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Evaluation of electronic correlation contributions for optical tensors
of large systems using the incremental scheme

Jun Yang and Michael Dolga�
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A new method is developed to calculate the optical tensors of large systems based on available wave
function correlation approaches �e.g., the coupled cluster ansatz� in the framework of the
incremental scheme. The convergence behaviors of static first- and second-order polarizabilities
with respect to the order of the incremental expansion are examined and discussed for the model
system Ga4As4H18. The many-body increments of optical tensors originate from the dipole-dipole
coupling effects and the corresponding contributions to the incremental expansion are compared
among local domains with different distances and orientations. The weight factors for increments of
optical tensors are found to be tensorial in accordance with the structural symmetry as well as the
polarization and the external electric field directions. The long-term goal of the proposed approach
is to incorporate the sophisticated molecular correlation methods into the accurate wave function
calculation of optical properties of large compounds or even crystals. © 2007 American Institute of
Physics. �DOI: 10.1063/1.2759201�

I. INTRODUCTION

Nonlinear optical �NLO� properties of materials �e.g.,
crystals� are of exceptional importance in laser science and
technology. Obviously, a deep understanding of the mecha-
nism of NLO effects in crystals helps to search for or even
design new NLO crystals more efficiently. Several theoreti-
cal attempts, including semiempirical methods such as the
bond charge model1–3 and the anionic group theory4,5 as well
as first-principles approaches based on density functional
theory �DFT�,6–8 have been made to obtain a correlation be-
tween the microstructures of crystals and their NLO re-
sponses.

Both the bond charge model and the anionic group
theory assume that the macroscopic tensor element of the
NLO polarizability of a crystalline material is obtained by
appropriately summing up the microscopic tensor elements
from all constituent domains, i.e., the chemical bonds or the
anionic groups. The microscopic tensor elements can be cal-
culated using molecular first-principles quantum chemistry
methods. However, neither of these two methods can be suc-
cessful for those cases where the couplings between bonds or
anionic groups are too strong to be neglected, and the simple
sum rules for microscopic polarizabilities fail. The first-
principles approaches are becoming more favorable to study
the NLO properties of materials4 since the 1960’s and im-
pressive achievements have been made recently.7,9–11 Al-
though the first-principles methods provide a systematic way
with high predictive power, the electronic correlation effects
are usually accounted for by DFT, particularly local density
approximation �LDA� and generalized gradient approxima-
tion �GGA� schemes, for large and periodic systems. It is
well known that in most cases LDA and GGA greatly under-

estimate the band gap and therefore lead to significantly
overestimated optical coefficients, whereas a systematic im-
provement over DFT band structure calculations using wave-
function–based ab initio approaches is only possible for very
simple crystals12–18 and optical responses of molecular
systems19,20 so far.

In this paper, we propose a formalism which allows to
perform the indirect ab initio calculation of optical tensors
for large systems by using the available efficient correlation
methods such as coupled cluster �CC� theory in the frame-
work of the incremental scheme. In the present work, we
explore a simple model system to demonstrate how the con-
vergence of the incremental expansion of static optical ten-
sors can be achieved by truncating the series, and what prob-
lems have to be handled for the accurate calculation of
optical tensors within this approach. The entire simple sys-
tem still can be dealt with at the coupled cluster single and
double excitations �CCSD� correlation level, which thus can
be used to gauge the accuracy of the incremental expansion.

II. INCREMENTAL EXPANSION OF OPTICAL
TENSORS

In order to accurately account for the electronic correla-
tion effects for large and nonmetallic periodic systems by
using available wavefunction-based correlation methods, one
may resort to the so-called incremental scheme originally
proposed by Stoll in 1992.21–23 The incremental scheme is
very general and in principle exact to recover the correlation
energy within the invoked correlation approach. It is easily
parallelizable and, due to its use of the local nature of elec-
tron correlation, is particularly efficient for large and peri-
odic compounds. The incremental scheme in connection with
the wave function correlation methods has achieved remark-
able progress in successfully deriving the cohesive properties
�e.g., lattice constant, cohesive energy, and bulk modulus� ofa�Fax: 0049-221-4706896. Electronic mail: m.dolg@uni-koeln.de
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various periodic compounds including Van der Waals sys-
tems �e.g., rare-gas crystals�, hydrogen-bonded systems,
ionic systems �e.g., LiF, MgO�, covalent systems �e.g., group
III, V, and IV cubic semiconductors� and even the delocal-
ized systems �e.g., Lig, C60, and Hg� with strong
correlations.24,25

Given a group D of local domains m accurately derived
from local Hartree-Fock �HF� orbitals, the correlation energy
for a system can be expanded in Eq. �1� as the sum of so-
called n-body increments �e.g., one, two, three,…, n body�:

Ecorr = �
m�D

�m + �
m�n�D

��mn + �
m�n�o�D

��mno + ¯ .

�1�

If �m denotes the correlation energy of domain m, �mn the
one of the united domains m and n, etc., the increments in
Eq. �1� are defined as

��mn = �mn − �m − �n,

��mno = �mno − ��mn − ��no − ��om − �m − �n − �o, �2�

¯ .

The local domains can be a set of localized orbitals at differ-
ent atomic/ionic sites in ionic systems or of different local-
ized bond orbitals in covalent systems, or arise from other
definitions. Numerous successful applications of the scheme
to calculate correlation contributions to total energies ap-
peared in literature so far24,25,27 and a fully automatized ver-
sion of the approach has recently been implemented.26

The optical coefficients, i.e., the first-order linear optical
polarizability �ij

�1�, the second- and third-order nonlinear hy-
perpolarizabilities �ijk

�2� and �ijkl
�3� , etc., can be evaluated via the

following partial differentiations of the total energy with re-
spect to the strengths of the applied electric fields Fi in the
Cartesian direction i.

�ij
�1� = − � �2E

�Fi�Fj
�

0
,

�ijk
�2� = − � �3E

�Fi�Fj�Fk
�

0
, �3�

�ijkl
�3� = − � �4E

�Fi�Fj�Fk�Fl
�

0
,

If the total energy is written as the sum of the HF and the
correlation energy,

E = EHF + Ecorr, �4�

Equations �3� read

�ij
�1� = �ij,HF

�1� + �ij,corr
�1� ,

�ijk
�2� = �ijk,HF

�2� + �ijk,corr
�2� ,

�5�
�ijkl

�3� = �ijkl,HF
�3� + �ijkl,corr

�3� ,

¯ .

Considering Eqs. �1�–�4�, the correlation contributions in
Eqs. �5� for optical tensors are thereby obtained in the incre-
mental many-body expansions,

�ij,corr
�1� = �

m

�ij,m
�1� + �

m�n

��ij,mn
�1� + �

m�n�o

��ij,mno
�1� + ¯ ,

�ijkl,corr
�2� = �

m

�ijk,m
�2� + �

m�n

��ijk,mn
�2� + �

m�n�o

��ijk,mno
�2�

+ ¯ ,

�6�
�ijkl,corr

�3� = �
m

�ijkl,m
�3� + �

m�n

��ijkl,mn
�3� + �

m�n�o

��ijkl,mno
�3�

+ ¯ ,

¯ .

Here for every correlation contribution to the Nth order po-
larizability �ijk¯,corr

�N� , the correlation increments can in turn
be calculated by

��ijk¯,mn
�N� = �ijk¯,mn

�N� − �ijk¯,m
�N� − �ijk¯,n

�N� ,

��ijk¯,mno
�N� = �ijk¯,mno

�N� − ��ijk¯,mn
�N� − ��ijk¯,no

�N�

− ��ijk¯,om
�N� − �ijk¯,m

�N� − �ijk¯,n
�N� − �ijk¯,o

�N� ,

�7�
��ijk¯,mnop

�N� = �ijk¯,mnop
�N� − ��ijk¯,mno

�N� − ��ijk¯,nop
�N�

− ��ijk¯,opm
�N� − ��ijk. . .,pmn

�N� − ��ijk¯,mn
�N�

− ��ijk¯,no
�N� − ��ijk¯,op

�N� − ��ijk¯,pm
�N�

− ��ijk¯,mo
�N� − ��ijk¯,np

�N� − �ijk¯,m
�N� − �ijk¯,n

�N�

− �ijk¯,o
�N� − �ijk¯,p

�N� ,

¯ .

The one-body increment tensor �ijk¯,m
�N� for the local do-

main m is calculated by allowing excitations from the local
orbitals inside m but entirely freezing those from others out-
side m at the correlated level. The two-body increment tensor
��ijk¯,mn

�N� can be understood as the correction to the one-
body increment tensor due to the two-body coupling effect
between the local domains m and n; for each ��ijk¯,mn

�N� ,
�ijk¯,mn

�N� is obtained by exciting from local orbitals inside
both domains m and n but freezing all other local orbitals
outside m and n. The three-body increment tensor ��ijk¯,mno

�N�

is essentially the correction due to the three-body coupling
effect among the local domains m, n, and o, and it can be
calculated in an analogous way. This interpretation can be
generalized for higher order increment tensors until, in prin-
ciple, all increments are included in the expansion �6�. By

084108-2 J. Yang and M. Dolg J. Chem. Phys. 127, 084108 �2007�
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taking into account all corrections for the entire coupling
effects, the sum rule in Eqs. �6� gives the exact value of
optical tensors with no approximations made for the incre-
mental expansion within the wave-function–based first-
principles approach. The semiempirical methods, i.e., bond
charge model and anionic group theory, actually correspond
to the first-order approximation by summing only one-body
increments, whereas the interactions between different bonds
or anionic groups are totally ignored.

Generally, the number of terms which need to be evalu-
ated for a system with a number of D local domains is

CD
1 + CD

2 + CD
3 + ¯ + CD

D = 2D − 1

For a periodic compound, D goes to infinity and the incre-
mental expansion becomes an infinite series. Although the
incremental series �6� offers us the exact result of optical
tensors within the correlation approach, the complete inclu-
sion of the coupling effects among all local domains is only
possible for small finite systems. Two approximations are
introduced in order to make the expansion �6� for optical
tensors work in practice. First of all, this series has to be
truncated at a certain possibly low expansion order. In order
to do so, the series �6� must exhibit a good convergence, i.e.,
up to, say, the three-body increments. Second, the sum
�m�n�¯

is carried out only for the nearby local domains so
that the coupling effects for those local domains which are
spatially distant to each other can be neglected. The above
two approximations have been already shown to be well ful-
filled in the case of various systems for correlation
energies24,25 by using localized-orbital-centered domains. In
this paper, we examine the behaviors of the two approxima-
tions for the calculations of static optical first- and second-
order polarizabilities and how the accuracy can be controlled
by the series truncation.

III. COMPUTATIONAL DETAILS

The above formalism was applied to the Ga4As4H18

model system. Ga4As4H18 was truncated from the cubic
GaAs crystal with the hydrogen atoms saturating the dan-
gling bonds. The Ga–H and As–H distances, respectively, are
1.621 and 1.525 Å, which were optimized by Paulus et al.27

for GaAsH6 clusters at the CCSD level. In order to demon-
strate how the convergence of incremental expansions de-
pends on the local domains, we have defined three different
local domain spaces, i.e., the domain space A for five local
domains �cf. the top in Fig. 1� with active localized hydrogen
orbitals Ga–H and As–H, the domain space B for three local
domains �cf. the middle in Fig. 1�, and the domain space C
for seven local domains �cf. the bottom in Fig. 1� with frozen
localized hydrogen bond orbitals. The multicenter groups of
nine As–H and Ga–H bonds are labeled as A1 and A5 only in
the domain space A, respectively; the four-center groups of
three side As–Ga1 and Ga–As5 bonds are labeled as A2 and
A4 in the domain space A as well as B1 and B3 in the
domain space B, respectively; the two-center group of the
central Ga1–As5 bond is labeled as A3, B2, and C3 in the
domain spaces A, B, and C, respectively; the two-center

groups of each single side As–Ga1 and As5–Ga bonds
are labeled as C1, C2, C7, C4, C5, and C6 in the domain
space C.

The large-core relativistic energy-consistent pseudopo-

FIG. 1. The structure of Ga4As4H18 and definitions of three different local
domain spaces from A to C. The definitions of A, B, and C can be found in
Sec. III.

084108-3 Optical tensors of large systems J. Chem. Phys. 127, 084108 �2007�
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tential valence model Hamiltonian �ECP-28MWB� �Refs. 28
and 29� was applied to both Ga with a 4s24p1 valence con-
figuration and As with a 4s24p3 valence configuration in as-
sociation with �4s4p� / �2s2p� basis sets29 augmented by the
energy-optimized d-orbital exponents of 0.1867 for Ga and
0.2851 for As. A library 6-31G basis set30,31 was used for the
hydrogen atoms. We have noted that the size of these basis
sets is too small to sufficiently account for the correlation
effect for the optical polarizabilities and hyperpolarizabilities
at the CCSD level; however, since one goal of our paper is a
comparison of truncated incremental expansion results to the
exact CCSD results in the given basis sets we have to limit
the basis sets in order to be able to derive the latter. All the
HF and CCSD energy calculations were carried out by the
code DALTON.32 The CCSD calculations were performed by
using the localized reference orbitals generated from both the
HF canonical doubly occupied orbitals in the Foster-Boys
localization scheme.33 The static first- and second-order po-
larizabilities for increment tensors were evaluated by the lin-
ear and quadratic response approaches implemented in DAL-

TON.

IV. RESULTS AND DISCUSSIONS

A. Incremental convergence for static first- and
second-order polarizabilities

The calculated results of CCSD increments for the do-
main spaces A, B, and C are listed in Tables I–III, respec-

tively. Obviously the electronic correlation effects have sig-
nificant contributions to the optical coefficients as it is
apparent from the CCSD and HF values listed in Table I. It
can be seen that, for either of these domain spaces, the linear
polarizabilities achieve much faster convergence against the
expansion order than the nonlinear ones. For example, in the
domain space A �cf. Table I�, at the level of two-body incre-
ment corrections, the deviations for the first-order polariz-
abilities stay within 2% compared to the CCSD reference
values, whereas those for the second-order polarizabilities
are much larger at about 5%–15%. Including three-body in-
crement corrections in the domain space A, the deviations for
the linear polarizabilities further drop to less than 0.6%,
whereas much larger overestimations occur for the YYY
components of the second-order polarizabilities at about
11%. Finally, at the four-body increment corrections, the lin-
ear polarizabilities deviate from the CCSD reference value
within 0.05%, and the nonlinear ones still differ from the
CCSD reference value by up to 0.5% �cf. Table I�.

We have found that the convergence behavior of these
numbers also depends on how the domain space is defined.
In the case studied here, it is apparent from Figs. 2–4 that the
domain space A has obtained the most rapid convergence of
optical tensors, particular of the nonlinear hyperpolarizabili-
ties, with respect to the expansion order. Strong oscillatory
structures are found for the second-order polarizabilities es-
pecially for the �YYY

�2� component in the domain space C �cf.

TABLE I. The incremental expansion for the correlation energy, first- and second-order polarizabilities within
the local domain space A �in a.u.�. The percentage listed for the expansion up to n-body increments is taken with
respect to the CCSD reference value.

n-body
�domain A�

Correlation
energies �XX

�1�
�YY

�1�

��ZZ
�1�� �XXX

�2�
�XYY

�2�

��XZZ
�2� � �YYY

�2�

1 −0.62218 249.71 238.56 2462.00 526.55 83.37
78.9% 87.6% 99.0% 79.5% 76.9% 72.1%

2 −0.17122 30.86 0.49 1017.46 189.76 14.79
100.6% 98.4% 99.2% 112.4% 104.7% 84.9%

3 0.00509 3.04 2.50 −269.88 −18.79 29.84
99.9% 99.4% 100.2% 103.7% 101.9% 110.7%

4 −0.00016 1.44 −0.59 −111.93 −14.34 −11.78
99.9% 99.9% 99.9% 100.0% 99.8% 100.5%

5 0.00001 0.15 0.06 −1.02 1.19 −0.55
100.00% 100.0% 100.0% 100.0% 100.0% 100.0%

CCSD −0.78850 285.20 241.03 3096.66 684.38 115.66
HF ¯ 254.57 219.87 1516.52 314.97 −11.78

TABLE II. As in Table I, but for the local domain space B �in a.u.�.

n-body
�domain B�

Correlation
energies �XX

�1�
�YY

�1�

��ZZ
�1�� �XXX

�2�
�XYY

�2�

��XZZ
�2� � �YYY

�2�

1 −0.16534 99.91 102.30 934.828 142.26 −43.11
78.5% 82.1% 110.4% 116.4% 123.8% −559.9%

2 −0.04604 21.55 −10.76 74.389 −25.51 54.64
100.4% 99.8% 98.8% 125.7% 101.6% 149.7%

3 0.00084 0.28 1.13 −206.05 −1.84 −3.83
100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

CCSD −0.21054 121.74 92.67 803.16 114.90 7.70
HF ¯ 110.74 86.61 489.80 36.16 −58.10

084108-4 J. Yang and M. Dolg J. Chem. Phys. 127, 084108 �2007�
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Fig. 4�. In the domain space A, the derivations of the tensors
�XXX

�2� , �XYY
�2� , and �YYY

�2� corrected by the three-body increments
stay within 10%, while in the domain space C, one needs to
go to the five-body incremental correction for �XXX

�2� and �XYY
�2� ,

and even the six-body terms for �YYY
�2� . This unpleasant result

obtained for the domain space C implies that these individual
bonds may undergo strong couplings with each other which
slows down the convergence of the series. Such couplings
may occur through the canonical virtual orbitals, which have
not yet been localized in the present approach of the incre-
mental scheme, particularly for the excited properties includ-
ing optical coefficients. The higher order optical tensors
�e.g., �ijk

�2�� may show a slower convergence with respect to
the incremental expansion order than the lower order ones
�e.g., �ij

�1�� since the former involves a larger number of de-
localized electric transition dipole moments between canoni-
cal excited states than the latter. Therefore it appears neces-
sary to utilize localized virtual orbitals in future
implementations of the incremental scheme for evaluating
optical tensors.

It is also interesting to see that the correlation energy
converges within 1% up to two-body incremental corrections
for the two domain spaces A and B and up to only three-body
incremental corrections for the domain space C. From this
point of view, the problem of how to define suitable domains
seems much more severe for the evaluation of optical ten-
sors, especially for the nonlinear components, than for the
correlation energy. Just as Lin et al. has commented,34

“…the second-order polarizability of most NLO crystals
arises from basic structural units with delocalized regions of
valence electron orbitals belonging to more than two atoms,
rather than from regions localized around two atoms con-
nected by a simple �-type bond.” Therefore these “basic
structural units” need to be grouped into the local domain so
that although these optical polarizabilities and hyperpolariz-
abilities are nonlocal within these basic structural units, they
can still be regarded as fairly good local quantities so that the
contribution of the coupling between the local domains is
small.

One may have already noted in Tables I–III that both of
the HF and CCSD polarizabilities are quite different between
the local domain spaces A and B �or C�. As a matter of fact,
in the local domain spaces B and C, since all bonds involv-
ing hydrogen are frozen, no contributions of these bonds to
the polarizabilities and hyperpolarizabilities have been yet
accounted for. According to the bond charge model,1–3 the
optical polarizabilities are scaled to the difference of atomic
sizes forming a bond, i.e., larger atomic sizes often lead to
larger polarizabilities. Therefore in the case of Ga4As4H18,
these H–Ga and H–As bonds contribute large portions to the
total polarizabilities of the entire system due to the large size
difference between H and Ga/As atoms in the local domain
space A.

The convergence of the incremental expansion was also
studied with larger triple-�-quality �14s10p2d� / �3s3p2d� ba-
sis sets for the Ga and As atoms.28,35 The results are shown in
Table IV. A comparison with the double-�-quality
�4s4p1d� / �2s2p1d� results listed in Table I reveals similar

TABLE III. As in Table I, but for the local domain space C �in a.u.�.

n-body
�domain C�

Correlation
energies �XX

�1�
�YY

�1�

��ZZ
�1�� �XXX

�2�
�XYY

�2�

��XZZ
�2� � �YYY

�2�

1 −0.12314 105.58 95.47 753.67 179.86 26.50
58.5% 86.7% 103.0% 93.8% 156.5% 344.2%

2 −0.09477 29.49 4.04 896.89 59.11 −27.92
103.5% 111.0% 107.4% 205.5% 208.0% −18.4%

3 0.00706 −10.74 −8.92 −817.91 −158.18 25.34
100.0% 102.1% 97.8% 103.7% 70.3% 310.7%

4 0.00058 −5.01 1.78 −191.61 7.26 −29.67
100.4% 98.0% 99.7% 79.8% 76.6% −74.7%

5 −0.00036 2.52 0.47 170.27 36.94 17.44
100.6% 100.1% 100.2% 101.0% 108.8% 151.8%

6 0.00010 −0.11 −0.18 −8.38 −11.16 −4.44
100.6% 99.9% 99.9% 99.9% 99.1% 94.2%

7 −0.00001 0.00 0.02 0.24 1.07 0.45
100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

CCSD −0.21054 121.74 92.67 803.16 114.90 7.70
HF ¯ 110.74 86.61 489.80 36.16 −58.10

FIG. 2. The deviation of the optical tensor values at the n-body increment
contribution from the CCSD reference value within the domain space A.
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rates of convergence of the incremental expansions for both
cases. Due to the quite small CCSD reference value of �YYY

�2�

at the triple-� level the convergence in terms of percentages
is deteriorated.

Therefore based on the above comparisons of the con-
vergences for the local domain spaces A, B, and C, it is wise
in treating extended systems, as a rule of thumb, to define a
multicenter domain �e.g., grouping triple local bond orbitals�
in order to avoid relatively strong couplings for many-body
increments between local bond orbitals in two-center do-
mains. In addition, the implementation of the incremental
scheme for the evaluation of optical tensors is less straight-
forward than its implementation for the evaluation of corre-
lation energies. Some problems and principle ideas are raised
and will be discussed in the following sections.

B. Domain distances and orientations

In the usual evaluation of the correlation energy in the
incremental scheme, the coupling effects among spatially
separated local domains are small enough so that their con-
tribution to the total correlation energy can be neglected
without a significant loss of accuracy. This principle needs to

be reconsidered in the case of optical properties. In the
present study, it is found that, unlike the scalar quantity cor-
relation energy, the many-body increments of optical tensors
are not always monotonously decreasing with respect to the
increasing distance between the local domains. We explain
the observed feature as the consequence that the coupling
effects for optical tensors among local domains are essen-
tially determined by the interactions among the dipole vec-
tors individually located at these local domains. For ex-
ample, the two-body increment of the linear polarizability
between the local domains D1 and D2 can be expressed as

��ij,D1D2
�1� = � ��p12,i − p1,i − p2,i�

�Fj
	

0
= � ��p12,i

�Fj
�

0
�8�

In Eq. �8�, in the Cartesian direction i, p1,i is the component
of the dipole p1 at the local domain D1 by freezing other
local orbitals outside D1, p2,i the component of the dipole p2

at the local domain D2 by freezing other local orbitals out-
side D2 and p12,i the component of the united dipole p12 at
the combined local domain D1-D2 by freezing other local
orbitals outside D1-D2.

TABLE IV. As in Table I, but for the larger �14s10p2d� / �3s3p2d� basis sets for Ga and As in the local domain
space A �in a.u.�.

n-body
�domain A�

Correlation
energies �XX

�1�
�YY

�1�

��ZZ
�1�� �XXX

�2�
�XYY

�2�

��XZZ
�2� � �YYY

�2�

1 −0.68183 274.56 266.18 2510.76 436.70 −11.21
78.1% 88.5% 100.9% 83.2% 89.6% 223.4%

2 −0.19644 33.12 −4.57 1031.43 130.60 −6.52
100.6% 99.2% 99.2% 117.4% 116.3% 353.3%

3 0.00594 0.86 3.04 −409.58 −54.73 26.35
99.9% 99.5% 100.3% 103.9% 105.1% −172%

4 −0.00025 1.52 −0.92 −107.68 −24.16 −12.97
100.0% 100.0% 100.0% 100.3% 100.2% 86.6%

5 0.00001 0.13 0.07 −9.09 −0.75 −0.67
100.00% 100.0% 100.0% 100.0% 100.0% 100.0%

CCSD −0.87256 310.19 263.80 3015.84 487.67 −5.02
HF — 274.77 240.19 1450.56 172.64 −87.11

FIG. 3. As in Fig. 2, but for the domain space B. FIG. 4. As in Fig. 2, but for the domain space C.

084108-6 J. Yang and M. Dolg J. Chem. Phys. 127, 084108 �2007�

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  147.8.204.164 On: Fri, 02 Sep 2016

07:02:08



The dipole variation �p12,i has a complicated angular
dependence between p1 and p2, since there are two dipoles,
each one of which can be oriented in any direction. The
potential energy of the dipole p2 in the electric field E1 pro-
duced by p1 depends on the angular position of p2 relative to
p1 and their relative orientations. Therefore the maximum
interaction is achieved if E1 is parallel to p2 and the interac-
tion vanishes if they are orthogonal to each other. Although
the electronic dipole-dipole interactions are short-range ef-
fects, the two-body increment between two relatively apart
local domains may be larger than the one between two
nearby local domains if the former domains are angularly
much more favorable for the dipole-dipole interaction than
the latter. However, the coupling effects to many-body incre-
ments of optical tensors can be varied small and even null
among nearby local domains if those local domains are an-
gularly unfavorable, say, orthogonal to each other, and thus
their nonadditive contribution could be safely neglected.

As one example in the present study, we compare the
two-body increments with respect to both the domain dis-
tance �cf. Table V� and orientation �cf. Table VI� in the
domain space C. The two-body increments of ��XX,mn

�1� and
��XYY,mn

�2� between two nearby local domains C2 and C3
�cf. Fig. 1� are 2.66 and 22.74 a.u. �cf. Table V�, which are
substantially larger than the ones between two farther apart
local domains C2 and C4, since the relative angular orienta-
tion of C2 and C3 is similar to that of C2 and C4. Meanwhile
in Table V, the increment ��C2C3 is much larger than ��C2C4

�i.e., by almost one order of magnitude�, which is regularly
expected in the usual incremental expansion of correlation
energies. The angular dependence of two-body increments is
shown in Table VI by considering domains with a similar
spacing. The much larger two-body increments of, e.g.,
��XX,mn

�1� and ��XYY,mn
�2� , occur for the parallel domains be-

tween C2 and C6 than for the domains between C2 and C4
as well as C2 and C5. It is also noted in Table VI that the
two-body increments of the correlation energies are compa-
rably small for ��C2C6 �−0.000 81 a.u.� and ��C2C4

�−0.000 56 a.u.�. Therefore the increments of optical tensors
have a far more pronounced angular dependence on local
domains with spatial orientations than those of correlation
energies.

C. Weight factors for increments of optical tensors

In view of the tensorial properties of the increments of
optical coefficients, the weight factors in the incremental ex-
pansion, i.e., the prefactors weighting the equivalent incre-
ments, need to be calculated with care. The weight factors
for the increments of correlation energies may not be appli-
cable to those of optical tensors without redistributions. The
reason is that the increments of optical tensors can show a
varied symmetry different from those of correlation energies.
Let us give one example in the case of the domain space C of
the Ga4As4H18 cluster. According to the C3 rotational point
symmetry along the principal axis containing the Ga1–As5
bond, the contribution of one- and two-body increments of
correlation energies adds up as follows:

�
m�D

�m = 3�C1 + �C3 + 3�C4, �9�

�
m�n�D

��mn = 3��C1,C2 + 3��C1,C3 + 3��C1,C5

+ 6��C1,C4 + 3��C3,C4 + 3��C4,C5. �10�

For scalar correlation energies, the two-body domain of
C1-C2 is identical to C1-C7 and C2-C7, C1-C3 to C2-C3
and C7-C3, C1-C5 to C2-C6 and C7-C4, C1-C4 to C1-C6,
C2-C4, C2-C5, C7-C5 and C7-C6, C3-C4 to C3-C5 and C3-
C6, and C4-C5 to C4-C6 and C5-C6. However, if the incre-
ments of optical tensors are considered, say, for the linear
coefficients �m�n�D��XX,mn

�1� and �m�n�D��YY,mn
�1� , and if the

X axis is in line with the C3 bond �i.e., the principal axis� and
the Y axis lies in the C2-C3-C6 mirror plane �cf. Fig. 1� in
the Cartesian coordinate system, the corresponding one- and
two-body increments are in turn expressed as

�
m�D

�XX,m
�1� = 3�XX,C1

�1� + �XX,C3
�1� + 3�XX,C4

�1� , �11�

�
m�D

�YY,m
�1� = 2�YY,C1

�1� + �YY,C2
�1� + �YY,C3

�1� + �YY,C6
�1� + 2�YY,C4

�1� ,

�12�

TABLE V. The domain distance and the two-body increments of the correlation energy ��mn as well as the
optical tensors for the local domains m and n within the domain space C �in a.u.�.

Local domain
pairs �m ,n� ��mn ��XX,mn

�1�
��YY,mn

�1�

���ZZ,mn
�1� � ��XXX,mn

�2�
��XYY,mn

�2�

���XZZ,mn
�2� � ��YYY,mn

�2�

�C2, C3� −0.00454 2.66 1.48 −70.8 22.74 62.45
�C2, C4� −0.00056 0.94 −0.81 1.89 −2.74 7.99

TABLE VI. The domain distance and the two-body increments of the correlation energy ��mn as well as the
optical tensors for the local domains m and n within the domain space C �in a.u.�.

Local domain
pairs �m ,n� ��mn ��XX,mn

�1�
��YY,mn

�1�

���ZZ,mn
�1� � ��XXX,mn

�2�
��XYY,mn

�2�

���XZZ,mn
�2� � ��YYY,mn

�2�

�C2, C6� −0.00081 1.99 0.16 42.39 15.16 10.66
�C2,C4�= �C2,C5� −0.00056 0.94 −0.81 1.89 −2.74 7.99
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�
m�n�D

�XX,mn
�1� = 3��XX,C1C2

�1� + 3��XX,C1C3
�1� + 3��XX,C1C5

�1�

+ 6��XX,C1C4
�1� + 3��XX,C3C4

�1�

+ 3��XX,C4C5
�1� , �13�

�
m�n�D

��YY,mn
�1� = 2��YY,C1C2

�1� + ��YY,C1C7
�1� + 2��YY,C1C3

�1�

+ ��YY,C2C3
�1� + 2��YY,C2C4

�1� + ��YY,C2C6
�1�

+ 2��YY,C1C4
�1� + 2��YY,C1C5

�1�

+ 2��YY,C1C6
�1� + 2��YY,C3C4

�1�

+ ��YY,C3C6
�1� + 2��YY,C4C6

�1� + ��YY,C4C5
�1� .

�14�

The expansions at the higher order increments of higher or-
der polarizabilities can be similarly generated and will not be
discussed here. For the increments of the XX component of
linear polarizabilities, since the C3 rotational invariance still
holds, the same weight factors and distributions in Eqs. �11�
and �13� are expected as those of correlation energies in Eqs.
�9� and �10�. However, the external electric field applied
along the Y direction essentially breaks the C3 rotational in-
variance and leaves only the mirror operation resting in the
plane determined by C2, C3, and C6 local domains, and the
domains of C1 �C7� and C2 thus become nonequivalent. The
same nonequivalence also applies to the domains of C4 �C5�
and C6. The weight factors for the increments of YY compo-
nents in Eqs. �12� and �14� are thereby significantly redistrib-
uted compared to those of correlation energies in Eqs. �9�
and �10�.

Therefore the correct weight factors for the increments
of optical tensors must be obtained by reclassifying the local
domains according to the polarization direction and the elec-
tric field direction in association with the total structural
symmetry. For one particular increment of different optical
tensors, there may be sets of weight factors due to their var-
ied symmetric properties. Therefore these weight factors turn
out to be tensorial with the same symmetry as optical tensors
at the same rank. For example, the first-rank weight factors
can be defined in a first-rank weight factor matrix, say,
Wd1d2d3¯dn

�1� for the linear polarizabilities within the n-body
local domains 
d1 ,d2 ,d3 , . . . ,dn�,

Wd1d2d3¯dn

�1� = �wXX
d1d2d3¯dn wXY

d1d2d3¯dn wXZ
d1d2d3¯dn

wYX
d1d2d3¯dn wYY

d1d2d3¯dn wYZ
d1d2d3¯dn

wZX
d1d2d3¯dn wZY

d1d2d3¯dn wZZ
d1d2d3¯dn


 .

�15�

The weight factor matrices for higher order polarizabil-
ities have the same structures as the corresponding optical
tensors. In the present case of the Ga4As4H18 cluster with
C3v point group symmetry, the first-rank weight factor matrix
for the linear polarizabilities is written as follows:

Wd1d2d3¯dn

�1� = �wXX
d1d2d3¯dn 0 0

0 wYY
d1d2d3¯dn 0

0 0 wYY
d1d2d3¯dn


 .

�16�

For the one-body local domains C1, C2, C3, C4, C5, C6, and
C7, the weight factor matrices are

WC1
�1� = WC7

�1� = WC4
�1� = WC5

�1� = �3 0 0

0 2 0

0 0 2

 ,

�17�

WC2
�1� = WC6

�1� = �3 0 0

0 1 0

0 0 1

, WC3

�1� = �1 0 0

0 1 0

0 0 1

 .

For the two-body local domains C1C2, C1C3, C1C4, C1C5,
C1C6, and C1C7, the weight factor matrices are

WC1C2
�1� = WC1C3

�1� = WC1C5
�1� = �3 0 0

0 2 0

0 0 2

 ,

�18�

WC1C4
�1� = WC1C6

�1� = �6 0 0

0 2 0

0 0 2

, WC1C7

�1� = �3 0 0

0 1 0

0 0 1

 .

We finally note that the consideration of nonscalar
weight factors will be crucial for the extension of the scheme
to crystals.

V. CONCLUSIONS

A wave-function–based efficient correlation method in
the framework of the incremental scheme to calculate optical
tensors aiming at large systems has been proposed. The test
calculations on the model system Ga4As4H18 show that the
incremental expansion of the first-order polarizabilities is
well convergent with respect to the expansion order. The
convergence of the second-order hyperpolarizabilities is
more critical than for the first-order polarizabilities and de-
pends on the definition of local domains. The many-body
increments due to the coupling effects for the studied optical
tensors among the local domains have the dependence on the
relative orientation and distance of dipoles located at the lo-
cal domains. The many-body corrections to the incremental
expansion can be only minor if the relative orientation of
corresponding local domains is unfavorable for dipole-dipole
interactions. Unlike the scalar quantity of weight factors for
increments of correlation energies, the weight factors for the
n-body increments of optical tensors need to be reevaluated
and show the same tensorial properties as optical coefficients
with respect to the polarization and electric field directions.
The weight factor matrices for one- and two-body incre-
ments of linear polarizabilities are formulated for the model
system Ga4As4H18 with C3v point group symmetry.

084108-8 J. Yang and M. Dolg J. Chem. Phys. 127, 084108 �2007�

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  147.8.204.164 On: Fri, 02 Sep 2016

07:02:08



ACKNOWLEDGMENTS

This work was financially supported by the project Gra-
duiertenkolleg 549, “Azentrische Kristalle” at the University
of Cologne. We thank the Computer Center at the University
of Cologne �RRZK� for providing us with access to the high
performance computing CLIO Sun-Opteron cluster. Thanks
are also due to J. Friedrich for generously providing us the
C�� code for evaluating the increments.

1 B. F. Levine, Phys. Rev. Lett. 22, 787 �1969�.
2 B. F. Levine, Phys. Rev. Lett. 25, 440 �1970�.
3 B. F. Levine, Phys. Rev. B 7, 2600 �1973�.
4 Z. S. Lin, J. Lin, Z. Z. Wang, Y. C. Wu, N. Ye, C. T. Chen, and R. K. Li,
J. Phys.: Condens. Matter 13, R369 �2001�.

5 C. T. Chen, Z. S. Lin, and Z. Z. Wang, Appl. Phys. B: Lasers Opt. 80, 1
�2005�.

6 J. Lin, M. H. Lee, Z. P. Liu, C. T. Chen, and C. J. Pickard, Phys. Rev. B
60, 13380 �1999�.

7 P. N. Butcher and T. P. McLean, Proc. Phys. Soc. London 81, 219 �1963�.
8 S. N. Rashkeev, W. R. L. Laambrecht, and B. Segall, Phys. Rev. B 57,
3905 �1998�.

9 C. Aversa and J. E. Sipe, Phys. Rev. B 52, 14632 �1995�.
10 E. Ghahramani, D. J. Moss, and J. E. Sipe, Phys. Rev. B 43, 8990 �1999�.
11 S. N. Rashkeev, W. R. L. Laambrecht, and B. Segall, Phys. Rev. B 57,

3905 �1998�.
12 M. Albrecht and J. Igarashi, J. Phys. Soc. Jpn. 70, 1035 �2001�.
13 M. Albrecht and P. Fulde, Phys. Status Solidi B 234, 313 �2002�.
14 M. Albrecht, Theor. Chem. Acc. 114, 265 �2005�.
15 J. Grafenstein, H. Stroll, and P. Fulde, Phys. Rev. B 55, 13588 �1997�.

16 V. Bezugly and U. Birkenheuer, Chem. Phys. Lett. 399, 57 �2004�.
17 U. Birkenheuer and D. Izotov, Phys. Rev. B 71, 125116 �2005�.
18 U. Birkenheuer, P. Fulde, and H. Stoll, Theor. Chem. Acc. 116, 398

�2006�.
19 E. Fabiano, F. Della Sala, G. Barbarella, S. Lattante, M. Anni, G. Sotgiu,

C. Hättig, R. Cingolani, G. Gigli, and M. Piacenza, J. Phys. Chem. B
111, 490 �2007�.

20 M. Pecul, F. Pawlowski, P. Jørgensen, A. Kohn, and C. Hättig, J. Chem.
Phys. 124, 114101 �2006�.

21 H. Stoll, Phys. Rev. B 46, 6700 �1992�.
22 H. Stoll, J. Chem. Phys. 97, 8449 �1992�.
23 H. Stoll, Chem. Phys. Lett. 191, 548 �1992�.
24 H. Stoll, B. Paulus, and P. Fulde, J. Chem. Phys. 123, 144108 �2005�.
25 B. Paulus, Phys. Rep. 428, 1 �2006�.
26 J. Friedrich, M. Hanrath, and M. Dolg, J. Chem. Phys. 126, 154110

�2007�.
27 B. Paulus, P. Fulde, and H. Stoll, Phys. Rev. B 54, 2556 �1996�.
28 Energy-Consistent Pseudopotentials of the Stuttgart/Cologne Group,

http://www.theochem.uni-stuttgart.de/pseudopotentiale/clickpse.en.html
29 A. Bergner, M. Dolg, W. Küchle, H. Stoll, and H. Preuss, Mol. Phys. 80,

1431 �1993�.
30 EMSL Gaussian Basis Set Order Form, http://www.emsl.pnl.gov/forms/

basisform.html
31 W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys. 56, 2257

�1972�.
32 T. Helgaker, H. J. Aa. Jensen, P. Jørgensen et al., DALTON, a molecular

electronic structure program, release 1.2, 2001.
33 S. F. Boys, Rev. Mod. Phys. 32, 296 �1960�.
34 Z. S. Lin, J. Lin, Z. Z. Wang, Y. C. Wu, N. Ye, C. T. Chen, and R. K. Li,

J. Phys.: Condens. Matter 13, R369 �2001�.
35 J. M. L. Martin and A. Sundermann, J. Chem. Phys. 114, 3408 �2001�.

084108-9 Optical tensors of large systems J. Chem. Phys. 127, 084108 �2007�

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  147.8.204.164 On: Fri, 02 Sep 2016

07:02:08


