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Abstract. In semiparametric hazard regression, nonparametric components may involve un-

known regression parameters. Such intertwining effects make model estimation and inference

much more difficult than the case in which the parametric and nonparametric components

can be separated out. We study the sieve maximum likelihood estimation for a general class

of hazard regression models, which include the proportional hazards model, the accelerated

failure time model, and the accelerated hazards model. Coupled with the cubic B-spline,

we propose semiparametric efficient estimators for the parameters that are bundled inside

the nonparametric component. We overcome the challenges due to intertwining effects of

the bundled parameters, and establish the consistency and asymptotic normality properties

of the estimators. We carry out simulation studies to examine the finite-sample properties

of the proposed method, and demonstrate its efficiency gain over the conventional estimat-

ing equation approach. For illustration, we apply our proposed method to a study of bone

marrow transplantation for patients with acute leukemia.
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1 Introduction

The Cox (1972) proportional hazards model has been routinely used in survival analysis.

Under the proportional hazards assumption, the Cox model takes the form of

λ(t|Z) = λ0(t)e
βT
0 Z, (1)

where λ0(·) is the unknown baseline hazard function, Z is the covariate vector, and β0 is

the regression parameter of interest. Nevertheless, such constant proportionality between

hazard functions may not hold in practice. As a result, alternative modeling structures, such

as the accelerated failure time (AFT) model, have been proposed, which directly model the

logarithm of the failure time in a linear regression form,

log(T ) = −βT
0Z+ ϵ, (2)

where T is the failure time, and the distribution of the error ϵ is unspecified. In fact, model

(2) can be rewritten as

S(t|Z) = S0(te
βT
0 Z), (3)

where S(t|Z) is the conditional survival function given covariate Z, and S0(t) is the baseline

survival function. The inference procedure for model (2) or (3) can typically be carried out

using the least squares or rank methods (Prentice, 1978; Buckley and James, 1979; Ritov,

1990; Tsiatis, 1990; Wei, Ying, and Lin, 1990; Lai and Ying, 1991; and Jin et al., 2003), and

the corresponding variance are often estimated by resampling algorithm, such as bootstrap.

Clearly, the nonparametric function S0(·) involves the parametric component eβ
T
0 Z, which

makes it difficult to derive the nonparametric maximum likelihood estimator (NPMLE).

Whereas, Zeng and Lin (2007) developed an efficient estimator for the AFT model (3)

by maximizing a kernel-smoothed profile likelihood function for the regression parameter.

However, their approach is restricted to the log-transformed linear model (2). Recently, when

the failure time T is subject to any completely known and strictly increasing transformation,

Ding and Nan (2011) proposed a sieve maximum likelihood estimator (MLE) for the censored

linear regression model where the bundled parameter problem is involved. Owning to its
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flexibility, the sieve MLE method has been widely adopted in various semiparametric models,

such as the partly linear Cox model (Huang, 1999), transformed hazard models (Zeng, Yin,

and Ibrahim, 2005), and the proportional odds model for survival data under various interval

censoring mechanisms (Rossini and Tsiatis, 1996; Huang and Rossini, 1997; Shen, 1998).

Chen (2007) provided a comprehensive review on the sieve method in the semiparametric

models.

Despite the popularity of the Cox model, it assumes the treatment effect to take place

immediately after patients are randomized to different treatment groups; that is, the hazards

for different groups are different from time t = 0. However, in a randomized clinical trial,

the treatment groups are essentially identical at t = 0 due to randomization. Randomization

makes different groups alike except for treatments. Particularly in oncology, it often takes

some time to observe efficacy effects of the treatment, e.g., tumor shrinkage. In other words,

it may take a certain period of lag time for the treatment to fully exert the therapeutic

effect instead of being immediately effective. Along this direction, Chen and Wang (2000)

proposed the accelerated hazards model by replacing the survival functions in (3) with the

corresponding hazard functions, and thus the conditional hazard function of failure time T

given covariate Z takes the form of

λ(t|Z) = λ0(te
βT
0 Z). (4)

This model is intuitive in the sense that the hazard functions for different values of Z in (4)

are the same at time t = 0. As time goes by, the hazards in different groups would gradually

change due to different treatment effects. In a more general framework, Chen and Jewell

(2001) proposed a class of hazards regression model,

λ(t|Z) = λ0(te
βT
0 Z)eγ

T
0 Z, (5)

where β0 and γ0 are vectors of regression parameters. Based on different parametrization,

model (5) includes the proportional hazards model (β0 = 0), the AFT model (β0 = γ0), and

the accelerated hazards model (γ0 = 0) as special cases. Chen and Jewell (2001) developed

martingale estimating equations for parameter estimation and inference, which may not be
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semiparametric efficient. Due to the discontinuity of estimating equations with respect to the

regression parameters, the estimation procedure may suffer from potential multiple roots.

Furthermore, the variance estimation depends on the derivation of the baseline function,

which makes it difficult to calculate in practice.

To enhance the estimation efficiency and modeling flexibility, we study the sieve maximum

likelihood estimation for a general class of accelerated hazards regression models in the form

of

Λ(t|Z,X) = Λ0(te
βT
0 Z)eγ

T
0 X, (6)

where Λ0(·) is an unknown baseline cumulative hazards function, and β0 and γ0 are unknown

vectors of regression parameters. Covariates Z and X are allowed to share some common

components. It is easy to see that model (6) reduces to the proportional hazards model

when β0 = 0 and to the AFT model when γ0 = 0. In the case where Z is the same as X,

model (6) reduces to the accelerated hazards model when β0 + γ0 = 0 and to model (5) by

reparameterizing β0 + γ0 as a new parameter. Hence, model (6) has great flexibility and,

more importantly, is able to simultaneously investigate the time-accelerated effect of covari-

ate Z and the proportional hazards effect of covaraite X. Noting that the parametric and

nonparametric components are bundled together in Λ0(te
βT
0 Z), the theoretical development

and numerical implementation of model (6) are very challenging. In contrast to the conven-

tional martingale-based estimating equations proposed by Chen and Wang (2000) and Chen

and Jewell (2001), we propose an intuitive spline-based sieve maximum likelihood estimation

procedure for model (6) to improve the estimation efficiency. The numerical implementation

of the proposed method can be achieved through the conventional gradient-based search

algorithm, such as the Newton–Raphson algorithm. The variance estimates can be obtained

from the inverse of Fisher’s information matrix, and thus achieves semiparametric efficiency.

The main contributions of this paper are threefold. First, we proposed a sieve MLE

method for the general accelerated hazards model in which the nonparametric function and

the regression parameter are entangled with each other. The asymptotic properties of the

resulting estimators are established and the estimator for the regression parameter achieves

the semiparametric efficiency bound. Second, compared with the weighted estimating equa-
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tion approach where the optimal weight depends on the form of the baseline function and

thus it is challenging to find such an optimal weight and difficult to implement in practice,

the proposed sieve MLE method is easier to be carried out. Third, the standard error es-

timates are obtained directly by either inverting the observed information matrix of all the

parameters or inverting the efficient information matrix of the regression parameters, and

both methods are more computationally tractable compared with the resampling techniques.

The rest of this article is organized as follows. We propose the sieve maximum likelihood

estimating procedure in Section 2 and establish the asymptotic properties of the resultant

estimators in Section 3, while proofs are presented in Section 7. We conduct simulation

studies to assess the proposed method with finite samples in Section 4. As an illustration, a

real data set is analyzed in Section 5. Some concluding remarks are provided in Section 6.

2 Sieve maximum likelihood estimation

Let T be the failure time, let C be the censoring time, denote a ∧ b as the minimum of

a and b, and let I(·) be the indicator function. We observe the data {Yi ≡ Ti ∧ Ci,∆i ≡

I(Ti ≤ Ci),Zi,Xi}, i = 1, . . . , n, which are independent and identically distributed (i.i.d.)

copies of {Y ≡ T ∧ C,∆ ≡ I(T ≤ C),Z,X}. Covariates Z and X may share the same

components. Assume that T and C are conditionally independent given covariates Z and

X. Under model (6), the conditional survival and density functions of T given both Z

and X are S(t|Z,X) = exp{−Λ0(te
βT
0 Z)eγ

T
0 X} and f(t|Z,X) = S(t|Z,X)λ0(te

βT
0 Z)eβ

T
0 Z+γT

0 X,

respectively, where λ0(t) = dΛ0(t)/dt is the baseline hazard function. The likelihood function

of parameters (β,γ, λ) based on the observed data can be derived as
n∏

i=1

[{
λ(Yie

βTZi)e(β
TZi+γTXi)

}∆i

exp{−Λ(Yie
βTZi)eγ

TXi}
]
,

where λ(t) = dΛ(t)/dt. The log-likelihood function is given by

ln(β,γ, λ) = n−1

n∑
i=1

[
∆i{βTZi + γTXi + log λ(Yie

βTZi)} (7)

−
∫ Yie

βTZi

0

λ(s)dseγ
TXi

]
.
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To overcome the nonnegative constraint on λ(·), let g(t) = log λ(t) and then (7) is recast as

ln(β,γ, g) = n−1

n∑
i=1

[
∆i{βTZi + γTXi + g(Yie

βTZi)}

−
∫ Yie

βTZi

0

exp{g(s)}ds eγTXi

]
. (8)

In what follows, we propose a spline-based method to estimate the function g. Denote

b = supy,z,β y exp(β
Tz), then 0 < b < ∞ under conditions C1 and C2 listed in Section

3. Let 0 ≡ t0 < t1 < · · · < tKn < tKn+1 ≡ b be a partition of [0, b] with Kn = O(nv)

and max0≤j≤Kn |tj+1 − tj| = O(n−v) for v ∈ (0, 0.5). Denote the set of partition points by

TKn = {t1, . . . , tKn}, and let Sn(TKn , Kn, p) be the space of polynomial splines of order p

defined in Schumaker (1981, page 108, Definition 4.1). According to Schumaker (1981, page

117, Corollary 4.10), there exists a local basis {Bj: 1 ≤ j ≤ qn} with qn = Kn + p such that

for any s ∈ Sn(TKn , Kn, p), we can write

s(t) = aTB(t) =

qn∑
j=1

ajBj(t),

where a = (a1, . . . , aqn)
T and B = (B1, . . . , Bqn)

T. Under some suitable smoothness assump-

tions, g0, the true function of g, can be well approximated by some function in Sn(TKn , Kn, p).

Let B ⊆ Rd1 and T ⊆ Rd2 denote the parameter spaces of β and γ, respectively, where d1

and d2 are their corresponding dimensions. As a result, we seek a member of Sn(TKn , Kn, p)

along with values of (β,γ) ∈ B×T that maximizes the log-likelihood function. Specifically,

we define (β̂n, γ̂n, ân) to be the parameter values that maximize

ln(β,γ, a) = n−1

n∑
i=1

[
∆i{βTZi + γTXi + aTB(Yie

βTZi)}

−
∫ Yie

βTZi

0

exp{aTB(s)}ds eγTXi

]
.

3 Asymptotic Properties

Denote the true parameter θ0 = (α0, g0) with α0 = (βT
0 ,γ

T
0 )

T. To establish the asymptotic

properties of the proposed estimator (α̂n, ĝn) with α̂n = (β̂
T

n , γ̂
T
n )

T and ĝn(t) = âT
nB(t), we
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need the following regularity conditions.

C1. The parameter spaces B and T are both compact and contain the true parameters β0

and γ0 as their interior points, respectively.

C2. The domain of the covariate V ≡ (ZT,XT)T, denoted by V , is a bounded subset of Rd,

where d = d1 + d2, and both E(ZZT) and E(XXT) are nonsingular.

C3. For i = 1, 2, assume that βi ∈ B, γi ∈ T , and log λi(·) ∈ Gp, and denote Λi(t) =∫ t

0
λi(s)ds. If Λ1(te

βT
1 z)eγ

T
1 x = Λ2(te

βT
2 z)eγ

T
2 x for any t ∈ [0, b] and v = (zT,xT)T ∈ V ,

then β1 = β2, γ1 = γ2, and λ1 = λ2.

C4. Let ϵ0 = Y eβ
T
0 Z. There exists a truncation time τ < ∞ such that, for some positive

constant δ0, P (ϵ0 > τ |V) ≥ δ0 almost surely with respect to the probability measure

of V.

C5. The conditional density of C given V and its derivative are uniformly bounded for all

possible values of V.

C6. Let Gp denote the collection of bounded functions g on [0, b] with bounded derivatives

g(j), j = 1, . . . , k, such that the kth derivative g(k) satisfies the following Lipschitz

continuity condition,

|g(k)(s)− g(k)(t)| ≤ L|s− t|m for s, t ∈ [0, b],

where k is a positive integer and m ∈ (0, 1] such that p = m + k ≥ 3, and L < ∞

is a constant. The true log baseline hazard function g0(·) = log λ0(·) belongs to Gp.

For notational simplicity, we may also use g′ and g′′ to denote the first and second

derivatives of g, respectively.

C7. For some η ∈ (0, 1), uTVar(V|ϵ0,∆ = 1)u ≥ ηuTE(VVT|ϵ0,∆ = 1)u almost surely for

all u ∈ Rd. E(∆WWT) is nonsingular, where W = ({1 + ϵ0g
′
0(ϵ0)}ZT,XT)T.
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C8. Let M(t) = ∆I(Y eβ
T
0 Z ≤ t)−

∫ t

0
I(Y eβ

T
0 Z ≥ s)eg0(s)eγ

T
0 Xds,

l∗β0
(O) =

∫ b

0

[
Z− E{ZI(Y eβT

0 Z ≥ t)eγ
T
0 X}

E{I(Y eβT
0 Z ≥ t)eγ

T
0 X}

]
{1 + tg′0(t)}dM(t),

l∗γ0
(O) =

∫ b

0

[
X− E{XI(Y eβT

0 Z ≥ t)eγ
T
0 X}

E{I(Y eβT
0 Z ≥ t)eγ

T
0 X}

]
dM(t),

l∗α0
(O) = (l∗β0

(O)T, l∗γ0
(O)T)T, I(α0) = E{l∗α0

(O)⊗2},

where O = (Y,∆,Z,X) and a⊗2 = aaT for a column vector a. Assume that I(α0) is

nonsingular.

Conditions C1–C2 and C4–C5 are common assumptions in the context of survival anal-

ysis. Condition C3 is required to guarantee the identifiability of model (6). Obviously, the

model is unidentifiable if and only if Λ0(t) = c1t
c2 for some positive constants c1 and c2

(Chen and Jewell, 2001). Condition C6 requires p ≥ 3 to guarantee the desirable control of

the spline approximation error rates of the first and second derivatives of g0. Condition C7

is a technical assumption and can be justified in many applications. This assumption is also

imposed by Wellner and Zhang (2007) for the panel count data model and Ding and Nan

(2011) for the censored linear regression model. Condition C8 is a natural assumption that

essentially requires the semiparametric efficiency information matrix to be invertible.

Following Ding and Nan (2011), we define

Hp = {ξ(·,β) : ξ(t, z,β) = g(ψ(t, z,β)), g ∈ Gp, t ∈ [0, b], z ∈ Z,β ∈ B},

where

ψ(t, z,β) = te(β−β0)
Tz.

Here ξ is a composite function of g composed with ψ, and ξ(t, z,β0) = g(t). We equip the

functional space Hp with the norm ∥ · ∥2 defined as

∥ξ(·,β)∥2 =
[∫

Z

∫ b

0

{g(te(β−β0)
Tz)}2dΛ0(t)dFZ(z)

]1/2
for any ξ(·,β) ∈ Hp, where FZ(z) is the cumulative distribution function of Z. For any

θi = (βi,γi, ξi(·,βi)), i = 1, 2, in the space Θp ≡ B × T ×Hp, define the distance,

d(θ1,θ2) =
(
|β1 − β2|2 + |γ1 − γ2|2 + ∥ξ1(·,β1)− ξ2(·,β2)∥22

)1/2
,
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where | · | is the Euclidean norm. Let Gp
n = Sn(TKn , Kn, p),

Hp
n = {ξ(·,β) : ξ(t, z,β) = g(ψ(t, z,β)), g ∈ Gp

n, t ∈ [0, b], z ∈ Z,β ∈ B},

and Θp
n = B × T ×Hp

n. It is easy to see that Θp
n ⊆ Θp

n+1 · · · ⊆ Θp for n ≥ 1. Note that the

sieve estimator θ̂n = (β̂n, γ̂n, ξ̂n(·, β̂n)) is the maximizer of the empirical log-likelihood over

the sieve space Θp
n, where ξ̂n(t, z, β̂n) = ĝn(te

(β̂n−β0)
Tz). The following theorem provides the

convergence rate of the proposed estimator θ̂n to the true parameter θ0 = (β0,γ0, ξ0(·,β0)) =

(β0,γ0, g0).

Theorem 1. Suppose that conditions C1–C7 hold and (2p+ 2)−1 < v < (2p)−1, then

d(θ̂n,θ0) = Op

(
n−min{pv,(1−v)/2}) .

The proof of Theorem 1 is provided in Section 7 by verifying the conditions of Theo-

rem 1 in Shen and Wong (1994). Theorem 1 implies that, if v = (2p + 1)−1, d(θ̂n,θ0) =

Op(n
−p/(1+2p)), which is the optimal convergence rate in the nonparametric setting. Al-

though the overall convergence rate is slower than n−1/2, the proposed estimator for the

regression parameter α0 is still asymptotically normal at the rate of n−1/2 and attains the

semiparametric efficiency bound. We summarize these asymptotic results in the following

theorem.

Theorem 2. Suppose that conditions C1–C8 hold and (2p + 2)−1 < v < (2p)−1, then

n1/2(α̂n−α0) converges in distribution to a mean zero normal random vector with covariance

matrix I−1(α0) equal to the semiparametric efficiency bound of α0.

The proof of Theorem 2 is also presented in Section 7 by checking the conditions in

Theorem 6.1 of Wellner and Zhang (2007), which relies heavily on the empirical process

theory. A consistent estimator for the limiting covariance matrix is summarized by the

following theorem.
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Theorem 3. Let l̂∗α0
(O) = (l̂∗β0

(O)T, l̂∗γ0
(O)T)T, where

l̂∗β0
(O) =

∫ b

0

{Z− Z̄(t, β̂n, γ̂n)}{1 + tĝ′n(t)}dM̂(t),

l̂∗γ0
(O) =

∫ b

0

{X− X̄(t, β̂n, γ̂n)}dM̂(t),

Z̄(t,β,γ) =
Pn{ZI(Y eβ

TZ ≥ t)eγ
TX}

Pn{I(Y eβ
TZ ≥ t)eγTX}

,

X̄(t,β,γ) =
Pn{XI(Y eβ

TZ ≥ t)eγ
TX}

Pn{I(Y eβ
TZ ≥ t)eγTX}

,

M̂(t) = ∆I(Y eβ̂
T
nZ ≤ t)−

∫ t

0

I(Y eβ̂
T
nZ ≥ s) exp{ĝn(s)}eγ̂

T
nXds,

and Pn is the empirical measure with respect to O. Suppose that conditions in Theorem 2

hold, then Pn{l̂∗α0
(O)⊗2} converges to I(α0) in probability.

4 Simulation Studies

We conducted simulation studies to assess the proposed sieve MLE for finite samples. We

simulated covariates Z and X independently from the Bernoulli distribution with success

probability 0.5 and then generated the survival times T from model (6). We set the true

parameter values β0 = 1.5 and γ0 = 0.5 and considered four different baseline hazard

functions for λ0(t): (i) λ0(t) = 1/(1 + t); (ii) λ0(t) = (t− 0.5)2; (iii) λ0(t) = log(1 + t); and

(iv) λ0(t) = 1+cos(5t+10). For each case, we generated censoring times C from Unif(c1, c2)

with truncation at τ = c2 − 1 to achieve censoring rates of 20% and 40%, respectively. We

considered the sample size n = 200 and 400.

In the implementation of the sieve MLE, we chose the cubic B-spline and took the data-

adaptive interior knots as the median of {Yieβ
TZi : i = 1, . . . , n} with a given β in cases

(i)–(iii) and the 20th, 40th, 60th, and 80th quantiles in case (iv). In particular, we adopted

the following procedure to obtain the sieve MLE.

(1) Choose initial values (β̃
(0)
, γ̃(0), ã(0)) and set k = 0.

(2) At step k + 1, obtain ã(k+1) by solving ∂ln(β̃
(k)
, γ̃(k), a)/∂a = 0 using the Newton–
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Raphson algorithm with the initial value ã(k) until the maximum componentwise dif-

ference between the two consecutive values is less than 10−3.

(3) Obtain (β̃
(k+1)

, γ̃(k+1)) by solving ∂ln(β,γ, ã
(k+1))/∂(β,γ) = 0 using the Newton–

Raphson algorithm with initial value (β̃
(k)
, γ̃(k)) until the maximum componentwise

difference between the two consecutive values is less than 10−3.

(4) Repeat steps (2) and (3) until the maximum componentwise differences of two consec-

utive values are less than 10−3. The resultant estimators, denoted by (β̂n, γ̂n, ân), are

taken as the sieve MLE.

Table 1 summarizes the estimates from 1000 replications for the censoring rate of 20%

with n = 200 and 400, respectively. The column labeled “EST” is the average value of

the estimates, “SE” is the sample standard error of the estimates, “ESE1” is the average

of standard error estimates by inverting the observed information matrix of all parameters

including the basis spline coefficients, and “CP1” is the corresponding coverage proportion

of 95% confidence intervals. We also present the column “ESE2”, which is the average of

standard error estimates by inverting the estimated information matrix of the regression

parameter α0 based on Theorem 3 and list the column “CP2”, which is the corresponding

coverage proportion of 95% confidence intervals. The column “MSE” refers to the average

value of the mean squared errors.

Clearly, the proposed sieve MLE method performs well under all of the four different base-

line hazard functions. The parameter estimates are virtually unbiased for both β and γ, and

the bias decreases as the sample size increases. The estimated standard errors by inverting

the observed information matrix of all parameters or those by inverting the information ma-

trix based on the efficient score function agree well with the sample standard errors. The

coverage probabilities are around the nominal level 95% for all cases. The estimated baseline

hazard function using the B-spline approximation under n = 200 and n = 400 are presented

in Figure 1. It can be seen that the estimated baseline hazard functions are reasonably close

to the corresponding true curves. We also explored the situation with a censoring rate of

40%. The corresponding results of the estimates for the regression parameters based on 1000
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replications are presented in Table 2, from which similar conclusions can be drawn as before.

Moreover, the estimated baseline hazard functions are plotted in Figure 2, which deteriorate

slightly compared with those in Figure 1.

5 Application

As an illustration, we applied the proposed general class of accelerated hazards models to

a study of bone marrow transplantation with 137 patients of acute leukemia (Copelan et

al., 1991; and Klein and Moeschberger, 2003). The disease-free survival time, including the

time to relapse, death, or the end of study, is of primary interest. Patients were followed for

approximate 7.2 years, of whom around 39.4% were censored. Several potential risk factors

were measured at the time of transplantation. Patients were classified into three risk cate-

gories based on their disease status: 38 patients with acute lymphoblastic leukemia (ALL),

54 patients with acute myeloctic leukemia (AML) low risk, and 45 patients with AML high

risk. Both patients and donors’ ages and the waiting times from diagnosis to transplantation

were recorded. The AML patients with their French–American–British (FAB) classification

of grade 4 or 5 based on standard morphological criteria were also considered as a covariate

in our regression model. Patients were either given a graft-versus-host prophylactic com-

bining methotrexate (MTX) with cyclosporine and possibly methlprednisolone or given only

a combination of cyclosporine and methlprednisolone. In our analysis, we used X1 = 1 to

indicate the patient with AML low risk and X1 = 0 otherwise, X2 = 1 to indicate the patient

with AML high risk and X2 = 0 otherwise, X3 to denote the patient’s age centered by 28

years, X4 to denote the donor’s age centered by 28 years, X5 = 1 to indicate the AML

patient with FAB grade 4 or 5 and X5 = 0 otherwise, and X6 to denote the patient’s waiting

time from diagnosis to transplantation centered by 9 months, and X7 = 1 to indicate the

patient treated with MTX and X7 = 0 otherwise.

To make a preliminary investigation of whether the hazards of the patients within three

different risk categories were identical at the beginning of study, we plotted the kernel-

smoothed hazard rate functions with bandwidth 100 days in Figure 3. It can be observed
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that the smoothed hazards of patients with ALL and AML low risk are almost the same at

the initiation of the study. However, the smoothed hazard of patients with AML high risk

appears to be slightly higher than those of the other two at time t = 0, and increases to a

higher level and then lies between those of patients with ALL and patients with AML low

risk during the later follow-up of the study. Figure 3 reveals that the hazards may not be

proportional from the very beginning of the study, which results in the usual proportional

hazards assumption questionable. Intuitively, it is more appealing to consider the time scaled

effects of risk status categories as well as the proportional effects of all the risk factors by

employing our proposed general accelerated hazards model through setting Z = (X1, X2)
T

and X = (X1, . . . , X7)
T. We applied the proposed sieve MLE with smoothing splines to fit

the data. For comparison, we fitted the Cox proportional hazards model to the data without

taking into consideration of the time scaled effects of risk status categories. The estimation

results are summarized in Table 3. For the regression parameters in the proportional hazards

component, all of the three considered methods agree in general: Patients without FAB

grade 4 or 5 and those with AML low risk were associated with lower hazard risks and thus

led to longer progression-free survival times, while the effects of other covariates were not

significant. For the time scaled effects of risk status categories, the sieved MLE method

shows that patients with AML low risk had significant decelerated hazard risks while the

scaled time effect of patients with AML high risk was not significant.

Figure 4 exhibits the estimate of the baseline hazard function λ0(t) using the proposed

sieve MLE method. Clearly, patients at the beginning of post transplantation would suffer

from the drastically increasing risk due to the incompatibility between the donor and patient,

and then the hazard gradually decreased with time.

6 Remark

The general accelerated hazards model enables us to evaluate the time scaled effects and the

proportional hazards effects of covariates simultaneously. However, it is difficult in practice

to classify the risk factors rigorously into either the time scaled or the proportional hazards

13



components of the model. It often depends on the objectives of the study, the interest

of the investigator, and the underlying biological process. If there is no such biological

information as guidance, some data-driven methods could be used for the classification of

covariates. For example, when the number of covariates is small, all the possible models from

different combinations of covariates in the time scaled and the proportional hazards parts

can be considered. To facilitate the selection of the models, some criteria for evaluating the

goodness of model fitting should be considered. When the number of covariates is moderately

large, this exhaustive method could be time-consuming, while similar automatic structure

discovery procedures as presented in Zhang, Cheng, and Liu (2011) may warrant further

research.

7 Proofs of Theorems

Before proving the theorems presented in Section 3, we introduce some useful lemmas. Define

H =

{
h: h(·,β) = ∂ξη(·,β)

∂η

∣∣
η=0

= w(ψ(·,β)), ξη ∈ Hp

}
.

Lemma 1. Denote

l(β,γ, ξ(·,β);O) = ∆{βTZ+ γTX+ g(Y eβ
TZ)} −

∫ Y eβ
TZ

0

exp{g(s) + γTX}ds.

Under conditions C1, C2, C4 and C6, l has bounded and continuous first and second deriva-

tives with respect to β ∈ B,γ ∈ T , and ξ(·,β) ∈ Hp.

Proof. After some algebraic calculations, we have

l′β(β,γ, ξ(·,β);O) = ∆Z{1 + Y eβ
TZg′(Y eβ

TZ)} − ZY exp{g(Y eβTZ) + βTZ+ γTX},

l′γ(β,γ, ξ(·,β);O) = ∆X−X

∫ Y eβ
TZ

0

exp{g(s) + γTX}ds,

l′ξ(β,γ, ξ(·,β);O)[h(·,β)] = ∆w(Y eβ
TZ)−

∫ Y eβ
TZ

0

exp{g(s) + γTX}w(s)ds,

14



l′′ββ(β,γ, ξ(·,β);O) = ∆ZZTY 2e2β
TZg′′(Y eβ

TZ) + ∆ZZTY eβ
TZg′(Y eβ

TZ)

−ZZTY 2g′(Y eβ
TZ) exp{g(Y eβTZ) + 2βTZ+ γTX}

−ZZTY exp{g(Y eβTZ) + βTZ+ γTX},

l′′γγ(β,γ, ξ(·,β);O) = −XXT

∫ Y eβ
TZ

0

exp{g(s) + γTX}ds,

l′′βγ(β,γ, ξ(·,β);O) = −Y ZXT exp{g(Y eβTZ) + βTZ+ γTX},

l′′βξ(β,γ, ξ(·,β);O)[h(·,β)] = ∆Y Zeβ
TZw′(Y eβ

TZ)− Y Zw(Y eβ
TZ) exp{g(Y eβTZ) + βTZ+ γTX},

l′′γξ(β,γ, ξ(·,β);O)[h] = −X

∫ Y eβ
TZ

0

exp{g(s) + γTX}w(s)ds,

l′′ξξ(β,γ, ξ(·,β);O)[h1, h2] = −
∫ Y eβ

TZ

0

exp{g(s) + γTX}w1(s)w2(s)ds,

where h(·,β) = w(ψ(·,β)), h1 = w1(ψ(·,β)), h2(·,β) = w2(ψ(·,β)) ∈ H. Under conditions

C1, C2, C4 and C6, all the above derivatives are continuous and bounded.

Employing Corollary 6.21 in Schumaker (1981), we directly have the following lemma

with its proof omitted.

Lemma 2. For g0 ∈ Gp, there exists a function g0n ∈ Gp
n such that

∥g0n − g0∥∞ = O(n−pv),

where ∥ · ∥∞ is the sup-norm.

Lemma 3. Let θ0n = (β0,γ0, ξ0n(·,β0)) with ξ0n(·,β0) = g0n defined in Lemma 2, and

Fn = {l(θ;O)− l(θ0n;O): θ ∈ Θp
n}. If conditions C1–C4 and C6 hold, then the ε-bracketing

number associated with ∥ · ∥∞ for Fn, denoted by N[ ](ε,Fn, ∥ · ∥∞), is bounded by (1/ε)cqn+d,

i.e.,

N[ ](ε,Fn, ∥ · ∥∞) . (1/ε)cqn+d

for a constant c. Hereafter, we use the symbol . to denote that the left-hand side is bounded

above by a constant times the right-hand side.

Proof. Denote the ceiling of x by ⌈x⌉. By the calculation in Shen and Wong (1994, page

597), for any ε > 0, there exists a set of brackets{
[gLi , g

U
i ]: i = 1, . . . , ⌈(1/ε)cqn⌉

}
15



such that for any g ∈ Gp
n, g

L
i (t) ≤ g(t) ≤ gUi (t) over t ∈ [0, b] for some 1 ≤ i ≤ ⌈(1/ε)cqn⌉,

where ∥gUi −gLi ∥∞ ≤ ε and c is a constant. Since B and T are both compact under condition

C1, B and T can be covered by ⌈c2(1/ε)d1⌉ and ⌈c3(1/ε)d2⌉ balls with radius ε, respectively.

Thus, for any β ∈ B and γ ∈ T , there exist βℓ for some 1 ≤ ℓ ≤ ⌈c2(1/ε)d1⌉ and γk for some

1 ≤ k ≤ ⌈c3(1/ε)d2⌉ such that |β − βℓ| ≤ ε and |γ − γk| ≤ ε. Hence, |βTZ − βT
ℓ Z| ≤ c4ε

and |γTX− γT
kX| ≤ c4ε for some constant c4 under condition C2. Define

mL
i,ℓ,k(O) = ∆{βT

ℓ Z+ γT
kX− 2c4ε+ gLi (Y e

βT
ℓ Z+ξil)}

−
∫ Y eβ

T
ℓ Z+c4ε

0

exp{gUi (s) + γT
kX+ c4ε}ds− l(θ0n;U)

and

mU
i,ℓ,k(O) = ∆{βT

ℓ Z+ γT
kX+ 2c4ε+ gUi (Y e

βT
ℓ Z+ξiu)}

−
∫ Y eβ

T
ℓ Z−c4ε

0

exp{gLi (s) + γT
kX− c4ε}ds− l(θ0n;O),

where

gLi (e
βT
ℓ Z+ξiℓ) = min

|s|≤c4ε
gLi (e

βT
ℓ Z+s) and gUi (e

βT
ℓ Z+ξiu) = max

|s|≤c4ε
gUi (e

βT
ℓ Z+s).

After some calculations, we have |mU
i,ℓ,k(O) −mL

i,ℓ,k(O)| . ε and for any m(θ;O) ∈ Fn,

there exist some i, ℓ, and k such that m(θ;O) ∈ [mL
i,ℓ,k(O),mU

i,ℓ,k(O)]. Therefore, we have

N[ ](ε,Fn, ∥ · ∥∞) . (1/ε)cqn(1/ε)d1(1/ε)d2 = (1/ε)cqn+d

for a constant c, which completes the proof.

Lemma 4. Let

(w∗
1(t), · · · , w∗

d1
(t))T = {1 + tg′0(t)}

E{ZI(Y eβT
0 Z ≥ t)eγ

T
0 X}

E{I(Y eβT
0 Z ≥ t)eγ

T
0 X}

and

(w∗
d1+1(t), · · · , w∗

d(t))
T =

E{XI(Y eβT
0 Z ≥ t)eγ

T
0 X}

E{I(Y eβT
0 Z ≥ t)eγ

T
0 X}

.

If conditions C1–C6 hold, then there exist w∗
jn ∈ G2

n (j = 1, . . . , d) such that ∥w∗
jn −w∗

j∥∞ =

O(n−2v), j = 1, . . . , d.
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Proof. Note that E{I(Y eβT
0 Z ≥ t)|Z,X} = SC|Z,X(te

−βT
0 Z) exp{−Λ0(t) exp(γ

T
0X)}, where

SC|Z,X(·) is the conditional survival function of C given Z and X. It can be shown that the

first and second derivatives of w∗
j are bounded under conditions C1–C6. Thus, according to

Corollary 6.21 of Schumaker (1981), the conclusion of this lemma follows.

Lemma 5. Let h∗j(·,β) = w∗
j (ψ(·,β)) with h∗j(t, z,β0) = w∗

j (t) where w
∗
j is defined in Lemma

4, j = 1, . . . , d. For η > 0, denote

Fjn(η) =
{
l′ξ(θ;O)[h∗j − hj]: θ ∈ Θp

n, hj ∈ Hp
n, d(θ,θ0) ≤ η, ∥h∗j − hj∥∞ ≤ η

}
.

If conditions C1–C6 hold, then N[ ](ε,Fjn(η), ∥ · ∥∞) . (η/ε)cqn+d for a constant c.

Lemma 6. Define

Fβ
jn(η) =

{
l′βj

(θ;O)− l′βj
(θ0;O): θ ∈ Θp

n, d(θ,θ0) ≤ η, ∥g′(ψ(·,β))− g′0(ψ(·,β0))∥2 ≤ η
}
,

j = 1, . . . , d1,

Fγ
jn(η) =

{
l′γj(θ;O)− l′γj(θ0;O): θ ∈ Θp

n, d(θ,θ0) ≤ η
}
, j = 1, . . . , d2,

and

F ξ
jn(η) =

{
l′ξ(θ;O)[h∗j(·,β)]− l′ξ(θ0;O)[h∗j(·,β0)]: θ ∈ Θp

n, d(θ,θ0) ≤ η
}
, j = 1, . . . , d,

where l′βj
(θ;O) and l′γj(θ;O) are the jth element of l′β(θ;O) and l′γ(θ;O), respectively, and

h∗j is defined in Lemma 5. Suppose that conditions C1–C6 hold, then

N[ ](ε,Fβ
jn(η), ∥ · ∥∞) . (η/ε)c1qn+d,

N[ ](ε,Fγ
jn(η), ∥ · ∥∞) . (η/ε)c2qn+d,

N[ ](ε,F ξ
jn(η), ∥ · ∥∞) . (η/ε)c3qn+d,

for some constants c1, c2, and c3.

The proofs of Lemmas 5 and 6 are similar to that of Lemma 3 and thus omitted here

for the sake of space. The detailed proofs are available as supplementary materials from the

authors.
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Proof of Theorem 1. To obtain the convergence rate of the proposed estimator, we need to

verify conditions C1–C3 of Theorem 1 in Shen and Wong (1994). Some algebraic calculations

yield that

E{l(β,γ, ξ(·,β);O)} = E
[
∆{βTZ+ γTX+ g(Y eβ

TZ)}
]
− E

[
∆exp

{
(g(Y eβ

TZ) + βTZ

+γTX)− {g0(Y eβ
T
0 Z) + βT

0Z+ γT
0X}

}]
and

E{l(β0,γ0, ξ0(·,β0);O)} − E{l(β,γ, ξ(·,β);O)}

= E
[
∆
{
exp

(
{g(Y eβTZ) + βTZ+ γTX} − {g0(Y eβ

T
0 Z) + βT

0Z+ γT
0X}

)
−1−

(
{g(Y eβTZ) + βTZ+ γTX} − {g0(Y eβ

T
0 Z + βT

0Z+ γT
0X)}

)}]
≥ 1

2
E

{
∆
(
{g(Y eβTZ) + βTZ+ γTX} − {g0(Y eβ

T
0 Z) + βT

0Z+ γT
0X}

)2
}

≥ 1

2
E

{
∆
(
{g(Y eβTZ)− g0(Y e

βT
0 Z)}+ (β − β0)

TZ+ (γ − γ0)
TX

)2
}
. (9)

Using the Taylor expansion, we have

E

{
∆
(
{g(Y eβTZ)− g0(Y e

βT
0 Z)}+ (β − β0)

TZ+ (γ − γ0)
TX

)2
}

= E
{
∆
(
{g(Y eβTZ)− g(Y eβ

T
0 Z)}+ {g(Y eβT

0 Z)− g0(Y e
βT
0 Z)}

+(β − β0)
TZ+ (γ − γ0)

TX
)2}

= E

(
∆
[
g′(ε0)ε0(β − β0)

TZ+O(|β − β0|2) + {g(ε0)− g0(ε0)}

+(β − β0)
TZ+ (γ − γ0)

TX
]2 )

= E
(
∆
[
{g(ε0)− g0(ε0)}+ (α−α0)

TW
]2)

+ o(d2(θ,θ0)), (10)

where W = ({g′0(ε0)ε0 + 1}ZT,XT)T. Obviously,

E
(
∆
[
{g(ε0)− g0(ε0)}+ (α−α0)

TW
]2)

≥ E
[
∆{g(ε0)− g0(ε0)}2

]
+ E[∆

{
(α−α0)

TW
}2
]

−2
∣∣E [

∆{g(ε0)− g0(ε0)}(α−α0)
TW

]∣∣ . (11)
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On the other hand, it follows from the Cauchy–Schwarz inequality and condition C7 that

∣∣E [
∆{g(ε0)− g0(ε0)}(α−α0)

TW
]∣∣2

=
∣∣E [

∆{g(ε0)− g0(ε0)}E
{
(α−α0)

TW|ε0,∆ = 1
}]∣∣2

≤ E
[
∆ {g(ε0)− g0(ε0)}2

]
E
[
E
{
(α−α0)

TW|ε0,∆ = 1
}]2

≤ (1− η)E
[
∆ {g(ε0)− g0(ε0)}2

]
E
[
∆
{
(α−α0)

TW
}2
]
. (12)

Note that

d2(θ,θ0) . E

[
∆
{
g(ε0e

(β−β0)
TZ)− g0(ε0)

}2
]
+ |β − β0|2 + |γ − γ0|2 . d2(θ,θ0) (13)

and

E

[
∆
{
g(ε0e

(β−β0)
TZ)− g0(ε0)

}2
]
+ |β − β0|2 + |γ − γ0|2

. E
[
∆ {g(ε0)− g0(ε0)}2

]
+ |β − β0|2 + |γ − γ0|2

. E

[
∆
{
g(ε0e

(β−β0)
TZ)− g0(ε0)

}2
]
+ |β − β0|2 + |γ − γ0|2 (14)

under conditions C1–C4. Therefore, it follows from (10)–(14) that

E

{
∆
(
{g(Y eβTZ)− g0(Y e

βT
0 Z)}+ (β − β0)

TZ+ (γ − γ0)
TX

)2
}

≥ {1− (1− η)1/2}
(
E[∆ {g(ε0)− g0(ε0)}2] + E[∆

{
(α−α0)

TW
}2
]
)

& E
[
∆ {g(ε0)− g0(ε0)}2

]
+ |β − β0|2 + |γ − γ0|2

& d2(θ,θ0). (15)

Hence, condition C1 in Theorem 1 of Shen and Wong (1994) holds from (9) and (15).

Next we verify their condition C2. Note that under our conditions C2 and C6,

{l(β,γ, ξ(·,β);O)− l(β0,γ0, ξ0(·,β0);O)}2

.
{
(β − β0)

TZ
}2

+
{
(γ − γ0)

TX
}2

+∆
{
g(Y eβ

TZ)− g(Y eβ
T
0 Z)

}2

+∆
{
g(Y eβ

T
0 Z)− g0(Y e

βT
0 Z)

}2

+

∫ Y

0

[
exp{g(seβTZ) + βTZ+ γTX} − exp{g0(seβ

T
0 Z) + βT

0Z+ γT
0X}

]2
ds. (16)
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Using the Taylor expansion, we have for any θ ∈ Θp,

E[∆{g(Y eβTZ)− g(Y eβ
T
0 Z)}2] . |β − β0|2, (17)

and

E

∫ Y

0

[
exp{g(seβTZ) + βTZ+ γTX} − exp{g0(seβ

T
0 Z) + βT

0Z+ γT
0X}

]2
ds

. E

∫ Y

0

exp{g0(seβ
T
0 Z) + βT

0Z+ γT
0X}

{
g(seβ

T
0 Z)− g0(se

βT
0 Z)

}2

ds+ |β − β0|2 + |γ − γ0|2

= E

[
∆
{
g(Y eβ

T
0 Z)− g0(Y e

βT
0 Z)

}2
]
+ |β − β0|2 + |γ − γ0|2 . d2(θ,θ0). (18)

Thus, combining (16)–(18), we obtain that

E {l(β,γ, ξ(·,β);O)− l(β0,γ0, ξ0(·,β0);O)}2 . d2(θ,θ0),

which implies condition C2 in Theorem 1 of Shen and Wong (1994).

As θ̂n maximizes the log-likelihood Pnl(θ;O) over the sieve space Θp
n, θ̂n satisfies in-

equality (1.1) in Shen and Wong (1994) with ηn = 0. It follows from Lemma 2 that there

exists a ξ0n(·,β0) ∈ Hp
n such that ∥ξ0n − ξ0∥∞ = O(n−pv). The Kullback–Leibler distance

between θ0 = (β0,γ0, ξ0(·,β0)) and θ0n = (β0,γ0, ξ0n(·,β0)) is given by

K(θ0,θ0n) = P{l(θ0;O)− l(θ0n;O)}

. ∥ξ0(·,β0)− ξ0n(·,β0)∥22

. ∥ξ0n(·,β0)− ξ0(·,β0)∥2∞

= O(n−2pv).

Thus, it follows from Theorem 1 of Shen and Wong (1994) that

d(θ̂n,θ0) = Op(n
−min(pv,(1−v)/2)),

which completes the proof of Theorem 1.

Proof of Theorem 2. Employing Theorem 2.1 of Ding and Nan (2011), it suffices to verify

the following conditions to prove Theorem 2.
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A1. d(θ̂n,θ0) = Op(n
−ρ) for some ρ > 0.

A2. Plα(α0, ξ0(·,β0);O) = 0 and Plξ(α0, ξ0(·,β0);O)[h] = 0 for all h ∈ H.

A3. There exists an h∗ = (h∗1, · · · , h∗d)T, where h∗j ∈ H for j = 1, . . . , d, such that

Pl′′αξ(α0, ξ0(·,β0);O)[h]− Pl′′ξξ(α0, ξ0(·,β0);O)[h∗, h] = 0,

for all h ∈ H. Furthermore, the matrix P{l′′αα(α0, ξ0(·,β0);O)−l′′ξα(α0, ξ0(·,β0);O)[h∗]}

is non-singular.

A4. Pnl
′
α(α̂n, ξ̂n(·, β̂n);O) = op(n

−1/2) and Pnl
′
ξ(α̂n, ξ̂n(·, β̂n);O)[h∗] = op(n

−1/2).

A5. Let Gn = n1/2(Pn − P ). For any c > 0,

sup
d(θ,θ0)≤cn−ρ,θ∈Θp

n

|Gnl
′
α(α, ξ(·,β);O)−Gnl

′
α(α0, ξ0(·,β0);O)| = op(1)

and

sup
d(θ,θ0)≤cn−ρ,θ∈Θp

n

∣∣Gnl
′
ξ(α, ξ(·,β);O)[h∗(·,β)]−Gnl

′
ξ(α0, ξ0(·,β0);O)[h∗(·,β)]

∣∣ = op(1).

A6. For some ζ > 1 satisfying that ρζ > 1/2 and for any θ in a neighborhood of θ0,

{θ: d(θ,θ0) ≤ cn−ρ,θ ∈ Θp
n} say,

|Pl′α(α, ξ(·,β);O)− Pl′α(α0, ξ0(·,β0);O)− Pl′′αα(α0, ξ0(·,β0);O)(α−α0)

−Pl′′αξ(α0, ξ0(·,β0);O)[ξ(·,β)− ξ0(·,β0)]
∣∣

= O
(
dζ(θ,θ0)

)
and

∣∣Pl′ξ(α, ξ(·,β);O)[h∗(·,β)]− Pl′ξ(α0, ξ0(·,β0);O)[h∗(·,β0)]

−Pl′′ξα(α0, ξ0(·,β0);O)[h∗(·,β0)](α−α0)

−Pl′ξξ(α0, ξ0(·,β0);O)[h∗(·,β), ξ(·,β)− ξ0(·,β0)]
∣∣

= O
(
dζ(θ,θ0)

)
.
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We briefly discuss these conditions prior to verification of each of them. The conver-

gence rate in A1, established in Theorem 1, is a prerequisite while proving the asymptotic

normality. Condition A2 evaluates the score function (at the population level) at the true

value, while A3 states the least favorable direction and the nonsingular information matrix

along such a direction; both of them are standard in the maximum likelihood theory. Condi-

tion A4 assesses the score function (at the sample level) at the estimator and the stochastic

equicontinuity in A5 can typically be verified by either the Donsker property or the maximal

inequality (van der Vaart and Wellner, 1996). Finally, the Taylor expansion results in A6.

First, A1 holds by choosing ρ = min(pv, (1 − v)/2) from Theorem 1. Using the fact of

zero-mean score functions, it is easy to show A2 holds.

Next, we find h∗ = (h∗1, . . . , h
∗
d)

T with h∗(t, z,β0) = w∗(t) such that A3 holds. Denote

h∗
β = (h∗1, . . . , h

∗
d1
)T, h∗

γ = (h∗d1+1, · · · , h∗d)T,w∗
β = (w∗

1, . . . , w
∗
d1
)T, andw∗

γ = (w∗
d1+1, . . . , w

∗
d)

T.

For any h ∈ H,

Pl′′αξ(α0, ξ0(·,β0);O)[h]− Pl′′ξξ(α0, ξ0(·,β0);O)[h∗, h]

= P

 l′′βξ(β0,γ0, ξ0(·,β0);O)[h]− l′′ξξ(β0,γ0, ξ0(·,β0);O)[h∗
β, h]

l′′γξ(β0,γ0, ξ0(·,β0);O)[h]− l′′ξξ(β0,γ0, ξ0(·,β0);O)[h∗
γ , h]

 .

Some calculation entails that

Pl′′βξ(β0,γ0, ξ0(·,β0);O)[h]− Pl′′ξξ(β0,γ0, ξ0(·,β0);O)[h∗
β, h]

= E
{
∆Y Zeβ

T
0 Zw′(Y eβ

T
0 Z)

}
− E

[
Y Zw(Y eβ

T
0 Z) exp{g0(Y eβ

T
0 Z) + βT

0Z+ γT
0X}

]
+E

∫ Y eβ
T
0 Z

0

exp{g0(s) + γT
0X}w∗

β(s)w(s)ds

 .
In what follows, we calculate the above expectations using the ordinary properties of

conditional expectation. We denote the conditional survival function of T given Z and X by

ST |Z,X(·|Z,X) and the corresponding conditional density function by fT |Z,X(·|Z,X). After
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some tedious but straightforward calculations, we have

E
{
∆Y Zeβ

T
0 Zw′(Y eβ

T
0 Z)|C,Z,X

}
= ZCw(Ceβ

T
0 Z)fT |Z,X(C|Z,X)− Z

∫ C

0

w(teβ
T
0 Z)fT |Z,X(t|Z,X)dt

−Z

∫ C

0

tw(teβ
T
0 Z)

[
g′0(te

βT
0 Z)eβ

T
0 Z − exp{g0(teβ

T
0 Z) + βT

0Z+ γT
0X}

]
fT |Z,X(t|Z,X)dt,

E
[
Y Zw(Y eβ

T
0 Z) exp{g0(Y eβ

T
0 Z) + βT

0Z+ γT
0X}|C,Z,X

]
= Z

∫ C

0

tw(teβ
T
0 Z) exp{g0(teβ

T
0 Z) + βT

0Z+ γT
0X}fT |Z,X(t|Z,X)dtZCw(Ceβ

T
0 Z)fT |Z,X(C|Z,X),

and

E

∫ Y eβ
T
0 Z

0

exp{g0(s) + γT
0X}w∗

β(s)h(s)ds|C,Z,X

 =

∫ C

0

w∗
β(se

βT
0 Z)w(seβ

T
0 Z)fT |Z,X(s|Z,X)ds.

Thus, we obtain that

Pl′′βξ(β0,γ0, ξ0(·,β0);O)[h]− Pl′′ξξ(β0,γ0, ξ0(·,β0);O)[h∗
β, h]

= E

[∫ C

0

{
w∗

β(se
βT
0 Z)− Z

(
1 + seβ

T
0 Zg′0(se

βT
0 Z)

)}
w(seβ

T
0 Z)fT |Z,X(s|Z,X)ds

]

= E

∫ Ceβ
T
0 Z

0

{
w∗

β(t)− Z (1 + tg′0(t))
}
w(t)fT |Z,X(te

−βT
0 Z|Z,X)e−βT

0 Zdt


= E

[∫ +∞

0

I(Ceβ
T
0 Z ≥ t)

{
w∗

β(t)− Z (1 + tg′0(t))
}
w(t)fT |Z,X(te

−βT
0 Z|Z, X)e−βT

0 Zdt

]
=

∫ +∞

0

[
E
{
I(Ceβ

T
0 Z ≥ t) exp{−Λ0(t)e

γT
0 X}eγT

0 X
}
w∗

β(t)

− (1 + tg′0(t))E
{
ZI(Ceβ

T
0 Z ≥ t) exp

(
−Λ0(t)e

γT
0 X

)
eγ

T
0 X

}]
w(t)λ0(t)dt.

Therefore, we take h∗
β with

h∗
β(t, z,β0) = w∗

β(t) =
{1 + tg′0(t)}E

[
ZI(Ceβ

T
0 Z ≥ t) exp

{
−Λ0(t)e

γT
0 X

}
eγ

T
0 X

]
E
[
I(Ceβ

T
0 Z ≥ t) exp{−Λ0(t)eγ

T
0 X}eγT

0 X
] ,

which makes Pl′′βg(β0,γ0, g0;O)[h]− Pl′′gg(β0,γ0, g0;O)[h∗
β, h] = 0 for any h ∈ H.
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Based on similar but simpler calculations, we also have that

Pl′′γg(β0,γ0, g0;O)[h]− Pl′′gg(β0,γ0, g0;O)[h∗
γ , h]

=

∫ +∞

0

[
E
{
I(Ceβ

T
0 Z ≥ t) exp{−Λ0(t)e

γT
0 X}eγT

0 X
}
w∗

γ(t)

−E
{
XI(Ceβ

T
0 Z ≥ t) exp{−Λ0(t)e

γT
0 X}eγT

0 X
}]

w(t)λ0(t)dt.

Thus, we take h∗
γ with

h∗
γ(t, z,β0) = w∗

γ(t) =
E
[
XI(Ceβ

T
0 Z ≥ t) exp

{
−Λ0(t)e

γT
0 X

}
eγ

T
0 X

]
E
[
I(Ceβ

T
0 Z ≥ t) exp{−Λ0(t)eγ

T
0 X}eγT

0 X
]

such that Pl′′γg(β0,γ0, g0;O)[h]− Pl′′gg(β0,γ0, g0;O)[h∗
γ , h] = 0 for any h ∈ H.

Note that

P (Y eβ
T
0 Z ≥ t|C,Z,X)

= P (Teβ
T
0 Z ≥ t, T ≤ C|C,Z,X) + P (Ceβ

T
0 Z ≥ t, T > C|C,Z,X)

= P (te−βT
0 Z ≤ T ≤ C|C,Z,X)I(C ≥ te−βT

0 Z) + P (T > C|C,Z,X)I(C ≥ te−βT
0 Z)

= ST |Z,X(te
−βT

0 Z |Z,X)I(C ≥ te−βT
0 Z)

= I(C ≥ te−βT
0 Z) exp{−Λ0(t)e

γT
0 X}.

Then, w∗
β and w∗

γ can be simplified as

w∗
β(t) =

{1 + tg′0(t)}E
{
ZI(ε0 ≥ t)eγ

T
0 X

}
E
{
I(ε0 ≥ t)eγ

T
0 X

}
and

w∗
γ(t) =

E
{
XI(ε0 ≥ t)eγ

T
0 X

}
E
{
I(ε0 ≥ t)eγ

T
0 X

} .

Hence, we have found h∗ = (h∗1, · · · , h∗d)T such that for any h ∈ H,

Pl′′αξ(α0, ξ0(·,β0);O)[h]− Pl′′ξξ(α0, ξ0(·,β0);O)[h∗, h] = 0.

Furthermore, we obtain

l′β(β0,γ0, ξ0(·,β0);O)− l′ξ(β0,γ0, ξ0(·,β0);O)[h∗
β] = l∗β0

(O)
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and

l′γ(β0,γ0, ξ0(·,β0);O)− l′ξ(β0,γ0, ξ0(·,β0);O)[h∗
γ ] = l∗γ0

(O),

which are the efficient score functions for β0 and γ0, respectively. We can also show that

P
{
l′′αα(α0, ξ0(·,β0);O)− l′′ξα(α0, ξ0(·,β0);O)[h∗]

}
= −Pl∗α0

(O)⊗2,

which is the negative information matrix for α0. Thus, it is invertible under condition C8.

Hence, A3 holds.

Using Lemmas 4–6, the Taylor expansion, the maximal inequality in Lemma 3.4.2 of van

der Vaart and Wellner (1996) or Theorem 11.3 of Kosorok (2008), and the Markov inequality,

we can show that assumptions A4–A6 hold for ρ = min{pv, (1− v)/2} and

ζ = min {2(p− 1)v, 1/2 + (p− 5/2)v, 1− v} /min{pv, (1− v)/2} > 1.

Therefore, by Theorem 6.1 of Wellner and Zhang (2007), we have

n1/2(α̂n −α0) = {I(α0)}−1n1/2Pnl
∗
α0
(θ0;O) + op(1) →d N(0, {I(α0)}−1),

where l∗α0
(θ0;O) = l′α(θ0;O) − l′ξ(θ0;O)[h∗] is the efficient score function for α0. This

completes the proof of Theorem 2.

Proof of Theorem 3. Define

w∗
n(t) =

(
{1 + tĝ′n(t)}Z̄T(t; β̂n, γ̂n), X̄

T(t; β̂n, γ̂n)
)T

.

Then we have

l̂∗α0
(θ̂n;O) = l′α(θ̂n;O)− l′ξ(θ̂n;O)[h∗

n].

Let

Ijk(θ0) = P
[{
l′αj

(θ0;O)− l′ξ(θ0;O)[h∗j ]
}{

l′αk
(θ0;O)− l′ξ(θ0;O)[h∗k]

}]
≡ PAjk(θ0;O)

and

Îjk
n (θ0) = Pn

[{
l′αj

(θ̂n;O)− l′ξ(θ̂n;O)[h∗jn]
}{

l′αk
(θ̂n;O)− l′ξ(θ̂n;O)[h∗kn]

}]
≡ PnA

jk
n (θ̂n;O)
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for j, k = 1, . . . , d. It suffices to show that PnA
jk
n (θ̂n;O) converges to PAjk(θ0;O) in proba-

bility. Note that

PnA
jk
n (θ̂n;O)− PAjk(θ0;O)

= Pn{Ajk
n (θ̂n;O)− Ajk(θ0;O)}+ (Pn − P )Ajk(θ0;O).

Clearly, (Pn − P )Ajk(θ0;O) = op(1). On the other hand, under conditions C2 and C6,

we have

P{Ajk
n (θ̂n;O)− Ajk(θ0;O)}2

. P
{
l′αj

(θ̂n;O)− l′αj
(θ0;O)

}2

+ P
{
l′αk

(θ̂n;O)− l′αk
(θ0;O)

}2

+P
{
l′ξ(θ̂n;O)[h∗j − h∗jn]

}2

+ P
{
l′ξ(θ̂n;O)[h∗k − h∗kn]

}2

+P
{
l′ξ(θ̂n;O)[h∗j ]− l′ξ(θ0;O)[h∗j ]

}2

+ P
{
l′ξ(θ̂n;O)[h∗k]− l′ξ(θ0;O)[h∗k]

}2

.

It is easy to show that

P
{
l′αj

(θ̂n;O)− l′αj
(θ0;O)

}2

. ∥ĝ′n − g′0∥22 + d2(θ̂n,θ0), j = 1, . . . , d1,

P
{
l′αj

(θ̂n;O)− l′αj
(θ0;O)

}2

. d2(θ̂n,θ0), j = d1 + 1, . . . , d,

P
{
l′ξ(θ̂n;O)[h∗j − h∗jn]

}2

. d2(θ̂n,θ0) + |β̂ − β0|, j = 1, . . . , d,

P
{
l′ξ(θ̂n;O)[h∗j ]− l′ξ(θ0;O)[h∗j ]

}2

. d2(θ̂n,θ0), j = 1, . . . , d.

Thus, it follows from Theorem 1 that Pn{Ajk
n (θ̂n;O)−Ajk(θ0;O)} = op(1), which completes

the proof of the theorem.
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Table 1: Simulation results under the proposed accelerated hazards model with a censoring
rate of 20%

True Sieve MLE
λ0(·) n value EST SE ESE1 CP1 ESE2 CP2 MSE×102

(i) 200 β(1.5) 1.496 0.238 0.232 0.939 0.225 0.936 5.657
γ(0.5) 0.511 0.162 0.160 0.947 0.160 0.949 2.628

400 β(1.5) 1.503 0.162 0.163 0.948 0.161 0.944 2.606
γ(0.5) 0.504 0.114 0.112 0.950 0.112 0.950 1.292

(ii) 200 β(1.5) 1.505 0.046 0.043 0.935 0.040 0.922 0.210
γ(0.5) 0.514 0.168 0.165 0.950 0.167 0.952 2.817

400 β(1.5) 1.506 0.031 0.030 0.932 0.028 0.915 0.099
γ(0.5) 0.503 0.114 0.116 0.954 0.117 0.954 1.293

(iii) 200 β(1.5) 1.501 0.099 0.098 0.955 0.096 0.947 0.984
γ(0.5) 0.514 0.166 0.163 0.945 0.166 0.950 2.774

400 β(1.5) 1.503 0.068 0.069 0.952 0.069 0.950 0.466
γ(0.5) 0.498 0.111 0.114 0.961 0.115 0.962 1.236

(iv) 200 β(1.5) 1.493 0.115 0.115 0.911 0.099 0.902 1.311
γ(0.5) 0.515 0.169 0.162 0.944 0.163 0.942 2.865

400 β(1.5) 1.498 0.079 0.077 0.924 0.072 0.913 0.623
γ(0.5) 0.504 0.117 0.114 0.954 0.114 0.951 1.358

EST, the average value of the parameter estimates; SE, the sample standard error of the estimates; ESE1, the

estimate of the standard error by inverting the information matrix of all parameters; CP1, the corresponding

coverage probability of 95% confidence intervals; ESE2, the estimate of the standard error by inverting the

information matrix based on the efficient score function; CP2, the corresponding coverage probability of 95%

confidence intervals; MSE, the mean squared errors of the parameter estimates.
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Table 2: Simulation results under the proposed accelerated hazards model with a censoring
rate of 40%

True Sieve MLE
λ0(·) n value EST SE ESE1 CP1 ESE2 CP2 MSE×102

(i) 200 β(1.5) 1.501 0.258 0.262 0.952 0.250 0.949 6.625
γ(0.5) 0.518 0.188 0.185 0.950 0.185 0.949 3.539

400 β(1.5) 1.504 0.180 0.180 0.942 0.178 0.936 3.241
γ(0.5) 0.504 0.130 0.130 0.941 0.130 0.941 1.679

(ii) 200 β(1.5) 1.501 0.069 0.063 0.921 0.061 0.916 0.472
γ(0.5) 0.523 0.196 0.189 0.947 0.194 0.949 3.864

400 β(1.5) 1.498 0.048 0.044 0.925 0.042 0.913 0.235
γ(0.5) 0.509 0.130 0.132 0.957 0.135 0.962 1.696

(iii) 200 β(1.5) 1.511 0.142 0.138 0.943 0.139 0.943 2.025
γ(0.5) 0.520 0.196 0.189 0.952 0.191 0.953 3.843

400 β(1.5) 1.506 0.099 0.097 0.946 0.099 0.948 0.977
γ(0.5) 0.501 0.129 0.132 0.956 0.133 0.958 1.666

(iv) 200 β(1.5) 1.504 0.127 0.146 0.936 0.117 0.935 1.605
γ(0.5) 0.516 0.196 0.187 0.947 0.187 0.943 3.843

400 β(1.5) 1.508 0.090 0.097 0.948 0.086 0.933 0.811
γ(0.5) 0.504 0.126 0.131 0.963 0.131 0.961 1.577

EST, the average value of the parameter estimates; SE, the sample standard error of the estimates; ESE1, the

estimate of the standard error by inverting the information matrix of all parameters; CP1, the corresponding

coverage probability of 95% confidence intervals; ESE2, the estimate of the standard error by inverting the

information matrix based on the efficient score function; CP2, the corresponding coverage probability of 95%

confidence intervals; MSE, the mean squared errors of the parameter estimates.
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Table 3: Analysis results of the bone marrow transplantation data

Z1 Z2 X1 X2 X3 X4 X5 X6 X7

Estimation (AML L) (AML H) (AML L) (AML H) (P Age) (D Age) (FAB) (Wait T) (MTX)

Sieve MLE
EST −0.651 −0.128 −0.716 −0.033 0.009 0.000 0.804 −0.011 0.348
ESE1 0.045 0.214 0.370 0.380 0.020 0.018 0.276 0.012 0.252
p-value1 < 0.001 0.548 0.053 0.930 0.650 0.994 0.004 0.329 0.166
ESE2 0.119 0.105 0.365 0.371 0.020 0.016 0.269 0.010 0.240
p-value2 < 0.001 0.220 0.050 0.929 0.652 0.993 0.003 0.262 0.147

Cox model
EST −1.051 −0.188 0.012 −0.001 0.812 −0.011 0.294
ESE 0.368 0.359 0.020 0.018 0.275 0.011 0.250
p-value 0.004 0.600 0.530 0.940 0.003 0.310 0.240

EST, the parameter estimates; ESE1, the estimate of the standard error by inverting the information matrix

of all parameters; ESE2, the estimate of the standard error by inverting the information matrix based on the

efficient score function; ESE, the estimate of the standard error by inverting the information matrix based

on the Cox proportional hazards regression model.
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Figure 1: True baseline hazard function (solid line) and its estimate (dashed line) using
the B-spline approximation under n = 200 (left panel) and n = 400 (right panel) with a
censoring rate of 20%. From top to bottom, the plots correspond to cases (i) to (iv) for the
baseline hazard functions.
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Figure 2: True baseline hazard function (solid line) and its estimate (dashed line) using
the B-spline approximation under n = 200 (left panel) and n = 400 (right panel) with a
censoring rate of 40%. From top to bottom, the plots correspond to cases (i) to (iv) for the
baseline hazard functions.
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Figure 3: Smoothed hazard rate functions for patients with ALL, AML high-risk, and AML
low-risk, respectively.
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Figure 4: Estimated baseline hazard λ0(t) using the proposed sieve MLE method for the
bone marrow transplantation data.
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