and assume that a can take dA values, whereas b can take dB values. Then, all extreme
non-local correlations are characterized in [62]. Up to local reversible transformations, they are labelled by a
parameter k d d2, , min ,A B{ { }}Î ¼ and they are such that

p k
b a xy k

1
mod

0 otherwise.

5ab xy ( )∣

⎧
⎨⎪
⎩⎪

=
- º

Thanks to the local equivalence, it is enough to prove the validity of local exchangeability for correlations in the
standard formof equation (5).We distinguish between the two cases xy= 0 and xy= 1. For xy 0,= swapping x
with y and awith bhas no effect on p .ab xy For xy 1,= by swapping xwith y and awith b, one obtains the
probability distribution

p k
a b k

1
1 mod

0 otherwise.
ab xy∣

⎧
⎨⎪
⎩⎪

¢ =
- º

This probability distribution can be obtained from the original one by relabelling the outputs as a k a≔¢ - and
b k b.≔¢ - Such a relabelling corresponds to local reversible operations onA and B. In other words, local
exchangeability holds.

Finally, the last category of extreme non-local correlations characterized in the literature corresponds to the
case of arbitrary number of settings and to two-outcomemeasurements. In this case, the extreme correlations
are characterized explicitly in [63]. Up to local reversible transformations, the pure states are invariant under
swap.Hence, the same argument used in equation (4) shows that local exchangeability holds.

4.2. Inverting the direction ofCC
Purity preservation and local exchangeability have an important consequence. For one-way protocols acting on
a pure input state, the direction of CC is irrelevant: every one-way LOCCprotocol with communication from
Alice to Bob can be replaced by a one-way LOCCprotocol with communication fromBob toAlice, as shown by
the following.

Lemma1 (InvertingCC). Let Y be a pure state of A BÄ and let r¢ be a (possiblymixed) state of A B .¢ Ä ¢ Under
the validity of axioms 1 and 2, the following are equivalent:

(1) Y can be transformed into r¢ by a one-way LOCCprotocol with communication fromAlice to Bob,

(2) Y can be transformed into r¢ by a one-way LOCCprotocol with communication fromBob to Alice.

Proof. Suppose thatΨ can be transformed into r¢ by a one-way LOCCprotocol with communication fromAlice
to Bob, namely

ð6Þ

where i i{ } X Î is a test, and, for every outcome i ,XÎ i( ) is a channel. Note that one can assumewithout loss of
generality that all transformations i i{ } X Î are pure: if the transformations are not pure, we can refine themby
the pure decomposition property (see definition 2) and apply the argument to the refined test consisting of pure
transformations.

For everyfixed i ,XÎ one has

ð7Þ

By local exchangeability, the first swap can be realized by two local channels : A B  and : B A. 
Moreover, since i is pure, purity preservation implies that the (unnormalized) state i B( ) Ä Y is pure.
Hence, also the second swap in equation (7) can be realized by two local channels : A Bi( ) ¢  and

: B A .i( )  ¢ Substituting into equation (7) one obtains

8
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and, therefore

ð8Þ

having defined :
i i( ) ( )  =

~
and .

i i i
i

( ) ( ) ( )    =
~

By construction i i{ } X
~

Î is a test, because it can be
realized by performing the test i i{ } X Î after the channel  and subsequently applying the channel ,i i( ) ( ) 
depending on the outcome (the ability to perform conditional operations is guaranteed by causality [47]). On the
other hand,

i( )

~

is a channel for every i .XÎ Hence, we have constructed a one-way LOCCprotocol with
communication fromBob toAlice. Combining equations (6) and (8)we obtain

meaning thatΨ can be transformed into r¢ by a one-way LOCCprotocol with communication fromBob to
Alice. Clearly, the same argument can be applied to prove the converse direction. ,

Note that the target state r¢ need not be pure: the fact that the direction of CC can be exchanged relies only
on the purity of the input stateΨ.

4.3. Reduction to one-way protocols
Weare now ready to derive the operational version of the Lo–Popescu theorem.Our result shows that the action
of an arbitrary LOCCprotocol on a pure state can be simulated by a one-way LOCCprotocol:

Theorem1 (Operational Lo–Popescu theorem). Let Y be a pure state of A BÄ and r¢ be a (possiblymixed) state
of A B .¢ Ä ¢ Under the validity of axioms 1 and 2, the following are equivalent

(1) Y can be transformed into r¢ by an LOCCprotocol,

(2) Y can be transformed into r¢ by a one-way LOCCprotocol.

Proof.The non-trivial implication is 1 2.⟹ Suppose thatΨ can be transformed into r¢ by an LOCCprotocol
withN rounds of CC.Without loss of generality, we assume that Alice starts the protocol and that all
transformations occurring in thefirst N 1- rounds are pure.

Let s i i i, ,..., N1 2 1( )= - be the sequence of all classical outcomes obtained byAlice andBob up to step N 1,-
ps be the probability of the sequence s, and sY be the pure state after step N 1- conditional on the occurrence of
s. For concreteness, suppose that the outcome iN 1- has been generated onAlice’s side. Then, the rest of the

protocol consists in a test ,i
s
N{ }( ) performed onBob’s side, followed by a channel s i, N( ) performed onAlice’s

side. By hypothesis, one has

Now, using lemma 1 one can invert the direction of theCC in the last round, obtaining

9
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for a suitable test i

s

N
{ }( )

~

and suitable channels .
s i, N( )


~

Now, since both the N 1( )- th and theNth tests are
performed byAlice, they can bemerged into a single test, thus reducing the original LOCCprotocol to an LOCC
protocol with N 1- rounds. Iterating this argument for N 1- times onefinally obtains a one-way
protocol. ,

In quantum theory, the Lo–Popescu theoremprovides the foundation for the resource theory of pure-state
entanglement. Having the operational version of this result will be crucial for our study of the relation between
entanglement and thermodynamics. Before entering into that, however, we need to put into place a suitable
resource theory of purity, whichwill provide the basis for our thermodynamic considerations.

5. The resource theory of purity

5.1. A resource theory of dynamical control
Consider the scenariowhere a closed systemAundergoes a reversible dynamics governed by some parameters
under the experimenter’s control. For example, systemA could be a charged particlemoving in an electric field,
whose intensity and direction can be tuned in order to obtain a desired trajectory. In general, the experimenter
may not have full control and the actual values of the parametersmayfluctuate randomly. As a result, the
evolution of the systemwill be described by a RaRe channel, that is a channel of the form

where ii{ ∣ }( ) X Î is a set of reversible transformations and pi i{ } XÎ is their probability distribution. Assuming
that the system remains closed during thewhole evolution, RaRe channels are themost general transformations
the experimenter can implement.

An important question in all problems of control is whether a given input state can be driven to a target state
using the allowed dynamics.With respect to this task, an input state ismore valuable than another if the set of
target states that can be reached from the former contains the set of target states that can be reached from the
latter. In ourmodel, this idea leads to the following definition.

Definition 5 (More controllable states).Given two states ρ and r¢ of system A,we say that ρ ismore controllable
than ,r¢ denoted by ,r r¢ if r¢ can be obtained from ρ via a RaRe channel.

This definition appeared independently in an earlier work byMüller andMasanes [64], where the authors
explored the use of two-level systems as indicators of spatial directions (see definition 8 in the appendix). In this
paperwe propose to consider it as the starting point for an axiomatic theory of thermodynamics.

Definition 5fits into the general framework of resource theories [85], with RaRe channels playing the role of
free operations. Note that at this level of generality there are no free states: since the experimenter can only
control the evolution, every state is regarded as a resource. Physically, this is in agreement with the fact that the
input state in a control problem is not chosen by the experimenter—for example, it can be a thermal state or the
ground state of an unperturbedHamiltonian.

As it is always the case in resource theories, the relation is reflexive and transitive, i.e. it is a preorder.
Moreover, since the tensor product of twoRaRe channels is a RaRe channel, the relationµ is stable under tensor
products, namely r s r sÄ ¢ Ä ¢whenever r r¢ and .s s¢ Forfinite systems (i.e. systemswithfinite-
dimensional state space),Müller andMasanes [64] showed the additional property

, , 9⟹ ( ) r s s r r s=

for some reversible transformation . In otherwords, two states that are equally controllable can only differ by a
reversible transformation.

5.2. Fromdynamical control to purity
There is a close relation between the controllability of a state and its purity. For example, a state that ismore
controllable than a pure statemust also be pure.

Proposition 3. If A( )Sty Î is a pure state and A( )Str Î is more controllable thanψ, then ρmust be pure.
Specifically, r y= for some reversible channel .

Proof. Sinceψ is pure, the condition p
i i

i( )å r y= implies that i( ) r y= for every i, meaning that

,i( )r y= where i( ) is the inverse of .i( ) Proposition 2 then guarantees that ρ is pure. ,
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In other words, pure states can be reached only frompure states. A natural question is whether every state
can be reached from some pure state. The answer is positive in quantum theory and in a large class of theories.
Nevertheless, counterexamples exist that prevent an easy identification of the resource theory of dynamical
control with a ‘resource theory of purity’. This fact is illustrated in the following

Example 3.Consider a systemwith the state space depicted infigure 1(a). In this case, there are only two
reversible transformations, namely the identity and the reflection around the vertical symmetry axis. As a
consequence, there is noway to obtain themixed states on the two vertical sides by applying a RaRe channel to a
pure state. These states represent a valuable resource, even though they are not pure. Since somemixed states are
a resource, the resource theory of dynamical control cannot be viewed as a resource theory of purity.

As a second example, consider instead a systemwhose state space is a half-disk, like infigure 1(b). Also in this
case there are only two reversible transformations (the identity and the reflection around the vertical axis).
However, now everymixed state can be generated from some pure state via a RaRe channel. The state space can
be foliated into horizontal segments generated by pure states under the action of RaRe channels. As a result, the
pure states are themost useful resources and one can interpret the relationµ as away to compare the degree of
purity of different states. Nevertheless, pure states on different segments are inequivalent resources. In this case
there are different, inequivalent classes of pure states: purity is not the only relevant resource into play.

Finally, consider a systemwith a square state space, like infigure 1(c) and suppose that all the symmetry
transformations in the dihedral groupD4 are allowed reversible transformations. In this case, all the pure states
are equivalent under reversible transformations and everymixed state can be obtained by applying a RaRe
channel to afixed pure state. Here, the resource theory of dynamical control becomes a full-fledged resource
theory of purity.

The above examples show that not every operational theory supports a sensible resource theory of purity.
Motivated by the examples, we put forward the following definition:

Definition 6.A theory of purity is a resource theory of dynamical control where every state ρ can be compared
with at least one pure state. The theory is called canonical if every pure state is comparable to any other pure state.

In this paperwewill focus on canonical theories of purity.

Proposition 4.The following are equivalent:

(1) The theory is a canonical theory of purity.

(2) For every system A, the group of reversible channels acts transitively on the set of pure states.

(3) For every system A, there exists at least one state that ismore controllable than every state.

The proof is provided in appendix B.
Combining all the statements of proposition 4, one can see that in a canonical theory of purity every pure

state ismore controllable than any other state.
Starting fromHardy’s work [43], the transitivity of the action of reversible channels on pure states has

featured in a number of axiomatizations of quantum theory, either directly as an axiom [90–92] or indirectly as a
consequence of an axiom, as in the case of the purification axiom [48]. Proposition 4 provides a newmotivation
for this axiom, now identified as a necessary and sufficient condition for awell-behaved theory of purity.

In a canonical theory of purity, we say that ρ is purer than r¢ if r r¢ andwe adopt the notation .purr r¢
In this case, we also say that r¢ ismoremixed than ρ, denoted by .mixr r¢ When mixr r¢ and mixr r¢ we
say that ρ and r¢ are equallymixed, denoted by .mixr r¢ Clearly, every two states that differ by a reversible
channel are equallymixed. The converse is true forfinite dimensional systems, thanks to equation (9).

5.3.Maximallymixed states
We say that a state A( )Stc Î ismaximallymixed if it satisfies the property

A : .mix( ) ⟹St r r c r c" Î =

Maximallymixed states can be characterized as the states that are invariant under all reversible channels:

Proposition 5.A state A( )Stc Î is maximallymixed if and only if it is invariant, i.e. if and only if c c= for
every reversible channel : A A. 
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Weomit the proof, which is straightforward. Note thatmaximallymixed states do not exist in every theory:
for example, infinite-dimensional quantum systems have nomaximallymixed density operator, i.e. no trace-
class operator that is invariant under the action of the full unitary group. Forfinite-dimensional canonical
theories, however, themaximallymixed state exists and is unique under the standard assumption of

Figure 1.Three different examples of theories of dynamical control.

12

New J. Phys. 17 (2015) 103027 GChiribella andCMScandolo



compactness of the state space [47, 91]. In this case, the stateχ is not only amaximal element, but also the
maximum of the relation ,mix namely

A . 10mix ( ) ( )Stc r r" Î

This is in analogywith the quantum case, where themaximallymixed state is given by the densitymatrix
dI ,c = where I is the identity operator on the system’sHilbert space and d is theHilbert space dimension.

Another example offinite-dimensional canonical theory is provided by the square bit:

Example 4.Consider a systemwhose state space is a square, as infigure 1(c) and pick a generic (mixed) state ρ.
The states that aremoremixed than ρ are obtained by applying all possible reversible transformations to ρ (i.e. all
the elements of the dihedral groupD4) and taking the convex hull of the orbit. The set of all states that aremore
mixed than ρ is an octagon, depicted in blue infigure 2. All the vertexes of the octagon are equallymixed. The
centre of the square is themaximally stateχ, the unique invariant state of the system.

6. Entanglement-thermodynamics duality

In quantum theory, it is well known that the ordering of pure bipartite states according to the degree of
entanglement is equivalent to the ordering of theirmarginals according to the degree ofmixedness [31–34, 93].
In this sectionwewill prove the validity of this equivalence based only onfirst principles.

6.1. Purification
In order to establish the desired duality, we consider theories that satisfy the purification principle [47, 48]. Let us
briefly summarize its content.We say that a state A( )Str Î has a purification if there exists a systemB and a pure
state A B( )PurStY Î Ä (the purification) such that

We say that the purification is essentially unique if every other purification Y¢with the same purifying system B
satisfies the condition

ð11Þ

for some reversible transformation : B B.  With these definitions, the purification principle can be
phrased as

Axiom3 (Purification [47, 48]).Every state has a purification. Every purification is essentially unique.

Purification has a number of important consequences. First of all, it implies that the group of reversible
transformations acts transitively on the set of pure states:

Proposition 6 (Transitivity). For every systemB and every pair of pure states , B( )PurSty y¢ Î there exists a
reversible channel : B B  such that .y y¢ =

Figure 2.Mixedness relation for the state space of a square bit: the vertices of the octagon represent the states that can be reached from
a given state ρ via reversible transformations. Their convex hull is the set of states that aremoremixed than ρ. Note that it contains the
invariant stateχ, which can be characterized as themaximallymixed state.
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The existence of a reversible transformation connectingψ and y¢ is a consequence of the essential
uniqueness of purification [equation (11)], in the special case A I= [47]. Since all pure states are equivalent
under reversible transformations, every theory with purification gives rise to a canonical theory of purity, in the
sense of definition 6.One could take this fact as a further indication that purification is a good starting point for a
well-behaved thermodynamics.

Another important consequence of purification is the existence of entanglement:

Proposition 7 (Existence of entangled states). For every pair of systems A and B, a pure state of A BÄ is
entangled if and only if its marginal on system A is mixed.

Proof. Let us denote the pure bipartite state byΨ. IfΨ is not entangled, then itmust be a product of two pure
states, say .a bY = Ä Clearly, this implies that themarginal on systemA is pure.

Conversely, suppose that themarginal ofΨ on systemA is pure and denote it byα. Then, for every pure state
B ,( )PurStb¢ Î the product state a bY¢ = Ä ¢ is pure, thanks to purity preservation. Now,Ψ and Y¢ are two

purifications ofα. By the essential uniqueness of purification, onemust have A B( ) Y = Ä Y¢ for some
reversible transformation B acting on system B.Hence, we have ,a bY = Ä with .Bb b= ¢ ,

Finally, purification implies the steering property [2, 94], stating that every ensemble decomposition of a
given state can be generated by ameasurement on the purifying system:

Proposition 8 (Steering). Let ρ be a state of systemA and let A B( )PurStY Î Ä be a purification of ρ. For every
ensemble of states i i{ } Xr Î such that ,

i iå r r= there exists ameasurement bi i{ } XÎ on the purifying system B such
that the following relation holds

See theorem6of [47] for the proof. The steering property will turn out to be essential in establishing the duality
between entanglement and thermodynamics.

6.2.One-way protocols transforming pure states into pure states
The operational Lo–Popescu theorem guarantees that every LOCCprotocol acting on a pure bipartite input
state can be simulated by a one-way protocol. Purification buys us an extra bonus: not only is the protocol one-
way, but also all the conditional operations are reversible.

Lemma2. Let Y and Y¢ be pure states of A B.Ä Under the validity of purification and purity preservation, every
one-way protocol transforming Y into Y¢ can be simulated by a one-way protocol where all conditional operations
are reversible.

Proof. Suppose thatΨ can be transformed into Y¢ via a one-way protocol where Alice performs a test i i{ } X Î
andBob performs a channel i( ) conditional on the outcome i. By definition, we have

Since Y¢ is pure, this implies that there exists a probability distribution pi{ } such that

ð12Þ

for every outcome i. Now,without loss of generality each transformation i can be assumed to be pure (if not,
one can always decompose it into pure transformations, thanks to the pure decomposition property). Then,
purity preservation guarantees that the normalized state iY defined by

ð13Þ
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is pure.With this definition, equation (12) becomes

Tracing out systemBon both sides one obtains

the second equality coming from the normalization of the channel i( ) (see proposition 1). Hence, the pure
states iY and Y¢ have the samemarginal on A.By the essential uniqueness of purification, theymust differ by a
reversible channel i( ) on the purifying system B, namely

ð14Þ

In conclusion, we obtained

wherewe have used equations (12)–(14). In other words, the initial protocol can be simulated by a protocol
where Alice performs the test i{ } andBob performs the reversible transformation i( ) conditionally on the
outcome i. ,

The reduction to one-way protocols with reversible operations is the key to connect the resource theory of
entanglement with the resource theory of purity. The duality between these two resource theories will be
established in the next subsections.

6.3. Themore entangled a pure state, themoremixed itsmarginals
We start by proving one direction of the entanglement-thermodynamics duality: if a state ismore entangled than
another, then themarginals of the former aremoremixed than themarginals of the latter:

Lemma3. Let Y and Y¢ be two pure states of system A BÄ and let ,r r¢ and ,s s¢ be theirmarginals on system A
and B, respectively. Under the validity of purification, purity preservation, and local exchangeability, if Y is more
entangled than ,Y¢ then ρ (σ) ismoremixed than r¢ (s¢).

Proof.By the operational Lo–Popescu theorem, we know that there exists a one-way protocol transformingΨ
into .Y¢ Moreover, thanks to purification, the conditional operations in the protocol can be chosen to be
reversible (lemma 2). Let us choose a protocol withCC fromAlice to Bob, inwhichAlice performs the test

i i{ } X Î andBob performs the reversible transformation i( ) conditional on the outcome i. Since Y¢ is pure, we
must have

where pi{ } is a suitable probability distribution. Denoting by i( ) the inverse of i( ) and applying it on both sides
of the equation, we obtain
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Summing over all outcomes the equality becomes

ð15Þ

with
i i≔ å and p: .

i i
i( ) å= Finally, we obtain

wherewe used the normalization of channel in the second equality and equation (15) in the third. Since is a
RaRe channel by construction, we have proved thatσ ismoremixed than .s¢ The fact that ρ ismoremixed than
r¢ can be proved by the same argument, starting from a one-way protocol withCC fromBob toAlice andwith
reversible operations onAlice’s side. ,

The relation between degree of entanglement of a pure state and degree ofmixedness of itsmarginals holds
not only for bipartite states, but also formultipartite states. Indeed, suppose thatΨ and Y¢ are two pure states of
system A A AN1 2Ä Ä Ä and thatΨ ismore entangled than ,Y¢ in the sense that there exists a (multipartite)
LOCCprotocol convertingΨ into .Y¢ For every subset N1 ,...,{ }S Ì one can define A : An nS=Ä Î and
B : An nS=Ä Î and apply lemma 3. As a result, one obtains that themarginals ofΨ aremoremixed than the
marginals of Y¢ on every subsystem.

6.4. Themoremixed a state, themore entangled its purification
Wenowprove the converse direction of the entanglement-thermodynamics duality: if a state ismoremixed
than another, then its purification ismore entangled. Remarkably, the proof of this fact requires only the validity
of purification.

Lemma4. Let ρ and r¢ be two states of systemA and letΨ (Y¢) be a purification of ρ (r¢), with purifying system B.
Under the validity of purification, if ρ ismoremixed than ,r¢ then Y ismore entangled than .Y¢

Proof.By hypothesis, one has

for someRaRe channel p: .
i i

i( ) å= Let us define the bipartite stateΘ as

ð16Þ

By construction,Θ is an extension of ρ: indeed, one has
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Let us take a purification ofΘ, say A B C .( )PurStG Î Ä Ä Clearly,Γ is a purification of ρ, since one has

Then, the essential uniqueness of purification implies thatΓmust be of the form

ð17Þ

for some reversible transformation  and somepure state γ. In other words,Ψ can be transformed intoΓ by LOs
onBob’s side.

Now, equation (16) implies that the states pi
i

iB{ }( )( )
X

 Ä Y
Î

are an ensemble decomposition ofΘ. Hence,

the steering property (proposition 8) implies that there exists ameasurement ci i{ } XÎ on C such that

ð18Þ

Combining equations (17) and (18), we obtain the desired result.

where i i{ } X Î is the test defined by

In conclusion, if themarginal state ofΨ ismoremixed than themarginal state of ,Y¢ thenΨ can be converted
into Y¢ by a one-way LOCCprotocol. ,

6.5. The duality
Combining lemmas 3 and 4we identify the degree of entanglement of a pure bipartite state with the degree of
mixedness of itsmarginals:

Theorem2 (Entanglement-thermodynamics duality). Let Y and Y¢ be two pure states of system A BÄ and let
ρ, r¢ andσ, s¢ be theirmarginals on system A and B, respectively. Under the validity of purification, purity
preservation, and local exchangeability, the following statements are equivalent:

(1) Y is more entangled than ,Y¢

(2) ρ is moremixed than r¢,

(3) σ is moremixed than .s¢

Proof.The implications 1 2⟹ and1 3⟹ follow from lemma 3 and require the validity of all the three
axioms. The implications 2 1⟹ and 3 1⟹ follow from lemma 4 and require only the validity of
purification. ,

The duality can be illustrated by the commutative diagrams

and is implemented operationally by discarding one of the component systems. Another illustration of the
duality is via the diagram
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Here themap implementing the duality is (a choice of) purification. Such amap cannot be realized as a physical
operation [47]. Instead, it corresponds to the theoretical operation ofmodellingmixed states asmarginals of
pure states.

7. Consequences of the duality

In this sectionwe discuss the simplest consequences of the entanglement-thermodynamics duality, including
the relation betweenmaximallymixed andmaximally entangled states, as well as a link between information
erasure and generation of entanglement. Fromnowon, the axioms used to derive the duality will be treated as
standing assumptions andwill not bewritten explicitly in the statement of the results.

7.1. Equivalence under local reversible transformations
Let us start from the easiest consequence of the duality:

Corollary 1. Let Y and Y¢ be two states of system A B,Ä with A finite-dimensional. Then, Y and Y¢ are equally
entangled if and only if they are equivalent under local reversible transformations, namely

,( ) Y¢ = Ä Y

where  and  are reversible transformations acting onA and B, respectively.

This result, proved in appendix C, guarantees that the equivalence classes under the entanglement relation
have a simple structure, inherited from the reversible dynamics allowed by the theory. Forfinite systems, pure
bipartite entanglement is completely characterized by the quotient of the set of pure states under local reversible
transformations.

7.2.Duality for states on different systems
Theorem2 concerns the convertibility of states of the same system. To generalize it to arbitrary systems, it is
enough to observe that the tensor product with local pure states does not change the degree of entanglement: for
arbitrary pure statesΨ, ,a¢ and b¢ of systems A B,Ä A ,¢ and B¢ one has

, 19ent ( )a bY ¢ Ä Y Ä ¢

relative to the bipartition A A B B .( ) ( )¢ Ä Ä Ä ¢ As a consequence, one has the equivalence

ent ent⟺ a b a bY Y¢ ¢ Ä Y Ä ¢ Ä Y¢ Ä

for arbitrary pure states , , ,a a b b¢ ¢ of A, A , B, B ,¢ ¢ respectively. This fact leads directly to the generalization of
the duality to states of different systems:

Corollary 2. Let Y and Y¢ be two pure states of systems A BÄ and A B ,¢ Ä ¢ respectively, and let ρ, ,r¢ σ and s¢ be
theirmarginals on system A, A , B¢ and B¢ respectively. Under the validity of purification, purity preservation, and
local exchangeability, the following statements are equivalent:

(1) Y is more entangled than Y¢.

(2) r aÄ ¢ is moremixed than a rÄ ¢ for every pair of pure states A( )PurSta Î and A .( )PurSta¢ Î ¢

(3) s bÄ ¢ is moremixed than b sÄ ¢ for every pair of pure states B( )PurStb Î and B .( )PurStb¢ Î ¢

The duality is now implemented by the operation of discarding systems and preparing pure states, as
illustrated by the commutative diagrams

At this point, a cautionary remark is in order. Inspired by equation (19) onemay be tempted compare the
degree ofmixedness of states of different systems, by postulating the relation
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20mix ( )r r aÄ ¢

for arbitrary states ρ and arbitrary pure states .a¢ The appeal of this choice is that the duality wouldmaintain the
simple form

,ent mix⟺ r rY Y¢ ¢

even for states of different systems.However, equation (20)would trivialize the resource theory of purity: as a
special case, it would imply the relation 1 mix a¢ for a generic pure state ,a¢ meaning that pure states can be
freely generated. Since in a canonical theory of purity pure states are themost resourceful, having pure states for
free wouldmean having every state for free.

Another way to compare states of different systems according to their degree of purity would be to postulate
the relation

, 21pur B ( )r r cÄ

where Bc is themaximallymixed state of systemB (assuming that such a state exists). The rationale for this
choicewould be that Bc is the ‘minimum-resource state’ in the resource theory of purity and therefore onemay
want to consider it as free. This choice would not trivialize the resource theory of purity, butwould break the
duality with the resource theory of entanglement. Indeed, equation (21)would imply as a special case
1 ,pur Bc meaning thatmaximallymixed states can be freely generated fromnothing. Clearly, this is not the
case for their purifications, which are entangled and cannot be generated freely by LOCC. In summary,
refraining from comparingmixed states on different systems seems to be the best way to approach the duality
between the resource theory of entanglement and the resource theory of purity.

7.3.Measures ofmixedness andmeasures of entanglement
The duality provides the foundation for the definition of quantitativemeasures of entanglement. In every
resource theory, one can definemeasures of ‘resourcefulness’, by introducing functions that are non-increasing
under the set of free operations [85]. In the resource theory of entanglement, this leads to the notion of
entanglementmonotones:

Definition 7.An entanglementmonotone for system A BÄ is a function E : A B( )St Ä  satisfying the
condition

E E , A B , .ent( ) ( ) ( )St r r r r r r¢ " ¢ Î Ä ¢

More generally, onemaywant to compare entangled states on different systems. In this case, an entanglement
monotoneE is a family of functions E E A, BA B{ ∣ }Sys= ÎÄ satisfying the condition

E EA B A B( ) ( )r r¢Ä ¢Ä ¢

for every pair of states A B( )Str Î Ä and A B( )Str¢ Î ¢ Ä ¢ satisfying .entr r¢
Similarly, one can definemonotones in the resource theory of purity:

Definition 8.A puritymonotone for systemA is a function P : A( )St  satisfying the condition

P P , A , .pur( ) ( ) ( )St r r r r r r¢ " ¢ Î ¢

Recall that in our resource theory of purity we abstain from comparing states on different systems, for the
reasons discussed in the end of the previous subsection. Puritymonotones give a further indication that the
definition of purity in terms of RaRe channels is a sensible one: indeed, if we restrict our attention to the classical
case, the notion of puritymonotone introduced here coincides with the canonical notion of Schur-convex
function in the theory ofmajorization [65] (see appendixD). Schur-convex functions are the key tool to
construct entropies and othermeasures ofmixedness in classical statisticalmechanics, and have applications in a
number of diverse fields [95].

Constructing puritymonotones is fairly easy. For example, every function that is convex and invariant under
reversible transformations is a puritymonotone:

Proposition 9. Let P : A( )St  be a function satisfying

(1) convexity: P p p P
i i i i i i( ) ( )å år r for every set of states i{ }r and for every probability distribution p ,i{ } and

(2) invariance under reversible transformations: P P( ) ( )r r= for every state ρ and for every reversible
transformation .
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Then, P is a puritymonotone.

The proof is elementary and is presented in the appendixD for the convenience of the reader.We highlight
that the above proposition is the natural extension of awell-known result inmajorization theory, namely that
every convex function that is symmetric in its variables is automatically Schur-convex [65]. Again, it is worth
highlighting the perfectmatch of the operational notions discussed herewith the canonical results about
majorization.

Using proposition 9, one can construct puritymonotones aplenty: for every convex function f :  
one can define the f-purity P : Af ( )St  as

P f p p asup : ,
a

f
x

x x x
pure

( )( )( ) ≔
X

år r=
Î

where the supremum runs over all puremeasurements a ax x{ } X= Î and over all outcome spaces .X It is easy to
verify that every f-purity is convex and invariant under reversible transformations, and therefore is a purity
monotone. In the special case of the function f x x xlog ,( ) = one has

P H , 22f ( ) ( ) ( )r r= -

whereH is themeasurement entropy [96–98], namely theminimumover all puremeasurements of the Shannon
entropy of the probability distribution resulting from themeasurement. In the case of f x x2( ) = one obtains
instead an generalized notion of ‘purity’, which in the quantum case coincides with the usual notion
P Tr .2( ) ( )r r=

Another way to construct puritymonotones is by using norms on the state space: thanks to proposition 9,
every norm that is invariant under reversible transformations leads to a puritymonotone. For systems that have
an invariant state, an easy example is given by the operational distance

P
1

2
,( ) ≔r r c-

where · is the operational norm, defined as a a: sup infa aA A 10 1
( ∣ ) ( ∣ )( ) ( )Eff Effd d d= -Î Î [47], andχ is the

invariant state. Another example of puritymonotone induced by a norm is the notion of purity introduced in
[76, 77], based on the Schatten two-norm. In the quantum case, this notion of purity coincides with the ordinary
notion P Tr 2( ) ( )r r= and therefore coincides with the f-purity with f x x .2( ) = It is not a priori clearwhether
the two-normpurity coincides with the x2-purity formore general theories.

Now, thanks to the duality we can turn every puritymonotone into an entanglementmonotone. Given a
puritymonotone P : A ,( )St  we can define the pure state entanglementmonotone
E : A B( )PurSt Ä  as

E g P , Tr , 23B( ) ≔ [ ( )] ( )r rY = Y

where g :   is anymonotonically decreasing function ( f x f y( ) ( ) for x y> ). Here themonotonically
decreasing behaviour of g implements the reversing of arrows in the duality. Furthermore, if the functions P and
f have suitable convexity properties, the entanglementmonotone can be extended frompure states to arbitrary
states using the convex roof construction [22, 78, 79]. Specifically, one has the following

Corollary 3. Let P : A( )St  be a convex puritymonotone, g :   be a concave,monotonically decreasing
function, and E : A B( )PurSt Ä  be the pure state entanglementmonotone defined in equation (23). Then, the
convex roof extension E : A B( )St Ä  defined by

E p E: inf
p

p
i

i i
,i i

i
i i

( ){ }
( ) åS = Y

å
Y

Y=S

is a convex entanglementmonotone.

The proof is the same as in the quantum case [78]. An easy way to generate entanglementmeasures is to pick
an f-purity and take its negative, which corresponds to the choice g x x.( ) = - For example, the choice
f x x xlog( ) = leads to a generalization of the entanglement of formation [22] to all theories satisfying the
duality.

7.4.Maximally entangled states
As a consequence of the duality, there exists a correspondence betweenmaximallymixed and ‘maximally
entangled’ states, the latter being defined as follows
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Definition 9.Apure stateΦ of system A BÄ ismaximally entangled if no other pure state of A BÄ ismore
entangled thanΦ, except for the states that are equivalent toΦ under local reversible transformations—i.e. if for
every A B( )PurStY Î Ä one has

ent ⟹ ( ) Y F Y = Ä F

for some reversible transformations : A A  and : B B. 

Theorem 2directly implies the following.

Corollary 4.The purification of amaximallymixed state ismaximally entangled.

Proof. Suppose that A B( )PurStY Î Ä ismore entangled thanΦ, whereΦ is a purification of themaximally
mixed state of systemA (assuming such a state exists for system A). By theorem 2, themarginal ofΨ on system
A, denoted by ρ, must satisfy .mixr c Sinceχ ismaximallymixed, this implies .r c= The uniqueness of
purification then implies the condition A B( ) Y = Ä F for some reversible transformation B on B. ,

As noted earlier in the paper, under the standard assumptions of convexity and compactness of the state
space, themaximallymixed state is not only amaximal element of themixedness relation, but also the
maximum (see equation (10)). Similarly, under the same standard assumptions, it is immediate to obtain that
the purification of amaximallymixed state ismore entangled than every state, namely

A B .ent ( )StF S " S Î Ä

The relation follows directly from theorem2whenΣ is a pure state and in the general case can be proved by
convexity, using the fact that the set of LOCC channels is closed under convex combinations.

7.5.Duality between information erasure and entanglement generation
The entanglement-thermodynamics duality establishes a link between the two tasks of erasing information and
generating entanglement. By erasing informationwemean resetting amixed state to afixed pure state of the same
system [80]. Clearly, erasure is a costly operation in the resource theory of purity: there is noway to transform a
non-pure state into a pure state by using only RaRe channels (see proposition 3). The dual operation in the
resource theory of entanglement is the generation of entangled states fromproduct states. By the duality, the
impossibility of erasing information byRaRe channels and the impossibility of generating entanglement by
LOCCare one and the same thing.

The relation between information erasure and entanglement generation suggests that the cost of erasing a
mixed state ρ could be identifiedwith the cost of generating the corresponding entangled stateΨ. For example,
onemay choose afixed entangled stateΦ as a reference ‘unit of entanglement’ and ask howmany copies ofΦ are
needed to generateΨ through LOCCoperations. The number of entanglement units needed to generateΦ could
then be taken as ameasure of the cost of erasing ρ.We now explore this idea at the heuristic level, discussing first
amodel of erasure and then connecting it with the generation of entanglement. Suppose that erasure is
implemented by (i) performing a puremeasurement, (ii)writing down the outcome on a classical register, (iii)
conditionally on the outcome, performing a reversible transformation that brings the system to afixed pure
state, andfinally (iv) erasing the classical register. Of course, thismodel assumes that some systems described by
the theory can act as ‘classical registers’, meaning that they have perfectly distinguishable pure states. Assuming
the validity of Landauer’s principle at the classical level, the cost of erasing the classical register is then equal to
the Shannon entropy of the outcomesmultiplied by k T ,B kB andT being the Boltzmann constant and the
temperature, respectively [80].Minimizing the entropy over all possiblemeasurements at step (i), onewould
then obtain themeasurement entropy, as defined in equation (22). Hence, theminimumcost for erasing ρ is
given by k TH .B ( )r Note that this heuristic conclusion implicitly assumes that the operations (i)–(iii) can be
performed for free. This is the case in quantum theory, where (i) themeasurement attainingminimumShannon
entropy is projective and the overall transformation associated to it is a randomunitary channel, (ii) the
measurement outcome can bewritten down via a unitary operation on the system and the classical register, and
(iii) the state of the system can be reset via another joint unitary operation. In physical theories other than
quantumand classical theories, however, the request that the operations (i)–(iii) are free is non-trivial andwould
need to be further analyzed in terms of physical axioms.

Suppose now that wewant to erase an unknown state ρ. Since the state is unknown, the relevant quantity here
is theworst case cost of erasure, defined as the supremumof the cost over all possible states. Since the
measurement entropy ismonotone under themixedness relation, infinite dimensions the supremum is attained
for themaximallymixed stateχ, so that theworst case cost of erasure is given by k T H .B ( )c This result allows us
tomake an interesting connectionwith thework by Brunner et al [99], who considered the task of erasure in
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general probabilistic theories. Specifically, they considered the number of states that can be perfectly
distinguished by ameasurement and adopted the logarithmof this number as ameasure of the cost of erasure. In
their analysis they considered probabilistic quantumand classical theories, as well as alternative theories with
hypercube state spaces, whereinmeasurements can distinguish atmost two states. In all these theories the
logarithmof the dimension is exactly equal to themeasurement entropy of themaximallymixed state. Thanks to
this fact, erasure cost defined in [99] coincides with theworst case erasure cost defined above. It is an open
questionwhether the two definitions coincide in all canonical theories of purity, and, if not, which conditions
are needed for the two definitions to coincide.

Let us now look at erasure from the dual point of view. Since the duality inverts the order, the dual of an
erasure protocol consisting of operations (i)–(iv)will be an entanglement generation protocol consisting of the
dual operations in the opposite order (iv), (iii), (ii) and (i). The dual of (iv) is an operation that generates a
purification of the classical register. The duals of the free operations (i)–(iii) are LOCCoperations that convert
the initial entangled state into the stateΨ. Now, by the duality we canmeasure the cost of generatingΨ in terms
of themeasurement entropy H .( )r Butwhat is the operationalmeaning of this choice? Again, the duality
suggests an answer. Classically, the Shannon entropy can be interpreted as the asymptotic rate at which random
bits can be extracted from a given probability distribution. Dually, the inverse relationmust hold between the
purifications: referring to the purification of a randombit as an ebit, we have that the Shannon entropy is the
number of ebits needed asymptotically to generate the purification of a given probability distribution by LOCC.
Minimizing over all probability distributions one can characterize themeasurement entropy as theminimum
number of ebits needed to asymptotically generate the stateΨ by LOCC. Although partly based onheuristics, the
argument provides already a good illustration of the far reaching consequences of the entanglement-
thermodynamics duality, which allowed to identify the cost of erasing a state with the number of ebits needed to
generate its purification.

7.6. Entropy sinks and entanglement reservoirs
Let us consider now the task of erasure assisted by a catalyst, namely a system C whose state remains unaffected
by the erasure operation. In this case, the operation of erasure transforms the product state A C( )Str gÄ Î Ä
into the state 0a gÄ for some pure state A .0 ( )PurSta Î By duality, it is immediate to see that catalyst-assisted
erasure is equivalent to catalyst-assisted entanglement generation:

Corollary 5. Let Y and G be two pure states of systems A BÄ and C D,Ä respectively, and let ρ and γ be their
marginals on systems A and C, respectively. Then, the following are equivalent

(1) ρ can be erased by a RaRe channel using γ as a catalyst.

(2) Ψ can be generated by a LOCC channel usingΓ as a catalyst.

If such catalysts existed, theywould behave like ‘entropy sinks’, which absorbmixed states without
becomingmoremixed, or like ‘entanglement reservoirs’, fromwhich entanglement can be borrowed
indefinitely. For example, suppose thatΨ can be generated freely usingΓ as a catalyst. Then, everymeasure of
pure state entanglement E that it is additive on product states would have to satisfy the relation

E E E .( ) ( ) ( )G Y + G

Assuming that themeasure assigns a strictly positive value to every entangled state. the above relation can only be
satisfied if E .( )G = + ¥ In other words, the catalyst’s statemust be infinitely entangled. It is then natural to
askwhether the impossibility of infinitely entangled/infinitelymixed states follow fromour axioms. The answer
is affirmative in the finite-dimensional case, but counterexamples exist in infinite dimensions. For thefinite-
dimensional case, we have the following

Proposition 10. Let A CÄ be a finite system. Then, it is impossible to erase amixed state of A using C as a catalyst.

The proof is presented in appendix E.
In the infinite-dimensional case, a heuristic counterexample is as follows: imagine a scenario where system C

consists of an infinite chain of identical systems, with each system in the chain equivalent to A, namely
C A ,i i= Ä Î A A.i  Loosely speaking, wemay choose the state γ to be the product state ,L Rg g g= Ä
where Lg is a state on the left side of the chain, consisting of infinite copies of the pure state ,0a and Rg is a state
on the right of the chain, consisting of infinite copies of themixed state ρ. It is then natural to expect that the
state r gÄ can be reversibly transformed into the state ,0a gÄ simply by swapping systemAwith thefirst
systemon the left of the chain and subsequently shifting thewhole chain by one place to the right.
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The above counterexample is heuristic, because the notion of infinite tensor product is not defined in our
formalism.However, infinite tensor products can be treated rigorously, at least in the quantum case, and the
intuition of our counterexample turns out to be correct. In the dual task of catalytic entanglement generation,
the rigorous version of this argumentwas presented byKeyl et al [100], who exhibited an example of infinite spin
chain fromwhich arbitrarily large amounts of entanglement can be generated for free.

8. Symmetric purification

Aswe observed in the previous section, the ability to erase information/generate entanglement for free has
undesirable consequences for the resource theories of purity and entanglement. These scenarios can be excluded
at the level offirst principles, by postulating the following

Axiom4 (No entropy sinks).RaRe dynamics cannot achieve erasure, evenwith the assistance of a catalyst.

In addition to being a requirement for a sensible resource theory of entanglement, axiom4 has a surprising
twist: in the context of the other axioms, it implies that local exchangeability is equivalent to the existence of
symmetric purifications, defined as follows

Definition 10. Let ρ be a state of systemA and letΨ be a pure state of A A.Ä We say thatΨ is a symmetric
purification of ρ if

and

This definition leads us to an upgraded version of the purification axiom:

Axiom5 (Symmetric purification).Every state has a symmetric purification. Every purification is essentially
unique.

The key result is then given by the following:

Theorem3. In a causal theory satisfying purity preservation and no entropy sinks, the following axioms are
equivalent:

(1) Local exchangeability and purification.

(2) Symmetric purification.

The proof is presented in appendix F.
This result identifies purity preservation and symmetric purification as the key axioms at the foundation of

the entanglement-thermodynamics duality and, ultimately, as strong candidates for a reconstruction of
quantum thermodynamics from first principles.We stress that the axiomno entropy sinks is needed only for
infinite-dimensional systems, while forfinite dimensional systems its validity can be proved (see
proposition 10).

One of the bonuses of symmetric purification is that themarginals of a pure state are ‘equivalent’, in the
following sense:

Proposition 11. Let Y be a pure state of system A BÄ and let Ar and Br be itsmarginals on systems A and B,
respectively. Then, one has

whereα andβ are pure states of A and B, respectively, and  is a reversible transformation.
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The proof can be found in appendix G. As a consequence of this result, we have that the states Ar bÄ and

Ba rÄ have the same purity, for every possible puritymonotone. Equivalently, we can say that the twomarginal
states have the samemixedness, for everymeasure ofmixedness.

9. Conclusions

While entanglement is not a uniquely quantum feature, the remarkable ways inwhich it is intertwinedwith
thermodynamics appear to be farmore specific. Understanding these links at the level of basic principles is
expected to reveal new clues to the foundations of quantum theory, as well as to the foundations of
thermodynamics.With thismotivation inmind, we set out to search for the roots of the relation between
entanglement and entropy, adopting an operational, theory-independent approach.We attacked the problem
fromwhat is arguably themost primitive link: the duality between the resource theory of entanglement (where
the free transformations are those achievable by two spatially separated agents via LOs andCC) and the resource
theory of purity (where the free transformations are those achievable by an agent who has limited control on the
dynamics of the system). By the duality, every free operation in the resource theory of purity admits an
equivalent description as a free operation in the resource theory of entanglement. The duality leads to an
identification betweenmeasures ofmixedness (i.e. lack of purity) andmeasures of pure bipartite entanglement.
Under suitable conditions, the latter can be extended tomeasures ofmixed-state entanglement.

Let us elaborate on the implications of our results. Our reconstruction of the entanglement-
thermodynamics duality hints at a simple, physicallymotivated idea: the idea that nature should admit a
fundamental level of descriptionwhere all states are pure, all dynamics reversible, and allmeasurements pure.
Two of our axioms clearly express this requirement: (i) purification is equivalent to the existence of a pure and
reversible level of description for states and channels, and (ii) purity preservation ensures that such a description
remains consistent when different, possibly non-deterministic processes are connected. The remaining axiom,
local exchangeability, appeared to be slightlymoremysterious atfirst sight. Nevertheless, the duality clarified its
significance: for everyfinite system (andmore generally, for every systemwhere all states havefinite
entanglement), local exchangeability is equivalent to the existence of symmetric purifications—that is,
purificationswhere the purifying system is a twin of the purified system. In summary, all the axioms used to
derive the duality are requirements about the possibility to comeupwith an ideal description of theworld,
satisfying simple requirements of purity, reversibility, and symmetry.

A natural question is whether these axioms single out quantum theory. Strictly speaking, the answer cannot
be affirmative, because all our axioms are satisfied by also by the variant of quantum theory based on realHilbert
spaces [86, 87]. Hence, the actual question is whether real and complex quantum theory are the only two
examples of theories satisfying the axioms.While an affirmative answer is logically possible, we do not expect it
to be the case. The reason is that our axioms do not place any restriction onmeasurements: for example, our
proof of the duality does not require one to assume an operational analogue ofNaimark’s theorem, stating that
everymeasurement can be implemented as an idealmeasurement at the fundamental level. Overall, in the
general purification philosophy of ourwork, it is natural to expect that full characterization of quantum theory
will require at least one requirement about the existence of a class of idealmeasurements that generalize
projective quantummeasurements.

Naimark-type axioms formeasurements has been recently put forward by one of the authors [101, 102], for
the purpose of deriving bounds on quantumnonlocality and contextuality. A natural development of ourwork
is to investigate the consequences of these axioms on the entanglement-thermodynamics duality. From such
development, we expect a solution tomost of the outstanding questions arising from the present paper. Among
them, an important one concerns the asymptotic limit ofmany identical copies: in quantum theory, it is well
known that asymptotically there exists a uniquemeasure of pure bipartite entanglement [36, 37, 42]—namely,
the vonNeumann entropy. Underwhich conditions does this result hold in the general probabilistic scenario? In
order to address the question, themost promising route is to add an axiom about idealmeasurements, which,
combinedwith purification and purity preservation, guarantees thatmixed states can be ‘diagonalized’, that is,
decomposed as randommixtures of perfectly distinguishable pure states [103]. The consequences of this
diagonalization result for the entanglement-thermodynamics duality will be discussed in a forthcoming
paper [104].

Another open question concerns the physical interpretation of the duality. So far, the duality has been
presented as a one-to-one correspondence between two operational scenarios, one involving a single agent with
limited control and the other involving two spatially separated agents performing LOCCoperations on a pure
state. Inspired by the paradigmof the ‘fundamentally pure and reversible description’, onemay be tempted to
regard the pure-state side of the duality asmore fundamental. To push this idea further, onewould have to
consider a completely coherent version of the LOCCoperations, where Alice’s andBob’s operations are replaced
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by control-reversible channels [105]. Restricting the global dynamics of composite systems to these completely
coherent evolutions appears as a promising direction in the programme of deriving effective thermodynamic
features from the reversible dynamics of a composite system [69–75, 77].While it is early to predict all the
applications of the completely coherent paradigm, ourwork provides the basic theoretical framework and
motivation to embark in this new exploration.
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AppendixA. Proof of proposition 2

Suppose that y can bewritten as a coarse-graining as follows

. A1
i

i ( ) åy r=

Toprove that the state y is pure, nowwe show that the refinement i{ }r is trivial. Indeed, by applying 1- to
both sides of equation (A1), we obtain

.
i

i
1åy r= -

Sinceψ is pure, this implies that pi i
1 r y=- for some probability distribution p .i{ } Hence, by applying  on

both sides, we obtain p .i ir y= This concludes the proof that i{ }r is a trivial refinement of y and, therefore,
that y is pure. The converse can be proved in the sameway by applying the reversible channel 1- to .y ,

Appendix B. Proof of proposition 4

1 2.⟹ If the theory is canonical, every pure state A( )PurSty Î is comparable to every pure state
A .( )PurStj Î Suppose, for instance thatψ ismore controllable thanj. Then, by proposition 3, there exists a

reversible channel  such that ,y j= thus showing that the group of reversible transformations acts
transitively on the set of pure states.

2 3.⟹ Every state ρ can be expressed as a convex combination of the form p ,
i i iår j= where pi{ } is a

probability distribution allowed by the theory and ij are pure states. Now, suppose thatψ is a pure state. For
every i, by picking a reversible channel i( ) such that ,i

i
( ) y j= one obtains the relation p ,

i i
i( )år y=

meaning thatψ ismore controllable than ρ. Since ρ is generic, we conclude thatψ ismore controllable than every
state.

3 1.⟹ Suppose there exists a state ρ that ismore controllable than every state. Specifically, ρmust be
more controllable than every pure stateψ. By proposition 3, ρmust be pure and there exists a reversible
transformation  such that .r y= This shows thatψ ismore controllable than ρ, which, in turn ismore
controllable than any state.Henceψ ismore controllable than every state, and, specifically,more controllable
than every pure state. Sinceψ is generic, the theory is canonical. ,

AppendixC. Proof of corollary 1

Clearly, ifΨ and Y¢ are equivalent under local reversible transformations, then they are equally entangled. To
prove the converse, note that, by the duality, themarginals ofΨ and Y¢ on system A, denoted by ρ and ,r¢ are
equallymixed. Since A isfinite-dimensional, this implies r r¢ = for some reversible transformation . As a
consequence, Y¢ and B( ) Ä Y are two purifications of .r¢ By the essential uniqueness of purification, we then
have ( ) Y¢ = Ä Y for some reversible transformation . ,
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AppendixD. Puritymonotones and Schur-convex functions

In classical probability theory, states are probability distributions overfinite sets and reversible transformations
are permutationmatrices, of the form mn m n, ( )dP = p whereπ is a permutation. According to definition 5, a state

p p pn
T

1( )= ¼ is purer than another state p p pn

T

1( )¢ = ¢ ¼ ¢ if

p pq ,
i

i iå¢ = P

where qi{ } are probabilities and i{ }P are permutationmatrices. This notion is equivalent to the classical notion
ofmajorization: in short, p is purer than p¢ if and only if the vector p¢ ismajorized by the vector p.Hence, a
function P : n  is a puritymonotone iff it is a Schur-convex function.

The parallel between puritymonotones and Schur-convex functions continues with proposition 9. In
classical probability theory, a function P : n  is symmetric if x xP P( ) ( )= P for every permutationmatrix
Π. Awell-known result is that every convex symmetric function is Schur-convex [65]. Our proposition 9 is the
operational version of this statement: every convex function P : A( )St  satisfying the condition
P P( ) ( )r r= for every reversible transformation  is a puritymonotone. The proof is elementary. Suppose
that ρ is purer than ,r¢ namely p .

i i iår r¢ = Then, one has

P p P

p P

P ,

i
i i

i
i

( )( )

( )

( )

å

å

r r

r

r

¢

=

=

having used convexity in the first inequality and invariance in the first equality. In the classical case, this (trivial)
proof provides a simpler proof of thewell-known result for convex symmetric functions (see C.2 of [65]).

Appendix E. Proof of proposition 10

Let us prove the contrapositive: if a state can be erased using system C as a catalyst, then the statemust be pure.
Specifically, suppose that A( )Str Î can be erased, with the catalyst in the state C .( )Stg Î By definition, this
means that mix 0r g a gÄ Ä for some pure state .0a On the other hand, one has ,mix 0r a which implies

mix 0r g a gÄ Ä —hence r gÄ and 0a gÄ are equallymixed. Since A CÄ is a finite system, thismeans
that there exists a reversible transformation  such that

, E10( ) ( ) a g r gÄ = Ä

(see equation (9)). Now, let us choose a basis for A C ,( )St Ä such that the reversible transformations are
represented by orthogonalmatrices. Following [64], we consider the Schatten 2-norm associatedwith this basis,
defined as

v v: ,
i

D

i2
1

2
A C

å=
=

Ä

where v is a generic element of the vector space A C( )St Ä and vi i
D

1
A C( ) =
Ä are the expansion coefficients of v.With

this definition, we have the relation

p

,
i

i i

0 2 0
2

2

2

0 2

( )

å

a g a g

r g
a g

a g

Ä = Ä

= Ä
Ä

= Ä

thefirst and fourth lines following from the invariance of the two-normunder orthogonal transformations, the
second line following from equation (E1), and the third line following from the triangular inequality, having
chosen a convex decomposition of ρ as p

i i iår a= for suitable pure states .i{ }a In conclusion, wemust have
the equality

p p .
i

i i
i

i i

2

2( )å åa g a gÄ = Ä

In order for this to be possible, all the terms ia gÄ must be proportional to one another: in other words, ρmust
be pure. ,
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Appendix F. Proof of theorem3

Let us show that thefirst set of axioms (purity preservation, local exchangeability, purification, and no entropy
sinks) implies the second (purity preservation, symmetric purification, no entropy sinks). To this purpose, it is
sufficient to show that every state has a symmetric purification. This can be done as follows:

Let ρ be a state of system A, and let A B( )PurStY Î Ä be one of its purifications. By local exchangeability
there exist two channels  and  such that

Now, in a theory satisfying purification, every channel can be realized through a reversible transformation acting
on the system and on an environment, initially in a pure state and finally discarded [47]. Specifically, channel 
can be realized as

where E and E¢ are suitable systems,  is a reversible transformation, and η is a pure state. Similarly, channel 
can be realized as

ðF1Þ

Inserting the realizations of  and  in the local exchangeability condition, we obtain

Since the pure state on the lhs is the purification of a pure state, by proposition 7, itmust be of the product form

for some pure stateΓ. The above equation shows that the stateΓ can be generated by LOCCusingΨ as a catalyst.
By theNoEntropy Sinks requirement, we have thatΓmust be a product state, i.e. h jG = ¢ Ä ¢ for two pure
states h¢ and .j¢ Hence, the local exchangeability condition becomes

or, equivalently
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Discarding system E one obtains

for some suitable stateΣ. Since the lhs is a pure state,Σmust be a pure state.Now, discarding system F¢ and the
second copy of system A, and recalling equation (F1), we have

Recalling that  is a channel, and therefore Tr TrA B = (proposition 1), we conclude that

Hence, themarginal ofΣ on thefirst copy of systemA is equal to ρ. By the same reasoning, we can prove that the
marginal on the second copy of systemA is also equal to ρ. Hence,Σ is a symmetric purification of ρ. Since ρ is
arbitrary, we conclude that every state has a symmetric purification, unique up to local reversible
transformations.

Conversely, we now show that the second set of axioms implies the first. To this purpose, wemust show the
validity of local exchangeability. Clearly, symmetric purifications are locally exchangeable: indeed, ifΨ is a
symmetric purification one has

and, by the essential uniqueness of purification

for some reversible channel  . Since all purifications of ρ are equivalent toΨ under LOs and sinceΨ is locally
exchangeable, we conclude that every purification of ρ is locally exchangeable [by the same argument used in
equation (4)]. This proves local exchangeability. ,

AppendixG. Proof of proposition 11

Let A A( )PurStF Î Ä be a symmetric purification of Ar and letα (β) be afixed, but otherwise arbitrary, pure
state of A (B). By the uniqueness of purification, theremust exist a reversible transformation  such that

Discarding thefirst copy of systemA and using the fact thatΦ is a symmetric purificationwe obtain the desired
result

,
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