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Abstract

Entanglement is one of the most striking features of quantum mechanics, and yet it is not specifically
quantum. More specific to quantum mechanics is the connection between entanglement and
thermodynamics, which leads to an identification between entropies and measures of pure state
entanglement. Here we search for the roots of this connection, investigating the relation between
entanglement and thermodynamics in the framework of general probabilistic theories. We first
address the question whether an entangled state can be transformed into another by means of local
operations and classical communication. Under two operational requirements, we prove a general
version of the Lo—Popescu theorem, which lies at the foundations of the theory of pure-state
entanglement. We then consider a resource theory of purity where free operations are random
reversible transformations, modelling the scenario where an agent has limited control over the
dynamics of a closed system. Our key result is a duality between the resource theory of entanglement
and the resource theory of purity, valid for every physical theory where all processes arise from pure
states and reversible interactions at the fundamental level. As an application of the main result, we
establish a one-to-one correspondence between entropies and measures of pure bipartite entangle-
ment. The correspondence is then used to define entanglement measures in the general probabilistic
framework. Finally, we show a duality between the task of information erasure and the task of
entanglement generation, whereby the existence of entropy sinks (systems that can absorb arbitrary
amounts of information) becomes equivalent to the existence of entanglement sources (correlated
systems from which arbitrary amounts of entanglement can be extracted).

1. Introduction

The discovery of quantum entanglement [ 1, 2] introduced the revolutionary idea that a composite system can be
in a pure state while its components are mixed. In Schrédinger’s words: ‘maximal knowledge of a total system does
not necessarily imply maximal knowledge of all its parts’[2]. This new possibility, in radical contrast with the
paradigm of classical physics, is at the root of quantum non-locality [3—6] in all its counterintuitive
manifestations [7—13]. With the advent of quantum information, it quickly became clear that entanglement was
not only a source of foundational puzzles, but also a resource [14]. Harnessing this resource has been the key to
the invention of groundbreaking protocols such as quantum teleportation [15], dense coding [16], and secure
quantum key distribution [17, 18], whose implications deeply impacted physics and computer science [19, 20].

The key to understand entanglement as a resource is to consider distributed scenarios where spatially
separated parties perform local operations (LOs) in their laboratories and exchange classical communication
(CC) from one laboratory to another [21-23]. The protocols that can be implemented in this scenario, known as
LOCC protocols, provide a means to characterize entangled states and to compare their degree of entanglement.
Precisely, a state is (i) entangled if it cannot be generated by an LOCC protocol, and (ii) more entangled than
another if there exists an LOCC protocol that transforms the former into the latter.
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Comparing the degree of entanglement of two quantum states is generally a hard problem [24-30].
Nevertheless, the solution is simple for pure bipartite states, where the majorization criterion [31] provides a
necessary and sufficient condition for LOCC convertibility. The criterion identifies the degree of entanglement
of a bipartite system with the degree of mixedness of its parts: the more entangled a pure bipartite state is, the
more mixed its marginals are. Mixed states are compared here according to their spectra, with a state being more
mixed than another if the spectrum of the latter majorizes the spectrum of the former [32-35].

The majorization criterion shows that for pure bipartite states the notion of entanglement as a resource
beautifully matches Schrodinger’s notion of entanglement as non-maximal knowledge about the parts of a pure
composite system. Moreover, majorization establishes an intriguing duality between entanglement and
thermodynamics [36—40], whereby the reduction of entanglement caused by LOCC protocols becomes dual to
the increase of mixedness (and therefore entropy [41]) caused by thermodynamic transformations. This duality
has far-reaching consequences, such as the existence of a unique measure of pure state entanglement in the
asymptotic limit [36, 37, 42]. In addition, it has provided guidance for the development of entanglement theory
beyond the case of pure bipartite states [39].

The duality between entanglement and thermodynamics is a profound and fundamental fact. As such, one
might expect it to follow directly from basic principles. However, what these principle are is far from clear: up to
now, the relation between entanglement and thermodynamics has been addressed in a way that depends heavily
on the Hilbert space framework, using technical results that lack an operational interpretation (such as, e.g. the
singular value decomposition). It is then natural to search for a derivation of the entanglement-thermodynamics
duality that uses only high-level quantum features, such as the impossibility of instantaneous signalling or the
no-cloning theorem. In the same spirit, one can ask whether the duality holds for physical theories other than
quantum mechanics, adopting the broad framework of general probabilistic theories [43—52]. In the landscape of
general probabilistic theories, entanglement is a generic feature [44, 53], which provides powerful advantages for
avariety of information-theoretic tasks [54—59]. But what about its relation with thermodynamics? Is it also
generic, or rather constitutes a specific feature of quantum theory?

In this paper we explore the relation between entanglement and thermodynamics in an operational, theory-
independent way. Our work is part of alarger project that aims at establishing a common axiomatic foundation
to quantum information theory and quantum thermodynamics. Within this broad scope, we start our
investigation from the resource theory of entanglement, asking which conversions are possible under LOCC
protocols. Our first result is a generalization of the Lo—Popescu theorem [23]: we show that under suitable
assumptions every LOCC protocol acting on a pure bipartite state can be simulated by a protocol using only one
round of CC. Our assumptions are satisfied by quantum theory on both real and complex Hilbert spaces, and
also by all bipartite extreme no-signalling boxes studied in the literature [60—63].

In order to establish the connection with thermodynamics, we then move our attention to mixed states. We
consider the scenario where an agent has limited control over the dynamics of a closed system, thus causing it to
undergo a random mixture of reversible transformations and degrading it to a more disordered state. This
notion of degradation coincides with the notion of ‘adding noise’ put forward by Miiller and Masanes for the
problem of encoding spatial directions into physical systems [64], and represents a natural generalization of the
notion of majorization [65]. Provided that that every pure state can be reached from any other pure state through
some reversible dynamics, we show that the relevant resource in this scenario can be identified with the purity of
the state. This observation leads to an operational theory of purity, which in the quantum case turns out to be
equivalent to the theory of purity defined by Horodecki and Oppenheim [66].

Once the resource theories of entanglement and purity are put into place, we set out to establish a duality
between them. To this purpose, we consider physical theories that admit a fundamental level of description
where all states are pure and all interactions are reversible. Such theories are identified by the purification
principle [47], which expresses a strengthened version of the conservation of information [67, 68]. The
possibility of a pure and reversilble description is particularly appealing for the foundations of thermodynamics,
as it reconciles the mixedness of thermodynamic ensembles with the pure and reversible picture provided by
fundamental physics. In the quantum case, purification is the starting point for all recent proposals to derive
thermodynamic ensembles from the typicality of pure entangled states [69—75], an idea that has been recently
explored also in the broader framework of general probabilistic theories [76, 77]. Building on the purification
principle, we establish the desired duality between entanglement and thermodynamics, showing that the degree
of entanglement of a pure bipartite system coincides with the degree of mixedness of its parts. As a consequence,
every measure of single-system mixedness becomes equivalent to a measure of pure bipartite entanglement.
Exploiting this result, we define a class of measures of entanglement, which can be extended to from pure to
mixed state via the the convex roof construction [22, 78, 79], exactly in the same way as in the quantum case.

Finally, we apply the duality to the task of information erasure [80], namely the task of converting a mixed
state into a fixed pure state via a set of allowed operations (in our case, the set of random reversible (RaRe)
operations). As a result, erasing information becomes equivalent to generating entanglement. Quite
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surprisingly, we find out that the impossibility of erasing information with the assistance of a catalyst implies the
existence of a special type of purification, where the purifying system is a twin of the purified system. This
observation completes the physical picture of the entanglement-thermodynamics duality, which appears tobe a
consequence of the possibility to describe every physical process in terms of pure states, reversible interactions,
and pure measurements—in particular, modelling physical systems in mixed states through the introduction of
amirror image that completes the description.

The paper is organized as follows. In section 2 we introduce the framework. The resource theory of
entanglement is discussed in section 3. In section 4 we prove an operational version of Lo—Popescu theorem,
which provides the starting point for the entanglement-thermodynamics duality. In section 5 we formulate an
operational resource theory of dynamical control, which gives rise to a resource theory of purity under the
condition that all pure state are equivalent under the allowed reversible dynamics. In section 6 we prove the
duality between entanglement and thermodynamics, focussing our attention to theories that admit a
fundamental level where all processes are pure and reversible. The consequences of the duality are examined in
section 7: specifically, we discuss the equivalence between measures of mixedness and measures of entanglement
for pure bipartite states, and we establish the relation between information erasure and entanglement
generation. In section 8 we show that the requirement that information cannot be erased for free leads to the
requirement of symmetric purification. Finally, section 9 draws the conclusions and highlights the implications
of our results.

2. Framework

In this paper we adopt the framework of operational-probabilistic theories (OPTs) [47, 48, 52], which combines
the toolbox of probability theory with the graphical language of symmetric monoidal categories [81-84]. Here
we give a quick recap, referring the reader to [47, 48, 52] and to Hardy’s works [50, 51] for a more extended
presentation.

The OPT framework describes circuits that can be built up by combining physical processes in sequence and
in parallel, as in the following example

Afar T P D

BB ()

Here, A, A, A", B, B label physical systems, pis a bipartite state, .4, A’ and B are transformations, a and b are
effects. The two transformations A and .4’ are composed in sequence, while the transformations A and B and
the effects a and b are composed in parallel. The circuit has no external wires—circuits of this form are associated
with probabilities. Two transformations that give the same probabilities in all circuits are identified. The short-
hand notation (a|p) is used to indicate the probability that the effect a takes place on the state p,
diagrammatically represented as

(alp) = (PIA{D.

The set of all possible physical systems, denoted by Sys, is closed under composition: given two systems A
and B one can form the composite system A ® B. We denote the trivial system as I, which represents ‘nothing’
(or, more precisely, nothing that the theory cares to describe). The trivial system satisfies the obvious conditions
A®I=1® A = A,V AcSys. For generic systems A and B, we denote as

+ St(A) the set of states of system A.
+ Transf(A,B) the set of transformations from system A to system B.

+ Eff(A) the set of effects on system A.

The sets of states, transformations, and effects span vector spaces over the real numbers, denoted by Stg(A),
Transfr (A, B), and Effg (A), respectively. We denote by D, the dimension of the vector space Stg(A) and say
that system A is finite iff Dy < +4o00. Transformations and effects act linearly on the vector space of states. For
every system A, we assume the existence of an identity transformation 7, which does nothing on the states of
the system.

A testis a collection of transformations that can occur as alternatives in an experiment. Specifically, a test of
type A to Bisa collection of transformations {C; };ex with input A and output B. A transformation is called
deterministic if it belongs to a test with a single outcome. We will often refer to deterministic transformations as
channels, following the standard terminology of quantum information. A channel ¢/ from A to B is called
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reversible if there exists a channel /! from B to A such that U~ U = T, and UA/~' = Zg. We denote by
RevTransf (A, B) the set of reversible transformations from A to B. If there exists a reversible channel
transforming A into B we say that A and B are operationally equivalent, denoted by A ~ B.

The composition of systems is required to be symmetric [81-84], meaningthat A ® B ~ B ® A.The
reversible channel that implements the equivalence is the swap channel, SWAP, and satisfies the condition

B [5] B B A [ 1A B’
1B LA -

= SWAP | swap | ()
A ./4 A A B B B A
LA 1B —

for every pair of transformations A and B and for generic systems A, A’, B, B/, as well as the conditions

A B A

B | SWAP | , | SWAP =

the wires in the rhs representing identity transformations, and

A B A

SWAP
B {qyap & = B A c_ .
o N . SWAP |

In this paper we restrict our attention to causal theories [47], namely theories where the choice of future
measurement settings does not influence the outcome probability of present experiments. Mathematically,
causality is equivalent to the fact that for every system A there is only one deterministic effect, which we denote
here by Try, in analogy with the trace in quantum mechanics. The uniqueness of the deterministic effect
provides a canonical way to define marginal states:

Definition 1. The marginal state of a bipartite state p, , on system A is the state p, := Trpp, 5 obtained by applying
the deterministic effect on B.

Moreover, one can define the norm of a state p as
llpll = Tr p.

The set of normalized states of A will be denoted by
Sti(A) = {p € StA)|llpll = 1}.

In a causal theory, every state is proportional to a normalized state [47]. In quantum mechanics, St;(A) is the set
of normalized density matrices of system A, while St(A) is the set of all sub-normalized density matrices. Ina
causal theory channels admit a simple characterization, which will be useful later in the paper:

Proposition 1. Let C € Transf(A, B). C isa channelifand only if TigC = Try.
The proof can be found in lemma 5 of [47].

2.1. Pure states and transformations

In every probabilistic theory one can define pure states, and, more generally, pure transformations. Both
concepts are based on the notion of coarse-graining, i.e. the operation of joining two or more outcomes of a test.
More precisely, a test {C;};ex is a coarse-graining of the test {D] }jeY if there is a partition {Y; };cx of Y such that

C; = ZjeY,- D;forevery i € X.In this case, we say that {D] }jeY is arefinement of {C;};ex. The refinement of a
given transformation is defined via the refinement of a test: if { D; }jeY is arefinement of {C;};ex, then the

transformations {D] } iy area refinement of the transformation C;.

A transformation is called pure if it has only trivial refinements:

Definition 2. The transformation C € Transf(A, B) is pureif for every refinement {D]} onehas D; = ij,
where { p; } is a probability distribution.

Pure transformations are those for which the experimenter has maximal information about the evolution of
the system. We assume as part of the framework that tests satisfy a pure decomposition property:

4



10P Publishing

NewJ. Phys. 17 (2015) 103027 G Chiribella and C M Scandolo

Definition 3. A test satisfies the pure decomposition property if it admits a refinement consisting only of pure
transformations.

Later in the paper, we will assume one axiom—purification—that implies the validity of the pure
decomposition property for every possible test [47].

The set of pure transformations from A to B will be denoted as PurTransf(A, B). In the special case of states
(transformations with no input), the above definition coincides with the usual definition of pure state. We
denote the set of pure states of system A as PurSt(A). As usual, non-pure states will be called mixed.

Pure states will play a key role in this paper. An elementary property of pure states is that they are preserved
by reversible transformations.

Proposition 2. Let U € Transf(A, B) bea reversible channel. Then a state 1) € St(A) is pure if and only if the state
Uy € St(B)ispure.

The proofis standard and is reported in appendix A for convenience of the reader.

3. The resource theory of entanglement

The resource theory of quantum entanglement [ 14] is based on the notion of LOCC protocols, that is, protocols
in which distant parties are allowed to communicate classically to one another and to perform LOs in their
laboratories [21, 22]. Being operational, the notion of LOCC protocol can be directly exported to arbitrary
theories.

In this paper we consider protocols involving only two parties, Alice and Bob. A generic LOCC protocol
consists of a sequence of tests, performed by Alice and Bob, with the property that the choice of the test ata given
step can depend on all the outcomes produced at the previous steps. For example, consider a two-way protocol
where

(1) Alice performs a test { A, } and communicates the outcome to Bob.
(2) Bob performs a test {B g‘) } and communicates the outcome to Alice.

(3) Alice performs a test {Ag]’b) } .

An instance of the protocol is identified by the sequence of outcomes (i}, i, i3) and can be represented by a
circuit of the form

Ao A Ay A(il,iz) As
i3

i1

~

Tain [ ’
Bo i1 B1
B;,

where the dashed arrows represent CC. By coarse-graining over all possible outcomes, one obtains a channel,
given by

i i

L=y [A(i"iz)Ail ® B(i‘)].

in,i2,3

Entangled states are those states that cannot be generated using an LOCC protocol. Equivalently, they can be
characterized as the states that are not separable, i.e. not of the form

p=Yp ad @ 3o,

where {p, } is a probability distribution allowed by the theory, &'” is a state of A, and 3 is a state of B.
Like in quantum theory, LOCC protocols can be used to compare entangled states.

Definition 4. Given two states p € St(A ® B)and p’ € St(A’ ® B’), we say that pis more entangled than p’,
denoted by p =en; o/, if there exists an LOCC protocol that transforms pinto p/, i.e.if p’ = Lp for some LOCC
channel L.

Mathematically, the relation *=, is a preorder, i.e. it is reflexive and transitive. Moreover, it is stable under
tensor products, namely p ® 0 e p’ @ o’ whenever p ey p' and o =en 0. In other words, the relation
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ent turns the set of all bipartite states into a preordered monoid, the typical mathematical structure arising in all
resource theories [85]. The resource theory of entanglement here fits completely into the framework of [85],
with the LOCC channels as free operations. The states which can be prepared by LOCC (i.e. the separable states)
are free by definition, and all the other states represent resources. If p =en p’ and p’ =en p, then we say that p
and p’ are equally entangled, denoted by p ~., p’.Notethat p ., p’ does not imply that pand p’ are equal:
for example, every two separable states are equally (un)entangled.

4. An operational Lo—Popescu theorem

Given two bipartite states, it is natural to ask whether one is more entangled than the other. A priori, answering
the question requires one to check all possible LOCC protocols. However, the situation is much simpler when
the initial state is pure: here we prove that in this case every LOCC protocol can be replaced without loss of
generality by a protocol involving only one round of CC—i.e. a one-way LOCC protocol. Our argument is based
on two basic operational requirements and provides a generalized version of the Lo—Popescu theorem [23], the
key result at the foundation of the quantum theory of pure-state entanglement.

4.1. Two operational requirements
Our derivation of the operational Lo—Popescu theorem is based on two requirements, the first being

Axiom 1 (Purity preservation [45, 48, 68]). The composition of two pure transformations yields a pure
transformation, namely

A

pure,

s |B| g pure = C pure,
B By

L

for every choice of systems A, A’, B, B/, C.

As a special case, purity preservation implies that the product of two pure states is a pure state. This
conclusion could also be obtained from the local tomography axiom [43—45, 47]. Nevertheless,
counterexamples exist of theories that satisfy purity preservation and violate local tomography. An example is
quantum theory on real vector spaces [86—88]. In general, we regard purity preservation as more fundamental
than local tomography. Considering the theory as an algorithm to make deductions about physical processes,
purity preservation ensures that, when presented with maximal information about two processes, the algorithm
outputs maximal information about their composition [68].

Our second requirement imposes a symmetry of pure bipartite states:

Axiom 2 (Local exchangeability). For every pure bipartite state U € PurSt(A ® B), there exist two channels
C € Transf(A, B)and D € Transf(B, A) such that

A B
v L Y SWAP . 2

B A
where SWAP is the swap operation (see equation (1)).

Note that, in general, the two channels depend on the specific pure state \U.

Local exchangeability is trivially satisfied by classical probability theory, where all pure states are of the
product form. Less trivially, it is satisfied by quantum theory, both on complex and on real Hilbert spaces. This
factis illustrated in the following

Example 1. Suppose that A and B are quantum systems, and let H, and Hjg be the corresponding Hilbert spaces.
By the Schmidt decomposition, every pure state in the tensor product Hilbert space can be written as

|\D>=§JE

ai> & |ﬁi>,

where {|a;) }._| C Haand {|3;)}!_, C Hpare orthonormal vectors. The Schmidt decomposition implies the
relation
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SWAP |U) = (C ® D)|T),

where Cand D are the partial isometries C:= Z | Bi){;land D:= Z |a, (B;]. From the partial isometries
Cand D itis immediate to construct the desired channels Cand D, Wthh can be defined as

C(p) = CpCT + I, — C'CpyI, — C'C
D(c):= DoD' + Iy — D'D o \/Iy — D'D,

where p and o are generic input states of systems A and B, respectively. With this definition, one has
(C @ D)(|T)(¥|) = SWAP |¥)(¥| SWAP,

which is the Hilbert space version of the local exchangeability condition of equation (2).

Local exchangeability is also satisfied by all the extreme bipartite non-local correlations characterized in the
literature [60-63]:

Example 2. Consider a scenario where two space-like separated parties, Alice and Bob, perform measurements
on a pair of systems, A and B, respectively. Let x (y) be the index labelling Alice’s (Bob’s) measurement setting
andlet a (b) the index labelling the outcome of the measurement done by Alice (Bob). In the theory known as
box world [44, 89] all no-signalling probability distributions p,, . are physically realizable and represent states
of the composite system A ® B. Such probability distributions form a convex polytope [62], whose extreme
points are the pure states of the theory.

For x, y, a, b € {0, 1} the systems A and B are operationally equivalent. We will denote by Z the reversible
transformation that converts A into B. The extreme non-local correlations have been characterized in [60] and
are known to be equal to the standard PR-box correlation [61]

1
— a4+ b=xymod?2
pab|xy = 2 )/ (3)

0 otherwise

up to exchange of 0 with 1 in the local settings of Alice and Bob and in the outcomes of their measurements. In
the circuit picture, these operations are described by local reversible transformations: denoting by ® the standard
PR-box state, one has that every other pure entangled state U € PurSt(A ® B) is of the form

LA AA

where U and V are reversible transformations.
To see that local exchangeability holds, note that swapping systems A and B is equivalent to exchanging x
with y and a with b. Now, the standard PR-box correlation of equation (3) is invariant under exchange x < y,

a < b, meaning that one has
A B A B
@ g | SWAP | = d B 7714

Then it is clear that every pure state of A @ B can be swapped by LOs: indeed, one has

§ A ’ = | ) @ ) SWAP ’

U |, |SWAP| , = B )8 N
[

A B )] B
—E SWAP
AA

4)

where C:=VZ U and D := U T VL. This proves the local exchangeability property for all pure bipartite
states in the two-setting/two-outcome scenario.
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The situation is analogous in the case of two settings and arbitrary number of outcomes. Let us denote the
setting by x, y € {0, 1} and assume that a can take d, values, whereas b can take dg values. Then, all extreme
non-local correlations are characterized in [62]. Up to local reversible transformations, they are labelled by a
parameter k € {2, ..., min {da, dg} } and theyare such that

b—a=xymodk

1
Pty =1 k (5)
0

otherwise.

Thanks to the local equivalence, it is enough to prove the validity of local exchangeability for correlations in the
standard form of equation (5). We distinguish between the two cases xy = 0 and xy = 1. For xy = 0, swappingx
withyand a with bhas no effecton p,;, . For xy = 1, by swapping x with y and a with b, one obtains the
probability distribution

—

a—b=1modk

)=
pabm, =14k
0 otherwise.

This probability distribution can be obtained from the original one by relabelling the outputs as a’ :== k — a and
b’ := k — b. Such arelabelling corresponds to local reversible operations on A and B. In other words, local
exchangeability holds.

Finally, the last category of extreme non-local correlations characterized in the literature corresponds to the
case of arbitrary number of settings and to two-outcome measurements. In this case, the extreme correlations
are characterized explicitly in [63]. Up to local reversible transformations, the pure states are invariant under
swap. Hence, the same argument used in equation (4) shows that local exchangeability holds.

4.2. Inverting the direction of CC

Purity preservation and local exchangeability have an important consequence. For one-way protocols acting on
apure input state, the direction of CCis irrelevant: every one-way LOCC protocol with communication from
Alice to Bob can be replaced by a one-way LOCC protocol with communication from Bob to Alice, as shown by
the following.

Lemma 1 (Inverting CC). Let U be a pure state of A @ B and let p’ be a (possibly mixed) state of A’ @ B'. Under
the validity of axioms 1 and 2, the following are equivalent:

(1) U can be transformed into p’ by a one-way LOCC protocol with communication from Alice to Bob,

(2) VU can be transformed into p' by a one-way LOCC protocol with communication from Bob to Alice.

Proof. Suppose that ¥ can be transformed into p’ by a one-way LOCC protocol with communication from Alice
to Bob, namely

A A A A’

( o — Z " AN - (6)
Bl !

ieX = B -2

where { A;}icx is a test, and, for every outcome i € X, B isa channel. Note that one can assume without loss of
generality that all transformations { A, };cx are pure: if the transformations are not pure, we can refine them by
the pure decomposition property (see definition 2) and apply the argument to the refined test consisting of pure
transformations.

Foreveryfixed i € X, one has

A A, A’ A B LA
QraaNtG

SWAP SWAP (7
B A A A/ B
[

By local exchangeability, the first swap can be realized by two local channels C: A — Band D: B — A.
Moreover, since A; is pure, purity preservation implies that the (unnormalized) state (A; ® Zg) W is pure.
Hence, also the second swap in equation (7) can be realized by two local channels C : A’ — Band

D®: B — A’.Substituting into equation (7) one obtains

8
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E_EA@B D) LA
A A i
R S EI PN I

and, therefore
: B [ B A{ A A0 |2 { g0 |-

®)

A Av(l) A’

having defined A7 = picand BY = O ¢t A; D. By construction {B:}icx is a test, because it can be
realized by performing the test {.A;};cx after the channel D and subsequently applying the channel B C®,
depending on the outcome (the ability to perform conditional operations is guaranteed by causality [47]). On the

other hand, 74(1) isa channel for every i € X. Hence, we have constructed a one-way LOCC protocol with
communication from Bob to Alice. Combining equations (6) and (8) we obtain

A A [ ] A A
I I ol " T
P | B” = B B0 B’ = B @ B’
meaning that ¥ can be transformed into p’ by a one-way LOCC protocol with communication from Bob to
Alice. Clearly, the same argument can be applied to prove the converse direction. O

Note that the target state p’ need not be pure: the fact that the direction of CC can be exchanged relies only
on the purity of the input state W.

4.3. Reduction to one-way protocols
We are now ready to derive the operational version of the Lo—Popescu theorem. Our result shows that the action
of an arbitrary LOCC protocol on a pure state can be simulated by a one-way LOCC protocol:

Theorem 1 (Operational Lo—Popescu theorem). Let U bea pure state of A @ B and p’ be a (possibly mixed) state
of A’ ® B'. Under the validity of axioms | and 2, the following are equivalent

(1) U can be transformed into p' by an LOCC protocol,

(2) U can be transformed into p' by a one-way LOCC protocol.

Proof. The non-trivial implication is 1 = 2. Suppose that ¥ can be transformed into p’ by an LOCC protocol
with Nrounds of CC. Without loss of generality, we assume that Alice starts the protocol and that all
transformations occurring in the first N — 1rounds are pure.

Lets = (i}, 13 ,..., iy_1) be the sequence of all classical outcomes obtained by Alice and Bobup tostep N — 1,
psbe the probability of the sequence s, and I, be the pure state after step N — 1 conditional on the occurrence of
s. For concreteness, suppose that the outcome 7y ; has been generated on Alice’s side. Then, the rest of the
protocol consists in a test {B ffv) } , performed on Bob’s side, followed by a channel A performed on Alice’s
side. By hypothesis, one has

. S
Lt : .
l s IN By-1

(s) B
B;

Now, using lemma 1 one can invert the direction of the CC in the last round, obtaining

R An_1 ﬂffv) A’
(] -XnX|w -,
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for a suitable test { :Zfi) } and suitable channels B, Now, since both the (N — 1) th and the Nth tests are
performed by Alice, they can be merged into a single test, thus reducing the original LOCC protocol to an LOCC
protocol with N — 1rounds. Iterating this argument for N — 1 times one finally obtains a one-way

protocol. =

In quantum theory, the Lo—Popescu theorem provides the foundation for the resource theory of pure-state
entanglement. Having the operational version of this result will be crucial for our study of the relation between
entanglement and thermodynamics. Before entering into that, however, we need to put into place a suitable
resource theory of purity, which will provide the basis for our thermodynamic considerations.

5. The resource theory of purity

5.1. A resource theory of dynamical control

Consider the scenario where a closed system A undergoes a reversible dynamics governed by some parameters
under the experimenter’s control. For example, system A could be a charged particle moving in an electric field,
whose intensity and direction can be tuned in order to obtain a desired trajectory. In general, the experimenter
may not have full control and the actual values of the parameters may fluctuate randomly. As a result, the
evolution of the system will be described by a RaRe channel, thatisa channel R of the form

A.A :Zpi A-A7

iex
where {{®) | i € X} isasetofreversible transformations and {p, };x is their probability distribution. Assuming
that the system remains closed during the whole evolution, RaRe channels are the most general transformations
the experimenter can implement.

An important question in all problems of control is whether a given input state can be driven to a target state
using the allowed dynamics. With respect to this task, an input state is more valuable than another if the set of
target states that can be reached from the former contains the set of target states that can be reached from the
latter. In our model, this idea leads to the following definition.

Definition 5 (More controllable states). Given two states p and p’ of system A, we say that p is more controllable
than p’, denoted by p = p’, if p’ can be obtained from p via a RaRe channel.

This definition appeared independently in an earlier work by Miiller and Masanes [64], where the authors
explored the use of two-level systems as indicators of spatial directions (see definition 8 in the appendix). In this
paper we propose to consider it as the starting point for an axiomatic theory of thermodynamics.

Definition 5 fits into the general framework of resource theories [85], with RaRe channels playing the role of
free operations. Note that at this level of generality there are no free states: since the experimenter can only
control the evolution, every state is regarded as a resource. Physically, this is in agreement with the fact that the
input state in a control problem is not chosen by the experimenter—for example, it can be a thermal state or the
ground state of an unperturbed Hamiltonian.

As itis always the case in resource theories, the relation *= is reflexive and transitive, i.e. it is a preorder.
Moreover, since the tensor product of two RaRe channels is a RaRe channel, the relation *= is stable under tensor
products, namely p ® o = p’ ® o’ whenever p = p’ and o 3= o’. For finite systems (i.e. systems with finite-
dimensional state space), Miiller and Masanes [64] showed the additional property

pro, oxEp = p=Uo, ©)]

for some reversible transformation U. In other words, two states that are equally controllable can only differ by a
reversible transformation.

5.2. From dynamical control to purity
There is a close relation between the controllability of a state and its purity. For example, a state that is more
controllable than a pure state must also be pure.

Proposition 3. If ) € St(A) isa purestateand p € St(A) is more controllable than 1, then p must be pure.
Specifically, p = Uy for some reversible channel U.

Proof. Since 1) is pure, the condition ) °. p, U p = 1 implies that U p = ¢/ for every i, meaning that
p = VD9, where V@ is the inverse of 2/, Proposition 2 then guarantees that p is pure. O

10
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In other words, pure states can be reached only from pure states. A natural question is whether every state
can be reached from some pure state. The answer is positive in quantum theory and in a large class of theories.
Nevertheless, counterexamples exist that prevent an easy identification of the resource theory of dynamical
control with a ‘resource theory of purity’. This fact is illustrated in the following

Example 3. Consider a system with the state space depicted in figure 1(a). In this case, there are only two
reversible transformations, namely the identity and the reflection around the vertical symmetry axis. As a
consequence, there is no way to obtain the mixed states on the two vertical sides by applying a RaRe channel to a
pure state. These states represent a valuable resource, even though they are not pure. Since some mixed states are
aresource, the resource theory of dynamical control cannot be viewed as a resource theory of purity.

As asecond example, consider instead a system whose state space is a half-disk, like in figure 1(b). Also in this
case there are only two reversible transformations (the identity and the reflection around the vertical axis).
However, now every mixed state can be generated from some pure state via a RaRe channel. The state space can
be foliated into horizontal segments generated by pure states under the action of RaRe channels. As a result, the
pure states are the most useful resources and one can interpret the relation = as a way to compare the degree of
purity of different states. Nevertheless, pure states on different segments are inequivalent resources. In this case
there are different, inequivalent classes of pure states: purity is not the only relevant resource into play.

Finally, consider a system with a square state space, like in figure 1(c) and suppose that all the symmetry
transformations in the dihedral group D, are allowed reversible transformations. In this case, all the pure states
are equivalent under reversible transformations and every mixed state can be obtained by applying a RaRe
channel to a fixed pure state. Here, the resource theory of dynamical control becomes a full-fledged resource
theory of purity.

The above examples show that not every operational theory supports a sensible resource theory of purity.
Motivated by the examples, we put forward the following definition:

Definition 6. A theory of purity is a resource theory of dynamical control where every state p can be compared
with atleast one pure state. The theory is called canonical if every pure state is comparable to any other pure state.

In this paper we will focus on canonical theories of purity.
Proposition 4. The following are equivalent:

(1) The theory is a canonical theory of purity.
(2) For every system A, the group of reversible channels acts transitively on the set of pure states.

(3) For every system A, there exists at least one state that is more controllable than every state.

The proofis provided in appendix B.

Combining all the statements of proposition 4, one can see that in a canonical theory of purity every pure
state is more controllable than any other state.

Starting from Hardy’s work [43], the transitivity of the action of reversible channels on pure states has
featured in a number of axiomatizations of quantum theory, either directly as an axiom [90-92] or indirectly as a
consequence of an axiom, as in the case of the purification axiom [48]. Proposition 4 provides a new motivation
for this axiom, now identified as a necessary and sufficient condition for a well-behaved theory of purity.

In a canonical theory of purity, we say that pis purer than p’if p = p’ and we adopt the notation p =, p'.
In this case, we also say that p’ is more mixed than p, denoted by p/>=ix p. When p =pix p'and p =nix pwe
say that pand p’ are equally mixed, denoted by p ~,;x p’. Clearly, every two states that differ by a reversible
channel are equally mixed. The converse is true for finite dimensional systems, thanks to equation (9).

5.3. Maximally mixed states
We say that astate x € St(A) is maximally mixed if it satisfies the property

VpeESHA): prmxX = p=X.
Maximally mixed states can be characterized as the states that are invariant under all reversible channels:

Proposition 5. A state x € St(A) is maximally mixed if and only if it is invariant, i.e. ifand only if x = Uy for
every reversible channel U : A — A.

11
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A 8

(a) Example of state space leading to a theory of
dynamical control that cannot be interpreted as a theory
of purity. Due to the shape of the state space, the
reversible transformations can only be the identity and
the reflection around the vertical axis. The states on the
vertical sides are maximally controllable (and therefore,
maximally resourceful) even though they are not pure.

(b) Example of state space leading to a non-canonical
theory of purity. In this case, maximal purity is
equivalent to maximal resourcefulness: only the pure
states are maximally controllable. However, some pure
states are inequivalent resources, meaning that purity is
not the only resource into play.

(¢) Example of state space compatible with a canonical theory
of purity. Here the set of maximally controllable states coincides
with the set of pure states, and, in addition, all pure states are
equivalent resources.

Figure 1. Three different examples of theories of dynamical control.

We omit the proof, which is straightforward. Note that maximally mixed states do not exist in every theory:
for example, infinite-dimensional quantum systems have no maximally mixed density operator, i.e. no trace-
class operator that is invariant under the action of the full unitary group. For finite-dimensional canonical
theories, however, the maximally mixed state exists and is unique under the standard assumption of

12
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A 8
s .

Figure 2. Mixedness relation for the state space of a square bit: the vertices of the octagon represent the states that can be reached from
agiven state p via reversible transformations. Their convex hull is the set of states that are more mixed than p. Note that it contains the
invariant state X, which can be characterized as the maximally mixed state.

compactness of the state space [47, 91]. In this case, the state ) is not only a maximal element, but also the
maximum of the relation =, , namely

X Fmix 0V p € St(A). (10)

This is in analogy with the quantum case, where the maximally mixed state is given by the density matrix
x = 1/d, whereLis the identity operator on the system’s Hilbert space and d is the Hilbert space dimension.
Another example of finite-dimensional canonical theory is provided by the square bit:

Example 4. Consider a system whose state space is a square, as in figure 1(c) and pick a generic (mixed) state p.
The states that are more mixed than p are obtained by applying all possible reversible transformations to p (i.e. all
the elements of the dihedral group D,) and taking the convex hull of the orbit. The set of all states that are more
mixed than pis an octagon, depicted in blue in figure 2. All the vertexes of the octagon are equally mixed. The
centre of the square is the maximally state x, the unique invariant state of the system.

6. Entanglement-thermodynamics duality

In quantum theory, it is well known that the ordering of pure bipartite states according to the degree of
entanglement is equivalent to the ordering of their marginals according to the degree of mixedness [31-34, 93].
In this section we will prove the validity of this equivalence based only on first principles.

6.1. Purification

In order to establish the desired duality, we consider theories that satisfy the purification principle [47, 48]. Let us
briefly summarize its content. We say thata state p € St(A) has a purification if there exists a system B and a pure
state U € PurSt(A ® B) (the purification) such that

Chm ™
LG
ity

We say that the purification is essentially unique if every other purification ¥ with the same purifying system B
satisfies the condition

A LA
i 11
CW’B‘EBB’ ()

for some reversible transformation &/ : B — B. With these definitions, the purification principle can be
phrased as

Axiom 3 (Purification [47, 48]). Every state has a purification. Every purification is essentially unique.

Purification has a number of important consequences. First of all, it implies that the group of reversible
transformations acts transitively on the set of pure states:

Proposition 6 (Transitivity). For every system B and every pair of pure states 1, 1" € PurSt(B) there existsa
reversible channel U : B — B such that |’ = Ur.

13
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The existence of a reversible transformation connecting ¢ and 7/’ is a consequence of the essential
uniqueness of purification [equation (11)], in the special case A = I[47]. Since all pure states are equivalent
under reversible transformations, every theory with purification gives rise to a canonical theory of purity, in the
sense of definition 6. One could take this fact as a further indication that purification is a good starting point for a
well-behaved thermodynamics.

Another important consequence of purification is the existence of entanglement:

Proposition 7 (Existence of entangled states). For every pair of systems A and B, a purestateof A @ Bis
entangled if and only if its marginal on system A is mixed.

Proof. Let us denote the pure bipartite state by V. If U is not entangled, then it must be a product of two pure
states,say U = a ® (3. Clearly, this implies that the marginal on system A is pure.

Conversely, suppose that the marginal of U on system A is pure and denote it by a. Then, for every pure state
B € PurSt(B), the product state W/ = a ® (' is pure, thanks to purity preservation. Now, ¥ and ¥’ are two
purifications of «v. By the essential uniqueness of purification, one must have ¥ = (Z, ® Ug) V' for some
reversible transformation Uy acting on system B. Hence, wehave ¥ = o ® (3, with § = Up[’. O

Finally, purification implies the steering property [2, 94], stating that every ensemble decomposition of a
given state can be generated by a measurement on the purifying system:

Proposition 8 (Steering). Let p be a state of system A and let U € PurSt(A ® B) be a purification of p. For every
ensemble of states { p; }icx such that zi p; = p, there exists a measurement { b; Yicx on the purifying system B such
that the following relation holds

:EB vieX.

See theorem 6 of [47] for the proof. The steering property will turn out to be essential in establishing the duality
between entanglement and thermodynamics.

6.2. One-way protocols transforming pure states into pure states

The operational Lo-Popescu theorem guarantees that every LOCC protocol acting on a pure bipartite input
state can be simulated by a one-way protocol. Purification buys us an extra bonus: not only is the protocol one-
way, but also all the conditional operations are reversible.

Lemma 2. Let U and V' be pure states of A ® B. Under the validity of purification and purity preservation, every
one-way protocol transforming U into W' can be simulated by a one-way protocol where all conditional operations
are reversible.

Proof. Suppose that ¥ can be transformed into U’ via a one-way protocol where Alice performs a test {4, }iex
and Bob performs a channel B conditional on the outcome i. By definition, we have

A 1A
5 (w A (o
: B (0 -2 -
i B

Since W' is pure, this implies that there exists a probability distribution {p; } such that

A Az A A
v e — o (@ (12)
B B(l) B B

[Eh|

for every outcome i. Now, without loss of generality each transformation .4; can be assumed to be pure (if not,
one can always decompose it into pure transformations, thanks to the pure decomposition property). Then,
purity preservation guarantees that the normalized state ¥; defined by

i A
1 ! 1
U, B P @ 5 (13)
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is pure. With this definition, equation (12) becomes

LA A
v, = (v, -
B - B | B

Tracing out system B on both sides one obtains

A A

A
v = | = | :

the second equality coming from the normalization of the channel B (see proposition 1). Hence, the pure
states W and W’ have the same marginal on A. By the essential uniqueness of purification, they must differ by a
reversible channel Z/® on the purifying system B, namely

(14)

A A
\Ifi = \If/
B - B ( | B

In conclusion, we obtained
A 1A
v A ~
B B (i) B

A
(e
BB

AWA

_ [y A
CB U 2
1288

where we have used equations (12)—(14). In other words, the initial protocol can be simulated by a protocol
where Alice performs the test {.4;} and Bob performs the reversible transformation 2/ conditionally on the
outcome i. O

The reduction to one-way protocols with reversible operations is the key to connect the resource theory of
entanglement with the resource theory of purity. The duality between these two resource theories will be
established in the next subsections.

6.3. The more entangled a pure state, the more mixed its marginals
We start by proving one direction of the entanglement-thermodynamics duality: if a state is more entangled than
another, then the marginals of the former are more mixed than the marginals of the latter:

Lemma 3. Let ¥ and V' be two pure states of system A ® B andlet p, p’ and o, o’ be their marginals on system A
and B, respectively. Under the validity of purification, purity preservation, and local exchangeability, if U is more
entangled than W', then p (o) is more mixed than p' (o).

Proof. By the operational Lo—Popescu theorem, we know that there exists a one-way protocol transforming ¥
into W’. Moreover, thanks to purification, the conditional operations in the protocol can be chosen to be
reversible (lemma 2). Let us choose a protocol with CC from Alice to Bob, in which Alice performs the test
{A;}iex and Bob performs the reversible transformation /¥ conditional on the outcome i. Since W’ is pure, we

must have
A 1A
v AL o (v T viex
B W B _pl \I/ B 3
U]

where {p.} is a suitable probability distribution. Denoting by V the inverse of &/ and applying it on both sides
of the equation, we obtain
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A g ]a I S —
v - =p |V
S (v

Summing over all outcomes the equality becomes

A A A I
(L2
B B B

= | ¥ ; (15)

with A = ). Ajand R:= ) p; V. Finally, we obtain

k. EA

CAA
= | v

N
7\IJBB

where we used the normalization of channel A in the second equality and equation (15) in the third. Since R isa
RaRe channel by construction, we have proved that o is more mixed than ¢”’. The fact that p is more mixed than
p' can be proved by the same argument, starting from a one-way protocol with CC from Bob to Alice and with
reversible operations on Alice’s side. O

The relation between degree of entanglement of a pure state and degree of mixedness of its marginals holds
not only for bipartite states, but also for multipartite states. Indeed, suppose that U and U’ are two pure states of
system A} ® Ay ® --- ® Ay and that W is more entangled than W, in the sense that there exists a (multipartite)
LOCC protocol converting ¥ into . For every subset S C {1,..., N} onecandefine A:=®,,5 A,and
B:=®,cs A,andapplylemma 3. Asaresult, one obtains that the marginals of U are more mixed than the
marginals of U’ on every subsystem.

6.4. The more mixed a state, the more entangled its purification

We now prove the converse direction of the entanglement-thermodynamics duality: if a state is more mixed
than another, then its purification is more entangled. Remarkably, the proof of this fact requires only the validity
of purification.

Lemma 4. Let p and p’ be two states of system A and let U (¥") be a purification of p (p'), with purifying system B.
Under the validity of purification, if p is more mixed than p', then U is more entangled than V',

Proof. By hypothesis, one has

for some RaRe channel R := Zi p; UD. Let us define the bipartite state © as

LA A [p]lA W
-

B B

By construction, © is an extension of p: indeed, one has

A AA
C) = | v
5 [T :
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Let us take a purification of ©,say I' € PurSt(A ® B ® C). Clearly, I is a purification of p, since one has

rem - (o], - @

Then, the essential uniqueness of purification implies that I" must be of the form

A LA
v
r,B=CB—B, (7
c c U] ¢
— QO

for some reversible transformation ¢/ and some pure state 7. In other words, ¥ can be transformed into I" by LOs
on Bob’s side.

Now, equation (16) implies that the states { pUY ® IB)\I'}I,Ex are an ensemble decomposition of ©. Hence,
the steering property (proposition 8) implies that there exists a measurement {c; };cx on C such that

A

A A
-Ui
pi | W = | B Vie X. (18)
B

S .

Combining equations (17) and (18), we obtain the desired result.

A A U A
\IJ/ B :Z \I} // s
: iexX B B; -2
where { B;}icx is the test defined by
B —_B
B Bi B — u
aredtlemm

In conclusion, if the marginal state of U is more mixed than the marginal state of ¥/, then ¥ can be converted
into ¥ by a one-way LOCC protocol. 0

6.5. The duality
Combining lemmas 3 and 4 we identify the degree of entanglement of a pure bipartite state with the degree of
mixedness of its marginals:

Theorem 2 (Entanglement-thermodynamics duality). Let ¥ and U’ be two pure states of system A ® B and let
p, p' and o, o' be their marginals on system A and B, respectively. Under the validity of purification, purity
preservation, and local exchangeability, the following statements are equivalent:

(1) W is more entangled than V',

(2) pis more mixed than p/,

(3) 0 is more mixed than o’ .

Proof. The implications1 = 2and1 = 3 follow from lemma 3 and require the validity of all the three

axioms. The implications 2 => land 3 = 1follow from lemma 4 and require only the validity of
purification. O

The duality can be illustrated by the commutative diagrams

LOCC LOCC
U = g’ v —=
Trgl iTrB TrAL Tra
RaRe RaRe
p<—- O<—20

and is implemented operationally by discarding one of the component systems. Another illustration of the
duality is via the diagram
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g LOCC s

A A

purification | | purification

| RaRe ‘,
p——>p

Here the map implementing the duality is (a choice of) purification. Such a map cannot be realized as a physical

operation [47]. Instead, it corresponds to the theoretical operation of modelling mixed states as marginals of
pure states.

7. Consequences of the duality

In this section we discuss the simplest consequences of the entanglement-thermodynamics duality, including
the relation between maximally mixed and maximally entangled states, as well as a link between information
erasure and generation of entanglement. From now on, the axioms used to derive the duality will be treated as
standing assumptions and will not be written explicitly in the statement of the results.

7.1. Equivalence under local reversible transformations
Let us start from the easiest consequence of the duality:

Corollary 1. Let U and V' be two states of system A @ B, with A finite-dimensional. Then, ¥ and V' are equally
entangled if and only if they are equivalent under local reversible transformations, namely

UV =Ux VY,

where U and V are reversible transformations acting on A and B, respectively.

This result, proved in appendix C, guarantees that the equivalence classes under the entanglement relation
have a simple structure, inherited from the reversible dynamics allowed by the theory. For finite systems, pure
bipartite entanglement is completely characterized by the quotient of the set of pure states under local reversible
transformations.

7.2. Duality for states on different systems

Theorem 2 concerns the convertibility of states of the same system. To generalize it to arbitrary systems, it is
enough to observe that the tensor product with local pure states does not change the degree of entanglement: for
arbitrary pure states ¥, o/, and 3’ of systems A ® B, A’, and B’ one has

Uy d@V @G, (19)
relative to the bipartition (A’ ® A) ® (B ® B’). Asaconsequence, one has the equivalence

\Ilbent\lj/ — d®\1,®ﬁ/>;enta®\1//®ﬁ

for arbitrary pure states a, o, B, 3 of A, A/, B, B/, respectively. This fact leads directly to the generalization of
the duality to states of different systems:

Corollary 2. Let U and V' be two pure states of systems A @ Band A’ @ B/, respectively, and let p, p', o and o' be
their marginals on system A, A’, B and B' respectively. Under the validity of purification, purity preservation, and
local exchangeability, the following statements are equivalent:

(1) U is more entangled than W'

(2) p ® o is more mixed than o @ p' for every pair of pure states o € PurSt(A) and o/ € PurSt(A’).

3) o ® (' ismore mixedthan 3 ® o forevery pair of pure states 3 € PurSt(B) and 3’ € PurSt(B').

The duality is now implemented by the operation of discarding systems and preparing pure states, as
illustrated by the commutative diagrams

LOCC LOCC

v o’ v g
TI"B(X)(Y/l \L(Y@TYB TYA@B’\L \Lﬂ@”[‘rA
p®(x’<@a®p’ J®ﬁ’<@ﬂ®(f’

At this point, a cautionary remark is in order. Inspired by equation (19) one may be tempted compare the
degree of mixedness of states of different systems, by postulating the relation
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P mix PO (20)

for arbitrary states p and arbitrary pure states . The appeal of this choice is that the duality would maintain the
simple form

U Zent ¥V = P Fmix p/,
even for states of different systems. However, equation (20) would trivialize the resource theory of purity: asa
special case, it would imply the relation 1 ~,;, o’ for a generic pure state o/, meaning that pure states can be
freely generated. Since in a canonical theory of purity pure states are the most resourceful, having pure states for
free would mean having every state for free.

Another way to compare states of different systems according to their degree of purity would be to postulate
the relation

P Zpur P & Xp» (21)

where yj is the maximally mixed state of system B (assuming that such a state exists). The rationale for this
choice would be that x;, is the ‘minimum-resource state’ in the resource theory of purity and therefore one may
want to consider it as free. This choice would not trivialize the resource theory of purity, but would break the
duality with the resource theory of entanglement. Indeed, equation (21) would imply as a special case

1 >, Xp> Meaning that maximally mixed states can be freely generated from nothing. Clearly, this is not the
case for their purifications, which are entangled and cannot be generated freely by LOCC. In summary,
refraining from comparing mixed states on different systems seems to be the best way to approach the duality
between the resource theory of entanglement and the resource theory of purity.

7.3. Measures of mixedness and measures of entanglement

The duality provides the foundation for the definition of quantitative measures of entanglement. In every
resource theory, one can define measures of ‘resourcefulness’, by introducing functions that are non-increasing
under the set of free operations [85]. In the resource theory of entanglement, this leads to the notion of
entanglement monotones:

Definition 7. An entanglement monotone for system A ® Bisafunction E : St(A ® B) — R satisfying the
condition
E(p) =2 E(p)  Vp, p €SUA®B), pren -
More generally, one may want to compare entangled states on different systems. In this case, an entanglement
monotone Eis a family of functions E = {Exgp | A, B € Sys} satisfying the condition
Exen(p) = Enep (p)

for every pair of states p € St(A ® B)and p’ € St(A’ ® B')satisfying p =ene p'.
Similarly, one can define monotones in the resource theory of purity:

Definition 8. A purity monotone for system A is a function P : St(A) — R satisfying the condition
P(p) = P(p))y Y p,p € StA), pimpu 0.

Recall that in our resource theory of purity we abstain from comparing states on different systems, for the
reasons discussed in the end of the previous subsection. Purity monotones give a further indication that the
definition of purity in terms of RaRe channels is a sensible one: indeed, if we restrict our attention to the classical
case, the notion of purity monotone introduced here coincides with the canonical notion of Schur-convex
function in the theory of majorization [65] (see appendix D). Schur-convex functions are the key tool to
construct entropies and other measures of mixedness in classical statistical mechanics, and have applicationsina
number of diverse fields [95].

Constructing purity monotones is fairly easy. For example, every function that is convex and invariant under
reversible transformations is a purity monotone:

Proposition 9. Let P : St(A) — R bea function satisfying

(1) convexity: P (Zl P pl-) < Zi p.P (p,) for every set of states { p;} and for every probability distribution {p;}, and

(2) invariance under reversible transformations: P (Up) = P(p) for every state p and for every reversible
transformation U.
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Then, Pis a purity monotone.

The proofis elementary and is presented in the appendix D for the convenience of the reader. We highlight
that the above proposition is the natural extension of a well-known result in majorization theory, namely that
every convex function that is symmetric in its variables is automatically Schur-convex [65]. Again, it is worth
highlighting the perfect match of the operational notions discussed here with the canonical results about
majorization.

Using proposition 9, one can construct purity monotones aplenty: for every convex function f : R — R
one can define the f-purity Py : St(A) — R as

p)

Brpy=sup Y f(n)  po=(a

apure xeX
where the supremum runs over all pure measurements @ = {4, }xex and over all outcome spaces X. Itis easy to
verify that every f-purity is convex and invariant under reversible transformations, and therefore is a purity
monotone. In the special case of the function f (x) = x log x, one has

Pr(p) = —H (p), (22)

where H is the measurement entropy [96—98], namely the minimum over all pure measurements of the Shannon
entropy of the probability distribution resulting from the measurement. In the case of f (x) = x? one obtains
instead an generalized notion of ‘purity’, which in the quantum case coincides with the usual notion
P(p) = Tr (p?).

Another way to construct purity monotones is by using norms on the state space: thanks to proposition 9,
every norm that is invariant under reversible transformations leads to a purity monotone. For systems that have
an invariant state, an easy example is given by the operational distance

1
P(p) = Ellp = xlb

where || - ||is the operational norm, defined as ||6|| := SUP, cera) (@l 0) — inf, cema)(ar|6) [47],and x is the
invariant state. Another example of purity monotone induced by a norm is the notion of purity introduced in
[76,77], based on the Schatten two-norm. In the quantum case, this notion of purity coincides with the ordinary
notion P (p) = Tr (p?) and therefore coincides with the f~purity with f (x) = x2. Itis nota priori clear whether
the two-norm purity coincides with the x*-purity for more general theories.

Now, thanks to the duality we can turn every purity monotone into an entanglement monotone. Given a
purity monotone P : St(A) — R, we can define the pure state entanglement monotone
E: PurSt(A ® B) — Ras

EW) =g[P(p)],  p=Try¥, (23)

where g : R — Risany monotonically decreasing function (f (x) < f (y) for x > y). Here the monotonically
decreasing behaviour of gimplements the reversing of arrows in the duality. Furthermore, if the functions Pand
f have suitable convexity properties, the entanglement monotone can be extended from pure states to arbitrary
states using the convex roof construction [22,78, 79]. Specifically, one has the following

Corollary 3. Let P : St(A) — R bea convex purity monotone, g : R — R be a concave, monotonically decreasing
function, and E : PurSt(A @ B) — R be the pure state entanglement monotone defined in equation (23). Then, the
convex roof extension E : St(A ® B) — R defined by
EX):= inf PE(Y,;
inf 32 pE (%)
>op¥=%

is a convex entanglement monotone.

The proofis the same as in the quantum case [78]. An easy way to generate entanglement measures is to pick
an f-purity and take its negative, which corresponds to the choice g (x) = —x. For example, the choice
f (x) = x log x leads to a generalization of the entanglement of formation [22] to all theories satisfying the
duality.

7.4. Maximally entangled states
As a consequence of the duality, there exists a correspondence between maximally mixed and ‘maximally
entangled’ states, the latter being defined as follows
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Definition 9. A pure state @ of system A ® B is maximally entangled if no other pure state of A ® B is more
entangled than ®, except for the states that are equivalent to ® under local reversible transformations—i.e. if for
every ¥ € PurSt(A ® B)onehas

T @ = T=UR VD

for some reversible transformations /: A — Aand V: B — B.
Theorem 2 directly implies the following.
Corollary 4. The purification of a maximally mixed state is maximally entangled.

Proof. Suppose that ¥ € PurSt(A ® B) is more entangled than ®, where @ is a purification of the maximally
mixed state of system A (assuming such a state exists for system A). By theorem 2, the marginal of U on system
A, denoted by p, must satisfy p = X. Since y is maximally mixed, this implies p = x. The uniqueness of
purification then implies the condition ¥ = (Z, ® V)P for some reversible transformation Vg on B. O

As noted earlier in the paper, under the standard assumptions of convexity and compactness of the state
space, the maximally mixed state is not only a maximal element of the mixedness relation, but also the
maximum (see equation (10)). Similarly, under the same standard assumptions, it is immediate to obtain that
the purification of a maximally mixed state is more entangled than every state, namely

Pra Y VY EStA® B).

The relation follows directly from theorem 2 when ¥ is a pure state and in the general case can be proved by
convexity, using the fact that the set of LOCC channels is closed under convex combinations.

7.5. Duality between information erasure and entanglement generation

The entanglement-thermodynamics duality establishes a link between the two tasks of erasing information and
generating entanglement. By erasing information we mean resetting a mixed state to a fixed pure state of the same
system [80]. Clearly, erasure is a costly operation in the resource theory of purity: there is no way to transform a
non-pure state into a pure state by using only RaRe channels (see proposition 3). The dual operation in the
resource theory of entanglement is the generation of entangled states from product states. By the duality, the
impossibility of erasing information by RaRe channels and the impossibility of generating entanglement by
LOCC are one and the same thing.

The relation between information erasure and entanglement generation suggests that the cost of erasing a
mixed state p could be identified with the cost of generating the corresponding entangled state U. For example,
one may choose a fixed entangled state ® as a reference ‘unit of entanglement’ and ask how many copies of ¢ are
needed to generate ¥ through LOCC operations. The number of entanglement units needed to generate ¢ could
then be taken as a measure of the cost of erasing p. We now explore this idea at the heuristic level, discussing first
amodel of erasure and then connecting it with the generation of entanglement. Suppose that erasure is
implemented by (i) performing a pure measurement, (ii) writing down the outcome on a classical register, (iii)
conditionally on the outcome, performing a reversible transformation that brings the system to a fixed pure
state, and finally (iv) erasing the classical register. Of course, this model assumes that some systems described by
the theory can act as ‘classical registers’, meaning that they have perfectly distinguishable pure states. Assuming
the validity of Landauer’s principle at the classical level, the cost of erasing the classical register is then equal to
the Shannon entropy of the outcomes multiplied by kg T, kg and T being the Boltzmann constant and the
temperature, respectively [80]. Minimizing the entropy over all possible measurements at step (i), one would
then obtain the measurement entropy, as defined in equation (22). Hence, the minimum cost for erasing p is
given by kg TH (p). Note that this heuristic conclusion implicitly assumes that the operations (i)—(iii) can be
performed for free. This is the case in quantum theory, where (i) the measurement attaining minimum Shannon
entropy is projective and the overall transformation associated to it is a random unitary channel, (ii) the
measurement outcome can be written down via a unitary operation on the system and the classical register, and
(iii) the state of the system can be reset via another joint unitary operation. In physical theories other than
quantum and classical theories, however, the request that the operations (i)—(iii) are free is non-trivial and would
need to be further analyzed in terms of physical axioms.

Suppose now that we want to erase an unknown state p. Since the state is unknown, the relevant quantity here
is the worst case cost of erasure, defined as the supremum of the cost over all possible states. Since the
measurement entropy is monotone under the mixedness relation, in finite dimensions the supremum is attained
for the maximally mixed state y, so that the worst case cost of erasure is given by kg T H (). This result allows us
to make an interesting connection with the work by Brunner et al [99], who considered the task of erasure in
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general probabilistic theories. Specifically, they considered the number of states that can be perfectly
distinguished by a measurement and adopted the logarithm of this number as a measure of the cost of erasure. In
their analysis they considered probabilistic quantum and classical theories, as well as alternative theories with
hypercube state spaces, wherein measurements can distinguish at most two states. In all these theories the
logarithm of the dimension is exactly equal to the measurement entropy of the maximally mixed state. Thanks to
this fact, erasure cost defined in [99] coincides with the worst case erasure cost defined above. It is an open
question whether the two definitions coincide in all canonical theories of purity, and, if not, which conditions
are needed for the two definitions to coincide.

Let us now look at erasure from the dual point of view. Since the duality inverts the order, the dual of an
erasure protocol consisting of operations (i)-(iv) will be an entanglement generation protocol consisting of the
dual operations in the opposite order (iv), (iii), (ii) and (i). The dual of (iv) is an operation that generates a
purification of the classical register. The duals of the free operations (i)—(iii) are LOCC operations that convert
the initial entangled state into the state . Now, by the duality we can measure the cost of generating ¥ in terms
of the measurement entropy H (p). But what is the operational meaning of this choice? Again, the duality
suggests an answer. Classically, the Shannon entropy can be interpreted as the asymptotic rate at which random
bits can be extracted from a given probability distribution. Dually, the inverse relation must hold between the
purifications: referring to the purification of a random bit as an ebit, we have that the Shannon entropy is the
number of ebits needed asymptotically to generate the purification of a given probability distribution by LOCC.
Minimizing over all probability distributions one can characterize the measurement entropy as the minimum
number of ebits needed to asymptotically generate the state W by LOCC. Although partly based on heuristics, the
argument provides already a good illustration of the far reaching consequences of the entanglement-
thermodynamics duality, which allowed to identify the cost of erasing a state with the number of ebits needed to
generate its purification.

7.6. Entropy sinks and entanglement reservoirs

Let us consider now the task of erasure assisted by a catalyst, namely a system C whose state remains unaffected
by the erasure operation. In this case, the operation of erasure transforms the product state p ® vy € St(A ® C)
into the state oy ® +y for some pure state oy € PurSt(A). By duality, it is immediate to see that catalyst-assisted
erasure is equivalent to catalyst-assisted entanglement generation:

Corollary 5. Let W and I be two pure states of systems A @ Band C ® D, respectively, and let p and -y be their
marginals on systems A and C, respectively. Then, the following are equivalent

(1) p can be erased by a RaRe channel using -y as a catalyst.

(2) U can be generated by a LOCC channel using I as a catalyst.

If such catalysts existed, they would behave like ‘entropy sinks’, which absorb mixed states without
becoming more mixed, or like ‘entanglement reservoirs’, from which entanglement can be borrowed
indefinitely. For example, suppose that ¥ can be generated freely using I as a catalyst. Then, every measure of
pure state entanglement E that it is additive on product states would have to satisfy the relation

ET) > E(W) + ED).

Assuming that the measure assigns a strictly positive value to every entangled state. the above relation can only be
satisfiedif E(I') = + oo.Inother words, the catalyst’s state must be infinitely entangled. It is then natural to
ask whether the impossibility of infinitely entangled /infinitely mixed states follow from our axioms. The answer
is affirmative in the finite-dimensional case, but counterexamples exist in infinite dimensions. For the finite-
dimensional case, we have the following

Proposition 10. Let A ® C be a finite system. Then, it is impossible to erase a mixed state of A using C as a catalyst.

The proofis presented in appendix E.

In the infinite-dimensional case, a heuristic counterexample is as follows: imagine a scenario where system C
consists of an infinite chain of identical systems, with each system in the chain equivalent to A, namely
C = ®icz A A; > A. Loosely speaking, we may choose the state y to be the product state v = 7 ® g,
where 7 is a state on the left side of the chain, consisting of infinite copies of the pure state o, and ~ is a state
on the right of the chain, consisting of infinite copies of the mixed state p. It is then natural to expect that the
state p ® <y can be reversibly transformed into the state oy @ -y, simply by swapping system A with the first
system on the left of the chain and subsequently shifting the whole chain by one place to the right.
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The above counterexample is heuristic, because the notion of infinite tensor product is not defined in our
formalism. However, infinite tensor products can be treated rigorously, at least in the quantum case, and the
intuition of our counterexample turns out to be correct. In the dual task of catalytic entanglement generation,
the rigorous version of this argument was presented by Keyl et al [100], who exhibited an example of infinite spin
chain from which arbitrarily large amounts of entanglement can be generated for free.

8. Symmetric purification
Aswe observed in the previous section, the ability to erase information/generate entanglement for free has
undesirable consequences for the resource theories of purity and entanglement. These scenarios can be excluded
at the level of first principles, by postulating the following
Axiom 4 (No entropy sinks). RaRe dynamics cannot achieve erasure, even with the assistance of a catalyst.

In addition to being a requirement for a sensible resource theory of entanglement, axiom 4 has a surprising
twist: in the context of the other axioms, it implies that local exchangeability is equivalent to the existence of

symmetric purifications, defined as follows

Definition 10. Let p be a state of system A and let U be a pure state of A ® A. We say that U is a symmetric
purification of pif

EAk =

SiD
g
O N assy

This definition leads us to an upgraded version of the purification axiom:

and

Axiom 5 (Symmetric purification). Every state has a symmetric purification. Every purification is essentially
unique.

The key result is then given by the following:

Theorem 3. In a causal theory satisfying purity preservation and no entropy sinks, the following axioms are
equivalent:

(1) Local exchangeability and purification.

(2) Symmetric purification.

The proofis presented in appendix F.

This result identifies purity preservation and symmetric purification as the key axioms at the foundation of
the entanglement-thermodynamics duality and, ultimately, as strong candidates for a reconstruction of
quantum thermodynamics from first principles. We stress that the axiom no entropy sinks is needed only for
infinite-dimensional systems, while for finite dimensional systems its validity can be proved (see
proposition 10).

One of the bonuses of symmetric purification is that the marginals of a pure state are ‘equivalent’, in the
following sense:

Proposition 11. Let W be a pure state of system A @ B and let p, and py, be its marginals on systems A and B,
respectively. Then, one has

Gy
@A:@BUA

where o and (3 are pure states of A and B, respectively, and U is a reversible transformation.
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The proof can be found in appendix G. As a consequence of this result, we have that the states p, ® 3 and
o ® pghave the same purity, for every possible purity monotone. Equivalently, we can say that the two marginal
states have the same mixedness, for every measure of mixedness.

9. Conclusions

While entanglement is not a uniquely quantum feature, the remarkable ways in which it is intertwined with
thermodynamics appear to be far more specific. Understanding these links at the level of basic principles is
expected to reveal new clues to the foundations of quantum theory, as well as to the foundations of
thermodynamics. With this motivation in mind, we set out to search for the roots of the relation between
entanglement and entropy, adopting an operational, theory-independent approach. We attacked the problem
from what is arguably the most primitive link: the duality between the resource theory of entanglement (where
the free transformations are those achievable by two spatially separated agents via LOs and CC) and the resource
theory of purity (where the free transformations are those achievable by an agent who has limited control on the
dynamics of the system). By the duality, every free operation in the resource theory of purity admits an
equivalent description as a free operation in the resource theory of entanglement. The duality leads to an
identification between measures of mixedness (i.e. lack of purity) and measures of pure bipartite entanglement.
Under suitable conditions, the latter can be extended to measures of mixed-state entanglement.

Let us elaborate on the implications of our results. Our reconstruction of the entanglement-
thermodynamics duality hints at a simple, physically motivated idea: the idea that nature should admit a
fundamental level of description where all states are pure, all dynamics reversible, and all measurements pure.
Two of our axioms clearly express this requirement: (i) purification is equivalent to the existence of a pure and
reversible level of description for states and channels, and (ii) purity preservation ensures that such a description
remains consistent when different, possibly non-deterministic processes are connected. The remaining axiom,
local exchangeability, appeared to be slightly more mysterious at first sight. Nevertheless, the duality clarified its
significance: for every finite system (and more generally, for every system where all states have finite
entanglement), local exchangeability is equivalent to the existence of symmetric purifications—that is,
purifications where the purifying system is a twin of the purified system. In summary, all the axioms used to
derive the duality are requirements about the possibility to come up with an ideal description of the world,
satisfying simple requirements of purity, reversibility, and symmetry.

A natural question is whether these axioms single out quantum theory. Strictly speaking, the answer cannot
be affirmative, because all our axioms are satisfied by also by the variant of quantum theory based on real Hilbert
spaces [86, 87]. Hence, the actual question is whether real and complex quantum theory are the only two
examples of theories satisfying the axioms. While an affirmative answer is logically possible, we do not expect it
to be the case. The reason is that our axioms do not place any restriction on measurements: for example, our
proof of the duality does not require one to assume an operational analogue of Naimark’s theorem, stating that
every measurement can be implemented as an ideal measurement at the fundamental level. Overall, in the
general purification philosophy of our work, it is natural to expect that full characterization of quantum theory
will require at least one requirement about the existence of a class of ideal measurements that generalize
projective quantum measurements.

Naimark-type axioms for measurements has been recently put forward by one of the authors [101, 102], for
the purpose of deriving bounds on quantum nonlocality and contextuality. A natural development of our work
is to investigate the consequences of these axioms on the entanglement-thermodynamics duality. From such
development, we expect a solution to most of the outstanding questions arising from the present paper. Among
them, an important one concerns the asymptotic limit of many identical copies: in quantum theory, it is well
known that asymptotically there exists a unique measure of pure bipartite entanglement [36, 37, 42]—namely,
the von Neumann entropy. Under which conditions does this result hold in the general probabilistic scenario? In
order to address the question, the most promising route is to add an axiom about ideal measurements, which,
combined with purification and purity preservation, guarantees that mixed states can be ‘diagonalized’, that is,
decomposed as random mixtures of perfectly distinguishable pure states [103]. The consequences of this
diagonalization result for the entanglement-thermodynamics duality will be discussed in a forthcoming
paper [104].

Another open question concerns the physical interpretation of the duality. So far, the duality has been
presented as a one-to-one correspondence between two operational scenarios, one involving a single agent with
limited control and the other involving two spatially separated agents performing LOCC operations on a pure
state. Inspired by the paradigm of the ‘fundamentally pure and reversible description’, one may be tempted to
regard the pure-state side of the duality as more fundamental. To push this idea further, one would have to
consider a completely coherent version of the LOCC operations, where Alice’s and Bob’s operations are replaced
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by control-reversible channels [105]. Restricting the global dynamics of composite systems to these completely
coherent evolutions appears as a promising direction in the programme of deriving effective thermodynamic
features from the reversible dynamics of a composite system [69—75, 77]. While it is early to predict all the
applications of the completely coherent paradigm, our work provides the basic theoretical framework and
motivation to embark in this new exploration.
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Appendix A. Proof of proposition 2

Suppose that U) can be written as a coarse-graining as follows

Up =3 p; (A1)

To prove that the state 1) is pure, now we show that the refinement { p,} is trivial. Indeed, by applying U/~ ' to
both sides of equation (A1), we obtain

Y= Zuflpi-

Since 1) is pure, this implies that U/ ~'p; = p; 1) for some probability distribution {p, }. Hence, by applying ¢/ on
both sides, we obtain p; = p,Li). This concludes the proof that { p; } is a trivial refinement of 22y and, therefore,
that L) is pure. The converse can be proved in the same way by applying the reversible channel &/ ~'to 1. [

Appendix B. Proof of proposition 4

1 = 2.Ifthetheoryis canonical, every pure state ¢ € PurSt(A) is comparable to every pure state

@ € PurSt(A). Suppose, for instance that ¢ is more controllable than . Then, by proposition 3, there exists a
reversible channel U/ such that ¢ = U, thus showing that the group of reversible transformations acts
transitively on the set of pure states.

2 = 3.Everystate p can be expressed as a convex combination of the form p = Zi D, where {p, }isa
probability distribution allowed by the theory and ¢, are pure states. Now, suppose that 1 is a pure state. For
every i, by picking a reversible channel &/ such that UV = ¢, one obtains the relation p = » *. pU D9,
meaning that ¢ is more controllable than p. Since p is generic, we conclude that ¢ is more controllable than every
state.

3 = 1.Suppose there exists a state p that is more controllable than every state. Specifically, p must be
more controllable than every pure state 1. By proposition 3, p must be pure and there exists a reversible
transformation U such that p = Urp. This shows that ¢ is more controllable than p, which, in turn is more
controllable than any state. Hence ¢ is more controllable than every state, and, specifically, more controllable
than every pure state. Since v is generic, the theory is canonical. O

Appendix C. Proof of corollary 1

Clearly, if U and W’ are equivalent under local reversible transformations, then they are equally entangled. To
prove the converse, note that, by the duality, the marginals of U and ¥’ on system A, denoted by pand p’, are
equally mixed. Since A is finite-dimensional, this implies p’ = Up for some reversible transformation /. As a
consequence, ¥’ and (U ® Zp) W are two purifications of p’. By the essential uniqueness of purification, we then
have ¥ = (U ® V) for some reversible transformation V. O
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Appendix D. Purity monotones and Schur-convex functions

In classical probability theory, states are probability distributions over finite sets and reversible transformations
are permutation matrices, of the form Il,,,, = 0, = (x) Where 7 is a permutation. According to definition 5, a state

p= (P -~ P,)lispurerthananotherstate p’ = (pl’ pn’)T if
P = Z q;1Lp,

where {g;} are probabilities and {II;} are permutation matrices. This notion is equivalent to the classical notion
of majorization: in short, p is purer than p’ ifand only if the vector p’ is majorized by the vector p. Hence, a
function P : R" — R isa purity monotone iff itis a Schur-convex function.

The parallel between purity monotones and Schur-convex functions continues with proposition 9. In
classical probability theory, a function P : R" — R is symmetricif P (x) = P (Ilx) for every permutation matrix
I1. A well-known result is that every convex symmetric function is Schur-convex [65]. Our proposition 9 is the
operational version of this statement: every convex function P : St(A) — R satisfying the condition
P (p) = P (Up) for every reversible transformation ¢/ is a purity monotone. The proofis elementary. Suppose
that pis purer than p/, namely p’ = Zi p,U;p. Then, one has

P(py < X2 piP (Uip)
= ZP,’P(P)

= P(p),

having used convexity in the first inequality and invariance in the first equality. In the classical case, this (trivial)
proof provides a simpler proof of the well-known result for convex symmetric functions (see C.2 of [65]).

Appendix E. Proof of proposition 10

Let us prove the contrapositive: if a state can be erased using system C as a catalyst, then the state must be pure.
Specifically, suppose that p € St(A) can be erased, with the catalyst in the state v € St(C). By definition, this
means that p ® v <imix @9 ® -y for some pure state oy. On the other hand, one has p =,;; «, which implies
P ® Y Fmix 0o @ y—hence p ® yand oy ® 7y are equally mixed. Since A ® C is a finite system, this means
that there exists a reversible transformation U/ such that

L{(ao ® 7) =p®, (ED)

(see equation (9)). Now, let us choose a basis for Stg (A ® C), such that the reversible transformations are
represented by orthogonal matrices. Following [64], we consider the Schatten 2-norm associated with this basis,

defined as
Drsc 5
||V||2 = Z Vi >
i=1

where vis a generic element of the vector space Stg(A ® C)and (v ),-D;“fc are the expansion coefficients of v. With
this definition, we have the relation

oo @ 72 = Hu(ao ® 7)“
2
=llp @
<O pilles @ Al
= ||Oéo & 7”2)

the first and fourth lines following from the invariance of the two-norm under orthogonal transformations, the
second line following from equation (E1), and the third line following from the triangular inequality, having
chosen a convex decomposition of pas p = Zi p, «; for suitable pure states { ¢ }. In conclusion, we must have
the equality

Zpi(ai ® '7)

In order for this to be possible, all the terms «; ® v must be proportional to one another: in other words, p must
be pure. O

= pillai @ 7k

2
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Appendix F. Proof of theorem 3

Let us show that the first set of axioms (purity preservation, local exchangeability, purification, and no entropy
sinks) implies the second (purity preservation, symmetric purification, no entropy sinks). To this purpose, it is
sufficient to show that every state has a symmetric purification. This can be done as follows:

Let pbeastate of system A, andlet U € PurSt(A ® B) be one ofits purifications. By local exchangeability
there exist two channels C and D such that

ancaglar

B
N L = Y| s |
Now, in a theory satisfying purification, every channel can be realized through a reversible transformation acting

on the system and on an environment, initially in a pure state and finally discarded [47]. Specifically, channel C
can be realized as

nE T FE Ty
g - @D

B

where E and E’ are suitable systems, I{ is a reversible transformation, and ) is a pure state. Similarly, channel D
can be realized as

B /LA

B [plA - yl | (F1)
CH ™

Inserting the realizations of C and D in the local exchangeability condition, we obtain

nE T FE T
NP
@B—A :EBSWAPL'
Vi
CHA ™)

Since the pure state on the lhs is the purification of a pure state, by proposition 7, it must be of the product form

@E—E' B

A B A B

@ B A =T @ 5 | SWAP |
@ F/ K’

for some pure state I'. The above equation shows that the state I" can be generated by LOCC using W as a catalyst.

By the No Entropy Sinks requirement, we have that I' must be a product state, i.e. I' = 1’ ® ¢’ for two pure
states 1’ and ¢’. Hence, the local exchangeability condition becomes

7| E/

@E—E’
A u B A 1 B
EB:A —EB SWAPL
@FLF/ F’
or, equivalently

B n E’ E
A GA B u_lL
v, :EB SWAP |
@FLF/ @F’
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Discarding system E one obtains

A A
2

\I/B—A: A

1%

s et

for some suitable state 3. Since the lhs is a pure state, > must be a pure state. Now, discarding system F’ and the
second copy of system A, and recalling equation (F1), we have

[ S A
Lo i
AT

Recalling that D is a channel, and therefore Tty D = Tr (proposition 1), we conclude that

@ (o~ L

Hence, the marginal of ¥ on the first copy of system A is equal to p. By the same reasoning, we can prove that the
marginal on the second copy of system A is also equal to p. Hence, ¥ is a symmetric purification of p. Since p is
arbitrary, we conclude that every state has a symmetric purification, unique up to local reversible
transformations.

Conversely, we now show that the second set of axioms implies the first. To this purpose, we must show the
validity of local exchangeability. Clearly, symmetric purifications are locally exchangeable: indeed, if Uis a
symmetric purification one has

A A A
U SWAP = (rA— = v .
CA A Tr) CA

and, by the essential uniqueness of purification

A A LA
\\ A SWAP A = ) AA

for some reversible channel /. Since all purifications of p are equivalent to ¥ under LOs and since W is locally
exchangeable, we conclude that every purification of p is locally exchangeable [by the same argument used in
equation (4)]. This proves local exchangeability. O

Appendix G. Proof of proposition 11

Let ® € PurSt(A ® A)beasymmetric purification of p, andlet a (03) be a fixed, but otherwise arbitrary, pure
state of A (B). By the uniqueness of purification, there must exist a reversible transformation I/ such that

A
@
_ A — B
u
< B B A
Discarding the first copy of system A and using the fact that ® is a symmetric purification we obtain the desired
result

A
I B

%@T

A 1B

PA
@B_A

E
w
% @
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