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Abstract

This paper presents the exact and complete fundamental singular solutions for the
boundary value problem of a n-layered elastic solid of either transverse isotropy or isotropy
subject to body force vector at the interior of the solid. The layer number n is an arbitrary
non-negative integer. The mathematical theory of linear elasticity is one of the most classical
field theories in mechanics and physics. It was developed and established by many well-
known scientists and mathematicians over 200 years from 1638 to 1838. For more than 150
years from 1838 to present, one of the remaining key tasks in classical elasticity has been the
mathematical derivation and formulation of exact solutions for various boundary value
problems of interesting in science and engineering. However, exact solutions and/or
fundamental singular solutions in closed form are still very limited in literature. The
boundary-value problems of classical elasticity in n-layered and graded solids are also one of
the classical problems challenging many researchers. Since 1984, the author has analytically
and rigorously examined the solutions of such classical problems using the classical
mathematical tools such as Fourier integral transforms. In particular, he has derived the exact
and complete fundamental singular solutions for elasticity of either isotropic or transversely
isotropic layered solids subject to concentrated loadings. The solutions in n-layered or graded
solids can be calculated with any controlled accuracy in association with classical numerical
integration techniques. Findings of this solution formulation are further used in the
companion paper for mathematical verification of the solutions and further applications for
exact and complete solutions of other problems in elasticity, elastodynamics, poroelasticty
and thermoelasticity. The mathematical formulations and solutions have been named by other
researchers as Yue’s approach, Yue’s treatment, Yue’s method and Yue’s solution.

Keywords: elasticity, solution, layered solid, graded material
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1 Introduction
1.1 Initiation of this study

The author has studied mathematics and mechanics since 1979 when he started his
studies toward a BSc degree at Peking University. In 1983, he was admitted for post-graduate
study by closed-book examination. Because of his strength at mathematics and mechanics,
his MSc supervisor Professor Ren Wang [1, 2] assigned the project of ground subsidence due
to underground coal mining as his MSc thesis project in 1984. This project was initiated by
Mr. Zeng-qi Li who was a researcher at China Coal Research Institute and a graduate of the
Department of Mathematics and Mechanics of Peking University in 1957. Mr. Li had
investigated the ground subsidence problems for many years [3, 4]. In 1984, Mr. Li came to
Peking University and sought advices from Professor Ren Wang about some mathematical
issues associated with the mathematical formulation of analytical solution in multi-layered
elastic solid. The multi-layered elastic solid was the model that Mr. Li used for prediction of
the ground subsidence due to underground coal mining.

Under the supervision of his supervisor and others, the author quickly understood and
mastered the key points of the mathematics and mechanics of the topic and entered into the
frontiers of the mathematics and mechanics of elasticity in n-layered solids, where n is an
arbitrary non-negative integer. He examined the topic with mind and derived the solution of
elasticity in n-layered solids using the classical mathematical tool of Fourier integral
transform and Laplace transform. His MSc thesis examination committee assessed his
mathematical results and considered them of certain originality in June 1986 [5].
Consequently, this piece of MSc degree work was selected and published at Acta Scientiarum
Naturalium Universitatis Pekinensis in 1988 [6] on the basis of the committee’s
recommendation. The committee members were Professor Ren Wang, Professor Zhong-yi
Ding, Professor Min-zhong Wang [7, 8] and Professor Tianyou Fan [9, 10].

On the other hand, the MSc thesis examination committee also clearly pointed out the
following questions. The solution given in the thesis was in the form of improper integrals of
infinite intervals only. Does it converge? What is its singularity? Does it satisfy the governing
partial differential equations and the boundary conditions? In other words, the solution given
in the thesis was only the initial result of the mathematics and mechanics of elasticity in n-
layered solids. Much more detailed and in-depth examinations of the mathematics of the
solution of elasticity in n-layered solids had to be carried out, which are difficult.

1.2 Ten years effort and results

After his graduation from Peking University in July 1986, the author used much of his
spare time to think and examine the questions. He further carried out careful and rigorous
investigations on the mathematical formulation and properties of the solutions in the form of
two-dimensional improper integrals of Fourier transforms. In 1995, he eventually made
breakthroughs and gave rigorous mathematical answers to the questions raised by the
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committee. Subsequently, he published his findings in Journal of Elasticity, Journal of
Engineering Science, Quarterly Journal of Mechanics and Applied Mathematics, Journal of
Engineering Mechanics and International Journal Solids and Structure [11-17] etc.

Because of his mathematical developments, the author was selected by Mr. G. H.
Argue [18], the then Chief Engineer of Civil Engineering of Transport Canada in the
development of a layered elastic model and associated criteria for the structural design and
evaluation of airport pavements in 1995 and 1996 [19, 20]. Two research contracts were
signed with the author. Using his solution and computer program, the author undertook the
tasks and completed the contracts [21]. On March 5, 1996, Mr. Argue wrote in a reference
letter that “I selected Dr. Yue for the project because his qualifications in layered elastic
theory are unique in Canada. He has published mathematical developments of the theory, and
his computer program for the stress and strain analysis of layered elastic systems is the best
available.”

About twelve years later, i.e., in 2007 and 2008, four researchers at Research Centre
Julich and four researchers at Massachusetts Institute of Technology published their papers in
Biophysical Journal [22] and Physical Review E [23], respectively. In their papers, they used
the elastic solutions in layered solids to analyze the stresses and deformation of cells. In their
papers, they made literature reviews on the analytical solutions of elasticity in homogeneous
solid and layered solids. They found that since Boussinesq’s solution given in 1885 for a
homogeneous elastic halfspace, the solutions given by Yue in 1995 and 1996 for layered
solids are concise and convenient, which were expressed in the form of matrices. They called
them Yue’s approach, Yue’s treatment, Yue’s method and Yue’s solution. Their experimental
results also supported Yue’s solution.

1.3 Objectives and outlines

This paper and the companion paper [24] have three objectives: (1) to give a step by
step mathematical formulation process of the approach, treatment, method and solutions
developed by the author for elasticity in n-layered solids; (2) to present a detailed and
rigorous mathematical verification to the questions on the convergence, singularity and
satisfaction of the solution; (3) to show the approach, treatment and method applicable to
transversely isotropic layered solids, mixed-boundary value problems, boundary element
method, and initial-boundary value problems in the framework of elastodynamics,
thermoelasticity and Biot’s theory of poroelasticity.

To achieve the objectives, this paper has been outlined as follows. A comprehensive
literature review on the history of elasticity since 1638 is presented to illustrate the
importance of the mathematical theory of elasticity and difficulty and limitation of
mathematical formulation of closed-form solutions for its boundary-value problems in n-
layered or graded solids. Secondly, the matrix Fourier transform approach developed by the
author is presented for boundary-value problems in n-layered solids of transverse isotropy.
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Next, details of the treatment, method and solutions are presented for the mathematical
formulation of the solutions in n-layered solids in both transform and physical domains.

In the companion paper [24], the fundamental singular solutions in exact closed-form
are presented for the basic and classical boundary-value problems in either homogeneous or
bi-homogeneous solids and show their mathematical properties and singularities.
Furthermore, the mathematical properties of the solutions for elasticity in n-layered solids are
examined and presented to analytically show their convergence, singularity and satisfaction.
The singularity of the solution is given in exact closed-form. The applications of the approach,
treatment and method to other problems are briefly presented. So, the solutions for other
boundary-value problems, mixed boundary-value problems and initial-boundary value
problems can be derived and formulated similarly and systematically in the form of matrix
operations. Some concluding remarks are given at the end to summarize this study over the
last 30 years and to recommend further studies and applications of interests in science and
engineering.

2 Background (Fundamentals of Elasticity)
2.1  The mathematical theory of classical elasticity
2.1.1 The displacement vector, strain and stress tensors

The mathematical theory of classical elasticity is one of the essential foundations of
continuum mechanics and advanced mathematics [1,7,8]. It is a classical field theory that
deals with the fields of elastic displacements, strains and stresses in a continuous solid
material subjected to external and/or internal loadings. It has a total of 15 field variables in a
three-dimensional space occupied by the loaded solid materials. The 15 field variables at any
point in the solid material include three displacements, six strains and six stresses which form
a displacement vector u, a strain tensor gand a stress tensor ¢, respectively. In the Cartesian
coordinate system (Oxyz), they can be expressed as follows:

u=u(x, y,z):(ux,uy,uz) (1a)
8xx ‘9xy gxz

e=¢e(X,y,2)=|¢, &, &, (1b)
Ex gzy €y,
O-xx ny Xz

c=9o(x,y,2)=|0,, O, O, (1c)
(o) (e (o2



The strain tensor ¢ is also called Cauchy's strain tensor in honour of the French
mathematician Augustin-Louis Cauchy (1789 — 1857). It has three normal strain components

(&g +» &y » &, ) and six shear strain components ( &, , &, , &, , €

Xz yz &

yy ! Xy ! yx’zx’gzy

£, €, and g, respectively represent the infinitesimal extensions or shortening of the solid

XX !

material along the X, y and z coordinate directions. ¢, ,¢,,and ¢, respectively represent the

Xy !
half infinitesimal angle changes of the solid material between the x and y coordinate
directions, between the x and z coordinate directions, and between the y and z coordinate
directions. For ease of understanding, this paper does not use the compacted tensor notations
but use the specific expressions for the tensors and governing equations.

2.1.2 The geometric equations

Under the assumption of infinitesimal displacement and deformation, the strain tensor
¢ has the following linear partial differentiation relationship with the displacement vector u,
which are also called the geometric equations.

ou

— Z7x 2a

fo = (22)
ou

_ 7y 2b
ou

z 2C

= (20)

ou
e —p =1 %Jr_Y) (2d)

9 yX:E(ay ox

£ = £y = o (B g Oy (2¢)
2 01 OX
1,0u, éu

=g =—(—L+—2% 2f

Fn =y 2(82 8y) (21)

2.1.3 The force and moment equilibriums

The stress tensor e is also called Cauchy's stress tensor. It has three normal stress

components (o,, ,o,, ,0,,) and six shear stress components (o, ,0.,,0,,,0,,0

Xy ' Fyx 1 Yxzr Yx oy yz’Gzy'

Xy !
They are defined as follows.

. F,
(axx,axy,axz)szymoﬁ (33)
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. F.
(01,0, Jim, - (30)

(0,.0,.0,)= lim Py (3c)
X'y Yz

AA,—0 AAxy
where AA,,AA, and AA, are infinitesimal areas respectively perpendicular to the x, y and z
coordinate directions at any point (x, y, z). F,,F,,andF, are the three force vectors acting on
AA,, ,AA and AA_, respectively.

Based on the Newton’s second law of motion, the static equations of force
equilibrium at any point in the solid material along the X, y, and z coordinate directions can be
expressed in terms of the partial differentiations of the relevant stress tensor components.
They are also called the equations of equilibrium and take the form

2 4 f, =0 (4a)

+f,=0 (4b)

z4+f =0 (4c)

where(f f,f ):f(x, y,z)is body force vector acting in the interior of the solid material

x1 tyr Tz

along the x, y, and z coordinate directions.

Because of moment equilibrium at any point (x, y, z) about the x, y, and z coordinate
directions, the six shear stresses at that point (X, y, z) have the following relations.

Oy = O (53.)
Oy = Oy (5b)
O-XZ = O-ZX (5C)

2.1.4 The Hooke’s law

The strains (or the deformation) and the stresses (or forces) induced by loading at any
point (x, y, z) in the solid material are two completely different natural phenomena. However,
researchers discovered that there are laws governing their relationship. Such laws are
generally called constitutive relationships at present. The mathematical theory of classical
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elasticity adopts the linear relationship between the strains and stresses in elastic solids. It is
called Hooke’s law in honor of the English polymath and inventor Robert Hooke (1635-
1703). Because transversely isotropic solid material is the main concern of this paper, its
Hooke’s law is specifically given. The six stresses in (4) can be expressed in terms of the six
strains in the following six independent equations.

0 = Ci& +(C, = 2C5)e,, +Che, (6a)
o, =C&, +(C, —2C)e, + 8, (6b)
Oy = Coy + o6, +Cy (6¢)
o,, = 2C,&,, (6d)
o, =2CE, (6e)
O,y = 2CsE,, (67)

where ¢, (i =1,2,3,4,5) are the five elastic stiffness parameters. They are independent to the

levels of strains and stresses. For a positive definition of elastic stress-strain energy, the five
elastic stiffness parameters shall have the following limits.

c,>¢c; >0 (7a)
c,>0 (7b)
c, >0 (7c)
c;>0 (7d)

\/C:C3 > C, (7e)

They have the following relationships with the Young’s moduli, Poisson’s ratios and the
shear moduli.

_ ,U(E'_Vlz E) (8a)
Y A-v)E-2v?E
V'EE' (8b)

C, =
? (1-v)E-2v?E
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(1-v)E"™

% - E—27E (8)

¢, =i (8d)
E

ComH= 2(1+v) (8e)

where E and E' are the two Young’s moduli in honor of the English polymath Thomas
Young (1773 — 1829), vandv' the two Poisson’s ratios in honor of the French mathematician
and physicist Siméon Denis Poisson (1781 — 1840), x and 4' the two shear moduli,

respectively in the isotropic plane and along the z-axis direction.

The isotropic plane of a transversely isotropic solid in (6) is parallel to the x-y plane
and perpendicular to the z-axis. The material property at any point is the same along any
directions in the isotropic plane and can have different values along other directions. On the
other hand, if the solid material property at any point can be the same along any directions,
such material is called an isotropic material. The five elastic parameters degenerate into two
elastic parameters as follows.

C,=Ci=A+2u=21-v)ul(l-2v) (9a)
C,=A=2vul(l-2v)>-2ul3 (9b)
C,=C=u=u>0 (9¢c)
E=E'=2(1+v)u>0 (9d)
-1l<v=v'<1/2 (%e)

where 4 and u are called Lamé constants in honor of the French mathematician Gabriel
Léon Jean Baptiste Lamé (1795 — 1870).

2.1.5 The boundary-value problems

The above equations (2), (4) and (6) govern the displacement field, strain field and the
stress field within an elastic solid material induced by an external and/or internal loading. To
obtain a meaningful boundary value problem, the external and internal loading has to be
properly prescribed on the boundaries and in the interior of the elastic solid material. They
can be classified as the traction (or stress) boundary conditions, the displacement boundary
conditions and the stress-displacement mixed boundary conditions. The system of linear
partial differential equations (2), (4) and (6) has to be solved for a solution of the
displacement, strain and stress field for the solid material under the prescribed boundary
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conditions. This solution is unique. In other words, there is one and only one solution for a
properly given boundary value problem.

2.2  Establishment history from 1638 to 1838

The development of the mathematical theory of classical elasticity was started by
Galileo Galilei (1564 — 1642). In his Discourses published in 1638, Galileo made a scientific
description of the strength of solids although solids were treated as inextensible [25]. About
22 years later in 1660, Robert Hooke (1635-1703) discovered the first rough law of
proportionality between the forces and displacements, a revolutionary idea in science. He
wrote in a Latin anagram that “the extension is proportional to the force”, which forms the
foundation of the constitutive relation equations (6). It can be expressed as follows.

F = KAL (10)

where F is the force, AL is the extension and K is an elastic parameter depending on the size
of the solid material.

About 49 years later, the English physicist and mathematician Isaac Newton (1642 —
1726) published his book Philosophiee Naturalis Principia Mathematica ("Mathematical
Principles of Natural Philosophy") in 1687 and gave the second law of motion as follows.

F=ma (11)

where a is the acceleration and m is the mass of the solid material. This law laid the
foundations for the governing equations of force and moment equilibriums in (4) and (5).

During this 150-year period from 1660 to 1821, many mathematician and physicists
worked on the science of elasticity with some special problems of beams, torsion, columns
and plates. They included Edme Mariotte (1620-1684), Jacob Bernoulli (1655 — 1705),
Daniel Bernoulli FRS (1700 — 1782), Leonhard Euler (1707 — 1783), Charles-Augustin de
Coulomb (1736 — 1806), Thomas Young (1773 — 1829), and Siméon Denis Poisson (1781 —
1840). For example, Thomas Young sharpened the first rough law (10) in 1807 by giving a
clear formulation of the modulus of elasticity in tension as follows.

_Kbab_ Ee (12)
A L

where o is the tensile stress and equals the ratio of the tension force F over its applied cross-

section area A. ¢ is the tensile strain and equals the ratio of the extension AL over its total

length L. The elastic modulus (or Young’s modulus) (E = KL/A) becomes a real elastic

parameter independent to the size of the solid material.

The mathematical theory of classical elasticity presented in above sub-section in
equations (1) to (9) was formerly established from 1821 to 1838 by the French engineer and
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physicist Claude-Louis Navier (1785 — 1836), the French mathematician Augustin-Louis
Cauchy (1789 - 1857), and the British mathematical physicist George Green (1793 — 1841).
In 1838, George Green developed the revolutionary principle of conservation of elastic
energy and showed that the number of elastic parameters necessary to characterize the elastic
solid of general anisotropy turns out to be 21. In particular, Green’s functions are used to
name the fundamental singular solutions of boundary-value problems in physics and
elasticity. Using “Green’s function” as the topic, a result of 21,574 papers is shown up in the
database of Web of Science on April 6, 2015. More details of the establishment history of
classical elasticity can be found in the textbooks and monographs [26-39].

2.3 The key task of solution from 1838 to present

As shown in (1) to (9), the mathematical theory of classical elasticity comprises a
complete set of linear partial differential equations governing the fields of displacement
vector, strain tensor and stress tensor in a solid material subject to external and internal
loadings. Since its former establishment in 1838, the key task in the mathematical theory of
classical elasticity has become to derive, formulate and find the solution of the elastic fields
for specific types of the boundary-value problems [26-40].

The mathematical formulation and derivation of solutions of boundary-value
problems within the framework of classical elasticity, however, are definitely not a routine
task and have intrinsic difficulties. It has been always a difficult task to find a solution for a
boundary-value problem in classical elasticity. Many mechanicians, mathematicians and
elasticians devoted their time and efforts to attack the key task in elasticity because of its
wide applications in engineering and science. Construction of the mathematical tools for
formulation of stresses and deformations in strained elastic bodies are their dominant
concerns. The common methods include serial expansions, potential methods, complex
variables, Fourier transforms and integral transforms. In particular, Barré de Saint-Venant
(1797-1886) made monumental contributions to torsion and flexure of cylinders with an
approximation principle (i.e., the Saint-Venant’s principle) of statically equivalent systems of
load. Gustav Robert Kirchhoff (1824 — 1887) initiated the study of the deflection of plates.
George Biddell Airy (1801 — 1892) solved two-dimensional plane stress problems.

Exact, complete and closed-form solutions are limited in the literature. They have
been derived only for some special cases of homogeneous isotropic (or transversely isotropic)
elastic solids with some regular and special geometries and loadings. These regular
geometries include beams, columns, cylinders, plates, shells and sphere. The solutions can be
found in classical textbooks and monographs [26-40] including Love (1927) and Poulos &
Davis (1974) and many journal papers. Exact, complete and closed-form solutions are not
available for many problems of scientific and technological importance although there are ten
thousand papers related to the topic of linear elasticity in the database of web of science
journals at present.
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Because of the intrinsic difficulties in deriving analytical and mathematical solutions,
more and more researchers have turned their efforts in developing numerical methods and
software for numerical solutions of various boundary-value problems in elasticity since the
introduction of digital electronic programmable computers in 1950s. These numerical
methods include finite element methods, finite difference methods, boundary element
methods and discrete element methods.

2.4  Closed-form fundamental singular solutions

Fundamental singular solutions are of the most importance in the mathematical theory
of classical elasticity. They are the solutions of boundary-value problems due to the action of
force loading concentrated at a point or a curve in the interior or on the boundary of an elastic
solid. Furthermore, a closed-form solution is a peculiar solution that can be exactly expressed
in the forms of elementary or special functions with known and accurately evaluable
singularities. Consequently, the closed-form fundamental singular solutions are extremely
limited and useful in classical elasticity or in the much wide areas of continuum mechanics
and applied mathematics. They can be used to formulate solutions of various distributed
loadings. They have become much more powerful in solving various boundary-value
problems due to the development of boundary element methods since 1960s.

The first complete and closed-form fundamental singular solution in elasticity is
Kelvin’s solution [41]. It was given by the British mathematical physicist William Thomson
(or Lord Kelvin) (1824-1907) in 1848. He also did important work in the formulation of the
first and second laws of thermodynamics. Kelvin’s solution gives the complete elastic field in
a homogeneous and isotropic medium of infinite extent (—wo < X,y,z < +o) induced by an

internal body force concentrated at a point. It forms the core basis of the modern boundary
element methods. The second complete and closed-form singular solution is Boussinesq’s
solution. It was given by the French mathematician and physicist Joseph Valentin Boussinesq
(1842-1929) in 1885 [42]. Boussinesq’s solution is also a fundamental singular solution and
describes the complete elastic field in a homogeneous and isotropic medium of semi-infinite
extent (—oo < X,y < +00,0 < z < +o0) induced by a normal traction concentrated at a point on

the boundary surface. The third complete and closed-form solution is Mindlin’s solution [43].
It was given by the American mechanician Raymond David Mindlin (1906-1987) in 1936.
Mindlin’s solution is a fundamental singular solution and describes the complete elastic field
in a homogeneous and isotropic medium of semi-infinite extent (—o < X,y < 40,0 < Z < 4+0)

induced by an internal body force concentrated at a point.

The above three classical solutions have become the theoretical basis of many
engineering sciences. Other closed-form fundamental singular solutions available in open
literature [44-47] for boundary-value problems in classical elasticity are some logical
extensions of the above three solutions to transversely isotropic solid and bi-materials. They
include (1) solution of a point force in the interior of a homogeneous and transversely
isotropic elastic solid of infinite extent; (2) solution of a point force on the boundary of a
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homogeneous and transversely isotropic elastic solid of a half-space extent; (3) solution of a
point force in the interior of a homogeneous and transversely isotropic elastic solid of infinite
extent, where the isotropic plane is parallel to the boundary surface; (4) solution of a point
force in the interior of two perfectly bonded homogeneous and isotropic elastic solids of
infinite extent; (5) solution of a point force in the interior of two perfectly bonded
homogeneous and transversely isotropic elastic solids of infinite extent, where the two
isotropic planes are parallel to the interface plane. Various solution methods were used for
the formulations of the above closed-form fundamental singular solutions.

2.5  Solutions in non-homogeneous and/or anisotropic materials

Homogeneous and isotropic solids are an idealized model of actual materials. Actual
materials are usually and commonly non-homogeneous and anisotropic and their properties
are variable spatially and directionally. They can be observed in many natural and engineered
materials. The heterogeneity and anisotropy can have significant effects on the elastic
responses of materials under loadings [48]. Literature reviews over the past 30 years by the
author have shown that there are no closed-form fundamental singular solutions for general
non-homogeneous and/or anisotropic elastic solids [49-76].

In order to solve the boundary-value problems in heterogeneous and anisotropic
materials, many researchers have concentrated their attentions on the solutions of boundary-
value problems in elastic solids whose properties vary with depth z only since 1940. The
elastic solutions for the depth variation models can be classified into two categories. In the
first category, it is assumed that the Poisson’s ratio keeps constant and the shear modulus
varies continuously with depth in a certain simple manner in the material region. Elementary
functions including power law, linear, hyperbolic and exponential functions have been
adopted to represent the depth variations of the shear modulus. Studies on this category of
the boundary-value problems can be found in Holl [49], Gibson [54], Ozturk and Erdogan [62]
and Selvadurai [63, 66].

In the second category, it is assumed that elastic materials are piece-wise homogeneous
and consist of a limited number of distinctive finite elastic layers of an infinite lateral extent.
The elastic properties (i.e., Poisson’s ratio and shear modulus) keep constant within each
elastic layer and are different for any two connected layers. Inter-facial conditions, such as a
fully bonded interface, are imposed to connect different layers together into a layered elastic
material system. Studies on this topic can be found in Burminster [50], Lemcoe [51],
Schiffman [52], Michelow [53], Bufler [55], Small & Booker [56], Wang [57], Benitez and
Rosakis [58], Kausel and Seale [59], Pindera [60], Conte and Dente [61], Ta and Small [64],
Cheung and Tham [65].

Furthermore, the studies on homogeneous and/or layered solids of transverse isotropy
can be found in Huber [67], Elliott and Mott [68], Hu [69, 70], Pan and Chou [71], Ding and
Xu [72, 73], Pan [74], Lin and Keer [75] and Ding et al. [76].
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2.6 The common issues

The formulation and solutions of elastic problems in the first category are certainly non-
routine. Many cases cannot provide a complete set of the solutions for the displacement
vector, strain and stress tensors. In the second category, many analytical or semi-analytical
methods are developed for deriving and formulating solutions of similar boundary-value
problems in layered elastic solids with isotropic and/or transversely isotropic properties. The
methods include forward transfer matrix, flexibility matrix, stiffness matrix, finite layer,
finite strip and thin layer methods. These solutions are usually expressed in very complicated
forms involving improper integrals and/or approximated forms. There is almost no
systematical and rigorous mathematical examination of these solutions in terms of their
convergence and singularities. Most importantly, closed-form fundamental singular solutions
were also not available at least in these cited literatures [25-76] on the boundary-value
problems with depth variations of either the two isotropic or the five transversely isotropic
elastic parameters.

2.7 The author’s work

From 1984 to present, the author has examined the three-dimensional boundary-value
problems of the classical elasticity in nonhomogeneous and transversely isotropic solid [5, 6,
11-17, 19, 20, 77-81]. The solid occupies a three-dimensional space of an infinite lateral
extent (—o < X,y <+o0) and a finite thickness a <z <b), a semi-infinitea < z < +0), and/or

an infinite extent (—oo<z<+0). The five elastic material parameters (c,,c,,c;,c,,C;) or
(E,E',v,v', ) are arbitrary piece-wise functions of the z-axis. The solid is subjected to

various loadings at the external boundary surfacesz =aand z = b as well as the internal body
force. His key task is to rigorously derive and show the complete and closed-form solution of
the elastic fields from the set of partial differential equations given in (1) to (9) for each of the
boundary-value problems. Moreover, the author has given the closed-form fundamental
singular solutions induced by loadings concentrated at a point, a circular ring and a
rectangular area whose normal direction is parallel to the vertical z-axis in the interior or on
the boundary of the solid. His closed-form fundamental singular solutions can automatically
and analytically degenerate as Kelvin solution, Boussinesq solution and Mindlin’s solution
once the material properties become homogeneous and isotropic. Details of his mathematical
approach, treatment, method and solutions are presented in this paper and the companion
paper [24] using the model of n-layered solid with both transverse isotropy and isotropy.

3 The Matrix Fourier Integral Approach
3.1  General

The author used the Fourier integral transforms to rigorously derive and formulate the
general algebraic solution for the set of linear partial differential equations (2) to (6). The
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Fourier integral transforms are one of the classical mathematical tools for solutions of initial
and/or boundary value problems in physics and mechanics [82-90]. The concept of Fourier
integral transforms was originated by the French mathematician and physicist Jean-Baptiste
Joseph Fourier (1768 — 1830) in his monumental treatise entitled La Théorie Analytique de la
Chaleur (The Analytical Theory of Heat) in 1822 [82]. He stated the Fourier Integral
Theorem and used it to solve problems of heat transfer and vibrations. In 1843, A. L. Cauchy
(1789 — 1857) gave the exponential form of the Fourier Integral Theorem [90].

On the basis of the classical Fourier integral transforms, the author [5, 6, 11-17]
developed a matrix approach to solve the set of fifteen linear partial differential equations (2)
to (6) and derived a general solution in symmetrical matrix form. Details of this approach and
results are presented below using the transversely isotropic material model.

3.2  The matrix solution representation

The strain and stress tensors in (1) to (6) can be re-expressed as the vertical stress
vector T, (X, Y,2z), the plane stresses T (X,y,z), the vertical strainsI',(x,y,z) and the plane

strains T',(X,y,2) . As a result, the fifteen field variables can be grouped into five vectors as

follows,
u X O-XZ GXX gXZ gXX
u=u, [\ T,=lo, | T,=|oy || [,=|¢&, | T,=]|&| (13)
u z Gzz ny 822 gyy

Yue [5, 6, 11-17] has shown that the above five sets of vectors for the fifteen field
variables in the physical domain can be represented by two unknown vectors w(&,#,z) and

Y,(&,7n,z) in the transform domain for all the boundary-value problems of a solid occupying
the layer region of —co< X,y <+wand a<z<b. In particular, the solution representation
can be expressed as follows in the Cartesian coordinate system,

+00 400

U y2) == [ W 2)Kdedy (142
T e “u P

T2 = [ 1Y, (6. 2)Kdédn (14b)
T —0 —o

r,(xY.2) =%j | ERUERISEY (140)

T,(x,y,2)=C,,T,(X,y,2) +C I ,(X,Y,2) (14d)
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I,(x,y,2)=C,T,(x,y,2) +C,I',(XY,2). (14e)

where p =/ +n?; K =e'®*™; i =-1;The coordinate coefficient matrices IMand I, are
defined by

i inp 0
n=1lip —ic o (14f)
0 0 p
. & én 0
,=-=| & +(n*-¢°) 0 (149)
. —¢n 0

The four elastic parameter matrices C,,C,, C,,and C, can vary with the depth z and are
defined by

1 0 0 ¢ C, 0 c¢,—2c
Cp=—]00 0];Cu=l 0 26, 0 (14h)
*\0 0 ¢ c,—2c; O C,
NER 100
Cu=pe|0 1 0 |; C,=—2/0 0 0 (14i)
“lo 0 2c,/c, *lo 01
2
c,=c -2 (14j)
C3

The two unknown field variable vectors w(&,7,z) and Y, (&,7,z) in the transform
domain are defined as follows.

Wy 7
w=|w,|Y,=7]| (15)
W, T3

They can be re-expressed by u(x,y,z) and T,(x,y,z) in Cartesian coordinate system as
follows.

400 +00 +00  +00

w(&,n,7) = H*i .[ Iu(x, y,z)K dxdy = % f J'H*u(x, y,z)K “dxdy (16a)

—00 —00 —00 —00
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+00  +00 1 400 +00

Yz(f,n,z)zl'[*i j j T, (X, y,z)K*dxdyzz— j j IT'T,(x,y, z)K dxdy (16b)

T

—00 —00 —00 —00

where K* = e **)- the coordinate coefficient matrix IT" is defined by

. —-i& —-in 0
n==|-in i& 0 (16c)
0 0 p

Correspondingly, the body force vector f(x,y,z) and its counterpartg(&,n,z)in the
transform domain have the following relations.

+00 400

1
f(xy,2)=——] [Ngn2)Kdgdy (172)
72-—00 —0
g(f,n,z):ET Tf(x,y,z)K*dxdy:iT TH*f(x,y,z)K*dxdy (17b)
2 2 7 2 ° °
where

fy 9
f=f, | 9=|a| (17¢)

fz gS

3.3  Two sets of governing ordinary differential equations

The solution representation can be applied to the system of fifteen partial differential
equations (2) to (6). The fifteen field variables in the physical domain can be replaced by the
six field variables in the transform domain. The system of the fifteen linear partial differential
equations can be then degenerated and reduced to a set of six first-order linear ordinary
differential equations in terms of the six field variables in the transform domain. Due to the
symmetry and anti-symmetry of the elastic solid of transverse isotropy in the x-y plane about
the z-axis, the set of six first-order ordinary differential equations can be decoupled into the
two sets of first order ordinary linear differential equations.

3.3.1 The first set for anti-axial-symmetry of materials

The first set is due to the anti-symmetry about the z-axis and has two linear ordinary
differential equations with two field variables and variable coefficients with z. It can be
expressed as follows.
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%V(z) = pC,()V(2)+ G, (2) (18a)

wherea<z<b, 0< p <+, and

V(z>=(vf], G, =(§ j cv(z)=[f lﬂ (180)

3.3.2 The second set for axial-symmetry of materials

The second set is due to the axial symmetry about the z-axis and has four linear
ordinary differential equations with four field variables and variable coefficients with z. It can
be expressed as follows.

%U(Z) = pC,(1)U(2) + G, (2) (192)

wherea<z<b, 0< p <+, and

W, 0 o -1 0 1fc,
W, 0 c,/c; 0 1lc, 0
= = — 1
U(Z) z_s ! Gu . ! CU (Z) 0 O O 1 ( 9b)

7 0, Co 0 _Cz/cs 0

Most importantly, the matrix approach eliminates the two independent variables £and
n in the six governing ordinary differential equations and preserves only the radial
distance p of the material axial symmetry about the z-axis. The two coefficient matrices
C,(z)and C,(z)contain only the five material parameters (c,=c,(z),i =1,2,3,4,5) and do not
have the radial distance variable p. The five elastic parameters in C, (z) (18b) and C,(z)
(19b) can be arbitrary functions of the depth z, i.e., ¢,=c,(z),i =1,2,3/4,5.

3.4  The general solution of V(z) and U(z) for homogeneous materials

To solve a specific type of the boundary-value problem, the specific depth variation
functionsc, (z)(i =1,2,3,4,5) have to be provided for the five elastic parameters. Consequently,

a general solution can be derived for the two sets of ordinary differential equations with
variable coefficients (18-19). The general solution can then be used to derive and formulate
specific solutions for various boundary-value problems imposed on the non-homogeneous
solid in the transform domain. The solutions in the physical domain can subsequently
obtained by applying the solution representations (14) to the specific solutions in the
transform domain.
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If the five elastic parameters (c,,i =1,2,3,4,5) in (18-19) do not vary with the depth z
(in other words, the solid is homogeneous), the two coefficient matrices C,(z) and
C, (z) become constant coefficient matrices. General solutions in matrix forms can be found

for the two sets of two and four linear ordinary differential equations with constant
coefficient matrices. They are given in the ensuing derivations.

3.4.1 The general solution of V(z2)

The basic solution for the first set of two linear ordinary differential equations with
constant elastic parameters (18) can be obtained as follows,

V(2) = A(z-2,)V(2,) - [ A(z=¢)G, (5)ds (209)

wherez >z, 0orz < z,. The first basic square matrix A(z) is defined as follow.
A(z) =B(y,)e"™” +B(-yy)e ™" (20b)

where the material characteristic root y, =,/c;/c, >0 . The material constant square

matrix B( y) is defined as follows.

1
111 —
B(1)=5| = cur (200)
c,y 1

The above two basic solution matrices have the following properties.

detA(z) =1 (21a)
10

A0 =1, = (0 J (21b)

A(2)A(z))=A(z+1z) (21c)

A(z2) " =A(-2) (21d)

3.4.2 The general solution of U(z)

Similarly, the general matrix solution for the second set of four linear ordinary
differential equations with constant coefficients (19) can be obtained as follows,
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U(2) = Q(z-2,)U(z,) - [ Q(z—¢)G, (s)ds

wherez >z orz < z,. The second basic square matrix Q(z) is defined as follow.

o(2) - {C(mel = Cl7,)e™ +C(=py)e " =~ C(=7,)e

where the material characteristic roots y,, ,and y,are defined as follows,

y,=C,+¢c,>0and y,=c,—c, >0 for A>0
y,=C,+i|c,|and y,=c, —i]|c, | for A<O
v, =(c,/c,) >0 for A=0

where

c = \/( C,C; +Cy +2C4)(\j C,Cs _Cz) S0
: 2\/cic,

(JJec, +¢,)A

2\/cic,

A =,/cCc, —C,—2C,

D(7,)e™" +D(~7,)e 7 + y,o2(E(r,)e™" +E(~y,)e 7" ) for A=0

(22a)

(22b)

(23a)

(23b)

(23c)

(24a)

(24b)

(24c)

where +y,and+ y, are the four roots for A=0 and + y,are the two equal roots for A =0 of

the following material characteristic equation.

2
s Gt 2¢,C, —C.C, /2 Lo
ciC, C,

=0

(24d)

The three material constant square matrices C(y), D(y) and E(y) are defined as

follows,
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;(2+C—2 —(ZJ’_C_Z G +C, x 1
Cs Cy CsCy C, Cyx
Gy b g L__G c, +C,
C —; Cs Cx C; CC,x C,C,
(Z) - 2(72 _72) Cp , Cz
C3
C C c
CoX -G -(Fx+—>) r+*
L C, Cax C,
1 _ C43 0 C2+302
Cx 2C,C, 1
S L Gt
D(y) = 1 Cax 2¢,C,x
2 0 M 1 Cy
Cox’ c.x’
2c,(c, +c¢,) 0 c .
Cx C.x |
, -+ 1 1
X 2c, 2C,y
V4 1
C,+C 1 -4 =
E() =22 * 2, 2,
2Cy 2¢ .
2c, —— -1 Sl
X X
_2047( -2c, -y 1 ]
c; . c? +c,c, —CC
cp:cl__Z, Cy = 2 24 1V3

C, 2¢,C,

The above basic solution matrices have the following properties.
detQ(z) =1

Q) =1,

Q(2)Q(z,) =Q(z+1,)

Q)" =Q(-2)

lim [C(y,)e" —C(y,)e’ +C(=y,)e 7 —C(~y,)e 7]

71V2=73

= D(]/s)e73pz + D(—}/3)e*73p2 +73pZ(E(73)673PZ + E(_]/:;)efyspz)
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(26a)
(26b)
(26¢)

(26d)
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where 1, is the unit square matrix of the dimension 4.

3.4.3 The three constant matrices for isotropic solids

For isotropic solids (9), A=0 and the material characteristic roots y, =landy,=1.
The three material constant square matricesB(y),D(y) and E(y) (20c, 25b, 25c) can be
simplified with the two material parameters xz and ¢ for isotropic solid as follows.

1

111 —

B(x)== Ly (273)
2
uy 1
7 i 0 lta
2u
1 2 3 l+a ,

D(y) = —ay X —X 0 27b
(x) 2, 24 (27b)
0 2u(l-a) 7 a

2u(l-a)x? 0 ay’ 7]
y -1 £ L
2u 2u
1-a)| . ¥ x
E(y)= —y -4 £ 27¢
(x) 27 X X 20 24 (27¢)
2uy -2 -y 1
22wt~y -1t x|
v 1-2v

(27d)

a = =
A+2u 2(1-v)
3.5 The V(z) and U(z) of a homogeneous layera<z<b

The general matrix solutions for one homogeneous elastic layer can be re-expressed in
terms of the six boundary variables at z = a as follows.

V(2) =M IAN - )V (@) - [ IAR (- 6)B, ()de (282)

U(2) =& Q" (2 ~a)U(a) - [+ Q" (2 -G, (c)de (280)
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where the two solution square matrices AP (s)and QP(s) have only the exponential functions

with negative independent variable because s=z—a>0and/or s=z—-¢>0
AP(s)=e " A(s) = B(r,) +& "*B(~7,) (28c)

e ”*Q(s) forA=0
e ’#*Q(s) forA=0
_C(r) - TIEC(y,,) + € C(—p,) —e P C(—y,) forA#0
B {D(%) +7308E(y3) + e " [D(_73) + 73,03E(_7/3)] forA=0

Q"(5) =7 Q(s) - {
(28d)

Secondly, the general matrix solutions for one homogeneous elastic layer can be re-
expressed in terms of the six boundary variables at z =bas follows.

V(z) =e ™" PA%(z-b)V(b) - I e " IAYz-4)G,(5)dg (292)

U(z) =e7*™Q%(z-b)U(b) - j e QY (z-¢)G,(¢)dg (29b)
b
where the two solution square matrices A%(s)and Q“(s) have only the exponential functions
with negative independent variable because s=z—-b <0and/or s=z—-¢<0.

A’ (s) = e"*A(s) = €7 B(y,) + B(-7,) (29c)

e’”*Q(s) forA=0
e’¥*Q(s) forA=0

_{E%C(mc:(—m—eWWC(yz)—e‘h-yz’ﬂsC(—m for A=0

Q(s) =e"*Q(s) = {
(29d)

e [D(73) + 73PSE(73)]+ D(=y3) + 7308E(=y3) forA=0

The four algebraic boundary equations governing the relationship of the four field
variables V(a)and V(b) on the upper and lower boundariesz =aandz =b can be expressed

as follows. It can be shown that they have only two independent equations.
b
V(b) =e® AP (b-a)V(a) - J' e IAP(bh-5)G, (¢)dg (30a)

or
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V() e DA a ~)V(D) - [ DA a—6)G, (6)ds (30b)

The eight algebraic boundary equations governing the relationship of the eight field
variables U(a) and U(b) on the upper and lower boundariesz=aand z =bcan be expressed

as follows. It can be shown that they have only four independent equations.
b
U(b) =e™"**QP(b-a)U(a) —Ie“"“””Q” (b-5)G,(s)dg (31a)
or
U(a) = e Q(a-b)U(b) - I e 7" Q%a-¢)G, (5)dg (31b)
b

3.6  The V(z) and U(z) of a homogeneous upper halfspace—w<z<a

The general matrix solutions for the upper homogeneous elastic half space are a
special case of the general matrix solutions. They can be obtained as follows using the natural
regularity conditions (i.e., the displacements shall be reduced to zero and the stresses shall be
bounded asz — —).

V(2) = IB()V(@) + [ 56 IB(ES 1,)G, (¢)de (32a)

—0

[e—ylp(a—Z)C(}/ ) _ e_”p(a_z)C(j/z)]U (a)
+ J"Z = [e nple- gIC(‘Z < 7)—e ~72ple= §|C(‘Z = 72)k; (¢)d¢
e I[D(7,) + 7,0z - EG,) V(@)

+j‘z e g'[D(‘Z ~173) +7:P(2-9)E(5 7/3)}3 ()dg

forA=0
U(z) = (32b)

forA=0

where ;= =1if z> ¢, and = =-1if z<¢.

Putting z = a into (32a), two algebraic boundary equations can be obtained as follows.
It can be shown that they have only one independent boundary equation governing the
relationship of the two field variables VV(a) on the lower boundaryz =a

B(-7,)V(a) =—-B(-7,) [¢ "G, (5)dg (33)
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Putting z = a into (32b), four algebraic boundary equations can be obtained. It can be
shown that they have only two independent equations governing the relationship of the four
field variables U(a) on the lower boundary z = a

[C(-7) - C(=7,)V(a) =—C(-7,) [e 7 9G, (5)dg + C(-7,) [e 7 9G, (5)dg  for A#0
D(7,)U(a) =—D(-75) [e 7 9G, (5)ds —E(-7s) [ rap(a-¢)e 7 9G,(g)dg for A=0
(34)

3.7  The V(z) and U(z) of a homogeneous lower halfspaceb <z < 4w

Similarly, the general matrix solutions for the lower homogeneous elastic layer can be
obtained as follows, using the three regularity conditions asz — +o.

400

V(2) = e 7 VB, )V(b) + [ 56 IB( 22 1,)G, ()dg (352)
b

[ 0C () ~e 7 C(y,) U (b)
+ [ ferei ) e ez ) (ds
e 7 [D(~y;) +7:p(2~D)E(~7,) U (b)

. j; <o 7D 1)+ 7,0(2 - O)E(EE 1) B (6)ds

forA=0
U(z) = (35b)

forA=0

Putting z =b into (35a), two algebraic boundary equations can be obtained as follows.
It can be shown that they have only one independent boundary equation governing the
relationship of the two field variables V(b) on the lower boundaryz =b.

B(7,)V(b) =B(r,) [¢ 7 ”G, (5)dg (36)

Putting z=b into (35b), four algebraic boundary equations can be obtained as
follows. It can be shown that they have only two independent equations governing the
relationship of the four field variables U(b) on the lower boundaryz =b.

[C0n) - COo) ) =C(r) 774G (6)ds +C(r,) [ 7B, ()dg  forA=0
’ ° (37)

D(y;)U(b) = D(75) [ 7 ™G, (¢)ds —E(r5) [ 750(s —b)e ™G, (c)dg forA=0
b b
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3.8 TheV(z) and U(z) of a homogeneous infinite space — o < z < +o

The general matrix solutions for a homogeneous elastic solid of infinite space can be
similarly obtained as follows, using the six regularity conditions asz — —coand z — +o0.

V(2) = j e B(E7,)G, (6)dg (382)

Zg\[e HAC(EL ) eI ) Bu(e)ds oA
U(z)=1" (38b)

‘Z:g‘ i [D(‘Z = Vs)+¥a0(2— g)E(‘Z_d }/3)]3U (¢)dg forA=0

3.9 Summary notes

The mathematical approach presented above clear shows the following features. The
five material parameters for the solutions of the boundary-value problems in the transversely
isotropic solid are isolated and separated from the independent spatial coordinates (x,y,z)in

the physical domain and/or (&,7,z) in the transform domain. They are presented in the four

square matrices and the three material characteristic roots. The function of the two lateral
coordinates (&£,7) in the transform domain is consolidated into the function of the lateral

radial distance p(= /&% +n?).

The governing equations and general solutions are decoupled into the two systems of
anti-symmetry and axial-symmetry about the vertical z-axis, which is consistent with the
axial symmetry of the material property of the transversely isotropic solid about the z-axis.
The general solutions are all presented in matrix form and the functions of the material
matrices and the roots and the lateral radial distance p and the vertical coordinate z are

clearly separated and identified.

The two independent variables p and z are always working together as a combined
variable pz . The body force term is also clear. There are only the following two types of
integrations for the body force vectorg(&,7,2).

Jeg(£m,2)dg (39)

[ p(z=5)e#*g(&,n,2)dg (39b)

where y =y,,7,,7,0r 7.
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If the body force wvector is concentrated on a horizontal plane, i.e.,
a9(&,n,2)=9(&,n)o6(z—d), wheresis the Dirac delta function, the equations (39) become
the following:

[e e 9g(&,n,2)dg =& #g(&, ) (40a)
IP(Z —g)e #g(&,n,2)dg = p(z—d)e #g(&,7) (40b)
where a<d < z.
4 The Solution in Transform Domain

4.1  The boundary value problems
4.1.1 Material discretization

For simplicity and without loss of generality, this paper considered the specific type
of boundary-value problems in an elastic solid of depth variable material properties and an
infinite extent subject to a body force vector. The depth variations of material parameters are
represented by a series of step functions (or a series of homogeneous and connected elastic
layers). This material discretization technique can represent any variations in depth as long as
the total number of the layers is large enough.

As a result, the n-layered elastic solid consisting of (n+2) dissimilar layers can be
obtained. Each layer is homogeneous and has the five transversely isotropic elastic
constants(c,;,¢,;,Cs;,C,;,Cs;) » Where j=0,12,3,...,n,n+1. The 0™ layer occupies the region

of upper halfspace. The (n+1)" layer occupies the region of lower halfspace. Between the
upper and lower halfspaces, there are the n layers. The j™ layer occupies a layer region of a

finite thickness extent (j=1,2,3,...,n). In other words, (i) for —co<z<H, it is the o™
homogeneous elastic halfspace; (ii) for H; ; <z <H;j, it is the j™ homogeneous elastic layer
with the layer thickness h; = H; —H _,; (iii) for H; <z <+, it is the (n+1)™ homogeneous
elastic halfspace.

4.1.2 Interface conditions

Secondly, the interface connection conditions are needed to be prescribed for linking
the layered solids together. For simplicity, they can be perfectly bonded together whilst other
types of interface conditions can also be examined [76]. For this perfectly bonded interface
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connection, the displacement vector u(x,y,z) and the vertical stress vector T,(x,y,z) are

completely continuous at the horizontal interface between any two connected dissimilar
elastic layers, i.e.,

lim u(x,y,z) =u(x,y,H;) = lim u(x,y,z) (41a)
z->Hj z>H]

lim T,(x,y,2) =T,(X,y,H;) = lim T,(x,y,2) (41b)
z->Hj z>HT

4.1.3 Internal loading of body force vector

Thirdly, the distribution of the general body force vector f(x,y,z)is assumed to
concentrate at an arbitrary horizontal plane z =d in the layered elastic solids.

f(x,y,z)=f(x,y)o(z-d) (42)

where H, , <d <H, ;dis a Diract delta function, 1<k <n. In particular, the situation for
—oo < d < H,can be included by increasing a single layer of finite thickness > H, —d in the
0™ elastic layer. Similarly, the situation for H. <d <+wcan be included by increasing a

single layer of finite thickness >d — H_ in the (n+1)" elastic layer.

Substituting the above body force condition into equations (17), the following results
can be obtained for the internal loading variables.

9(&.7,2) = 9(&,md(z-d) (432)
G,(£,7,2) = G, (£,7)5(z ~d) (43h)
Gu(£.71,2) = G, (£, )5(z ~d) (430)
0 =5 [ I y)K ddy (43d)

4.1.4 The backward transfer matrix treatment

Using the general matrix solutions in the transform domain, many boundary value
problems have been formulated and solved in n-layered elastic solids. Yue [11, 13, 14] has
developed a backward transfer matrix method to obtain analytical solutions for elastic
problems in the isotropic n-layered system. Details are respectively given in the following
two sections for the solutions of V(z)and U(z) with transversely isotropic n-layered solids.

4.2  The solution of V(z)
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4.2.1 Solution of V(z) interms of V(H)or V(H[)

The general matrix solutions in terms of the field variable matrix V(z) for each of the
(n+2) layers can be expressed as follows.

(i) For the Oth layer of the upper halfspace —co <z < H,,

V(z)=e 7" B (1) V(Hg) (44a)
(i) For the jth layer of finite thicknessH;, <z<H;, j=12,.,k-1k+1,..,n and
j#k
V(z) =" IIAY (2 H )V(H ) (44b)
or
0jp(Hj-2) -
V(z) =e"* Al(z-H;)V(H;) (44c)

(iii) For the kth layer of finite thicknessH, , <z<H,, k=12,..,n-1n

7P E DAL (7 - H, )V (H forH , <z<d"
V(Z) - {e (z-Hy4) ) (Z kil) ( Ii:l) (z—d) > +k71 j - (44d)
e/ IA L (z—H, V(H, ) —-e""" VAP (z-d)G, ford"<z<H,
or
}/OKP(HH*Z)AQ —HV(H) - 70kﬂ(d*Z)Aq _ forH' <z<d”
V(Z) _ {e . k(Z k) ( 7k) € k(Z d)GV or +k—l Z (? (44e)
e’ TEAN(z—H, )V(H,) ford"<z<H,
(iv) For the (n+1)th layer of lower halfspace H, <z < 4o,
V(@)=e 7" B, (<7 oy )V(HY) (447)
The basic solution matrices in equations (44b) to (44e) are defined as follows.
A?(S):Bj(70j)+e72y0jpsBj(_70j) (45a)
A(}(S):ezij/ﬁBj(VOj)"‘Bj(_?/o,') (45b)
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where y,; = ,/csj/c“ and the constant matrix B;(y)is given in (20c) for the jth elastic layer.

The basic solution matrices do not have any functions of exponential growth, i.e.,e”" with
positive constant ¥ (> 0).

4.2.2 Solution of V(z) intermsof V(H,)or V(H,)
Using the perfectly bonded interface condition (1), we have
Vj(H;):Vj(Hj):Vj+l(Hj):Vj+l(Hj+) (46)

Accordingly, using (44b), (44d) and (46), the matrix solution of VV(z)forH, <z<H, can be
uniformly expressed in terms of V(H ) via the backward transfer matrix technique.

(i) For the jth layer of finite thicknessH, , <z<H.,1<j<k<nand z<d~,
i-1 J
V(z) = e}’ojP(Z*Hj—1)+}’0(j—1)Phj—1+---+701Ph1A§)(Z _H j—1)A?—1(hj—1)"'A1p(hl)V(HO) (47a)

(ii) For the jth layer of finite thicknessH, ; <z<H,;,, n>j>k>1and z>d",

V(Z) _ e70jP(Z*Hjf1)+70(171)Phj71+---+701Ph1AEJ(Z —H jfl)A?fl(hjfl)"'Alp (hl)V(HO)

0jP(Z=Hj 1) +70¢j0) AN ja++Yoke1) AN ks1 +7okP(Hi—d)
—e” PEH il 7uu 7ok ey A?(Z -H j—l)A?—1(hj—1)"'AE+l(hk+l)AE(Hk - d)Gv
(47b)

Similarly, using (44c), (44e) and (46) the matrix solution of V(z)forH, <z<H, can
be uniformly expressed in terms of V(H, ) via the backward transfer matrix technique.

(i) For the jth layer of finite thicknessH, ; <z<H;, n> j>k>1and z>d",
V(Z) _ e}’ojP(Hj’Z)+70(j+1)Phj+1+---+70nPhn Alil(z —H j)A?+l(hj+1)“'Ag (hn)V(Hn) (483.)
(i) For the jth layer of finite thicknessH; ; <z<H,;, 1< j<k<nand z<d~,

V(Z) _ eVOjP(Hj*Z)H’o(j+1)Phj+1+---+70nPhn Atj](z —H j)A?+1(_hj+1)"'Ag (_hn)V(Hn)
0j i =)0 PN a1 T Yok P k) Trokp (A —Hy g
_e p(H;=2)+7g(jyPh Yok-PNk-1) +7okp(d—H )A?(Z_Hj)A?+1(_hj+l)"'Ag—l(_hk—l)AE(kal_d)Gv
(48b)

4.2.3 Solution of V(H,) interms of G,
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Substituting z=H
equations can be obtained for governing V(H,)and V(H,).

into equation (47b), the following two algebraic boundary

n

V(H,) =g/ roenfetraf AR (h AP (h ). AP (h)V(H,)
_ e70nphn *70(n-1),0hn-1+---+7o(k+1),0h(k+1)+}’0kﬂ(Hk*d)AE (hn)A pfl(hnfl)"'AEJrl(thrl)Alf (H - d )G

n

(49)

v

Since the Oth layer is an upper elastic halfspace, it has one independent algebraic
boundary equation governing VV(H,) from (33). It can be expressed as follows.

qOV(HO) =0 (503-)
where
a, {1 -1 } (50b)
C407 00

Thirdly, since the (n+1)th layer is a lower elastic halfspace, it has one independent
algebraic boundary equation governing V(H,) from (36). It can be expressed as follows.

pn+lV(Hn) = 0 (513.)

Do {1 ;} (51b)
C

4(n+1)Y 0(n+1)

Using (49) and (51a), the one algebraic boundary equation (51a) can be re-expressed
as follows.

e}'onphn +70(n-1)Pnoy et Y orP pn+1Ar’1J (hn)Ar’:—l(hn—l)'"Alp (hl)V(Ho) —

(52)
e}’OnPhn+7o(n_1)0hn_1+---+}’o(k+1)»0h(k+1)+70kP(Hk*d)erlAr;]J(hn)Ar?_l(hn_l).“AEH(th)AE (Hk —d )G

v

Using equations (50a) and (52), the following set of two linear algebraic boundary
equations can be obtained for the unknown two variablesV(H,) .

qoV(Ho) =0 (53a)

pn+1A§ (hn)Ar?_l(hn_l)---Alp (hl)V(Ho) _ e*}’mphf---*}/o(k-z)Phk-z ~Yo(k-1)Pk1—Yokp(d—Hy 1)

(53b)
pn+1Ar? (hn)Ar?—l(hn—l)'"Alf+l(hk+l)Alf(H k d )G

\

Or they can be re-expressed in the following matrix form,
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|: qO :|V(H ) _ e’;’Ol/*H*...*}/o(k,g)pth7y0(k71)phk717}/0kp(d7Hk71)
A 0) =
P r?(hn )Ar?—l(hn—l)"-Af (hl)

54
0 (54)
p p p p GV
pn+1An (hn )An—l(hn—l)"'Ak+l(hk+l)Ak (H k d)

From (54), the solution of VV(H ) is given exactly as follows.

V(H O) — e—701ph1—---—70(k72)/0hk72 ~Yok-1)Pk-1=70kP(d—Hy 1) N A G (553.)
pv

where N, is given below and its exact expression is in Appendix A.

N, = M{ 0 } (55b)
PP A ()AL (0 ) AL (M )AL (H, —d)

where M;\t is the inverse matrix of the 2x2coefficient matrixM ,, and can be analytically

derived in exact form (Appendix A). M, is defined as follows.

Qo
M, = (55¢)
o [pMAE(hn)AE_l(hn_l)---Af(hl)}
4.2.4 Solution of V(H ) intermsof G,

Similarly, substituting z = H,into equations (48b), another two algebraic boundary

equations can be obtained for governing V(H,) and V(H,). They are as follows.

V(H,) = g7t ot troh AL(-h ) AG (=h,).. Al (=, )V(H,)

(56)
_ e?o1Ph1+702th +'“+70(k71)ph(k71)+70kp(d_Hk—1)Af (_hl)Ag (_hz)"'Agfl(_hkfl)AE (kal _ d )Gv
Using (56), (50a) can be re-expressed as follows.
g/l o AT (< )AS(=hy ). A (—h,V(H,) = -

01PN +702PN2 +.+ 7o (k1) PM(k-1) +7okp (A —Hy 4
g/ ettty o @ Heg AS (- )AY(=h,)... Al (- )AT(H, , —d)G

\

Using (51a) and (57), the following set of two linear algebraic equations can be
obtained for the two unknown variables V(H, )at the interfacez=H, .

pn+lV(Hn) = 0 (583.)
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quf (_hl)Ag (—hz)...Aq (_h )V(H ) — e—}’OnPhn —}’0(n71)Ph(n71)—-'-—70(k+1)0h(k+1)—VOkP(Hk -d)

(58h)
doAY (-h)AF (=) Al (- DAL(H, —d)G

'

Or they can be re-expressed in the following matrix form,

|: pn+l :|V(H ) — e—70nPhn _70(n71)ph(n—1)_"'_70(k+1)ph(k+1)_}’Okp(Hk_d)
doAf (h)AZ (=h,)..Al(-h,) (59)

0
[%Af (=h)AZ(=hy)- Al (Fh DAL (H - d)}GV

From (59), the solution of V(H ,)is given exactly as follows.
V(H ) )= e*70nphn*7O(n—l)ph(n71)7"'770(k+1)ph(k+1) —vokp(H—d) N Aqu (60a)

where N, is given below and its exact expression is in Appendix B.

0
N =Mz (60b)
o {quf (=h)AZ(=hy)- Al (Ch DAL (H - d)}

where M is the inverse matrix of the 2x 2coefficient matrix M ,, and can be analytically

derived in exact form (Appendix B). M ,, is defined as follows.

M aq — |: pn+1 j| (60C)
doAL (=h)AZ (=hy)... AT (-h,)

4.2.5 Solution of V(z) intermsof G,

Finally, substituting the solution of V(H,)in the general matrix solutions expressed
in terms of V(H,) , the solution of V(z) can be obtained for —co<z<d" . Similarly,
substituting the solution of V(H,) in the general matrix solutions expressed in terms
of V(H,), the solution of V(z)can be obtained ford™ <z <-+o0. Consequently, the solution
of V(z)is expressed as follows.

V(2)= ¥, (p,2)G, (61a)

where—co <z <+, 0< p<+0; W, (p,2)is a square matrix of 2x2elements and can be
exactly expressed as follows.
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(i) For the Oth layer of the upper halfspace -0 <z<H,<d",
\PV (,0, Z) — e—}’oop(Ho—Z)—Voll’hi—---—70(kfz)Phkfz—70(k71)ﬂhk71—70k,0(d—Hm)BO(7OO)NAp (61b)

(ii) For the jth layer of finite
thicknessH; ; <z<H;andz<d", j=12,...,k-1k(<n)

\I;V (,01 Z) — e—VoJ'P(H j _Z)_}/O(j+1)phj+1_“'_70(k71)phk71_yokp(d_kal)AE) (Z _ H jfl)A?fl(hjfl)"'Alp (hl)N po (61C)
(iii) For the jth layer of finite thickness H i1 <Z<H,; and z>d", j=k,k+1,...,n
‘PV (p, Z) — e—}’OjP(Z—H j-1)=Yo( i) AN(jr) ——Yoker) (k) ~ Yok P (Hic _d)A? (Z _ H j)A?+1(hj+1)"'Ag (hn)NAq (61d)
(iv) For the (n+1)th layer of lower halfspaced ™ <H, <z <+,
‘PV (,0, Z) — e—70(n+1)P(Z—Hn)—VOnPhn—70(n71)Ph(n71)—---—7o(k+1)/0h(k+1)—J’okP(Hk—d)BnJrl(_}/O(Ml))NAq (619)
4.3  The solution of U(z)

4.3.1 Solution of U(z) in terms of U(H[)orU(H7)

Similarly, the general matrix solutions in terms of the field variable matrix U(z) for
each of the (n+2) layers can be expressed as follows.

(i) For the Oth layer of the upper halfspace —o <z < H,,

—710P(Ho—2) _ a~rap(Hg-12) -
U(z):{[e Colr)—e Cor)U(H;)  fora, =0 (622)

g 7wr(Ho=?) [Do(y30)+}/30p(z— Ho)Eo(730)]U(Ho_) forA, =0

(ii) For the jth layer of finite thicknessH: , <z<H:,j=12,...,k-1k +1,...,n and

1= ]

j#k

U(z)=e™"“ Q0 (z-H ) )U(H ) (62b)
or

U(z) =e""79Q%(z—H ,)U(H ) (62c)

(iii) For the kth layer of finite thicknessH, , <z<H,, k=12,..,n-1n
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rar(z-H)OP (7 _H. YU(H. forH ,<z<d~
U(Z):{e}’ p(z-H )Q‘;(Z kil) ( Eﬁl) yap(Z=d)~p > +kil z - (62d)
e Qe (z—H,JU(H ) —e™ Qi(z-d)G, ford"<z<H,
or
U(2) - eyak/_-»(:“—n(‘)g(z_|-|k)u(|-|k)_efak/)(“‘z’QE(z—d)Gu forH  <z<d" (62¢)
g7aP(Hy Z)QE(Z—Hk)U(Hk_) ford+Sz£Hk‘

(iv) For the (n+1)th layer of lower halfspace H, <z < 4o,

U(Z){[e“W“““’cnﬂ(—mﬂ))—e“W“““)cnﬂ(—n(m))]U(H:) foraz0 o

e_yS(nH)p(Z_Hn) [Dn+1 (_7/3(n+l) ) + 73(n+l)p(z -H n )En+l (_7/3(n+1) )]U(H rT) for A=0

The basic solution matrices in equations (62a) to (62e) are defined as follows.

Qj(s)= Ci(r) +& "°C (=)~ TEC (1) € TC (o) for A0 (63a)
J Dj(J/aj)+731P5Ej(7sj)+e_zhjps(Doj(—Vsj)+731pSEj(_731)) fora=0

01(s) = | &7 7C )+ C, (1)) =€ TITC 1y ) € G () ForAz0
J ezmps(Dj(?’sj)+7/3JPSE1(731))+Dj(_7sj)+7sjpSEj(_731) fora=0

where the three constant matrices C;(x),D;(x) and E;(x), and the roots y,;,7,;,7,; are

obtained by replacing the five elastic constants in equations (23-24) with the five elastic
constants of the jth layer. The basic solution matrices do not have any functions of

exponential growth, i.e., e”* with positive constant y (> 0).
4.3.2 Solution of U(z) interms of U(H,)or U(H,)
Using the perfectly bonded interface condition (1), we have
U (H) = Uy (H)) =U;(H) = U (H)) (64)

Using (62b), (62d) and (64), U(z)can be uniformly expressed U(H,) at z=Hvia
the backward transfer matrix technique.

(i) For the jth layer of finite thicknessH,;, ; <z<H;, 1< j<k <nand z<d~,

U(z) = e/ it aaatinssraez 4. QP (h,,)..QP2 (h)U(H,) (65a)

(ii) For the jth layer of finite thicknessH. , <z<H.

1= -1
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U(Z) — eVajP(Z—Hj—1)+}’a(1—1)Phjf1+---+}’a1Ph1Q5_)(Z —H j—1)QJF')—1(hj—1)"'Q1p (hl)U(HO)

_ e}/ajp(z_Hj—1)+7a(j—l)phjfl+'"+7a(k+1)ph(k+1)+7akp(Hk_d)Q§)(z _ H j—1)Q§')—1(hj—l)"'Qlf+l(hk+l)Qlf(Hk _ d )Gu
(65b)

Similarly, using (62c), (62e) and (64), U(z) can be uniformly expressed in terms of
U(H,) viathe backward transfer matrix technique.

(i) For the jth layer of finite thicknessH; , <z<H;, n> j>k>1and z>d",
U(z) = e/ mmomin e QY (z — H)Q1 (0 .0)-- QA )U(H,) (662)
(ii) For the jth layer of finite thicknessH; ; <z<H,;, 1< j<k<nand z<d",

U(Z) — e}’ajP(Hj_Z)+7a(j+1)/3hj+1+---+7an/?hn Q?(Z —H j)Q?+1(_hj+1)-“Qg (_hn)U(H n)
_ e}’ajp(Hj_Z)+7a(j+1)phj+1+“-+7a(k—1)ph(k—l)+7akp(d_Hk—1)Q(; (Z _H j)Q?+1(_hj+1)'"Qg—l(_hk—l)QE(Hk—l —d )Gu
(66b)

4.3.3 Solution of U(H,)in terms of G,

Substituting z=H_ into equations (65b), the following four algebraic boundary
equations can be obtained for governingU(H,)andU(H ).

U(H n) _ e}'anphn +7a(ﬂ71)phn71+‘..+7a1pthr';’ (hn )er])_l(hn_l)lep (hl)U(Ho) (67)
_ e}’anphn +¥a(n-1) Pt TtV a ke AN (icr) +7akp(Hk_d)erfl) (hn)Qﬁ—l(hn—l)'"Qf+l(hk+l)Qf(H - d )Gu

Since the Oth layer is an upper elastic halfspace, it has two independent algebraic
boundary equations governing U(H,) from (34). It can be expressed as follows.

PqOU(HO) =0 (68a)
where

2, 1-— = 0 B -

P - 4/ C10Cs0 Ciso ~/C10C30 (68b)
0ol e, ¢ 1 4Jc,C

10 _ ~20 2Ca0 - 10~30 O

Cso

C30 CSO CSO C40

Thirdly, since the (n+1)th layer is a lower elastic halfspace, it has two independent
algebraic boundary equations governing U(H ) from (37). It can be expressed as follows.
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Pp(n+1)U(Hn) =0 (698_)

2 U 0 1 1

— +
a(n+1)
aY, C1(n+1)C3(n+1) C4(n+l) \/Cl(n+1)c3(n+1)

p(n+1) =
CZ(n+l) C1(n+1) ) 1 \ Cl(n+1)c3(n+l) 0
- Ca(n+1) +
L C3(n+l) C3(n+l) CS(n+1) C3(n+l)C4(n+1) ]
(69b)
Using (67), (69a) can be re-expressed as follows.
anP +7a(n-1)Pnor+ 472100
gl e P Qi (1) QR (1) QY (U (H,) = (70)

T T, O (h)QE (1) QF () QE (H, ~ d)G,

Using (68a) and (70), the following set of four linear algebraic equations governing
U(H ) with four known variables can be obtained.

PoU(H,) =0 (71a)
Pp(n+1)Q|£’(hn)Qr?—l(hn—l)"'le(hl)U(Ho) _ e_}/alphl_"'_}/a(k—Z)pth_}/a(k—l)phkfl_}/akp(d—kal) (71b)
Pp(n+l)QrF1)(hn)Qr?—l(hn—l)'"Qlf+l(hk+1)Ql?(H k d )Gu
Or they can be re-expressed in the following matrix form,
| qu U(H ) _ e*7a1m1*---*7a(k-z)0hk-z ~Vak-1)P1—7ap(d—Hy 1)
Py Qn (1) Qs (M ). QP () ’
- (72)
0 G
_Pp(n+1)QrF1J (hn)Qr?—1(hn—1)---Q£+1(hk+1)QE(Hk - d) ’
From (25), the solution of U(H, ) is given exactly as follows.
U(H 0) — e*}’amhr---*?a(kfz)/’hkfz*}’a(kfl)/’hkffﬂ’akp(d*ka1) N op G , (733.)
where N, is given below and its exact expression is in Appendix C.
N, = Mg 0 (73b)
@ @ F)p(n+1)Qr}1J (hn )Qr?—l(hn—l)"'QIE)+l(hk+1)QI? (H k d)

where M(;) is the inverse matrix of the 4 x4coefficient matrixM,, and can be analytically

derived in exact form (Appendix C). M, is defined as follows.
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P
Mg, = S 73
¥ [PMQE(hn>Q§_1(hn_1)...Qf(hg} (73¢)

4.3.4 Solution of U(H,) interms of G,

Similarly, substituting z = H,into equations (66b), another four algebraic boundary
equations can be obtained for governing U(H,)and U(H ) . They are as follows.

U(HO) — e7a1ph1+7azph2 +et Y an P Q? (_hl)Qg (_hz)---Qg (—hn)U(H n)

(74)
_ e7a1Ph1+}’azth +et Y a-n Py +}’ak,f’(d*Hk-l)(gzclx (_hl)Qg (_hz)---QE_l(_hk_l)QE (H e d )Gu
Using (74), (68a) can be re-expressed as follows.
@7a1P+7azPNz + o7 an ity quQf (_hl)Qg (—hz)---Qﬂ (—hn)U(H n) — (75)

g/ et e TR, QI (—h)QE(-h,).. Qs (h 1)Q (H,, ~d)G,

Using (69a) and (75), the following set of four linear algebraic equations governing
U(H, ) with four unknown variables can be obtained

Pp(n+l)U(Hn) = 0 (763-)
quQf (_hl)Qg (_hz)Qg (_hn)U(Hn) — e_}’anphn_7a(n—l)phn—1_“-_7a(k+1)ph(k+1)_7akp(Hk_d) (76b)
PoQ1 (—h) Q2 (=hy)...Q¢ (=h_)Q{(H,, —d)G,

Or they can be re-expressed in the following matrix form,
I Pon ~anPa =7 a(n-1) A1 == a1 Ay ~7ap (Hi —d)
U(Hn) —e YanPn —Va(n-1)PMn-1 7 "Va(k+1) P (k+1) ~Vak P Hk
PeoQ: (=) Q3 (=h,)...Q1 (=hy)
- (77)
° G
_quQf (_hl)Qg (_hz)"'QE—l(_hk—l)QE(Hk—l —d) ’
From (77), the solution of U(H ) is given exactly as follows.
U(H n) — e*?’aml’hn*7a(n71)/3hn71*---*7a(k+1)ﬂh(k+1)*Yakp(Hk*d)NQun (783.)

where N is given below and its exact expression is in Appendix D.
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Mfl

0
o~ ququQf (~-h)QI(—h,).. QL (-1, QI (H, s —dJ

(78b)

whereM(‘;1 is the inverse matrix of the 4 x4 coefficient matrixM, and can be analytically

derived in exact form (Appendix D). M, is defined as follows.

Mg, = oy (78c)
@] PeQf (-h)Q3(=h,)..Qi (-h,)
4.2.5 Solution of U(z) interms of G,

Substituting the solution of U(H,) in (62a) and (65a), the solution of U(z) can be
obtained for —co <z <d~. Similarly, substituting the solution of U(H,)in (62f) and (66a),

the solution of U(z) can be obtained ford" <z < +o. Consequently, the solution of U(z)is
expressed as follows.

U(2) =¥, (p.2)G, (79)

where—co<z<+00, 0< p<+o; ¥, (p,z)is a square matrix of 4 x4 elements and can be
exactly expressed as follows.

(i) For the Oth layer of the upper halfspace — o<z <H,,

e*}’al/’hl 7---77a(k72)phk72 77a(k71)phk—1 —rap(d—Hy 1)

forA, #0
[efhop(Ho—z)Co (710) _ eﬂzcﬂ(Ho—Z)CO (720)]NQp i

e—}’zop(H 0=2)~Va1P _“'_7a(k—2)phk—2 _7a(k—1)phk—l —rap(d=Hy4)

[Do(730) +7300(Z = Ho)Eo(730)]NQp

¥y, (p.7) = (79b)

forA, =0

(i) For the jth layer of finite thicknessH; , <z<H;andz<d", j=12,..,k-1,k(<n)
Tu1(pa Z) _ e*}’ajP(Hj*Z)*}’a(j+1)Phj+1*---*Ya(k-l)Phk-r}’akﬂ(d*Hk-l)QEJ(Z —H j_1)Q§')_1(hj_1)---Q]’_J (hl)NQp (79C)
(iii) For the jth layer of finite thicknessH, , <z<Hand z>d", j=k,k+1,...,n

TUl(P, Z) — e*VajP(Z—H 1)~ 7a(j-0) A1) =~ Va(kery Niksa) —Vak P (Hi *d)ch} (Z —H j)Q?+1(hj+1)'"Qg (hn)NQq
(79d)

(iv) For the (n+1)th layer of lower halfspace H, <z < +oo,
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e*VanPhn ~Ya(n-1)Phna = —Va(ks1) PN(ksr) ~7akP (H =)
forA , #0
=71mnyP(2=Hy) —72(nsyP(2=Hy) ] n+l
¥, (p,2) = [e o Cn+1(_71(n+1))_e o Cn+1(_72(n+1)) NQq (79)
Ui e*}’s(ml)P(Z*Hn)*}/anﬂhn —Ya(n-1)Phna ==V a(ks1) PN(ksr) ~7akP (H —d)
forA,,; =0
[Dn+1 (_73(n+1)) + 73(n+1)p(z -H,)E ., (_73(n+1))]NQq

4.4  The solution ofw(z)andY,(z) in terms of g(&,7)

The solution of V(z)andU(z)is given in (61a) and (79a) in terms of the two loading
matrices G, (&,n7)and G, (&,77) . V(z)and U(z) can be re-expressed as follows.

V(2) = W, ) (@y,(p:2) @p(p,2)) 0 (80a)
B §) - Yo (p:2) ¥ulp ) \ 9,

W, D, (p2) Du(pz) Pulpz) Du(p2)) 0
Ws | _ D (p,2) D,(p,2) Pyulpz) Paulpz)| O
3| | Yelp2) Yulp2) Yyu(ez) Waulp,2) | 9,
7 Y(02) Yaulp,2) Yu(p2) Wule2) |9

U(z) = (80b)

As a result, the solution of w(z)and,(z) can be expressed as follows in terms of the body
force loading vector g(&,n)

w(&,m,2) = ®(p,2)9(&,7) (81a)

Y, (.1.2) = ¥(p,2)9(S.77) (81b)

where

D, (p,2) 0 D,(p,2)
®(p)=| 0 Bup7) 0 (810)

Dy (p,2) 0 D;(p,2)

¥(p,2) 0 Wis(p,2)
v(p,2)=| O ¥, (p,2) 0 (81d)
Yy (p,2) 0 Yy(p,2)

4.5 Summary Notes

The solutions of V(z)andU(z) (or w(z)andY,(z)) are exactly derived, formulated

and expressed in matrix forms. The many layers are treated with matrix production. It just
increases one step of production of the associated two solution matrices for adding or
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increasing one layer solid with different elastic constants. The backward transfer matrix
technique eliminates the existence of functions of the exponential growth in the solution in
the transform domain and maintains the advantages of the conventional forward transfer
matrix method.

The two inverse matrices have just the dimensions of 2x2 and 4x4 for
V(z) and U(z) , respectively and can be derived analytically. The solution

matrices ¥, (0, z) and ¥, (p, ) (or ®(p,z) and ¥(p,z)) are functions of pz, ph,;,and the
elastic constants (c,;,¢,;,Cs;,C,;,Cs;) - They are independent to the actual forms of the

internal loading vector G,and G, (or g(&,7)), which makes them applicable to many actual
distributions of the internal loadings.

5 The Solution in Physical Domain
51  General

In this section, the method for deriving and formulating solutions in physical domain
is presented. The solution representations in (14) and (17) are used for this purpose. In
addition to solution in Cartesian coordinate system, the solution in cylindrical coordinate
system can also be derived and formulated and expressed directly and systematically.

5.2  The solution in Cartesian coordinate system
5.2.1 Solution in inverse double Fourier transform integrals

Using (14), (17) and (81), the solution of the field variable
vectors u(x, y,z), T,(X,y,z), andI" (X, y,2) in the layered solid (-0 < X, Y,z < +w) due to

the internal loading concentrated on a horizontal plane, i.e., f(x,y,z) =f(x,y)o(z—-d), can be
expressed as follows in the Cartesian coordinate system.

uxy2) == | [10( ) FE ki (822)

72.—00 —oop

Ty, == [ [,k (620)
7[—00 —00

ryxy.2) = [ 1,000, 90T (& mKdedy (620
T

—00 —00
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where (—o<X,y,z<+w) and the body force vector ?(5,77) in the transform domain is
expressed as follows,

Fem = | [Hxy)K dudy (82d)

5.2.2 Solution for concentrated point body force vector

The fundamental solutions due to the point type of body force vector f concentrated at
the original point (0,0,0) can be expressed as follows.

f(x,y)=0(x)o(y)f, (83a)
So, we have
~ f
f(&.n) =2—° (83b)
T

Consequently, the solution of u(x,y,z),T,(x,y,z), andI" /(x,y,z) can be expressed

as follows
u(x, y,2) =Gy (x Y, 2)f, (84a)
T.(x,y,2) =G, (x,y,2)f (84Db)
Io(xy,2) =G, (xy,2)f, (84c)

where the Green’s functions are

400 +00

Zﬁu(x,y,z):i j I%Hd)(p,z)H*Kdgdn (85a)
2ﬂGZ(X,y,Z)=% j jnq'(p,z)n*Kdgdn (85h)
ZﬂGp(X,y,Z)Z%J jnpcp(p,z)n*Kdgdn (85¢)

—00 —0

The relationships of the independent variables between the Cartesian and cylindrical
coordinates in the physical domain can be defined as follows,
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rcosé@

rsiné
, (86a)

Similarly, the relationships of the independent variables between the Cartesian and
cylindrical coordinates in the transform domain can be defined as follows,

- N < X
Il

& = psing
= coS
n pCosp (86b)
z = z
p = N+
The identity Bessel functions of order m can be expressed as follow.
1 2z ) )

J_=J_(pr)=— j gHlrsnd-mdgg  m=0,4+1,42,43,... (87a)
2r 3,

J . =(-=D"J, m=0+£1+243.. (87b)

Consequently, the Green’s functions in (85) can be simplified as the following
Hankel transform integrals with the semi-infinite interval from 0 to + 0.

P 0 0 . er;zyzq)sz %q)z‘]z T @5l
27G,(x,y, )= [| 0 @, 0 [Jdp-[| a3, X3, Lol |dp(88a)
L0 0 CI)33 ° _%q)Sl‘]l _%q).’:’l"]l 0

gy, 2y, 2y.]

S 0 0 I i L R e R E !
27G,(xy.2)=[| 0 ¥, 0 [Jopdp-[| 29,3, Y25W,J3, W, |odp(88h)
Lo 0 Y, ’ —7 Vad, _%\Pﬂ‘]l 0
. X(2d, +20,)], 1d,d, D,

26, (xy.2) = ]| *®, L0, 0 |pdp
’ T @,y %(zq)l-i_zq)z)‘]l D3,

3 3 K22 (88¢c)
(L_sTX)q)zJ _(%_STy}Dz‘Js r_zycbls‘]z
rx)q) Js %q)li’:‘]l pdp
3 (4%3_37}/)@233 yr;zxq)ls‘]z
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1 1 1 1
where 0, :E(q)n"'q)zz) , D, :E(q)n_q)zz) ) ‘Pl:E(‘P11+‘P22) ) \Plzz(lyn_\yzz) .

There are only sixteen Hankel transform integrals in (88) and are defined as follows.

Gyo(r.2) = [®(p,2)I (pr)dp (89a)
Gou(r.2) = [@(p,2)J, (pr)pdp (89b)
G(r.2) = [W(p,2)3 (pr)pdp (89c)

where ®(p,z) = 0,,D,, P, D,,, D,y V(p, 2) =V, Y, P, Wy, Pous L =1, 2, 3, Or 4.

5.2.3 Solution in double convolution integrals

Using convolution integral theorem and the Green’s functions (88), the solution for
f(x,y,z) =f(x,y)o(z—d)in (82) can be further expressed in the following two-dimensional

convolution integrals.

400 400

u(x,y,z) = J' J'Gu(x—s,y—t,z)f(s,t)dsdt (90a)
T, (x, y,z)=T TGZ(x—s,y—t,z)f(s,t)dsdt (90b)
L, (x y,z):T +IOOGp(x—s,y—t,z)f(s,t)dsdt (90c)

where —oo < X,Y,Z < +00.

For a general body force loading f(x,y,z), the solution can be derived from the
following three-dimensional convolution integrals.

+00 400 400

u(x,y,z,f):j j IGU(X—S,y—t,z—g)f(s,t,g)dsdtdg (91a)

—00 —00 —00
400 400 400

Tz(x,y,z):j j IGZ(X—S,y—t,z—g)f(s,t,g)dsdtdg (91b)

—00 —00 —00
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where — oo < X, Y,Z < +o.

5.3  The solution in cylindrical coordinate system
5.3.1 General matrix solution representation

The five field variable vectors can be defined as follows in the cylindrical coordinate
system(0<r<+w;0<0<2r;a<z<h).

ur Grz O-rr grr grz
U=|U, |, T,=]0, T, =0, ||T,=]& T, =&, (92)
uz O-zz 0-6’6’ 86’6’ gzz

The above five sets of vectors for the fifteen field variables in the physical domain
can be also represented by two unknown vectors w(p, @, z) and Y, (p, @, z) in the transform

domain in the cylindrical coordinate system [11, 12]. The solution representations can be
given as follows.

+0 21
W(r,0,2)=—— [ [1,w(p,¢,2)K, dep (932)
2y
1 +0 27w
T,(r60,2)=—=[ [T.Y,(p.0.2)K pdedp (93b)
2y %
1 +oo 27
r,(rno.2)=——[ [T w(p,p,2)K pdodp (93¢)
2y %
T,(r,0,2)=C,T,(r,0,2)+C T (r,0,2) (93d)
r,(r,0,z2)=C,T,(r,0,2)+C,I' (r,0,2) (93e)
where K, = e ; i =+/—1; The four elastic parameter matrices C,..C, C,and C, are

given in (14h) to (14j). The coordinate coefficient matricesIT, and II, are defined by
isin(@+¢) icos(@+¢) O
I, =|icos(@+¢) —isin(@+¢) O (94a)
0 0 1
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. 1-cos2(60+¢) sin2(@+¢) O
I :—E sin2(6 + @) cos2(0+¢) O (94b)
1+cos2(6+¢) —sin2(0+¢) O

The two unknown field variable vectors w(p,¢,z) and Y, (p,p,z) are defined as

follows.
W, 7
w=w, | Y, =7, (95)
W, 73

They can be re-expressed by u(r,8,z)andT,(r,6,z)in the cylindrical coordinate system as
follows.

+oo 271
W(p,(p,Z)zzij‘ IH:u(r,G,z)K:rdédr (96a)
T 0 0
1 +oo 27
Y, (p. 0, z):-j IHZTZ(r,H, z)K rdedr (96h)
2y %

where K = e *"(“*%)- the coordinate coefficient matrices IT; is defined by

—isin(@+¢) —icos(@+¢) O
M, =|-icos(@+¢) isin(@+¢p) O (96¢)
0 0 1

Similarly, the body force vector f(r,8,z) and its counterpart g(p,¢,z) in the
cylindrical coordinate system can be expressed as follows.

1 +o0 27
f(ro.2)=——[ [M.g(p.0,2)K.pdedp (97a)
T 0 0
1 +o0 27
9(p.p.2) =5~ [ [IF(r.0,2)K rdadr (97b)
2y %
where
fr gl
f=f,; 9=|09,]| (97¢c)
fz gS



5.3.2 Solution in inverse double Fourier transform integrals

It has been shown that the partial differential equations (2) to (6) can be reduced to the
two sets of two and four first-order linear ordinary different equations (18) and (19). Similar
to the formulation process in the Cartesian coordinate system, the solution of w(z)and, (z)

due to the internal loading of f(x,y,z) =f(X,y)d(z—d)can also be expressed as follows.

w(z) = ®(p,2)9(p, ) (98a)
Y,(2) =¥(p,2)9(p,p) (98b)
9(p, @) = %l _!;HZf(r,e)K:rdedr (98c)

where ®(p,z)and ¥(p,z)are given in (81c) and (81d) respectively.

The solution ofu(r,8,z),T,(r,8,z) and " /(r,0,2) in (93) due to the internal loading
of f(r,0,z) =1(r,0)5(z—d) can be expressed as follows in the cylindrical coordinate
systems.

+o0 27

u(r.0.2) =5 [ [IL0(p,29(p.0)K.dodlp (992)

4 0 0

T(0.2) == [ [1¥(p. (00K, pderlp (995)
4 0 0

Fy(r0.2) == [ [T,@(0,29(p.0)K podlp (990
T 0 0

where 0<r<+w;0<0<27;—0< 7 < +o0,
5.3.3 Solution in Fourier series and Hankel transform integrals

The solution in (99) can be further expressed in terms of Fourier series and Hankel
transforms as follows.

W62 =Y [I,(pN®(p,2)g, (p)dpe™ (100a)
T(h0,2)= 3. [T, (o)¥(p,2)g, (0)pdpe™ (100b)
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r,(rn0.2=y [1,,(pn)®(p.2)g,(o)doe™ (100¢)

where

‘]m—l_‘]m+1 i(‘]m—l—i_‘]m+1) 0

m_(pr) :% i(0 ,+3 ) —(3.,-3. ) 0 (101a)
0 0 23
1 Jm 00 1 Jm—2+‘]m+2 i(‘Jm—z_‘]m+2) 0
Hcpm (,OI’) = _E 0 0 0+ Z i(‘]m—z - ‘]m+2) - (‘] m2t ‘]m+2) 0 (101b)
‘]m 00 _(Jm—2+‘]m+2) _i(‘]m—z_‘]m+2) 0
J_=J_(pr) m=041+2,43.. and i=+/-1 (101c)

The body force vector g and f can be further expressed in terms of Fourier series and
Hankel transforms as follows.

f(ro)= > f,(r)e™ (102a)
1 2 —imé

fm(r)zg_([f(r,@)e do (102b)

0(p.0)= 3 Gn(p)e ™ (102¢)
1 2r -

0n(p) = [9(p.p)e™dg (102d)
T 0

where g,,(p)and f_(r) have the following relationship.

0, (p) = [T, (or)f,, (r)rdr (103a)

where
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27
HZm (pr) = % J‘H* (pr)(1_}7i"’r5in('g+‘/’)+irﬂ(<p+9)d¢
0

1 J m-1 " J m+1 - I(‘] m1t J m+1) 0 (103b)
:E —1(Jpy +30a) —Una=Jna) 0
0 0 2J

m

5.3.4 Solution in Fourier series and Green’s functions

The solution in (100) can be further expressed in terms of Fourier series and Green’s
functions as follows.

M=+ +©

u(r,0,z)= >y jGum(r, r,, z)f_(r,)r,dre™ (104a)
m=- (
T(10.2)= Y, [Gy(r1,2)f,, (1)rdre™ (104b)
m=—w (
C,(10.2)= Y G (r 1, 2)f, () dre™ (104c)
m=—0

where the Green’s functions are defined as follows.

Gon(F12) = [T (OB, T (o) (1052)
G (115, 2) = [T, (pr)¥(p,2) I, (1, )pdlp (105b)
G o (115, 2) = [T, (0r)®(p,2)IM,,, (o1, )il (105c)

5.3.5 Solution of body force vector concentrated at a circular ring

The equations governing the body force vector uniformly concentrated on the circular
ring can be expressed as follows.

f(r,0) = (S(;—;rrf’)fc (106a)
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1 %8(r-r)

f (r,0)=— [f(r,0)e"™dg=— e "™d of
o(r,0) = j (r.0) > j = :
~ (106b)
Mfc m=0
= 2ar
0 m=+1+2+3...

¢ 5 ) )
0 (p) = [T, (oN)f,,(r)rlr = IHco( 02U =0 gt m=o

0 m==+1+2,...

0 m=+1+42,..

) {inz()(pro)fc ~0
=\2r

The corresponding fundamental singular solutions due to the body force vector
uniformly concentrated on the circular ring can then be expressed as follows.

u(r,8,z) =u(r,r,z) :ZLGU(,(r,rO,z)fc (107a)
T
T,(r,0,2) =T,(r,1,,2) =2iGZO(r,r0,z)fC (107b)
T
rp(rvel Z):Fp(rlrmz):ZiGpO(r’rO’Z)fc (107C)
T

where the Green’s functions are fined as follows.

177 «
Guo (1113, 2) = [ Moo () ®(p, )T, (1, )dp (1082)
0
17 «
G oo (1ot 2) = [ Moo (pr) ¥(p, )T, (o) plp (108b)
0
17 «
G o1 15,2) =~ [T (1) @0, )L (1) pdp (108¢)
0
where
-J, 0 0
«(or) o J 0 HZo(pr) (109a)
0 0 J,

50-63



. J,-J, 0 0
I, (por) =5 0 J, 0 (109b)
Jo+J, 0 O

5.4 Summary notes

The solution has been systematically derived and formulated with the matrix approach
in both Cartesian and cylindrical coordinate systems. The basic solution matrices
®(p,z)and ¥(p, z) are related only to the material properties of the n-layered solids. They

are suitable and applicable to various internal body force loadings in both Cartesian and
cylindrical coordinate systems. The other three stresses T and three strains T', can be

obtained using the Hooke’s law (6) and the solution of T,and I" jin (14d-14e) in Cartesian
coordinate system and in (93d-93e) in cylindrical coordinate system.

Most importantly, the solutions given in above equations are in the forms of improper
integrals of infinite intervals either over the entire horizontal plane or from 0 to+o. The
improper integrals have many depending parameters including 5x(n+2) elastic

constants(c;;,i=1,2,34,5; j=01,...,n,n+1) , nlayer thicknesses(h;, j =12,..,n), the three

j?
independent variables (x, y, z) and the applied loading vectors. The following three questions
have to be answered. Do they converge? What are their singularities? Do they satisfy the
governing partial differential equations and the boundary and interface conditions? These
questions are analytically and rigorously examined and verified in the companion paper [24].

6 Summary and Conclusions

It is evident that the mathematical theory of linear elasticity is one of the most
classical field theories in mechanics and physics. Many well-known scientists and
mathematicians made contributions to its development and establishment over 200 years
from 1638 to 1838. They include Galileo Galilei (1564 — 1642), Robert Hooke (1635 — 1703),
Isaac Newton (1642 — 1726), Edme Mariotte (1620 — 1684), Jacob Bernoulli (1655 — 1705),
Daniel Bernoulli FRS (1700 — 1782), Leonhard Euler (1707 — 1783), Charles-Augustin de
Coulomb (1736 — 1806), Thomas Young (1773 — 1829), and Siméon Denis Poisson (1781 —
1840), Claude-Louis Navier (1785 — 1836), Augustin-Louis Cauchy (1789 — 1857), George
Green (1793 — 1841), and Gabriel Léon Jean Baptiste Lamé (1795 — 1870).

Furthermore, the boundary-value problems of classical elasticity in n-layered and
graded solids are also one of the classical problems. For more than 150 years from 1838 to
present, many well-known scientists and mathematicians have made tremendous efforts to
mathematically and analytically derive and formulate solutions in closed-forms for these
boundary-value problems. They include Barré de Saint-Venant (1797 — 1886), Gustav Robert
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Kirchhoff (1824 — 1887), George Biddell Airy (1801 — 1892), William Thomson (or Lord
Kelvin) (1824 — 1907), Joseph Valentin Boussinesq (1842 — 1929), and Raymond David
Mindlin (1906 — 1987). However, exact solutions and/or fundamental singular solutions in
closed form are still very limited in literature.

From 1984 to 1995, the author investigated the boundary value problems of the
classical elasticity in n-layered solids of either isotropy or transversely isotropy. He derived
and formulated the solutions in equations (82) to (109) exactly and analytically for an
arbitrary number n of elastic layers with different material properties. He used the classical
mathematical tools and presented the mathematical derivation and formulation and the
solutions in matrix forms. Using the symmetry and anti-symmetry of the n-layered solids of
transverse isotropy, the author broke down the solutions and separated them into several
blocks (or matrices) including material matrices, layering matrices, independent variable
coordinate matrices, and applied loading terms. Consequently, many solutions in n-layered
solids are obtained systematically and automatically. The solutions are also systematically
expressed in both Cartesian and cylindrical coordinate systems. Therefore, the researchers at
Research Centre Julich and Massachusetts Institute of Technology have shortly named these
mathematical formulations and solutions as Yue’s approach, Yue’s treatment, Yue’s method
and Yue’s solution.
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Appendix A Exact Expression of V(H,) intermsof G,

The equation (54) can be re-expressed as follow.

M Apll M Apl2 V(H 0) — e_701ph1_---_70(k—2)phk—z_?/O(k—l)phk—l_}/Okp(d_Hk—l) 0 0 G (al)
M Ap21 M Ap22 CApl CApZ
From (al), the solution of V(H,) is given exactly as follows.
V(H 0) — e—701ph1—---—70(k72)/3hk72 ~Yok-1)Pk-1=70kp(d=Hy 1) N A G . (az)

where N, can be re-expressed as follows.

‘M Apll‘ ‘M AplZ‘
‘M Ale‘ ‘M ApZZ‘

1

@)
M

Ap=

The five determinants‘MAp‘, ‘MAPM‘, ‘MAW‘ , ‘MADH‘ and ‘MApzz‘ in (a3) can be expressed as

follows.
‘M ‘ _ M Apll M Ap12 (a4)
P M Ap21 M Ap22
‘M ‘ |0 My, ‘M ‘ |0 My, (a5)
hoit CApl M Ap22 hoiz CAp2 M Ap22
‘M ‘: Mpw O ‘M ‘: Mpw 0 (a6)
hozt M Ap21 CApl ’ hozz M Ap21 CApZ .

The determinants of the five 2x2 square matrices in (a4)-(a6) can be obtained using the
following formula.

a'll a12

= a8y, —a,dy - (3-7)
ay Ay

59-63



Appendix B Exact Expression of V(H,)in terms of G,

The equation (59) can be re-expressed as follow.

M Aqll M Agl2 V(H, )= e_VOnphn_}’O(n—l)ph(nfl)_'"_70(k+1)ph(k+1)_70kp(Hk_d) 0 0 G (b1)
Mgzt Mgz CAql Cqu
From (b1), the solution of V(H ,)is given exactly as follows.
V(H ] ) — e*70nPhn =70(n-1PN(n-1) ==Y o(k+1) k1) ~Yok P (Hk =d) N Aq G . (b2)

where N ,, can be re-expressed as follows.

1

_ ‘MAqll‘ ‘MAqlz‘:| b3
Aq ‘MAq‘ (b3)

‘M Aq21‘ ‘M quz‘

The five determinants|M |, [Muqus|, [Maqio|s [Magzi|and [M 5, in (b3) can be given below

and can be expressed exactly using the formula (a7).

M M
‘M Aq‘ _ Aqll Agl2 (b4)
M Ag21 M Aq22
‘M ‘ |9 Mg ‘M ‘ |0 Mg (b5)
At CAql M Aq22 A2 CAqZ M Aq22
‘M ‘ _Man O ‘M ‘ _Ma O (b6)
hazt M Aq21 CAql ’ haze M Aq21 CAqZ

Appendix C Exact Expression of U(H,) in terms of G,

The equation (72) can be re-expressed as follow.
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M Qpll M Qp12
M Qp21 M Qp22
M Qp31 M Qp32
L M Qp4L M Qp42
0 0
0 0
CQp31 Cstz
_CQp4l CQp42

C
C

Qp13
Qp23
Qp33

Qp43

©co ZI L

Qp33

Qp43

C
C

< <L

o O

Qpl4

Qp34

Qp44

G

Qp34

Qp44

u

From (c1), the solution of U(H,) s given exactly as follows.

V1P~ =Vak-2)Pk—2 ~Vak-1) -1~ VakP(d—H 1)
U(Ho):e 1PNy (k=2)Pk—2 (k=1)PMk—1 k k-1 NQpGu

where
Mo/ [Magse| (M| |
N - 1 ‘MQp21‘ ‘Mszz‘ ‘Msza‘ ‘
Qp —
Moy|| [Mags| [Mapsz|  [Mapas| |
Mapa| [Mapez| Mapsa| |

The seventeen determinants in (c3) are expressed as follows.

M

Qpll

M_ | = Mooz
‘ QP‘ M
Qp31

M

Qp4l

‘MQplj‘:

@)

Qp3j

@)

Qp4j

Qpll

_ Qp21
‘MQp?:J‘ o
Qp31

< <L

Qp4l

where j=1,2,34.

Qp22

< <L

Qp42

M

Qpil2

M
w2 M
M
Qp12

Qp22

Qp32

< <L

Qp42

Qp12
Qp22

Qp32

< << L

Qp42

Qp13
Qp23
Qp33

Qp43

Qp13
Qp23

Qp33

< <L

Qp43

@)

Qp3j

@)

Qp4j

M

Qpl4
Qp24

Qp34

< <L

Qp44

Qpl4

24

Qp34

<L

Qp44

Qpl4

24

Qp34

=< L

Qp44
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Qp4j‘

Qp1l
Qp21

Qp31l

=< L

Qp4l

Qpll
Qp21

Qp31l

=< L

Qp4l

@)

Qp3j

@)

Qp4j

Qpil2
Qp22

Qp32

< <L

Qp42

Qp13
Qp23

Qp33

< <L

Qp43

Qp13
Qp23

Qp33

=< L

Qp43

Qp24 A VatP—=Tawe2) P2 =7 ak-ny Pk —rap(d=Hy4)
U(H,) =e

Qpl4
Qp24

Qp34

<L

Qp44

@)

Qp3j

@)

Qp4j

(c1)

(c2)

(c3)

(c4)

(c5)

(c6)



The determinants of the seventeen 4x4 square matrices in (c4)-(c6) can be obtained exactly
using the following formulae.

all a12 a13 a14
a21 a‘22 a23 a24 _ " a12 . 33 34 a1l alS . a‘32 a34
a'31 a32 a33 a‘34 21 a‘22 43 44 a21 a23 a42 a44
a41 a‘42 a43 a44
a,l |a,, a a; a
+ all 14 32 33 + a:L2 a13 . 31 34 (C?)
a21 a24 a'42 a‘43 a22 a23 a41 a44
alZ a14 aSl a33 + alS a'14 . a3l a'32
a'22 a'24 a41 a43 a23 a24 a4l a'42
where the determinant of a 2x2 square matrix is given in (a7).
Appendix D Exact Expression of U(H,)in terms of G,
The equation (77) can be re-expressed as follow.
M Qqll M Qqi12 M Qq13 M Qql4
MQq21 MQQZZ MQq23 MQq24 U(H )=e_;/anphn_7a(n—1)phn—1_"'_7a(k+1)ph(k+1)_7akp(Hk_d)
n
M Qq31 M Qq32 M Qq33 M Qq34
_MQq41 MQq42 MQq43 MQq44 (dl)
0 0 0 0
0 0 0 0
GLI
Comar Conzz Cogzs Cogae
_CQq41 CQq42 CQq43 CQq44
From (d1), the solution of U(H,) is given exactly as follows.
U(Hn) — e—VanPhn _7a(n—1)phnfl_"'_7a(k+1)ph(k+1)_7akp(Hk_d)NQun (d2)
where
Magu| [Mape| M| Mo
N = 1 ‘MQq21‘ ‘Mquz‘ ‘Mqus‘ ‘Mqu‘ (d3)
Qy —
Meal| Mosai| Mogae| Mogas| - Mg
_‘MQq4l‘ ‘MQq42‘ ‘MQq34‘ ‘MQq44‘




The seventeen determinants in (d3) are given below and can be exactly expressed using the

formula (c7).

M
M
QQ‘: M

M

Qqll
21

‘M Qq

Qq31

Qq41l

0
0
‘Mquj‘: C

C

Qq3j

Q4]

M

Mgqs;| = Moz
Qa3j| — M
Qq31

Qqll

M

Qqu4l

where j=1,2,34.
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Qq33

< <L

Qq43

O

Qg3j

O

Q4]

MQq14

MQq24

MQq34

MQq44

MQq14 Mqul

MQq24 "M ‘_ MQq21

M ! Qa2j| — M
Qq34 Qqg31

MQq44 MQq4l

Mqu4 Mqul
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M ! Qu4j| — M
Qq34 Qg31

MQq44 MQq41
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