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Abstract

Sexual selection requires both that there is heritable variation in traits related to fitness, and that either some of this
variation is linked to traits of the parents, and/or that there are direct benefits of choosing particular individuals as mates.
This suggests that if direct benefits are important offspring performance should be predicted by traits of the rearing adults.
But if indirect benefits are more significant offspring performance should be predicted by traits of the adults at the nest-of-
origin. We conducted cross-fostering experiments in great tits (Parus major) over four years, in two of which we
manipulated environmental conditions by providing supplemental food. In a third year, some nestlings were directly
supplemented with carotenoids. Nestlings in broods whose rearing adults received supplemental food were heavier and
had improved immune responses even when controlling for body mass. Nestling immune function was related to measures
of the yellow plumage color of both the rearing male and the putative father. Nestling body mass was influenced by the
coloration of both the rearing female and the genetic mother. Our results suggest that features of both their social and
putative genetic parents influence nestling health and growth. From this it would appear that females could be gaining
both direct and indirect benefits through mate choice of male plumage traits and that it would be possible for males to
similarly gain through mate choice of female traits.
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Introduction

In the natural setting, genetic effects, maternal effects, the effect

of parental effort and environmental effects will often be

confounded, making it difficult to discern their individual

influences, for a discussion of this issue see Kruuk & Hadfield

[1]. This is because adult animals will vary in their parenting

ability and/or in their willingness to invest in the current breeding

attempt and these are likely to covary with their individual quality,

so we might expect adults of high genetic quality to be better

parents [2] and perhaps also to occupy high-quality breeding sites

[3]. However to test certain hypotheses we need to determine the

extent of the influence of genetic and environmental factors on

offspring. Sexual selection theory assumes that there is a link

between the degree of expression of a trait used in mate choice and

the potential benefits to the choosy sex of selecting a partner

displaying that trait [4]. It has been understood for a long time that

such benefits can be direct (e.g. improved parenting ability, access

to resources, etc.) and/or indirect (good genes) [4]. If either sex

gains direct benefits by choosing a high-quality mate, one would

expect that ornamental traits in the chosen sex should reflect the

quality of the environment in which offspring are reared. In

contrast, if indirect benefits are gained, one would expect to see

ornaments reflecting their genetic quality.

Heritability measured in laboratory conditions does not always

provide good estimates of the contribution of genetic sources of

variation in field situations [5], because environmental variation

magnifies phenotypic variance in the field [6]. Altricial animals

offer a unique opportunity to disentangle the effects of parents and

environment on offspring performance in the field, as newly

hatched offspring can be transferred between broods in a manner

that would be almost inconceivable for many other organisms with

similar levels of parental care. However, it remains impossible to

break the link between early maternal effects (i.e. those that act

before the offspring are moved between broods) and genetic

effects. Despite this caveat moving offspring at an early stage of

development gets close to achieving the goal of disassociation of

genetic and environmental effects [7]. In such an experiment one

would wish to assess a good proxy measure of fitness in the

offspring as the dependent variable [8–10], the majority of studies

have focussed on body mass while a few have also assessed

immune function both of which are relatively easy to measure in

nestling birds.

Significant nest-of-origin (genetic or early maternal) effects on

nestling immune function have been demonstrated in the field in:

blue tits (Cyanistes caeruleus) [11], tree swallows (Tachycineta bicolor)

[12,13], house sparrows (Passer domesticus) [14], starlings (Sturnus
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vulgaris) [15] and collared flycatchers (Ficedula albicola) [16]

although in the latter this was later shown to not be of genetic

origin [17]. Body size has also been shown to be affected by nest-

of-origin in several species [18–20]. Strong rearing environment

effects on immune function in nestlings have been found in several

species including; house sparrows [14], pied flycatchers (F.

hypoleuca) [21,22], collared flycatchers [16], great tits (Parus major)

[23,24], tree swallows [13] and starlings [15]. The brood size in

which it is reared is one of the most obvious environmental effects

for a young nestling, and an effect of rearing brood size on

immune function has been demonstrated in both blue tits [11] and

zebra finches (Taeniopygia guttata) [25]. These studies discriminate

between the effects of genetic (+ early acting maternal effects) from

environmental effects on nestling performance and in general have

shown that both can play a role e.g. [20,24].

Establishing the extent of genetic and/or environmental

influences on offspring performance is valuable but insufficient

to provide an answer to the discussion about whether direct or

indirect benefits are gained through mate choice. If individuals are

gaining direct benefits by choosing a high-quality mate, one would

expect that adult ornaments should convey information about the

immediate benefits to the offspring and that as a consequence

offspring performance should be related to the ornamental traits of

the social parents (i.e. the individuals rearing the offspring) [26]. In

contrast, if individuals are gaining indirect benefits through their

mate choice decisions one would expect to see relationships

between the ornaments of the genetic parents and offspring

performance.

There are few studies that simultaneously have disentangled the

effects of rearing environment from genetic effects/natal environ-

ment, and tested for an effect of sexual selected ornaments on

offspring fitness, Senar et al. demonstrated that the growth of blue

tit chicks was related to the plumage yellowness of the social male

and not to any measured features of the genetic parents, which

suggests that females are gaining direct benefits through their

choice of males with yellow plumage [26]. Similarly, in blue-footed

boobies (Sula nebouxii) variance in chick condition was better

predicted by the foot color of the social father than that of the

genetic father [27]; this again suggests that direct benefits of mate

choice are more significant than indirect benefits. While both

direct and indirect effects have been shown to be important in

mate choice in side-blotched lizards (Uta stansburiana) [28]. These

studies are consistent with meta-analyses of (largely observational)

data from several taxa, which have suggested that, in general,

direct benefits are more substantial than indirect benefits of mate

choice [29,30].

Great tits are a common temperate, hole-nesting passerine, with

both males and females displaying yellow carotenoid-based and

black melanin-based colors in their plumage both of which appear

to convey information about individual quality: males with large

black breast stripes tend to be paired with early-breeding females

[31] and this melanin-based display has been shown to be a signal

of competitive ability [32]. Variation in the yellow, carotenoid-

based coloration has been shown to correlate with aspects of

health and condition in adult birds [33–36]. The expression of

both the melanin-based breast stripe [37,38] and the carotenoid

display [36,39] have been linked to parental quality. In addition to

being used for coloration, carotenoid pigments are thought to have

health benefits [40,41], as they can act as free radical scavengers

[42] and promote activation of the immune system [43]. There are

several empirical studies demonstrating immunological benefits of

dietary carotenoids in adult birds (mostly with captive populations

and large doses of carotenoids e.g. [44,45]; studies of free-living

nestling great tits have failed to identify health benefits of

supplemental carotenoids [46,47].

In this study we performed experiments over four years to

determine the influences of genetics (and early maternal effects)

and environment on proxy measures of fitness in nestling great tits.

Over three-years we conducted a cross-fostering field experiment

to test for nest-of-origin and nest-of-rearing effects on nestlings

immune function and body mass. To provide insight into the

importance of direct versus indirect benefits we related these

offspring performance measures to traits of the putative genetic

parents (the adults at the nest-of-origin) and of the adults rearing

the brood. We further manipulated the rearing environment

through a provisioning experiment, providing food to adults in two

years. In the final year, as carotenoids are the basis of the

pigmentation in one of the ornamental traits in adults, we

provided a direct carotenoid supplement to chicks. We would

expect supplements to produce a positive effect on chick growth or

immunocompetence.

Materials and Methods

Ethical Statement
This study was conducted under Home Office Licence 30/

2244, both SRAP and MRE also had Home Office personal

licences (numbers: 30/6759 and 30/3092) and MRE a BTO

ringing permit (number: FA3499). The project was approved by

University of Exeter’s ethics committee. Animal suffering was

reduced as far as possible by minimising the number of procedures

to which any individual was exposed, hence we decided not to take

an additional blood sample to assess blood levels of carotenoids

and we chose to assess color by removing feathers rather than

exposing animals to the longer process that would have involved

using the spectrometer directly on the bird. Work was conducted

in Bagley Wood, which is owned by St John’s College, Oxford.

General Methods
Data were collected in 1999 and from 2004–2006 in a

temperate, mixed woodland, where great tits have been breeding

in nest boxes for over 15 years; Bagley Wood, Oxfordshire UK

(Grid Ref SP508024). We monitored all boxes regularly during the

start of the season until eggs were found. Thereafter, boxes were

checked daily to determine final clutch size and the start of

incubation, to avoid disturbance during incubation once the

number of eggs in the clutch had stopped increasing we estimated

the expected day of hatching and then checked boxes daily during

the nestling period. Chicks were ringed on day six using uniquely

numbered British Trust for Ornithology rings. Nests were visited

on day 13 to determine nestling mass (using digital scales (FS-125,

My Weigh, GKI Technologies Phoenix AZ) accuracy 0.05 g) and

the number of surviving offspring. Over the four years, a total of

393 breeding attempts and 2044 chicks were monitored (Table 1).

Final samples sizes may differ from this and also may differ

between analyses as not all birds were successfully measured for all

traits and the sample size for any analysis is dictated by the set of

birds for which all relevant measurements were taken.

Experimental Design
A partial cross-fostering design was used in 1999, 2004 and

2005. On the day of hatching roughly half of the chicks in a nest

were swapped with those from another nest that hatched on the

same day. Nests to be matched were selected at random from

those hatching on the same day, and brood sizes in the fostering

nests remained the same. We distinguished fostered chicks from

chicks remaining in their nest-of-origin by clipping a small amount

Effects of Parents and Environment on Offspring
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of down from their backs. In total we had 279 chicks (43 broods) in

our sample in 1999, 584 chicks from 137 broods in 2004, 474

chicks from 127 broods in 2005 and 707 chicks from 86 broods in

2006.

We provided two different food supplements. A general food

supplement (Peanut Cake Tubes, C.J. Wildbird Foods Ltd.,

Shrewsbury UK) designed to supplement adult food intake was

provided in 2004 and 2005, 66 broods received the supplement in

2004 while 42 broods were supplemented in 2005. At least one

Peanut Cake Tube was hung close (,3 m) to half the nest boxes

prior to the breeding season (provisioned nest boxes were

determined at random each year) and maintained until the chicks

had fledged. In 2006 nestlings were randomly assigned to one of

two treatment groups (control or carotenoid-supplemented), this

meant that there would be chicks within one nest in different

treatment groups. Nestlings were fed the supplement during the

period of most rapid growth on days 4, 5, 6, 8, 10, 11 and 12

following established techniques [48]. In brief, carotenoid supple-

ments were prepared every 3 days in a 7.5% solution of leaf gelatin

at 50uC in a 1 ml syringe and were quickly cooled in a refrigerator

at 4uC and left to set. The resulting jelly mixture was administered

by syringe into the nestlings’ mouths and was readily consumed by

the birds. Syringes were bathed in ice inside thermos containers to

keep them cool in the field before use. Carotenoid-supplemented

chicks were fed 0.05 ml of 5 mg/ml OroGloTM xanthophyll

solution (Kemin, Des Moines, Iowa), containing 80% trans-lutein

and 4% trans-zeaxanthin, containing 250 ug of xanthophylls,

these are the commonest carotenoids in Lepidoptera larvae [49].

Assuming that nestlings only absorb approximately 20% of

ingested carotenoids [50], this dose equates to around 50% of

the naturally occurring mean daily carotenoid intake for a growing

great tit chick [47]. This is much less than in has been used in

previous carotenoid supplementation experiments on wild great

tits [47,51,52] but is more likely to fall within the naturally

occurring dietary range for nestling tits. Control nestlings received

only the carrier gelatin mixture containing no carotenoids. In

2006, 309 chicks received a carotenoid supplement.

We were unable to assess the concentration of carotenoids in the

blood, following supplementation. This would have necessitated

taking additional blood samples from nestlings, which would have

prejudiced the welfare of the chicks beyond what we felt was

acceptable. However, in a parallel investigation on the same birds

we found that carotenoid supplementation influenced the yellow

ventral coloration of offspring (unpubl. data), which suggests that

birds were absorbing the carotenoid supplement. In another study

in which great tit chicks were fed carotenoids in a similar manner

the chicks developed carotenoid-rich plumage [47].

Nestling Immune Function
We assessed immunocompetence of nestlings in 2005 and 2006,

using the PHA assay, which is a common and reliable method for

assessing immune function in birds [24,53,54]. This technique

induces an immune response (swelling) to a mitogen that is injected

subcutaneously into the wing web, a swelling is produced at least

partly as a result of infiltration of various immune factors from

both the cell-mediated and acquired immune system [55]. The

magnitude of this response is quantified as the thickness of the

localised swelling around the injection site.

Thirteen-day old nestlings were injected with 0.01 mg of PHA-

P (Sigma UK, L8754) dissolved in 0.02 ml phosphate-buffered

saline solution (PBS) into the centre of the wing web (following

Tschirren et al. [53]). Wing web swelling was measured to the

nearest 0.01 mm using a pressure sensitive calliper (Teclock SM-

112, Teclock, Japan) at 24 hours 61 (n = 995) post injection.

Readings were taken in triplicate and at 5 s intervals, to account

for the initial rapid decrease in thickness as a result of the pressure

of the calliper. Thickness was calculated as the mean of the three

measurements. The difference between the thickness before and

after the injection served as our measure of immunocompetence.

Measurements were taken by SRAP. Our measurements of the

wing web swelling had a high repeatability of 90%, (F

726,1454 = 28.71, P,0.001) [56].

Parental Traits
Adults were trapped in nest boxes using specifically designed

spring traps when nestlings were at least 10 days old (overall we

caught 156 males and 161 females). A small number of adults (ca.

10%) were found breeding in more than one year and these were

included in the analysis only in the first year they were recorded.

Adults were weighed to the nearest 0.05 g using digital scales (FS-

125, My Weigh, GKI Technologies Phoenix AZ).

In 2004–2006, four to eight feathers were removed from

standardised regions of the left and right carotenoid breast patches

of adults. The feathers were overlaid to create a uniform patch

from which we measured color with a reflectance spectrophotom-

eter (ColortronTM; see Hill [57] for details). From the yellow

curve obtained in the human-visible range, we obtained three

color metrics – hue, saturation and brightness (HSB). Although

vision in tit species is sensitive to ultra-violet wavelengths of light,

we do not consider our method to be biased in quantifying

carotenoid-derived color since xanthophyll pigments significantly

affect light absorbance in human-visible wavelengths and not in

the UV [26,52,58,59]. HSB values were highly correlated within

feather patches and individuals (all P,0.001 for males and females

with r2 ranging from 0.25 to 0.73), so we used Principal

Component Analysis (PCA) to derive un-correlated color compo-

nents, which we refer to as ‘‘yellowness’’ (PC1) as it was almost

equally loaded on saturation and hue and ‘‘yellow brightness’’

(PC2) as it was heavily loaded on brightness (see Table S1). PC1

explained 63.4% of the variance in the HSB measurements of

yellow plumage in females and 66.4% in males, while PC2

explained a further 27.7% of the variance in females and 23.2% in

males. PCA was conducted using the princomp procedure in R

[60].

For the melanin breast stripe patch, saturation and brightness

(not hue, which is irrelevant for black or white shades) were

Table 1. A summary of the experimental design, the traits
assessed in each year and the annual sample sizes of nestlings
and nests used in the experiment.

1999 2004 2005 2006

Cross-fostering X X X

General food supplement X X

Carotenoid supplement X

Nestling immune function assay X X

Nestling body mass X X X X

Adult male breast stripe size &
mass

X X X X

Parental color traits & female mass X X X

Number of nestlings 273 584 474 707

Number of nests 43 71 60 86

A shaded cell means that the design feature or measurement was utilised in
that year.
doi:10.1371/journal.pone.0069695.t001
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calculated in the manner described above and since color

components were again strongly correlated (r2 0.47–0.60,

P,0.001), we combined them into one PC which we will refer

to as ‘‘stripe blackness’’ and was equally loaded on both brightness

and saturation and explained 79.7% of the variance in the colour

of the breast stripe of females and 71% in males (Table S1). The

correlation matrix showing the strengths of the relationships

between male colour variables and female colour variables are

shown in table 2. Breast stripe size was measured for males and

calculated by taking the sum of the widths at five standardised

points following [9].

A summary of the experimental design employed, which traits

were measured in each years and sample sizes of nestlings and

nests is shown in table 2. Unfortunately, in this study we were

unable to assess parentage directly using genetic techniques. It is

known that extra-pair paternity occurs in great tits, estimated in a

nearby population to result in 13–14% of offspring being unrelated

to their social father [61–63]. It is therefore possible that any

failure to detect relationships between offspring performance and

the traits of nest-of-origin males could be due the level of extra-

pair paternity. Relationships between offspring performance and

traits of putative mothers (no examples of offspring being unrelated

to their putative mother were reported by either Blakey [62] or

Patrick et al. [63]) and the traits of rearing adults will be

unaffected by this possible source of error.

Data Analysis
Our study included both experimental components (manipula-

tion of the environment through adult food supplementation and

directly supplementing chicks with carotenoids and cross-fostering

chicks) and observational components where we looked to explain

variance in chick performance by reference to variance in

characteristics of their social or genetic parents. The presence of

a significant element of hypothesis testing and our desire to adopt a

simple, unified analytical process led us to adopt an approach in

which we fitted mixed-model ANOVA followed by model

simplification to yield a minimal adequate model [64].

Data were analysed using mixed model ANOVA implemented

using the glmer procedure in the lme4 library for R [60,65].

Models used chick body mass and the size of the wing web swelling

in response to PHA injection as dependent variables. Nests were

grouped into cross-foster groups, normally composed of two nests

between which nestlings were exchanged. Following Brinkhof

et al. [24] we used a mixed model analysis with data included for

each nestling. The first set of models used a random model only,

with random effects of: nest-of-origin; the nest in which the chick

was raised and the cross-foster group (nest-of-origin and rearing

nest were both nested within cross-foster group). The second set of

models included, in addition to the same random model, a fixed

model that included as fixed independent effects; the adult traits

(as described above) for the male and female at the nest-of-origin

and the male and female at the rearing nest; the mass of the chick

and the brood size in which it was raised; a binomial code to

identify whether or not the nest in which the chick was raised was

provided with supplemental food (provisioned); and a binomial

code identifying whether or not the chick had been fed a

carotenoid supplement. As color measurements were only taken in

2004–2006, two models had to be run for each dependent

variable. One included data for all years and included data on

variables for which data were collected in all years (male breast

stripe size, brood size, nestling mass). The other included data

from years 2004–2006 and included a wider range of data on

parental variables (adding female body mass, male and female

stripe blackness, yellowness and yellow brightness). Therefore four

models were run on each dependent variable. Model simplification

involved hierarchical step-wise deletion, with those terms explain-

ing the least variance (least significant in the model) in the response

being removed first. The final model was accepted when all

remaining fixed-effect terms explained significant variance in the

dependent variable. Model residuals were checked for hetero-

scedasticity and that they conformed to a normal distribution. The

significant (P,0.05) factors in the fixed model from the full

(unsimplified) model are reported in Appendix S1 and those

derived from the maximally simplified model are reported in the

text.

There is debate about the appropriate denominator degrees of

freedom in complex mixed model ANOVAs, see for example

(https://stat.ethz.ch/pipermail/r-help/2006-May/094765.html).

In this paper we have reported significance tests for the terms in

our models. For the fixed model we have used a denominator

degrees of freedom obtained by subtracting appropriate degrees of

freedom for all the fixed and random effects in the model (i.e. one

for continuous variables and (number of levels –1) for categorical

variables). For the random model we used Satterthwaite’s

approximation [64,66,67] to determine appropriate degrees of

freedom.

Results

Immunocompetence
Immunocompetence in nestlings was measured in two years, in

both of which we have data on adult morphological traits (Table 1).

Data are available for this analysis from 1,181 nestlings in 146

broods.

After model simplification, supplemental provisioning

(F1,192 = 4.47, P = 0.035), nestling body mass (F1,192 = 5.19,

P = 0.024), the yellow plumage brightness of the nest-of-origin

male (F1,192 = 9.93, P = 0.002) and the plumage yellowness of the

rearing male (F1,192 = 5.25, P = 0.023) explained significant vari-

ance in nestling immunocompetence, with yellower males raising

nestlings that have greater PHA-induced swelling than less-yellow

Table 2. The colour variables from the same individual are
uncorrelated.

Males
Yellow
brightness Yellowness Stripe blackness

Yellow brightness –

Yellowness 1.24610216

(P.0.99)
–

Stripe blackness 0.0013 (P = 0.99) 0.0018 (P = 0.99) –

Stripe width 20.064 (P = 0.54) 20.054 (P = 0.60) 0.16 (P = 0.12)

Females Yellow brightness Yellowness Stripe blackness

Yellow brightness –

Yellowness 4.96610217

(P.0.99)
–

Stripe blackness 0.11 (P = 0.26) 20.18 (P = 0.07) –

Mass 0.0058 (P = 0.95) 0.115 (P = 0.24) 0.024 (P = 0.81)

Table shows Pearson’s correlation coefficients calculated between the traits of
male and female great tits. None of these relationships differ significantly from
chance, although the relationship between female yellowness and stripe
blackness is close to significance. Note that as yellowness and yellow brightness
are PC1 and PC2 of the yellow plumage one would expect them to be
uncorrelated. Samples sizes for these relationships are 94 males and 105
females.
doi:10.1371/journal.pone.0069695.t002
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males, and males with brighter yellow plumage being the putative

fathers of nestlings with higher immunocompetence (Figure 1,

Figure 2). The variance components of both rearing nest and nest-

of-origin were small (4.2861029 and 2.1461029 respectively) but

the variance component of the cross-foster group was large (0.137)

and explained a substantial amount of the total variance (Table

S2).

Carotenoid supplementation did not explain significant vari-

ance in immune function in either a full model (F1,77 = 1.38,

P = 0.25) or a simplified model (i.e. it dropped out of the model

during the simplification process). We found little evidence of year-

to-year repeatability of performance in nest boxes. This suggests

that the environment quality around each nestbox changes

significantly between years (Appendix S2).

Day 13 Body Mass
Nestling body mass was measured in all four years, and data are

available from 2,038 nestlings in 260 broods. A full set of parental

morphological traits was taken in three years. Therefore, we have

conducted two analyses, one including data from all four years and

only using parental traits measured in all four years and one that

only uses data from three years but includes the full set of parental

morphological traits.

After model simplification of the model associated with the four-

year dataset, adult food supplementation was the only independent

variable explaining significant variance in nestling body mass

(F1,1084 = 14.20, P,0.001), such that nestling body mass was

positively affected by increased food provisioning (Figure 3).

Examination of the cross-foster group coefficients suggests that

there was a year effect on body mass, with chicks being lightest in

1999, followed by 2006, while nestlings were heaviest in 2004/5

(Figure 4). The variance components of both the rearing nest and

the nest-of-origin (both nested within cross-foster group) were

small (1.8361027 and 8.3461028 respectively), although the

variance component associated with the cross-foster group factor

was large (2.06) (Table S2).

After model simplification of the three-year dataset, adult food

supplementation (F1,654 = 13.98, P,0.001), the nest-of-origin

female stripe blackness (F1,654 = 13.47, P,0.001), body mass of

the nest-of-origin female (F1,654 = 35.66, P,0.001), yellow plum-

age brightness of the nest-of-origin female (F1,654 = 4.78,

P = 0.029), and stripe blackness of the rearing female

(F1,654 = 12.38, P,0.001) explained significant variance in nestling

body mass. Specifically, we found that nestlings were heavier when

the nest was experimentally provisioned, when the nest-of-origin

female was heavy and had brighter yellow plumage and when they

Figure 1. Thickness of the wing web swelling 24 hours after injection with PHA varied with: A) nestling body mass; B) adult food
supplementation (boxplot giving median and interquartile range); C) plumage yellowness of the rearing father; and, D) yellow
plumage brightness of the nest-of-origin male. Raw data are presented.
doi:10.1371/journal.pone.0069695.g001
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were reared by a female with a blacker breast stripe. In contrast

nest-of-origin females with blacker breast stripes produced eggs

that developed into lighter chicks (Figure 3). The relative sizes of

the variance components associated with the nest-of-origin and

rearing nest was again very small (2.6461027 and 1.3461029

respectively) compared to that of the cross-foster group (1.063).

Cross-foster group consistently explained a substantial amount of

the variance in the random model.

Carotenoid supplementation did not explain significant vari-

ance in nestling body mass in either a full model (F1,270 = 0.33,

P = 0.56) or a simplified model (i.e. it dropped out of the model

during the simplification process for either the three or four year

datasets. We found little evidence of year-to-year repeatability of

performance in nest boxes. This suggests that the environment

around each nestbox changes significantly between years (Appen-

dix S2).

Discussion

Females gain through mate choice either immediately via direct

benefits (e.g. enhanced parental care, territory quality) or through

indirect benefits (e.g. enhanced viability of their offspring; [4]).

Both theory [68,69] and data [29,30] suggest that direct benefits

are usually large in comparison to indirect benefits. This is

supported by our analysis, the cross-foster group random effect

was associated with a significant variance component in all

analyses. The only factors that would be shared by the nests within

a cross-foster group are associated with time in the season and

year. There should be no genetic or spatial association between

nests within a cross-foster group, which was assigned solely on the

basis of the time at which the chicks hatched. Our analysis of the

fixed effects suggests that female great tits could be gaining both

direct and indirect fitness benefits on offspring immunocompe-

tence by choosing males based on aspects of the yellow ventral

coloration, as there are similarly sized significant effects of the

yellow plumage both of males at the nest-of-origin and of rearing

males (Figure 2). Direct effects are plausible because carotenoid-

based pigmentary colors often reflect condition [34,35,70] and, at

least in the closely related blue tit, reflect ingestion of carotenoid-

rich caterpillar prey [26]. In great tits the health and condition of

the offspring has been shown to be correlated with the yellowness

of the ventral plumage of the male providing parental care [33],

and an experimental study in blue tits showed that chick growth

rates were better predicted by the yellowness of the foster father

than by traits of the genetic parents [26]. In parallel observations

of the plumage color of the chicks in this study we found that

carotenoid supplemented chicks developed yellower plumage

(unpublished data). There is also evidence in sticklebacks

(Gasterosteus aculeatus) that dietary carotenoids enhance parental

care [71]. The rearing-male effect suggests that there is a link,

possibly through the environment around the rearing nest and/or

male parental care, between male plumage color and offspring

immunocompetence. However, the nest-of-origin male effect also

suggests that females mating with males whose yellow plumage is

brighter may gain indirect fitness benefits through enhanced

immunocompetence of nestlings. Therefore, the brightness of the

male’s plumage might signal some heritable component of

immunocompetence and/or that there are maternal effects that

are biased with respect to male plumage and which influence

immunocompetence in offspring. It is worth noting that none of

the traits measured in females predicted significant variance in

offspring immune function.

Especially in species with significant maternal investment

females can strongly influence offspring development. There is

an increasing realisation that non-genetic, maternal effects can

play a significant role in offspring development [72] and in birds

Figure 2. Summary diagram showing the effects of the significant independent factors on nestling immunocompetence and body
mass in this study. Factors associated with the rearing environment are shaded green, those with the natal environment are in orange. Arrow
width reflects the strength of the association (F value) between the two variables.
doi:10.1371/journal.pone.0069695.g002
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this may occur through female investment in eggs [73]. In the

present study, several traits of the nest-of-origin (genetic) mother

significantly predicted nestling body mass, although none were

significant predictors of nestling immunocompetence. Heavier

females were associated with heavier chicks near the end of the

nestling stage, as were females with brighter yellow plumage. It is

perhaps unsurprising that heavy females produce heavy chicks –

these females might lay larger eggs [74,75], which could give rise

to larger chicks and/or they may pass on genes for greater body

size [76]. The brightness of a female’s yellow plumage may reflect

her ability to nutritionally or physiologically accumulate caroten-

oids and perhaps allocate them to egg yolk, thereby aiding

offspring development and growth [77]. It is worth noting that, as

nestling mass was correlated with their immunocompetence,

logically any variable that significantly influences body mass

would be likely to be related to immunocompetence (Figure 2). No

traits measured in males predicted significant variance in nestling

body mass. These results imply that males might benefit from

selecting large females with bright yellow plumage as mates, this is

as yet unrecorded in great tits although it is known that attractive

males tend to be mated to early breeding females [31]. If males

were to select large, bright yellow plumaged females one would

predict that they may gain an advantage in producing larger

chicks, which will tend to survive well to the next breeding season

Figure 3. Nestling body mass was influenced by: A) food supplementation of attending parents (boxplot giving median and
interquartile ranges); B) body mass of the nest-of-origin mother; C) yellow plumage brightness of the nest-of-origin mother; D)
breast-stripe blackness of the rearing female; E) breast-stripe blackness of the nest-of-origin mother. Raw data are presented.
doi:10.1371/journal.pone.0069695.g003
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[78]. Research into male choice of female traits is relatively

undeveloped but is likely to be more widespread than the literature

suggests [79].

Food supplementation has been used frequently as an exper-

imental tool in avian ecology. It has been shown that food

supplements often result in breeding starting earlier in the season

[80] and often increases breeding success [80,81]; although

unexpected negative effects can also occur, for example [82]

found that clutch and brood size declined in continuously

supplemented areas. There have been many examinations of the

effect of food supplementation on nestling growth, with almost all

(as in this study) showing a positive effect on growth [80]. We are

unaware of any test of the effect of supplementation on nestling

immunocompetence. When we manipulated the rearing environ-

ment by placing commercially available adult food close to

nestboxes, we significantly increased both nestling growth and

immunocompetence. We never witnessed adults taking the

supplement into the nestbox and so they probably did not feed

it to the chicks, although the adults were frequently seen to utilise

the artificial food to feed themselves (pers obs), this is unsurprising

as the peanut food would be unsuitable as a nestling diet. The fact

that chicks raised by provisioned parents had both higher body

mass and immunocompetence than chicks raised by unprovisioned

parents suggests that the supplemental food supply allowed

provisioned adults to spend more time feeding their young than

unprovisioned adults. It is worth noting that our analysis of

immunocompetence also included the effect of chick mass and so

the effect of supplements on immunocompetence was additional to

its effect on nestling body mass. This suggests that either the

rearing birds are able to feed their brood food that enhances

immunocompetence without affecting mass or they are able to find

food items that enable their offspring specifically to boost their

immunocompetence. The effect of food supplementation on

immunocompetence may provide an explanation for the reported

effects on nestling survival [80].

Like the two previous studies of free-living nestling great tits, we

found no significant impact of supplemental carotenoids on

immunocompetence or body mass [46,47]. It is possible that, in

animals (like tit nestlings) that naturally consume high concentra-

tions of carotenoids (in this case from their caterpillar prey; [47]),

circulating carotenoid levels are sufficient in all animals to meet or

exceed those required for proper antioxidant defence and immune

system functioning. Perhaps in this situation it is not possible to

manipulate the system by providing a carotenoid supplement.

In our study the cross-foster group term consistently explained a

high amount of the variance in all the models. As nests within a

cross-foster group always contained nestlings that hatched on the

same day, foster-group effects could be due to annual and/or

seasonal temporal variability in environmental conditions, but not

spatial effects since nests within a cross-foster group could be

located anywhere within the forest. The influence of year is readily

apparent, with strong effects on both nestling immunocompetence

and body mass, while seasonal effects on great tit breeding success

are well known [83]. Our results suggest that neither nest-of-origin

nor rearing nest explained much additional variance over and

above the cross-foster group factor. This differs somewhat from

[24] who suggested that there were significant effects of both

factors in addition to cross-foster group. This may be partly due to

the fact that, by assessing the effects of the traits of the putative

parents and the rearing adults, we accounted for the variance

explained by these factors on nestling performance measures. This

cannot be the entire explanation, however, as similar differences

between the two studies can be seen when there is no fixed model.

One difference between the two studies is the time scale over

which data were collected; ours was conducted over four years

(although immunocompetence was only assessed in two) while

Brinkhof et al.’s lasted one year [24]. This would mean that the

cross-foster group factor in our study included annual as well as

seasonal variation, increasing the variance in the cross-foster group

factor above that in Brinkhof et al that would have only reflected

seasonal effects [24]. This may be supported by the fact that we

found little consistency in the performance of offspring raised in

the same box between years, which suggests that the environment

quality around the nestbox changes between years, or the

individuals breeding in the nestbox differ significantly in their

ability to take advantage of the environment. The swapping of

chicks between nests occurred on the day on which the chicks

hatched. There was therefore limited opportunity (maximum ca.

12 hours) for the nest-of-origin parents to feed the chicks before

they were fostered into the rearing nest. In theory, we could have

been prevented this by swapping eggs rather than chicks, but the

chicks would have been indistinguishable after they had hatched.

In addition in our experiment any pre-hatching maternal effects

would remain confounded with genetic effects in our experiment,

maternal effects through investment in eggs does occur in birds

[73,84–86]. If this was important in great tits it might be possible

that the nest-of-origin effects described here (or in a study that

swapped eggs) could be due to such early acting maternal effects.

However, it is almost impossible to conceive how this might be

overcome given that swapping embryonic young before the

deposition of the egg seems extremely difficult.

In conclusion, we found that manipulations of the rearing

environment in the form of food supplements for adults had

significant and consistently positive effects on offspring performance.

There was a significant effect of the ventral coloration of both foster

and nest-of-origin males on nestling immune function, which is

consistent with the interpretation that females could gain both direct

and indirect benefits by mating with males signalling in different

ways. Several traits of the female at the nest-of-origin – body mass,

the brightness of her yellow plumage and the blackness of her breast

stripe – explained significant variance in chick body mass, as did the

breast-strip blackness of the rearing female. These effects are

consistent with the coloration of females predicting differential

investment in eggs and/or post-hatch rearing of young [87].

Supporting Information

Table S1 Results of the principal component analysis of
plumage color traits in this study. Hue, saturation and

brightness (HSB) scores were derived from the single yellow curve

Figure 4. Effect of year on body mass, indicating that nestlings
were lighter in 1999 and 2006 than in 2004 and 2005 (boxplot
gives median and interquartile range).
doi:10.1371/journal.pone.0069695.g004
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in the human-visible range from patches of feathers taken from

standardised patches of the right and left sides of the bird’s yellow

breast patch. Black color was assessed in a similar way by

measuring saturation and brightness from one patch of feathers

taken from the bird’s black breast stripe. Principal components

analysis has been used to reduce the correlated HSB scores down

to uncorrelated principal components.

(DOCX)

Table S2 Results of nested analyses of variance that
tested effects of rearing environment and nest-of-origin
on chick immunocompetence and body mass, utilising
data from all nestlings. a) Random effects model. b) Mixed

model, including both random and fixed effects; fixed effects were

divided into those that related to the chick’s rearing environment

(i.e. traits of the rearing parents, supplemental provisioning) and to

its nest of origin (i.e. traits of the nest of origin parents) and for the

analysis of immunocompetence to the individual chick’s body

mass. Nest of rearing and origin were nested within foster group. *

Chick immunity was not measured in 2004, so these analyses use

data from one fewer year than the analyses on chick mass.

(DOCX)

Appendix S1 The full (unsimplified) ANOVA models.

(DOCX)

Appendix S2 Repeatability of nest site effects.

(DOCX)
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