Yue’s Solution of Classical Elasticity in n-Layered
Solids: Part 2, Mathematical Verification

Zhong-qi Quentin Yue (Z.Q. Yue)

Department of Civil Engineering, The University of Hong Kong, Hong Kong, P.R. China

Email: yuegzg@hku.hk

Table of Contents

Abstract
1 Introduction
2 Basic Solutions in Closed-form
2.1  General
2.2  Basic solutions of ®(p,z)and¥(p, 2)
2.3 Constant limits of ®(p,z)and ¥(p, z)at loading plane
2.4 The properties of ®(p,z)and¥(p,z)
2.5  The Green’s function matrices
2.6 The basic solutions ofu, T,and T,
2.7  Singularity of the basic solutions
2.8 Summary notes
3 Mathematical Properties of the Solution
3.1  General
3.2 The properties of ¥, (p,z)and ¥, (p,z)
3.3  Convergence of the solution
3.4  Singularity of the solution
3.5  Satisfaction of the required conditions
3.6 Summary notes
4 Applications to Other Solutions
4.1  Other boundary-value problems
4.2  Mix-boundary value problems
Rigid plate loading+ fracture
4.3  Elastodynamics
4.4  Poroelasticity
45  Thermoelasticity

1-64


mailto:yueqzq@hku.hk

5 Concluding remarks

Acknowledgements
References
Appendix A
Appendix B
Appendix C
Appendix D

Abstract

This paper presents a detailed and rigorous mathematical verification of Yue’s
approach, Yue’s treatment, Yue’s method and Yue’s solution in the companion paper for the
classical theory of elasticity in n-layered solid. It involves three levels of the mathematical
verifications. The first level is to show that Yue’s solution can be automatically and
uniformly degenerated into these classical solutions in closed-form such as Kelvin’s,
Boussinesq’s, Mindlin’s and bi-material’s solutions when the material properties and
boundary conditions are the same. This mathematical verification also gives and serves a
clear and concrete understanding on the mathematical properties and singularities of Yue’s
solution in n-layered solids. The second level is to analytically and rigorously show the
convergence and singularity of the solution and the satisfaction of the solution to the
governing partial differential equations, the interface conditions, the external boundary
conditions and the body force loading conditions. This verification also provides the easy and
executable means and results for the solutions in n-layered or graded solids to be calculated
with any controlled accuracy in association with classical numerical integration techniques.
The third level is to demonstrate the applicability and suitability of Yue’s approach, Yue’s
treatment, Yue’s method and Yue’s solution to uniformly and systematically derive and
formulate exact and complete solutions for other boundary-value problems, mixed-boundary
value problems, and initial-boundary value problems in layered solids in the frameworks of
classical elasticity, boundary element methods, elastodynamics, Biot’s theory of
poroelasticity and thermoelasticity. All of such applications are substantiated by peer-
reviewed journal publications made by the author and his collaborators over the past 30 years.

Keywords: elasticity, boundary element method, elastodynamics, poroelasticity,
thermoelasticity
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1 Introduction

In the companion paper [1], details of the Yue’s approach, Yue’s treatment, Yue’s
method and Yue’s solution have been presented for the mathematical formulation of the
solutions in n-layered solids in both transform and physical domains and in both Cartesian
and cylindrical coordinate systems, where n is an arbitrary non-negative integer. This paper
presents a detailed and rigorous mathematical verification of the approach, the treatment, the
method and the solution. To achieve this objective, the author has used the following three
levels of the mathematical verifications.

Since Yue’s solution for the n-layered solid is a logical extension of these classical
solutions in homogeneous solid, it shall be automatically degenerated into these classical
solutions (or basic solutions) such as Kelvin’s, Boussinesq’s and Mindlin’s solutions. If the
material properties and boundary conditions are the same, they shall be exactly the same. The
fundamental singular solutions in exact closed-form are systematically and uniformly
presented for the basic and classical boundary-value problems in either homogeneous or bi-
homogeneous solids. This is the first level of the mathematical verification of Yue’s solutions
in the n-layered solid. It shows that Yue’s approach gives all the classical solutions in closed-
form by different authors with different mathematical tools and also many complete sets of
new fundamental singular solutions in closed-form. In addition, the mathematical properties
and singularities of the classical fundamental singular solutions in both the transform and
physical domains are examined analytically and in closed-form. They give and serve a clear
and concrete understanding on the mathematical properties and singularities of Yue’s
solution in n-layered solids.

Secondly, Yue’s solution of the displacement vector u(x,y,z), the vertical stress
vector T, (X, y,z) , and the plane strains I" (X, y,z) in the n-layered solid of either transverse

isotropy or isotropy due to the internal loading concentrated on a horizontal plane
(f(x,y,2)=f(x,y)0(z—d)), can be exactly and uniformly expressed as follows in the

Cartesian coordinate systems.

u(xy2) == [ [Ene(e ) mkday (12)
7 —o0 70010
T2 = [ [ I T (e m)Kdedy (1b)
7 —00 —o0
ryxy.2) = [ 1,000 0T mKdedy (10)
T

—00 —00

where —o< X,y,Z<+o, n is a positive integer and the body force vector f(f,ry) in the
transform domain is expressed as follows,
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400 +00

Fem == | [HocyK oy (10)

—00 —00

The solution in (1) is in the forms of improper integrals of infinite intervals either
over the entire horizontal plane (- < &,77 < +0)or along the radial axisO< p < +o. The

improper integrals have many depending parameters including 5x(n+2) elastic
constants(c;;,i=1,2,34,5; j=01,...,n,n+1) , nlayer thicknesses(h;, j =12,..,n), the three

ij?
independent variables (x, y, z) and the applied loading vectors f(f,n) . Therefore, the second

level of the mathematical verification of Yue’s solution is presented by analytically and
rigorously examining the following three questions: a) the convergence of the solution; b) the
singularity of the solution; c) satisfaction of the solution to the governing partial differential
equations, the interface conditions, the external boundary conditions and the body force
loading conditions. This verification also provides the easy and executable means and results
for the solutions in n-layered or graded solids to be calculated with any controlled accuracy in
association with classical numerical integration techniques. It is noted that the other three
stresses T, and three strains I, can be obtained and examined using the Hooke’s law (6) and

the solution of T,and I in (1).

The third level of the mathematical verification of Yue’s solution is to demonstrate
the applicability and suitability of Yue’s approach, Yue’s treatment and Yue’s method to
uniformly and systematically derive and formulate exact and complete solutions for other
boundary-value problems, mixed-boundary value problems, and initial-boundary value
problems in the n-layered solids. Therefore, the applications to other problems in layered
solids are further briefly presented in the frameworks of classical elasticity, boundary element
methods, elastodynamics, Biot’s theory of poroelasticity and thermoelasticity. All of such
applications are substantiated by peer-reviewed journal publications made by the author and
his collaborators over the past 30 years. They show that the solutions for other problems can
also be derived and formulated similarly and systematically and in the form of Yue’s matrix
operations in both Cartesian and cylindrical coordinates.

2 Basic Solutions in Closed-form
2.1 General

To better understand and verify the solution derived above for the general layered
solid, this section examines the basic solutions and their properties and singularities for some
simplified material cases. They include

(@) The Kelvin’s case: one isotropic homogeneous solid of infinite extent subject
tof = f(x,y)o(z-d);
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(b) The Boussinesq’s case: one isotropic homogeneous solid of semi-infinite extent
subject to boundary loadingf = —f (X, y)8(2) ;

(c) The Mindlin’s case: one isotropic homogenous solid of semi-infinite extent subject
to f=1f(x,y)o(z-d);

(d) The bi-material case: two perfectly bonded isotropic homogenous solid of infinite
extent subject tof = f(x,y)o(z—-d);

(e) The extended Kelvin’s case: one transversely isotropic homogenous solid of
infinite extent subject tof = f(x, y)o(z—-d) ;

(f) The extended bi-material case: two perfectly bonded transversely isotropic
homogenous solids of infinite extent subject tof = f (X, y)o(z—-d).

Since  w(¢,77,2) =®(p,2)9(5,m) and Y,(,n,2)=¥(p,2)9(¢,n) . ®(p,2) and
Y¥(p,z) are only dependent on the solid materials and their occupied regions. They are

derived and examined at first. The loading vector g(&,#) is independent on the solid materials
and is examined afterward for the closed-form solutions of the elastic field variables
(u, T,andTI" ) in physical domain.

2.2  Basic solutions of ®(p,z)and¥(p, z)

2.2.1 The Kelvin’s case

In this case, the isotropic homogenous solid of infinite extent is subjected to the
concentrated body force f = f(x,y)o(z—d) . Its solution of ®(p,z)and ¥(p,z) is given

below.
D (p,2)= e ((I)kO + P|7|(Dk1) (2a)
¥, (p.2)=e (¥, + plz]¥,,) (2b)

where0< p <+4w0,-0<Z(=z-d) < +w, and

. l+a 0 O . -1 0 —é
o~ 0 2 0 e, -LD g o o (2¢)
4u 4u ,
0 0 lt+a z 0 1
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L ﬁ 0 -« 1 a) ﬁ 0 1
_ -
\Pko__E 0 ﬁ 0 |:¥,= > 0 0 O (2d)
-a 0 &% -1 0 =L

2.2.2 The Boussinesq’s case

In this case, the isotropic homogenous solid of semi-infinite extent is subjected to the
concentrated body force f =—f(x, y)o(z) on the external boundary z=0. Its solution of

®(p,z)and ¥(p, z) is given below.
D,(p,2) =" (D, + pzq)bl) (3a)
¥, (p.2)=e (¥, + p2¥,) (3b)

where0< p < 4+0,0< z < +o0, and

. 1 0 a .
®,=—7"7-0 21-a) O s Py =y W =1 Py =—1, (3c)
2u(l- ) 2
a 0 1
where
1 00 1 0 1
I,=/0 1 0}; l,={0 0 O (3d)
0 01 -1 0 -1

2.2.3 The Mindlin’s case

In this case, the isotropic homogenous solid of semi-infinite extent is subjected to the
concentrated body force f = f(x,y)o(z—d) . Its solution of ®(p,z)and ¥(p,z) is given

below.
q)m (,0, Z) = e—p(Z+d) ((Dmo + pZ(I)mlz + pdq)mld + pde(I)mz )+ e_pm ((I)kO + p|z|q)kl) (43.)
Tm (,0, Z) = e—p(Z+d) (‘Pmo + pZ‘Pmlz + pd‘Pmld + pZZd‘PmZ )+ e*:"m (Tko + p|z|‘Pkl) (4b)

where0< p<+40,0<z2<+00, 0<d < +ooand

1 1+a? 0 2c 1 0 «
o, =——- 0 2(1- ) 0 ;o Woo = —l 01 0 (4c)
4u(1-a) : 2
2c 0 1+« a 0 1
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1+ 1+« l-«o
q)mlz __Qlal; q)mld :_Qlaz; q)mz :ulu (4d)
4u 4u 2u
l+a l-«
\Pmlz =%Ia1’ \Pmld =%Ia2' lez = (a_1)|a3 (49)
where
1 0 -1 1 0 -1
l,=/0 0 o0 l,=| 0 0 o0 (4f)
1 0 -1 -1 0 1

It can be easily shown that the equations (4) are reduced to those in (3) if
assumingd =0. In other words, the solution for the Mindlin’s case includes that for the
Boussinesq’s case.

2.2.4 The bi-material case

In this case, the two perfectly bonded isotropic homogenous solid of infinite extent is
subjected to the concentrated body forcef = f (X, y)o(z—d). The solid is perfectly bonded at

z=0%and. It is assumed that 0" < d < +oo. Its solution of ®(p,z)and ¥(p, z) is given below.

In the solid of upper halfspace region (0 < z < +o0) with the two elastic constants
and o , we have

D (p,2)= e d ((I)tOl + 2@, + pd @y, + p22d®t21)+ e ((I)ko + :0|Z|(I)k1) (5a)
Y. (p,2)= e_p(Hd)(‘I’tm + 2¥ 5, + pd¥ g, + pZZdT121)+ e (Tko + p|z|‘Pk1) (5b)

where0< p <40 ,0<z2<40, @, DPyy, Puyis Pty Wion Pogrr Py and Wy, are eight
constant square matrices and defined in Appendix A.

In the solid of lower halfspace region (- <z <07) with the two elastic constants
1, and «, , we have

D (p,z)=e""7 ((I)tOZ + 2@y, + pdq)tlﬂ) (6a)

Y. (p,2)= e (4 (‘PtOZ + p2¥ 4, + pd¥ ) (6b)

where 0< p<+o0,0<z<40 , D, P,,,, Pyyr, VYigor Py, and ¥,,, are six constant
square matrices and defined in Appendix A.
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2.2.5 The extended Kelvin’s case

In this case, the transversely isotropic homogenous solid of infinite extent is subjected
tof = f(x,y)o(z—d). Its five material constants are cjl,where j=12,3,4,5. Its solution of

®(p,z) and ¥(p, z) is given below in Cases 1 and 2 for A, #0and A, =0, respectively,

where A, = m —Cy —2C,; .
Case1:A, #0
@, (p.2) =70, +e 7D, (r,) - 72D, ()
¥, (p.2)=el W, el (y ) —e Y (7))

where0< p <+4w0,-0<Z(=z-d) <+w, and

2

A P , | A 0 oaEe
?, = 010, @NN=oF"7F5— 0 0 0
2C4 70 00 0 2(m—r2)% _‘%Cé:::jl 0 %
1 0 0 0 1 %(7534-2—3}() 0 z—z;(z
Y --|0 -Z 0; ¥, ()=—s 0 0 0
b2 : ’ 20r - 722
0 0 0 =
Case 2:A, =0

@ (p 2)= e_pm‘z‘q)v +e 7l ((Duo + P|Z|(I)u1)
¥, (p,2)=e " e (v, + plzw,,)

where0 < p <4w,—0<Z(=z-d) <+, and

1 0 O -1 0 L Va1
c,, +3c C, +C i
o = _4(2:1 . 4;. O O O , (I)ul — _4C21 - 4:]é O 0 O
Y Y .
atala| g 73?1 31ba1731 Lra 0 }/321
z Ca1 z 2
E 0 . V2 0 7a
1 C, +C
Y. _E O 0 0 [; = 221 a0 0 0
_ C _
g 2 st/ | 1 0 é Var
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It is noted that the following limits are valid.

lim (e’”“‘z‘q)u (ru) - eipynmq)u(yﬂ)): e (@, + plz@,,) (92)

ra—ra

lim (e—pm\?\\llu (ru) - e—pm\f\\l;u (721)): el (Tuo + p|Z|Tul) (9b)

ru—ra

It can also be shown that the solution for Case 2 (A, =0) in (8) can be degenerated to the

solution for the Kelvin’s case in (2) if the transversely isotropic material becomes to the
isotropic material.

2.2.6 The extended bi-material case

In this case, the two perfectly bonded transversely isotropic homogenous solids of
infinite extent is subjected to f = f(x,y)d(z—d) . The two solids are perfectly bonded

atz=0". The upper halfspace region is occupied by the solid 1 with the five material
constants are c;;,where j=1,2,3,4,5. The lower halfspace region is occupied by the solid 2

with the five material constants c;,,where j=1,2,3,4,5. The loading plane is located within

the solid 1, where 0" <d <+oo. There are four combinations of A, and A, as follows: a)
A;#0and A,#0; b) A;=0and A,#0; ¢c) A;,#0and A,=0; d) A,=0and A,=0,
where A, = ,/C,,C;, —C,, —2C,,. The solution of ®(p, z)and¥(p, z) for each of the four cases
is specifically given below.

Casea: A, #0and A, =0

In the solid of upper halfspace region k =1(0" < z < +©),

4 o _ ol _ =
D, (p,7) =Dy + D e D, +e el el (y,)—e @, (r,) (10a)

J=1

4 - = -
Y (p,2)=e Wy, + > e, e I pe i () —e 2 (y,) (10D)

J=1

where z,, =y, (d +2), 2,y =y, (d +2), Zop =100 + 702, Zpg =700 + 7112, 2y =7 (d +2)
The constant square matrices®,,, ¥,,, ®,,;and¥;, (J =1,2,3,4) are given in [2, 3].

In the solid of lower halfspace region k =2 (—0<z<0"),

4
D (p,2)=e 2Dy, + Y e D, ), (11a)

J=1
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4
Yo (p.2) =W, +> e ¥, (11b)
J=1

where 2oy = Yod =702, Zyy =yl — 7152, Zoy =1l =722, Zogy =Vl — 7152,
Z,,, =7xd—7,2; The constant square matrices®,, , ¥, ,®,;,and¥_,, (J =12,34) are
givenin [2, 3].

Case b: A, =0and A, #0
In the solid of upper halfspace region k =1(0" < z < +©),

@, (p,2) =Py +e ™ ((Dbll + pI®,y, + pd @,y + pZZd(I)bAl)

+e 7l + e (@, + p|Z|(I)ul) (12)
W, (p,2) =W e (W, + pr¥W,,, + AW, + pP2d¥, )
+e Tl eral (‘I’uo + p|7|‘1’u1) (120)
where z,, =y, (d +2), ®,,,and ¥, (J =12,3,4) are givenin [2, 3].
In the solid of lower halfspace region k =2 (-0 <z<0"),
@, (p,2) = "Dy, +e (D, + pdd, ,, )+ e "2 (D,,, + pd®,,,) (13a)
Y, (p,2)=e =W, +e (P, , +pd¥,,,)+e " (P, + pd¥,,,) (13b)

where z,,, = 75,0 — 71,2, Zpp, =74 d =752, ®p;,and¥,;,(J =1,2,3,4) are given in [2, 3].
Casec: A, #0and A, =0

In the solid of upper halfspace region k =1(0" < z < +©),

4 =] = =
D, (p,2)= e_pzmq)m + Ze_pza“q)m + eipym‘z‘q)v + eipmz‘q)u (ru) — eipmz‘q)u (ra) (143)

J=1

4 | — —
¥ (p.2)=e W +> e W e T e W (y ) —e T (v,)  (14D)

J=1

where  z.,, =y, (d +2), Zoyy = V0 +7,52, Zas = VA + 7352, Zas =Vn(d +2) ;
@ ,and ¥, are given in [2, 3].

In the solid of lower halfspace region k =2 (—0<z<0"),
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@, (p,2) =€ =D, +e "2 (D, + p1®,,, )+ e 7= (D, + p1®,,,) (15a)
Y, (p,2)=e =W, +e (¥, +pt¥,,,)+e "= (WY, + p2¥,,,) (15b)
where z.,, =y, —¥52, 2.0 =y,d —y52, @ ,and¥ ,,(J =1,2,3,4) are given in [2, 3].
Cased: A, =0and A, =0
In the solid of upper halfspace region k =1(0" <z < +o0),

D, (p,2)=""®y +e ™ ((an + L@y, + pAD 5, + p°2d D@, 41)

, Z (16a)

+e e el (@, + p|7|(I)u1)
Y. (p,2)=e"W, +e ™ (lPdll +p2¥ g + pd¥ gq + PdeTdm) (16b)

+e oty el (w4 p|7|‘I’ul)

where z,, =y,,(d +2), ®,,and ¥, (J =12,3/4) are givenin [2, 3].
In the solid of lower halfspace region k =2 (—0<z<0"),

D, (p,2) =€ @, +& (q)dlZ + pI® 5, + @5, + p2dD, 42) (17a)
Y. (p,2) =¥, +e (lez + 2 gy + AW o, + p72dY 42) (17b)

where z,, =y,,d —y,,2, ®,,and¥,,,(J =1,2,34) are given in [2, 3].
2.3  Constant Limits of ®(p,z)and¥(p,z)at loading plane

2.3.1 The Kelvin’s case

For this case, the solution of ®(p,z)and ¥(p, z) has the following constant limits at
loading planez=d .

lim®, (p,z) =®,, (18a)
z>d*
Iirgl‘l'k(p,z):i%lgwllo (18b)

where0 < p <+, and
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. l+a O 0 0 0 « 1 00
d,=—| 0 2 0 ;‘I’0=l 0 0 O;1,={0 1 0 (18¢c)
4u 2
0 0 1+a a 0 0 0 0 1

2.3.2 The Boussinesq’s case

For this case, the solution of ®(p,z)and ¥(p, z) has the following constant limits at
loading planez =0.

lim @, (p, z) = @, (19a)
-0
lim ¥, (p,2) =1, (19b)
z—0"

where0 < p < 4.

2.3.3 The Mindlin’s case

For this case, the solution of ®(p,z)and ¥(p, z) has the following constant limits at
loading planez =d , whered > 0.

lim @, (p,2) = ®,, +& (@, +pd®,, + pd®,,, +p?d?®,, ) (20a)
lim ¥, (p,2) =F11,+¥,+e 2 (W o +pd¥,,, +pd¥ ., +p>d2¥ ) (20b)
z>d*

where0 < p < 4.

In particular, if d =0, we have, lim® _(p,z)=® ,and lim ¥ (p,z)=-I,, which
z—>d”* z—>d*

is the Boussinesq’s case.
2.3.4 The bi-material case

For this case, the solution of ®(p,z)and ¥(p, z) has the following constant limits at
loading plane z =d , where the two solids are bonded at z=0"and 0* <d < +o.

zl_igl D (p,2) =@ +e <(Dt01 + pd®@yy; + pd®,, + p*d Z(I)m) (21a)
lim ¥, (0,2) = F 41, + Wy + &7 (W + oUWy, + o0,y + 9707 ,)  (21D)

where0 < p < 4.
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In particular, if d=0 , we have Ilim®/(p,2z)=d,+P,=P, and
20"

im¥ (p,2)=F:1,+¥,+¥,,.

20"

2.3.5 The extended Kelvin’s case

For this case, the solution of ®(p, z) and ¥(p, z) has the following cases of constant
limits at loading planez =d .

Case1:A, #0
"’},l D,.(p02)=D, (22a)
Iir(}l‘llkt(p,z) =F1l,+¥, (22b)

where0 < p < 4+ and

+—m_ 0 0
1 Ca1711721
B rrret B (22¢)
Cor(72i+ o
a\V1it7 21 0 0 Cu
Ca1711721
1 0 C317E}’21 _é
L=———| 0 0 0 (22d)
2(y11+72) Con
1-- 0
31711721
Case 2:A;, =0
lim @, (p,2) =@, (23a)
lim ¥, (p,2) =1, +¥,, (23b)
z—>d*
where0 < p < 4+ and
021‘*'30341 0 0
1 2C31 731 L 0 (23 )

@, = L c

- 2C41 o €y +3C

O O 21 41

2C31731
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oy 00 7/321
Y,= 0 0 O (23d)
ZC31?/31 10 0

Itis noted that lim @, =® ,and lim ¥ ,h =¥ ,for A, =0.

rYu—Ya rYu—ra
2.3.6 The extended bi-material case

For this case, the solution of ®(p,z)and ¥(p, z) has the following constant limits at
loading plane z =d , where the two solids are bonded at z=0"and 0" <d < +oo.

Casea: A, #0and A, =0

4
lim @, (p,2) =@, +e @y + Ze_pzmq)an (24a)
z—>d* =
4
Ilm Y (0, 2)=FLL+ ¥ +e W + ) e, (24b)
J=1

where zy, =2y,d, z,,, =2y,,d, Z,,, =y,d + 7,0, 2,5, =y,d +y,d, and z,,, =2y,,d.
Case b: A, =0and A, #0
lim @, (p,2) = @, +e ", +e (®,,, + pdD,,, + pdd,, + p*d’®, . ) (25a)
lim W, (p,2) = F 51, + ¥, + & W, e 7™ (W, + P, ,, + pd¥P,, + p?d?¥P,,,) (25b)
where z,, = 2y,,d.

Casec: A, #0and A, =0

4
lim @, (p,2) =@, +e ™Dy + zeipza“q)m (26a)
z—>d* =
4
lim W, (p,2) =F 715+ ¥,y +e "Wy, + ey, (26b)
J=1

where z,,, =2y,,d, 2,5, =y,,d +y,d, Z,,=y,d +y,d, and z,,, =2y,d .

Cased: A, =0and A, =0
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ZILTJ: D (p,2) =B, +e "Dy +e™ ((an + pd®@y,; + pd®,;; + pd zq)d4l) (273)
"Tt Yo(p,2)=F3 13+ ¥, +e ¥, +e™ (‘Pdll + p2¥ gy + pdW o + p°20Y, 41) (27b)

where z,, = 2y,,d.

In particular, if d =0, we have

Casea: A, #0and A, =0

4
Z”Ti q)kt (,0, Z) = (I)Ll = (I)01 + zq)an (28&)
- J=1
_ 4
I"gl ‘Pkt(plz):$%|3+‘PL1+‘P01+ZT&]1 (28b)
z—-0% =

Case b: A, =0and A, #0

Zlirgl D, (p,2)= D,+D, +Dy, (29a)
Iirgl Y (0. 2)=F51,+ ¥, +¥,, + ¥, (29b)
z—>0~

Casec: A, #0and A, =0

4
Z”r(r)l D, (0,2) =@, + Dy, + Z(Dcn (303)
- J=1
) 4
Ilrp Yo (0, 2)=Fil+¥ +¥u+> ¥, (30b)
z—>0* =

Cased: A, =0and A, =0

Zlirgl D, (p,2)= D,+D,+D, (31a)
Iirgl Y0, 2)=F51,+ ¥, +¥,, + ¥y, (31b)
70"

where 0< p < +00.

2.4 The properties of ®(p,z)and¥(p, 2)
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It is evident that the above specific solutions of ®(p,z)and ¥(p, z) have only the
exponential functions in the form of (a, +a,d +a, 0z + a,p*dz)e ** (where a,a,,a,,a,,a,are
material constants (or zero) and Re(a) > 0). Their mathematical properties can be listed as
follows.

All of ®(p, z) and ¥(p, z) are continuous functions of p, where0 < p < +o0.

®d(p,z)in (2a) for the Kelvin’s case and in (7a) for the extended Kelvin’s case are
continuous functions of z, where —o0 < z < +00. ®(p, z) in (3a) for the Boussinesq’s case and

in (4a) for the Mindlin’s case are continuous functions of z, where 0" <z<+w. ®(p,z)in

(5a) and (6a) for the bi-material case and in (10a)-(17a) for the extended bi-material case are
continuous functions of zfor —oo < z < 4.

Y(p,z)in (2b) for the Kelvin’s case and in (7b) for the extended Kelvin’s case are
continuous functions of z for either —co<z<d™ or d" <z<+4w. ¥(p,z)in (3b) for the
Boussinesq’s case are continuous functions of z for 0" <z<+w. ¥(p,z)in (4b) for the

Mindlin’s case are continuous functions of zfor either 0" <z<d or d" <z<+w. ¥(p,2)
in (5b) and (6b) for the bi-material case and in (10a)-(17b) for the extended bi-material case
are continuous functions of z for either —co<z<00or 0" <z<d ord" <z<+ow.

At the loading plane z=d , ¥(p, z) has the unit step discontinuity as follows.
Y(p,d")-¥(p,d")=-I, (32)

The partial differentiations of ®(p, z) and ¥(, z) with respect to z are continuous
functions for any z and p within each region of the homogeneous solids, except at the
loading plane z =d or at the interface z = 0of the two dissimilar solids.

Asp —+wandz=d, ®(p,z)and ¥(p, z) converge to zero with the rate of e,

where @ > 0. Specifically, @ =1 for isotropic solid; w=y,, , o=y, for A, >0; w=c,, for
A, <0; and o=y, for A, =0. At the loading planez=d , ®(p,z)and ¥(p, z) have the
constant limits for0 < p < +o. These constant limits are given in (18a)-(31a) for ®(p,d) and

(28b)-(31b) for¥(p,d*). They are the singularities of the solutions in the physical domain,
which are discussed in the ensuing.

2.5  The Green’s function matrices
2.5.1 Definitions in Cartesian coordinate system

At first, ten basic functions g, are defined as follows.
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Ooo =1 (33a)

i i
O = _5; O = o (33b)
P P
2 2
Oy = (:_2; O, = 5_727; Uz = 77_2 (33C)
P P P
ig i&%n i&n® in’
O =55 O =500 Op=-23 Ou=—3 (33d)
30 p3 21 ps 12 ,03 03 ,03

Secondly, the following harmonic functions g, ,, are defined,

+00 +00

- 1 =
9y =90, (X, Y,2, f):_Z J- J.PL ‘e 7q,, fKd&dn (34)
T

—00 —00

where L, | and J are non-negative integers, 0<1+J <3;forL=0o0rl1,z>0;forL>2,z>0;
and K =g/,

It can be shown that the harmonic functions g, (X,V,z, f~) satisfy the Laplace
equations as follows:
2 2 2

0 Rz 7 ~
ygm (X,Y,2, f)*‘?gm(x’ Y.z, f)"‘?gm (x,y,z,f)=0. (35b)

They also have the following recursive relations:

~ o -~

g(L+1)IJ(X1y!Z! f) :_Egm (x,y,z, 1) (363-)
~ Vi -~

ngl(Xiy’Z! f) =5gozo(xry’zr f) (36b)
- 0 -

glog(x,y,z, f) :Egooz(x’y’za f) (36C)
- - o -

9112()(1 Yy, Z, f) = 9121(y1 X, Z, f) = ggooz(xl Yy, Z, f) (36d)
~ ~ o ~

gl30(x’ Y.z, f) = 9103(y' X, Z, f) = ggozo(xa Y, zZ, f) (369)
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Accordingly, the Green’s function matrices G,[L,z,¢] and G,[L,z¢]
(L=01,2,3;z>0) are defined as follows.

+00  +00

4G, (L2.0) = | [ e " TgI Kdcdy
T

—00 —00

Oio2 — O 0 ¢119 L20 ¢119 L11 ¢13 Q110 (37a)
= ¢22 —Ou O12 0|+ ¢11 i1 ¢119 L02 ¢13 OLo1
0 0 0 - ¢319 Lo ¢31 JLo ¢33 OLoo

400 400

_ 1 L-1,—pz *
47G,(L,2,0) = [ [ p"e "M, ol Kdcdy

—00 —00

OL12 —OLa 0 ¢llg L30 ¢llg L21 ¢1sg L20 (37b)
=0y 39~ 921) 3(90—092) O|+| A0 4.9, —¢:0n
=0 O 0 ¢1lg L12 ¢119 Loz ¢13g L02

where ¢, , é,, ¢, ¢, and ¢, are the five elements of the material constant matrix
¢ defined as follows.

¢11 O ¢13
o= 0 ¢22 0 (37C)
¢31 O ¢33

2.5.2 Closed-form results for point loading

The point body force f ;. (x,y)and its Fourier integral transform f~point can be
expressed as follows,
1
1:point (X' y)zgé‘(X)é‘(y) . (388.)
i;-point = Fpoint (57 77) =1. (38b)

The six basic harmonic functions g,,, for L =0can be integrated in closed-forms in
terms of elementary functions [2, 4, 5]. The other harmonic functions g,,, for L >1and

0<1+J <3 can be found using the recursive relations (36). Expressions of those harmonic
functions are specifically given in Appendix B.

2.5.3 Closed-form results for rectangular loading
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The rectangular loading is the uniformly distributed for over a horizontal rectangular area. It
and its Fourier integral transform can be expressed as follows.

1

frect(x’ y): m
0 if |[xpa or |ypb

if [x|<aand |y[<b (39a)

= Flem)= - J [ 10anK- axay = S'”(aﬂi)biig(b”) . (30b)

wherea>0; b >0.

The six basic harmonic functions g,,, for L =0can be integrated in closed-forms in
terms of elementary functions [3, 6]. The other harmonic functions g, for L>1 and

0<1+J <3 can be found using the recursive relations (36). Expressions of those harmonic
functions are specifically given in Appendix C.

2.5.4 Closed-form result for circular ring loading

The circular ring loading is the body force vector uniformly concentrated on the
circular ring and can be expressed as follows in cylindrical coordinate system.

g (1, 0)= 20 (40)

Four basic functionsq,, are defined as follows in terms of products of the Bessel
functions of orders of zero and one.

Goo = Jo(Pr) o () (41a)
Gor = Jo (1) I, (%) (41b)
Gy = J1(or)Jo (o) (41c)
Gy = J1(pr)J; (o) (41d)

Secondly, the following harmonic functions g,,, are defined,

Quy =, (r 1, 2) = J.pL_le_pZQH do (42)
0
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where L, | and J are non-negative integers, 1 =0or1,J=0o0rl; for L=0orl, z>0;
forL>2,z>0. It can be shown that the harmonic functions gm(z,ﬁ) satisfy the Laplace
equations as follows:

2

0 0 0
a(rgmu(rarmz))"'?qm (r,r,,z)=0. (43)

They also have the following recursive relations:

~ 0 ~
(S (va’Z’ f):_zgm (X,y,Z. f) (44)

Accordingly, the Green’s function matrices G,[L.z,¢] and G,[L,z,¢]
(L=012,3;z>0) are defined in the following.

oo ¢ 0 $139010
47G,(L,2,9) = J-pLe_pZHco (pr)eIl,(por,)dp = 0 $,9.11 0 (45a)
° — #3000 0 539 Loo

+00 400

1 A
476, (L+1,2,0) = [ [ p"e ™Mo (pr)oTles(or)dp

—00 —00

¢11Q(|_+1)01 0 - ¢13Q(L+1)00 1 ¢11q L11 0 - ¢13g L10 (45b)
= 0 % - QLo 0 - ? 0 $91 0
0 0 0 - ¢1lg L11 0 ¢13g L10

The four basic harmonic functions q,,, for L =0can be integrated in closed-forms in

terms of the complete elliptic integrals of the first, second and third kind [2, 4, 5]. The other
harmonic functions q,,, for L >1can be found using the recursive relations (44). Expressions

of those harmonic functions are specifically given in Appendix D.

2.6 The basic solutions ofu, T,andI" |

Accordingly, the solution of the displacement vectoru, vertical stresses T, and the
plane strains I' ) induced by the concentrated loading f(x,y,z)= f(x,y)o(z-d)L or

f(r,r,,z) :wﬁ(z—d)L can be presented in the following unified matrix forms. For the

three particular loading in (38), (39) and (40), the solutions are presented in closed-form as
follows.

2.6.1 The solutions for the three Kelvin’s cases
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u= {Gv (O’ |Z|, @, )+ |Z|Gv (1’ |Z|, (I)kl)}L
T, =1{G, L]z ¥,o )+ |21G, (2.|2 ¥, 1L

r, =G, Lz ®,)+7G,2 [z @)L

where—ow0 < X,y,z<+0 andzZ =z —d.

(462a)

(46b)

(46¢)

In particular, the Kelvin’s solution for the point loading can be specifically expressed

as follow,
100 x> Xy Xz
1 -« 2 —
u= (1+a)0 1 O|+——|xy y° vyzZ|L
87Z'ILIR _ _ =2
0 01 XZ YyZ I
. Z 0 x -z x> Xy Xz
- _ —a)Z ,
= af 0 Z + X Z |+L
: T AR )_/ R? y Y_ E’Z
-X -y Z XZ YyZ I
X -y -7 : X’y x°’z
_ 1 y ' 0 +3(1—a) X%y xyZ XyZ
P 4aR3 B R? ) \ )
- -7 Xy y y°zZ

where R =/x* +y* +7°.

2.6.2 The solutions for the three Boussinesq’s cases
u={G,(0,z,®,)+z2G,(Lz,®,)L
T, ={G,(Lz2,¥,,)+2G,(2,2,¥,)L

r,=G,1z®,)+2G,(2,z,)L

(473)

(47b)

(47¢)

(48a)
(48b)

(48¢)

where—o < X,y,z <+ and0 < z < +oo. In particular, the solution for the point loading is the

Boussinesq’s solution.

2.6.3 The solutions for the three Mindlin’s cases
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{GV(O’ Zl’(I)mO)+ de(]" Zl'(I)mld )+ ZGv(l’ Zl’q)mlz )+ dZGv(Z’ Zl’(I)m2)

L 49
+6,0/2,0,,)+ 176, 1]7,9,,) } o

{Gv(]" Zl"PmO)_'_ de(z’ Z11‘Pm1d )+ ZGV(Z’ Z1".I’mlz )+ dZGv(3' Zl"PmZ)}
.= _ _ _ L (49b)
+G,(0,[7, ¥ )+|ZlG, L [2, P..)

_{Gp(l, 2, ®,,)+dG (2,2, ®,,,)+2G, (2,2, ®,,,)+dzG ,(3 2, ®,,)
=

i j } L (49)
+G, (L7 @ )+|ZG, 2z ) }

where —oo < X,y < +00, 0<z <+, 2z, =d +2, andZ=z—d. The solution has a part of the

boundary effect and a part of Kelvin solution. In particular, the point loading case is the
Mindlin’s solution.

2.6.4 The solutions for the three bi-material cases

In the rock solid of the semi-infinite region k =1(0< z <+x), we have

{GV(O' Zl’ q)t01)+ de(l’ Zl’ (I)tldl)+ ZGv(l’ Zl' (I)tlzl)+ dZGV(Z’ Zl' (I)IZl)}L
= _ - - (50a)
+ GV(O,|z|,<I)k0)+|z|GV(1,|z|,<I)kl)

{Gv(l’ Zl' Tt01)+ de(Z’ Zl' lI’tldl)—i— ZGV(Z' Zl’ lI’tlzl)—i_ dZGv(3' Zl’ lI’t21)}|_
, = _ _ - (50b)

+ GV(O,|z|,‘I’ko)+|z|Gv(1,|z|,‘I‘kl)

_ {G p(l’ Zl’(DtOl)+ dG p(2' Zl’ (I)tldl)+ ZG p (2’ Zl’q)tlzl)+ dZG p(3' Zl’q)t21)}|_ (50C)

146, 0/70,)+ 16, 27},

where —co < X, Y,z <+o0 and z, =d +z. The solution has a part of the interface effect and the
part of Kelvin solution.

In the rock solid of the semi-infinite region k =2 (-~ < z <0), we have
u=1{G,0,z,®.,)+dG,1z, ®,,,)+2G, 1z, ®,,)+dG, (2,2, D)L (51a)
T,=1{G,(1 2, ¥,0,) +0G,(2,2,, ¥y, ) + 2G, (2,2, ¥y, ) + 102G, (3,2,, ¥, )L (51b)
r,=1G,[Lz, ®,)+dG, (2,2, ®yy,)+2G, (2,2, ®,,,) + d2G (3,2, P, )L (51c)

where—co < X,y,z<+o0 andz, =d —z.

2.6.5 The solutions for the three extended Kelvin’s cases
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Case 1: A, #0

= {Gv(0,701|2|, (I)v)+ GV(O, 711|7|’ D, (711))_
T, = {Gv(l,y01|2|,‘l’v)+ Gv(17711|7|"Pu (711))_

r,= {Gp(l’ 701|7|"Dv)+Grp(1v711|7|"bu(711))—6

Case 2:A; =0

G, (0,7,1]2 ®, (7))L

Gv(l, 7/21|Z|1 ¥, (721))}'—

= {GV(O,701|Z|, (I)v)+ Gv(O’ 731|7|’ (I)uo)+ |Z|Gv(l’ 7/31|7|’ (I)ul)}l_

TZ = {Gv(]'! 701|Z|’Tv)+ Gv(l’ 7/31|7|'

r p {G P (1’ 701|Z|, (I)v)+ G p (1’ }/31|Z|,

2.6.6 The solutions for the three extended bi-material cases.

Casea: 4 #0 and 4, #0

lI,ul)—i— |Z|Gv (2’ 7/31|7|' lI’ul)}l‘
q)u0)+ |7|G p (2’ 7/31|7|’ (I)ul)}L

In the rock solid of the semi-infinite region k =1(0 <z <+x), we have

G,(0,z,, @ ZG

+ Gv(01701| |1 v)+ GV(O,;/11|Z|,(I)U (711))_

G,(1z,, ¥ ZG

Z:

+GV(1,}/01| |v v)+Gv(11711| |1Tu(711))_

G,(Lz,, @ ZG

+G,(L 7/01|Z|, v)+ G

p

aJl aJl

aJ 1 aJ l

aJl aJl)

p (1’ 7/11| |’ D, (711))_ G

G, (O' 721|Z|v D, (721))

Gv(lv 721|7|’ Y, (721))

p (1’ 7/21|7|' D, (721))

In the rock solid of the semi-infinite region k = 2 (o < z < 0), we have

u= {Gv(Q 202’(1)02)"'

4

ZGV(O’ ZnJZ’q)aJZ)

J=1
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p (1, 721|Z|' D, (721))}L

L

L

L

(52a)

(52b)

(52¢)

(53a)

(53b)

(53c)

(54a)

(54b)

(54c¢)

(55a)



4
Fp = {Gp(l, 202,(1)02)+ ZGp(li ZnJ27(I)aJ2)}L

J=1
Caseb: 4, =0and 4, #0
In the rock solid of the semi-infinite region k =1(0 <z <+x), we have

_ {GV(O’ ZOl' (I)Ol)+ Gv(o’ Zbl’ (I)bll)+ ZGv(l’ Zbl’ (I)b21)+ de(l’ Zbl’ q)bC‘}l)

+ Zde(Z’ Zoys (I)b4l)+ G, (O’ 7/01|Z|’ @, )+ GV(O, }/31|7|, (Du0)+ |Z|Gv(l’ 7/31|7|, @

_ {Gv(l’ Zg1s T01)+ Gv(l’ Ly Tb11)+ ZGv(Z’ Zys Tb21)+ de(Z' Zyps TbSl)

+ Zde(3' Zuns W)+ Gv(l, }/01|7|, ¥, )+ Gv(l, }/31|Z|, ‘Puo)+ |Z|Gv(2' }/31|Z|, ¥

_ {Gp(l’ Z01’(1)01)+ Gp(l’ Zbl’q)bll)+ G p(2' Zbl’(Db21)+ de(Z, Zbl’q)b3l)
0=

+20G (3,201, @1 )+ G, (L70a[2 ®, )+ G, (L 721]7, ®o )+ |G, (2, 72 @

In the rock solid of the semi-infinite region k =2 (o < z <0), we have

U= {GV (O’ Z02 ! (I)OZ)+ GV (0’ Zb12 ' (I)b12)+ de(l’ Zb12 ! (I)bZZ )}L
+ GV(O’ Zb22 ! (Db32)+ de(l’ Zb22 ' (DbAZ)

— {Gv(l’ ZOZ ' ‘POZ)+ Gv(l’ ZblZ"Pb12)+ de(Z’ ZblZ"PbZZ )}L
i +Gv(1’ ZbZZ’Tb32)+dGV(2' ZbZZ’Tb42)

_ {G P (1' Loy, (Doz)"' G P (1' Zyas q)b12)+ dG P (2’ Zyg Py )}L
P +Gp(1’ Zb22’(I)b32)+de(21Zb22’q)b42)

Casec: 4 =0 and 4, =0

In the rock solid of the semi-infinite region k =1(0<z < +x),

4

Gv(01 ZOl’q)Ol)+ ZGV(O’ ZaJl’(I)ch)
u= 121 L

+ GV(O, ]/01|7|, D, )+ G, (0' 711|7|, D, (711))_ G, (O' 721|Z|1 D, (721))
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(55¢)

)}L (56a)
L (56b
)} oE0)

L (56¢)
ﬁ

(57a)
(57b)

(57¢)

(58a)



G 1201’ ZG 1 aJl’ ch

z:

L (58b)
+Gv(1’701| |v v)+Gv(1’711| |1Tu(711))_Gv(11721|z|’Tu(721))
G 1 G
r, - Z01 2 Zy1s ch) L (55¢)
+Gp(l77/01|z|’ v)+Gp(1’7/11| |!(I)u(7/11))_Gp(1’721|7|'q)u(721))

In the rock solid of the semi-infinite region k = 2 (o < z <0), we have

— {Gv (01 ZOZ ! (I)OZ )+ Gv (01 chz ! (1)012)+ ZGv(l’ chZ ' (I)c22 )}L

(59a)
+ C-:'v (01 Z022 ! (Dcsz )+ ZGv (11 Z022 ! (I)c42)
Tz _ {Gv(li ZOZ’ 02)+ G ( d ch’ch12)+ ZG (2’ Zc12’ c22 )}L (59b)
+ Gv(l' Z022 ! ‘Pc32)+ ZGV(Z' Z022 ' ‘Pc42)
r _ {G p (1’ Z02 ' (I)OZ )+ G p (1’ chZ ! q)c12)+ ZG (2 c12 (I)c22 )}L (59C)
P + Gp(l’ 2022’(Dc32)+ ZGp(Z’ 2022,(1)042)

Cased: 4 =0and 4,=0
In the rock solid of the semi-infinite region k =1(0<z < +o0)

_ {GV(O, Zo1s @0y ) + G, (0, 2y, @y )+ 26, (L 24y, Py0)+ dG, (1, 24, Py, ) }L (60a)
+12dG, (2, 2,,, (Dd41)+ GV(O, 701|Z|1 (I)v)+ GV(O, 731|Z|’ (I)u0)+ |Z|GV(1, 731|7|' )

T {Gv(l’ Zoss Wor) + Gy (L 2y, W) + 26, (2,23, W)+ G, (2,2, W) }L
2= = _ _ _ (60b)
+ Zde(?’v Zuy W)+ Gv(l, 7/01|Z|' lI‘v)"’ Gv(l, 7/31|Z|' Tu0)+ |Z|GV(2,]/31|Z|, ¥ )

r :{Gp(l,201,®01)+Gp(1lzb1!q)d11)+ZGp(Z'Zbl’(I)d21)+dGD(2’Zbl’(I)d31) }L (60C)
P +Zde(3' Zbl'(I)d41)+Gp(1’7/01|z|’q)V)+Gp(1’731|z|’q)u0)+|z|Gp(2 731|_| )

In the rock solid of the semi-infinite region k = 2 (—o < z < 0), we have

_ {GV(O, Z021(1)02)"‘ GV(O, ZdZ’(I)d12)+ ZGv(l’ Zdz’q)dzz)}l_

(61a)
+ de(l, Zdzvq)dsz)"' ZdGV(Z, ZdZ’(I)d21)

T - {Gv(]-’ Zoz"Poz)"‘ Gv(l, ZdZ’Td12)+ ZGV(Z’ ZdZ"PdZZ)}L (61b)
+dG, (2, ZdZ’Td32)+ Zde(& ZdZ’Td42)
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{Gp(l' 2011(D01)+ Gp(]" Zd2’®d12)+ ZGp(Z’ Zdziq)dzz)
p

= L (61c)
+de(21Zd2’(I)d32)+Zde(31Zd2’(I)d42) }

2.7 Singularities of the basic solutions

The harmonic functions g,,, in terms of the improper integrations in (34) and (42) are
absolutely and uniformly convergent if |z—d|>g>0, where ¢ is a positive small value.
However, at the loading plane z —d*(d >0), ®(p, z)and ¥(p, z) have the constant matrix

terms for0 < p <+ow0. Theg,,, for z— d* at the loading plane are expressed in terms of the
following singular integrals.

+00  +00

1
“m 9o = 9o (X, Y,0 =_I IP Q) degdU (62a)
. . - 1 +00 400 0 -
“rdrl Oy =91y (X, Y,0 ,f)ZZ_J. IP q,, fKd&dn (62b)
7> T

—00 —00

They are convergent in the sense of Cauchy principal values. They cannot be directly
integrated accurately and rapidly with normal numerical integration methods. They have to
be isolated and integrated analytically in closed-forms.

For the point loading, using the closed-form results, we have the following limiting
results of the singular integrations g, and g,,as z—0".

400 +OO

Z“_g] Yooo = :[O :[O Kd&dn =— (63a)
lim g f f ¢ Kdgdn——— (63b)
z—0" 010 = e _OC

) +00 +oo 1 X2

lim goy, = j j Kdzdn —;(1—72] (63¢)
“m Jo1r = J. J.én Kdgdn = (63d)
) +00 +oo é: 2X2

lim ggs, = j j Kd&dn (3—r—2 (63e)
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: 1 iy oy 2x?

lim 9021—5[0 L?dedﬂ——? 1—7 (63f)
and

lim g,q, = j j Kdédn = 225(x)5(y) (64a)

lim g jn T"f Kd§d77_—— (64b)

70" 110 = Sl

lim g, = j j Kdédn K m5(05(y) (64c)

400 +00 2X

lim g, == [ I° =] kel =22 (64d)

. 17 riEd 3x x?

zILT 9130 :E[O 700? dedﬂ:—ﬁ(l—r—z] (64e)

. 1 ity oy 3x?

Z'LT 9121—5_[0 [O7Kd§d77——F 1—7 (64f)

where r=+/x*+y? >0.

Similarly, the singular integrals forq,; at the horizontal plane of the concentrated
circular ring loading have the following results.

1M G = j G EHCON P ST, (652)
20 z(r+r)

My = [ 220 g L, (65b)
0

0

+00 2, .2
limgy, = [2PP%) g, 1 (r +h K(Kl)—(r+ro)E(r<1)j (650)
250 . P | r

and
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. e 1
lim o = [ Io(pr)Jo(ph)dp == 5(r —1;) (662)
0 0

L E(ey+ 1r K(zq)} (66b)

o T 0

. +°° 1
lim a,, = j Jo(pr)Jl(pro)dng[

0
. e 1
lim ., = [ 3(pr)3o(on)dp =—5(r 1) (66¢)
0 0

For general body force f,in particular, the rectangular body force, the above singular
integrals can be integrated in their closed-forms using the expressions in Appendix C.

2.8 Summary notes

In the above, exact solutions of ®(p,z)and ¥(p, z) have been given for specific
boundary-value problems in either a homogenous solid of infinite or semi-infinite extent or a
bi-material solid of infinite extent. The materials are either isotropic or transversely isotropic.
The solutions of ®(p,z) and ¥(p,z) are independent to the applied loading
f = f(X,y)o(z—d)on ahorizontal plane and can be directly used to systematically formulate

the solutions ofu, T, and T', in matrix form for any specific load distribution f (x, y).

The three specific forces f(x,y) (i.e., point, rectangular and ring force distributions)

are considered in details. Their solutions in physical domain are given exactly and
systematically in closed-forms in terms of some harmonic functions. The closed-form results
include those given by Kelvin in 1848, Boussinesq in 1885, Mindlin in 1936 and some others
with various methods.

Furthermore, it can be shown that the closed-form solutions can be systematically and
easily obtained for any other specific force f (x, y)if the following basic harmonic integral

can be integrated in closed-form.

~ 1 % e~
Q2. F)=— j J v f(&mKagdy (67a)
or
1 +00 400
Q(x, v, z, f):-j j[zln(z+R)—R]f(s,t)dsdt (67h)
27

—00 —00

wherez >0andR = /x* + y* + 2°.
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It is because of the following recursive relations of differentiations for the four basic
harmonic functions and other harmonic functions.

2

Jooo (X, Y, Z, F) = _g > Q(X, Y, 2, F) (68a)
A
.2 1) =2 Qx, vz, ) (68b)
gOlO 7y’ H - axaz ’ya I}
xy.2. D)= 0(xy.2.) (68¢)
g011 ’y’ 1 - axay 1y1 y
gOZO(X’ y’ Z' F) = aa 2 Q(X, ya Z! F) (68d)
X

The mathematical properties of the basic solutions of ®(p,z)and¥(p,z)have been
examined exactly and clearly. For all the cases, the improper integrals ofu, T, and I' | are

uniformly and absolutely convergent if |z—d| >¢&>0. At the loading plane, the improper

integrals become the singular integrals and have been analytically integrated for the point,
ring and rectangular forces.

The solutions for the bi-solid cases are given under the perfectly bonded interface
condition. Other interface bonding conditions for the bi-solids and other boundary conditions
for a homogeneous solid of semi-infinite can also be examined similarly and systematically.
In particular, the smooth bonded interface condition and the horizontally inextensible bonded
interface condition have been examined in [4, 5]. Their solutions in closed-forms have been
derived. The solutions in a homogeneous transversely isotropic solid of semi-infinite extent
with traction free boundary condition have been examined in [6]. Their closed-formed
solutions of the complete elastic field variables for all the boundary-value problems in the
homogeneous solids of infinite or semi-infinite extent due to the three forces in (38a), (39a)
and (40) have been given exactly and similarly with the above method. The three
concentrated loadings can be re-expressed as follows.

f(x,y,2) = %5(x)§(y)§(z —d)L (69a)
T
£(r.0, z):%ﬂz—d)L (69b)
1 .
F(xy.7) = m&(z—d)L if x| <aand|y|<b (690)
0 if x| >a or |y|>b
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where L is a constant force vector.

3 Mathematical Properties of the Solution
3.1  General

The basic solutions given in the above section show the basic properties of the basic
solutions and their common singularities. Similarly, they can be used to show the solutions
given in the Sections 4 and 5 for the layered solids in [1] because they are also systematically
expressed in matrix forms in terms of either inverse 2-D Fourier integral transforms or
inverse Hankel integral transforms. The integrals are improper integrals with depending
parameters and 2D-infinite or semi-infinite integration intervals. Therefore, the following
issues have to be examined and answered in this section:

1) the mathematical properties of the solution matrices ®(p,z) and ¥(p,z) (or
similarly ¥, (p,z)and ¥ (p,z)) in the transform domain;

2) the convergence of the improper integrals of the solution;
3) the singularities of the solution;

4) the interchangeability of the integration limits and the integrations and the partial
differentiations for the solution of displacements, stresses and strains expressed in the forms
of the improper integrals; and

5) Satisfaction of the solution to the governing equations, interfacial conditions and
the imposed boundary and internal loading conditions.

3.2  The properties of ¥, (p,z)and ¥, (p,2)

Using the principal of mathematical induction and/or numerical techniques and under
the positive strain energy constraints of the five elastic parameters of each layer (7) in [1], it
can be shown that the determinants of the four coefficient matricesM,,, M,,, M, and

M, respectively in (55c), (60c), (73c) and (78c) as well as the Appendices A to D in [1] do
not have any zero value for any pin0< p <+ [7, 8]. i.e.,

detM,,(p) #0 (70a)
detM,,(p) #0 (70b)
detM, (p) =0 (70c)
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detM,, () %0 (70d)

where 0< p < 4.

Accordingly, it is evidently that ¥, (po,z)and ¥ (o, z) have the following properties,
which are similar to those of the basic solutions of ®(p,z) and ¥(p,z) in the above section.

¥, (p,z) and ¥ ,Z) are continuous functions of p , where0 < p < 4.
@Y, (p ul(p p p

(b) ¥, (p,z) and ¥, (p,z) are continuous functions of z, where —o<z<d™ or

d"<z<+4wx.

(c) Within every single layer, ¥, (p,z) and ¥, (p,z) are partial differentiable of any
orders with respect to z except at the loading planez =d .

(d) At z=d , the leading diagonal elements of the six matrix solutions have the
discontinuity of the first kind while the non-diagonal elements are continuous. The difference

between the diagonal elementsas z=d"and z =d " is unity, i.e.,
¥, (p,d") =¥, (p.d7)=-1, (71a)
¥, (p.d°)~ ¥, (p.d7) =, (71b)
where I, = unit matrix of 2x2and I, = unit matrix of 4x 4.

(e) In particular, as p — M (M is a very large value approaching+ «), ¥, (p,z) and
¥, (p,z) have asymptotic representations and can be expressed as follows.

(i) For —o<z<d and 0< j <k,

: — a70iP(Hj=2)=7o( PN ——YonyPhkr—7okp(d=Hy 1) A p
/!Ln&‘Pv(p’Z)Ne 0jp(H; 0(j+1)PNju o(k-1)PMk1 70k k1 Aj(Z_Hj—l)rAp (723.)
lim TU (p’ Z) ~ e*}’ajP(Hj’Z)*Va(j+1)Phj+1*---*J/a(k-l)Phk-tVakP(d*Hk-l)Q? (Z —H j_1)er (72b)
p—M

(i) For d" <z<+o andk < j<n+1,

. ~ a70iP(Z=H1)=70(j 1)1y T o(ks)P(ks) Yok (H—d) A g

Nim W, (p,2) me 70T et e AT G H )T (720)
. i p(2=H )7 o i = - —d

pll_)n'.\}l TU (p, Z) ~e 7aiP(2=H 1) =7a(j)PN(j1) =V a (k1) PN(ks1) ~7akP (H )Q(j}(z —H j)rQq (72d)
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whereI",,, T, ,I',,and I',, are dependent on the material parameters.

(f) Furthermore, all the elements of ¥, (p,z) and ¥, (p,z) and their mth differential
derivatives with respect to z have the following bounds.

(i) For —o<z<d and 0< j <k,

m
— ‘PV (p1z) < pme*}’ojP(Hj’Z)*}’o(i+1)Phj+1*---*}’o(kfl)/’hkff}’okp(d*kal)\ll\r/nmax (73 )
z a
M A =7omin (d—Z) m
< ple eI
m
o v, (p,2)| < pme_7ajp(Hj_Z)_}/a(i+1)phj+1_"-_Va(k—l)phkfl_yakp(d_Hk—l)\I[Ln;maX (73b)
z
M A —7aminP (d=2) m
SIO € lPU max
(i)For d" <z<+o andk < j<n+1,
m
- TV (p’ Z) < pme—VOJP(Z—H171)—}’0(1—1)Ph(1—1)‘---—7o(k+1)Ph(k+1) _70kp(Hk_d)\I’\|7maX (73C)
M A —YominP (Z—=0) yggm
< P € Fomn? TV max
m
azm TU (p’ Z) < pme—}’aJP(Z_Hjfl)_}/a(ifl)Ph(Jfl)_"'_7a(k+1)ph(k+1)_7akP(Hk_d)lI,LT . (73d)
M A ~YaminP (Z-d)yggm
SIO € lI“U max

where 0Sp<+00 + Y omin :min(7/001701""’7/0n’70(n+l)) 1 Y amin :min(yao’yal"“!yan'7a(n+l)) '

m=0123...; ¥, and ¥]

max U max

are two positive square matrices and dependent on the

material parameters only.

(9) Correspondingly, ®(p,z) and ¥(p,z)and their mth differential derivatives with
respect to z have the following bounds.

S 0(p.) < ple T (742)
o" M 4 —7minP|Z—d|yggm
o Y(p,z) <p"e W (74b)
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where 0< p <400, i = MINFomins Vamin) » M=0123,...; @7 and ¥,

max max

are two positive
square matrices and dependent on the material parameters only.

(h) Finally, as |[z—d|>0,and o — M (M is a very large value approaching+ ),
Y, (p,z) and ¥ (p,z) have the following asymptotic solutions.

Jlim ¥, (0.2) ~ Wi (p(z - ) (752)
Jim ¥, (p,2) =~ ¥ (p(z - 0)) (75b)

where W (p(z—d)) and W°(o(z—d)) are the matrix solutions for the body force vector

acting in the interior of two perfectly bonded elastic halfspace with the material properties of
the (k—-1)th and kth layers for d -H, ,>H, —d or the kth and (k+1)th layers for

d-H,,<H,—d. They can also be obtained from the solution in (10)-(17) using the
following method. (a) for d —H,, >H, -d , letting ¢; =c,,, where 1=1234,5 and
j=0%..,k-2 and c;=c, where 1=12345 and j=n+Ln,..k+1 ; (b) for
d-H_, <H,-d, letting ¢; =c; where i=12345 and j=01,..,kand c; =c;,,,, Where
1=12345and j=n+1n,.,k+2.

3.3  Convergence of the solution

Without loss of generality, the internal loading of the body force vector in the
transform domain f(rj,n) can be assumed to be a normal function of the independent
variables (&£,77) . It has no singularity for any values of (&,7) in (—o < &,7 <+0) and
approaches to constant values as p — +oo. In other words,

1T EFRL, (76)
where — oo < &,77 < +0; Fy =aconstant; I = (1,1,1)".

Accordingly, for a given small positive value &(e>0) , under the
condition [z—d >&>0, it can be shown that the solutions of u(x,y,z) , T,(X,y,2)
andI" (X, Y,z) as well as their partial derivatives with respect to x, y and z can be expressed

in the following double improper integrals depending on parameters. The integrals are
uniformly and absolutely convergent.

ak+|+m 1 00 +90 ak+|+m 1 —~
—u(x,y,2) =— — | —MP(p,2)II f(&,7)K [d < 77a
oy =] _[ﬁxkay.&m[p (p. )T (£,17) }édn o (773)
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ak+|+m +00 0 ak+|+m

T,(X, Y,2) = % L | (0w (o, )T (2,7)K Jédy < o0 (77b)

ox*ey'oz™ J ox*oy'oz"
ak+|+m 1 +00  +00 8k+|+m [ _ }j
—TI (X, ¥,2)=— — 0 ®(p, 2)IT'T(&,n)K < 77c

where the integers k,I,m>0,-w<X,y,z<+w0, and if z= H, ,the partial derivatives have

the values in the sense of either z=H jorz=H J* J=012,.,nn+1.

Secondly, under the condition|z—d |< (¢ > 0), the convergence of the solutions and

their partial derivatives with respect to x, y and z can be examined using the asymptotic
solutions in equations (72). In general, the solutions can be re-expressed as follows.

u(x,y,z) =u*(x,y,z) +u™(x,y,z) (78a)
T,(%Y,2) =T (%Y, 2)+ T,"°(X,y,2) (78b)
(XY, 2)=T3(xy,2)+T}°(xY,2) (78c)

whereu®(x,y,2), T;(x,y,z), and "} (x, y,z) are expressed as follows.

+00  +00

woy D=5 | [oleen-e e -a)n Ty qe

—00 —00

400 +00

Ty = | [ - (e -d)irTEmkday (o)

—00 —00

+00  +00

0y = [ e -0 pe-aplrfe ke 7%

—00 —00

It can be shown that [®(p, z) - ®*°(p, z) [and [¥(p, 2) — ¥"° (0, z) |have the following
bounds

6m WO M A=Y min PE m
S @(0.2) @ (p(z—d»lgp R (802)
am 0 M A =¥ min PE m
(o) - (p(z—d»kp R 1 (80b)
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where 0< p<+0, m=0123,..., @y, and ¥y, are two positive square matrices and
dependent on the material parameters only.

Accordingly,u®(x, y,2z), T;(x,y,z) andT'}(x,Y,z) as well as their partial derivatives

with respect to x, y and z in the double improper integrals depending on parameters are
uniformly and absolutely convergent. The uniform and absolute convergence of the double
improper integrals in (77) and (79) can be shown using the following result of the bounds:

Fo s K+14m A= miné0 +00 K+1+m A= miné (k+|+m)”:0
— g 'mn( =F g /mPdp=+——-—+_0 81
2] 1R e = @
Thirdly,u™ (x,y,2), T;"°(x,y,2) , andT';°(x, y, ) are expressed as follows.
two 17771 two *
U, y,2) = [ [SI0™ (p(z - )T (5, 7)Kdédn (822)
ﬂ-—oo —oop
. 1 400 400 o o~
T2 = [ I oz - ) T(E mKdgdy (82b)
. 1 400 400 " o~
Feey ) =o— [ [1,0" (o -d)I'F (¢ nKdgy (82¢)

—00 —0

where ®@"°(p(z—d)) and ¥"°(p(z-d)) are the matrix solutions for the body force vector
acting in the interior of two bonded elastic halfspace with the material properties of the
(k—-1th and kth layers for d-H,,>H,—-d or the kth and (k-+1)th layers for

d-H,,<H, -d.

The improper integrals in (82) are convergent in the sense of the Cauchy principal
value. It can be shown that as p —» M (M is a very large value approaching +o and

|z—d >0, ®(p,2) and ¥(p, z) have asymptotic solutions and can be expressed as follows.

lim lim ®(p,z)=®"(p(z-d)) (83a)

p—>M |z-d| >0

lim lim ¥(p,z) = ¥* (p(z - d)) (83b)

p—>M |z-d|>0
3.4  Closed-form singularity of the solution

According to (79) to (82), it is evident that the singularity of the solutions in the
layered heterogeneous solid is exactly the same as that of the solutions for the body force
vector f(x, y)o(z—d) concentrated at a horizontal plane in the interior of two perfectly
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bonded elastic halfspaces. The upper halfspace has the material properties of the
(k —1)th layer and the lower halfspace has the material properties of the kth layer, under the

condition of d —H, ;, >H, —d (i.e., the loading plane z=d is closer to the interface of
the (k —1)th and kth layers). On the other hand, the upper halfspace has the material properties
of the kth layer and the lower halfspace has the material properties of the (k +1)th layer,
under the condition of d-H, ,<H, —d (i.e., the loading plane z=d is closer to the
interface of the kth and (k +1)th layers).

®"°(p(z~-d)) and Y™ (p(z—d)) have been given exactly given in (10) to (17) and
Yue [2]. The solutions of u®(x,y,z), T;(x,y,z) andT(x,y,z)in (82) have been derived

systematically and exactly in the closed-form in terms of elementary harmonic functions or
the complete elliptic integrals of the first, second and third kinds for the three concentrated
body force vectors (see the above Section 2 and [2, 3, 6]).

3.5  Satisfaction of the required conditions

Under the condition of |z —d| > ¢ >0, the improper integrals of the solution and their

partial differentiations with respect to x, y and z are uniformly and absolutely convergent.
Consequently, the integration limits and the integrations and the partial differentiations for
the solution in the forms of the improper integrals are interchangeable. Accordingly, it can be
shown that the solution given in (1) satisfies the governing partial differential equations using
the following method. Based on the geometric equations (2), the static equilibrium equations
(4) and the Hooke’s law (6) in [1], the governing partial differential equations for the j-th
layer can be re-expressed in terms of the displacement vector u as follows.

+o0 +001

Lu(xyz)_i_[ j

—00 00

L, [0®(p, 2)KJg(&,7)dédn =0 (84a)

where —co <X,y <+0and H, ; <z<H, for j=01.,n,n+land j#k or H,, <z<d and

d<z<H,for j=k;

52 2
C1132+C 0 +C4] 522 (Clj_ 5])6X_Py (C21+C4j 62_6'y
0 2
L, = (c; — CSJ)OXay Cs; 52 +Cyj o7 +c4J Z (c21+c4J % (84b)
(S, +C4j)m (Cz; +Cy vyaz Caj o7 o +C41 gy +C31 o’
The (84a) is valid because of the following identify.
L; [ (p,2)K]=0 (85)
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Secondly, the solution in (1) satisfies Hooke’s law and the geometric equations within
each single layer because of the following two identifies.

LyuCy =5 | [ L0 0K Etan =T,y @6
Lty =5 | [ L 00 oK bEmodn =T, 0y2)  (86)

where —oo <X,y <+ and H, ; <z<H; for j=01.,n,n+land jzk or H,, <z<d and

d<z<H,for j=k;

0 0 0

= 0 0 Cojor 0 Coj e

_ el 0 . _ 0 d
L, = 2 250 0f; L, = 0 Cijm Cuj% (86¢)

0 0 0 0

0 & O Ciax Gy Gz

The two identifies in (86a) and (86b) are valid because of the following two identifies.

L, [K]= oIl K (87a)
L, [M®(p,2)K]= pIT¥(p, 2)K (87b)

Thirdly, the solution of u(x,y,z) , T,(x,y,z) and T' (X, y,z) in (1) satisfies the
perfectly bonded interface condition. The solution of u(x,y,z) and I' (x,y,z)in (1) is

continuous functions of x,yand z, where —o0 < X, Y,z < +o0. The solution of T,(x,y,z) in (1)
is continuous functions of x, yand z, where —co< X,y <+oand —oco<z<dor d <z < +oo.

Fourthly, the solution of T,(x,y,z) satisfies the internal loading condition of the
concentrated body force f(x,y)o(z—d) because the following identity. In other word, the
discontinuity (71) is due to the body force loading concentrated atz = d .

AlzimO[Tz (X, Y. Z+ AZ) - TZ (X, Y, Z— AZ)]
= zif TH lim [W(p, 2+ Az) - ¥(p,2— A7) [T (&, n)Kdédn (89)
T Az—+0

—00 —00

B 0 forz=d
C|=f(x,y) forz=d
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Finally, the solution of u(x,y,z), T,(x,y,z)andI' ,(x,y,z)in (1) satisfies the natural

regularity conditions as R — +oo, where R =4/r>+(z—d)? andr =/x* + y? In other words,

it can be shown the following limiting results are valid.

RIim u(x,y,z)=

lim T,(x,y,2) =

R—+o0

lim I (x,y,2) =

R—+o0

where K, =e

lim

\z—d\—wao

<

= lim

\z—d\—>+oo

‘Z d‘~>+oo

lim

‘Z—d‘~>+oo

<

‘Z—d‘%+oo

1
lim
|2- d++oo[ 27

|im[iTT o 2 )Hf(

r—+o0

400 400

2ar

—00 OC

400 +00

lim
‘Z d‘—>+oo 272-
1 e
lim 5
r—>+o| 2711 L

m

+00 +00
Iim{
r—+o0 27Z-r

—00 —00

+00  +00

+00 +00

2l 1o

—00 OO

J.e }/mmp‘z ddp} max

+00 400

+00 +00

L ooz v

—00 —00

J.pe 7m|np‘Z dd10j| FO —

) 1 +00 400
. gw[ 2 [I@IF(E n)Kdédn}

1
, 'M{Zﬂ J j [ S f(& n)Kdédn}

IF, =

a

im {21” J e on T nkazn

} maxa
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—,z)n*'f<—,—)+<od§dn}
r rr

2 2 f(‘f ”)K dadn

[ [ nep i ﬂ)Kde‘dﬂ}

)Kodé:d 77}

2| [mroamfee U)dedn}

\(ceostrmsin®) and the following inequalities can be shown.

}/mmp‘z ddégdﬂ} max aFO

) 1
lim | ———
_7mmlz—d|}

|z—d|—>+o0

ml_t
] iz —d)

g

b

r{g

I.F, =0

max " a

y I.F,=0

max " a

(89a)

(89b)

(89c)

(90a)

(90b)



1 +0  +o0
i W{ | Ji,e(e IR, U)Kde‘dn}

—00 —00

1 T }/mmp‘z d‘
<\z—|dl\r—r>]+oc J;O_.[Oe dédni| max a (90C)
= lim Ipeym'”p‘z ldp @2 IF, = lim |——— @ _I.F,=0
\z—d\—woo |z-d|>+o0 7rf1in(z_d)

where F, >0.

It can be shown that the following bounds are valid with the constant parameters

(o, )T (&,mK|<e @) 1F, (91a)
‘H‘I’(p, DIT(&,7) K\ <e iy | F (91b)
\npm(p,z)n*'f‘(g,n)K\< e @ | F, (91c)

where ®°_ and W°_ are constant square matrices with positive elements depending on the

max

material parameters.

On the other hand, it can be shown that the following integrations are convergent in
the sense of the Cauchy principal value.

nm[ ! f f 11c1>(£ I f( )Kodfdn}

r—+0

Mﬂ; =P (92a)
[ L jlncp(o 'K dgdan(OO)@o
+00 40 o~ 5
'Lﬂl{zﬁ [ [mean f(??)Kodfd”} o)
92
l +00  +00 . ~
_ {Z L L MY(0, 2)IT'K d&d an(0,0) <o
lim { f Tn o> z)H*’f‘(??)Kodgdn}
e (92¢)

=[zif 00 Z)H*Kodcfdﬂ]f(O,O) <oo
T

—00 —00
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where ®(0, z) and ¥(0, z) are two constant matrices.

3.6 Summary notes

The solution given in (82) is uniformly and absolutely convergent provided that
—w<z<dord<z<+owo. If z=d or z=d", the solution is convergent in the sense of
Cauchy principal value, where z=d is the loading plane of the concentrated body force
vector. The solution satisfies the governing partial differential equations, the interfacial
connection conditions, the internal loading condition and the external regularity conditions as
R — +o0. The singularity of the solution occurs only at the loading plane location and can be
exactly presented in closed-form in terms of elementary harmonic functions and the special
functions. It is also noted that the above mathematical properties of the solution can be
examined and are also valid in the cylindrical coordinate system.

4 Applications to Other Solutions
41  General

The classical elasticity theory is the common foundation of many other continuum
mechanics. They include contact mechanics, fracture mechanics, inclusion mechanics,
elastodynamics, thermo-elasticity, thermo-elastodynamics, poroelasticity and viscoelasticity.
The matrix Fourier integral transform approach presented above can be applied to derive and
formulate analytical solutions for many other boundary-value and initial-boundary-value
problems of linear continuum mechanics [9-29]. For the initial-boundary-value problems, the
Laplace integral transform method has to be applied to the independent variable of time t
(0 <t <+w0). Some cases and examples are further discussed in this section.

4.2  Other boundary-value problems in n-layered solids
4.2.1 Solutions in n-layered solids of semi-infinite extent

Similar to the solution in the n-layered solid of infinite extent, the solutions can be
derived and formulated systematically for the boundary-value problems in a general layered
elastic solid of semi-infinite extent (H, <z <+o) . The general layered solid has (n+1)

dissimilar layers. For Hj , <z <Hj,it is the jth homogeneous elastic layer with the layer
thicknessh; =H —H, (j=123,..,n). For H; <z<+w,it is the (n+1)th homogeneous

elastic halfspace. The  five  elastic  constants for the jth layer
arec,;,C,;,Csj,C45,Cs; (1=12,3,...,n,n+1).
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In addition to the internal loading of the body force vector f(x,y,z) =f(x,y)o(z—-d)
(H, £d < +x), the external boundary conditions on the external boundary z =H,can be
described as one of the following four conditions.

UX(X, y! HO)
u® =u(x,y,Hy) =|u,(x,y,Hy) (93a)

u, (x,y,Ho)

ze (X! y! HO)
Tza :Tz(x’y!HO): O-yz(X’ y!HO) (93b)

o, (X ¥, Hy)

u,(x,y,Hg)
To =T (%Y, Hy) = u,(x,y,Hy) (93c)

Gzz (X! y’ HO)

ze(xl yl HO)
Tuaz :Tuz(X! y’HO) = Gyz(xl y’HO) (93d)

uz (X, yl HO)

The corresponding loading conditions in the transform domain can be expressed by
one of the following four loading vectors at z = H, and plus the internal body force vectorg.

W A W A
W=l wg Y= | Y= WY =] (942)
W, 7 7 w;
where
oW EmH) =2 [ et (x y)K i 94h
W' =w (&7, Ho) == [ [Iu? (x,y)K "dxdy (94b)
2 = 7
. . 1 +00 400 s .
Yi=Yi(EmH) === [T (x,y)K dxdy (94c)
2 Y °
. . 1 +00 400 . . .
YL =YaEmH) = [ [1(p)IUTE (x, y)K dxdy (94d)

—00 —00
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+00 400

a a 1 * a *
Yo =YaEmHo) =~ [1,(o) TS (x,y)K dxdy (94¢)
T

—00 —00

where
% 00 1 00
I.(p)=|0 % 01; IL(p)=/0 1 O (941)
0 0 1 00 %

For each of the four boundary loading cases, the solution can be obtained using the
same equations and the formulation procedure given in Sections 4 and 5 in [1] and the above
Sections 2 and 3 except the three regularity boundary conditions at z = Hin (50) and (68) in
[1]. They have to be replaced by the given three boundary conditions at z = H, as follows,
respectively.

QaV(HO)ZQaVa (953.)
anU(HO)=anUa (95b)
where
ve W g, - [L 0] foru®orT? i_sknown (950)
72 [0 1] for T? or T2 is known
1 0 0 0] .
for u® is known
010 0
w? 1 0 0 0] .
We 0010 for T, is known
Ua — : ; an = :O 1 0 O: (95d)
fs for T, is known
7 0 00 1
[0 0 1 O]
for T is known
0 0 0 1]

For each boundary condition case, two sets of the solution can be obtained. One set is
for the internal loading of the body force vector g in the transform domain or f in the

physical domain. The other set is for each of w®,Y?,YZ and Y, in the transform domain or

each of u®, T7, T, and T; in the physical domain. More details can be found in Yue [8], Yue
and Yin [12] and Yue et al. [13]

4.2.2 Solutions in n-layered solid of finite thickness
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Similarly, the solutions in general layered solid of finite thickness (H, <z <H,)can
be systematically derived and formulated. The solid has n dissimilar layers. For
Hi, <z <Hj,itisthe jth homogeneous elastic layer with the layer thicknessh, =H —H
and the five elastic constants c,;,c,;,Cs;,C,;,Cs; (j =1,2,3,...,n).. In addition to the internal
loading of the body force vector f(x,y,z)=f(x,y)o(z-d) (H, <d <H,)and the external
boundary conditions on the external boundary z = H,in (93), the other boundary conditions
on the external boundary z = H, can be described as one of the following four conditions.

U, (x, Y, H,)
U = u(x,y.H,) =| U, (% y.H,) (962)

u,(x,y,H,)

o, (X, y,H,)
T, =T,(x,y,H,) =| 0, (X, y,H,) (96b)

o,(X,y,H,)

u (x,y,H,)
T =Ty, H) =] u,(x,y,H,) (96¢)

O-ZZ (X’ y’ Hn)

O-XZ (X' y’ Hn)
To =T, (X, V. H,) =0, (%Y. H,) (96d)

u, (x,y,H,)

The corresponding loading conditions in the transform domain can be expressed by
one of the following four loading vectors at z=H_ and plus the internal body force vectorg.

b b b b

W, 7 W, (21

b b b b b b b b
W = WZ 'Yz = 1'2 ’qu = W2 ’Yuz = Z-2 (97)

b b b b

Ws T3 T3 Ws

where the given boundary conditions w®,Y?,Y?,Y> can be obtained by changing the

!

superscript a with b in (97).

For each of the four boundary loading cases, the solution can be obtained using the
same equations and the formulation procedure given in Sections 4 and 5 in [1] and the above
Sections 2 and 3 except the following changes. The three regularity boundary conditions at
z=H,in (50) and (68) in [1] have to be replaced by (95). The three regularity boundary
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conditions at z = H  in (51) and (69) in [1] have to be replaced by the following three given

boundary conditionsatz=H, .

pr(Hn) = pbvb (98a)
P,U(H,)=P,U° (98b)
where
W 1 0] foru®orT. isknown
Vo= T pb:[ ] . . (98c)
> [0 1] for T or T® is known
1 0 0 O]
for u® is known
01 0 0]
Wy 1 0 0 0]
Wlb 0010 for T° is known
T A R N S (98d)
f3 for T is known
- 00 0 1]
0 0 1 0] .
for T, is known
00 0 1]

Each of the two boundaries at z=H,and z=H_ has four types of three given

conditions. Hence, there are sixteen cases of the boundary-value problems. Each case has
three sets of solutions in terms of the body force vector, the three given conditions at z=H,

and the given three conditions atz=H,. At z=H,, the three given conditions are either

w®, Y2, Y5 or Y in the transform domain and either u®, T, T, or T in the physical

b

domain. At z=H,, the three given conditions are either w”, Y?,Y? orY_ in the transform

domain and eitheru®, T?, T? or T in the physical domain.

4.3  Mix-boundary value problems

Mix-boundary value problems in elasticity are usually called contact mechanics
problems and fracture mechanics. Two methods can be used to derive and formulate solutions
for the mixed-boundary value problem. The first method is the integral equation method [9,
30, 31]. The second method is the boundary element method [14-19]. They are discussed
below.

4.3.1 Integral equation method

An example is given to illustrate how to use the matrix Fourier integral approach to

solve the mix-boundary value problems in the general layered solids [9]. This mixed
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boundary value problem is a layered solid of semi-infinite extent subjected to the eccentric
indentation of a rigid circular and smooth plate. The mixed boundary conditions at the
surface z = Hof the layered solid are written in the cylindrical coordinate system as follows.

c,(r,0,H,)=0, fora® <r<+w, 0<0<2x (99a)
u,(r,0,Hy)=D,+Q rcosd, forO<r<a ,0<60<2r (99b)
c,(r,0,H,)=0, forO0<r<+ow,0<0 <27 (99¢)
o, (r,0,H,)=0, forO<r<+o, 0<0 <27 (99d)

where a is the radius of the rigid circular plate; D, is the axial translation of the rigid plate
along the z-axis; €, is the central rotation of the rigid plate about the y-axis.

The axial load P,and its associated moment M acting on the rigid plate have the

following integral relations with the contact normal stresso, (r,8,H,) .

PZ:—.([

2z
o, (r,6,Hy)rdadr (100a)

0

a2lr

M, =Pb=—][o,(r,6,H;)r* cosder (100b)
00

y

where b is the eccentricity of the external load P,acting on the rigid circular plate.

Using the approach presented above, the w(z)andY,(z) can be expressed as follows

in terms of the boundary loading vector Y;
wW(p,p,2) =®(p,2)Y; (101a)
Y. (p,0,,2)=¥(p,2)Y; (101b)

Because of (99c¢) and (99d), so z; =0,andz; =0. Then, the following results are valid.

W,0,9,2) = Dy,(p, 2)75(0, 0, Hy) (102a)
W, (p,9,2)=0 (102b)
W3 (0, 9,2) = D5 (p, 2)75(p, 0, Hy) (102c)
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7.(p 0, 2) =Yy (p, 2)75(0, 0, Hy) (102d)
7,(p,0,2) =0 (102¢)
73(p,0,2) = Y (p, 2)75(0, 0, Hy) (102f)

where 7,(p, ¢, H,) is the unknown and to be found using the mixed boundary condition (99a)
and (99b).

Secondly, because of (102c) and (102f), the mixed boundary condition (99a) and (99b)
can be expressed as follows.

027
zij [ @4 (p.0)z5(p. 0, Ho)Kdpdp = D, +Q rcosd, for0<r<a, 0<6<2x
7o (103)
1 0 LT
Z—IITS(p,¢,HO)Kpd¢dp=O, fora<r<+4mw, 0<0<27
T 00

Using the Fourier series expansions of z,(p,¢,H,) =75 (p) —2isingz,(p) , the
equation (103) can be decoupled into the following two sets of dual integral equations.

[®45(p.0)7,0(0)Jo(pr)dp =D, foro<r<a
0 (104a)
[250(0)35(pr) pdp =0, fora<r<-+o
0
and
K r
[®s(p0za(p)s(pr)dp =20, for0O<r<a
0 (104b)
[74(p)3:(pr)pdp =0, fora<r<-+o
0
Furthermore the following solution representations are used.
750(p) = [ () cos(ps)ds (1052)
0
73(p) = [ 4i(s)sin(ps)ds (105b)
0
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Then, the equations (104a) and (104b) can be respectively reduced to the following two sets
of Fredholm integral equations of the second kind.

(9 + [ K, (5.0, (Ot =%, (1062)
0 V.

where 0<s<a, A= lim ®,(p,0) and
p—>+0

o0

Ku(5,1) =2 [ (1.(0,0) ~L)cos(s) cos(ot)dp (106b)
T 0
P,= —Zﬂi ¢ (s)ds (106c)
and
@, (s) + T K, (s, t)¢ (t)dt = EQ y (1073)
0 A

where 0<s<a, and

Ky(s.1) = %T(%%(pm ~1)sin(ps)sin(ot)dp (107b)

M, = —47zj's¢1(s)ds (107c¢)

The above integral equations can be calculated numerically and accurately. The
numerical results can be used to find the solution ofu, T,andI" jin (93) or (100) in [1] with

the following solution expressions.

u(s,0,z,)=— h H P(t)K, (s, z,,t)dt +£jw(t)KUy (s, zl,t)dtHa(H)} (108a)
2ma |y 2a
_P 1 b 1
T,(5,0,2,)=—% [ j K, (s, 2, t)dt + — j w (DK, (s, zl,t)dtl'[a(e)} (108b)
2ma” |y 2a
_ P 1 b 1
r,(s,0,2,)=—2% { j HOK (s, 2, t)dt +— j w(K (s, zl,t)dtHa(H)} (108c)
2ma“ |y 2az,
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where 0<s(=r/a)<+w, 0<z(=z/a)<+w, 0<0<2z , ¢(s)=-2nag(r)/P, ,
w(s)=—4m’4(r)IM, . K K
®4(p,2) . K, and K, are functions of ¥;(p,z) and Wy,(p,2) ., which are exactly given in
[9].

K, and K are functions of ®,(p,z) and

uz ! uy ! pz

coséd 0 0
m,@)= 0 sin@ 0 (108d)
0 0 cosd

Details of the analytical formulation and numerical solution can be found in [9].
4.3.2 Boundary element methods

The classical closed-form fundamental singular solutions given by Kelvin in 1848 [32]
and Mindlin in 1936 [33] have been used in the formulation and development of the powerful
boundary element methods (BEM) [19]. These Kelvin’s and Mindlin’s solutions based BEMs
have some drawbacks in solving both boundary-value and mixed boundary-value problems in
layered and functionally graded materials. Since 2002, Yue’s fundamental singular solution
given in (84) to (89) in [1] has been used to replace the Kelvin’s and Mindlin’s solutions and
formulate the Yue’s solution based BEMs [14-19]. They have been used to find the solutions
for many specific problems of interests in science and technology.

The singular terms of the Yue’s solutions are presented in exact closed-form in terms
of the elementary functions given in Appendix B and can be analytically isolated and exactly
calculated in the new BEMs. The remaining parts of the Yue’s solutions (say, @, for

example) are presented in the forms of the inverse Hankel transform integrals with the Bessel
functions J, (por) (K=012,3) and can be accurately calculated with any numerical

integration techniques. For example, the following proceeding limit technique has been used
[7,8,9, 14, 19].

o) A A,
[®.(p.2.d)3, (pr)dp ~ [ @, (p,2,d)], (p)dp+ [® (p,2,d)I, (pr)dp+-----
0 0 A

Ant
+ [@ (p.2,d)3 (or)dp
Ay
where0=A) <A <A, < <A, <A,.,Is a sequence of numbers that approaches infinity
and can be selected using the rule A =A. A ;, where | =23,..,m,m+1 and in particular,
A =2and A, =1.5. Each finite integral on the right-hand is a proper integral and can be

calculated using the Simpson’s quadrature based adaptively iterative integration with a pre-
specified allowable error 5, as follows.
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Am+1
[®,(p.2,d)3, (or)dp
An

<o

c

(109b)

Ani1
[®,(p.2,d)3, (or)dp
An

1+

4.4 Elastodynamics
4.4.1 The governing equations

The governing equations of the mathematical theory of elastodynamics are exactly the
same as those given in (1)-(3) and (5)-(9) in [1] for the elastostatics [20, 34-36]. The
equations of static equilibrium (4) in [1] are replaced by the equations of equilibrium of
motion at any point within the solid. They take the following form by adding the inertial
force vector on the left side of the equation (4) in [1] along the X, y and z directions,
respectively.

8)(XX + Y + 6ZXZ +f, = 7/—atzx (110a)
oo,, 0o, Oo, o°u
8xy + ayyy + azy +f, =y atzy (110b)
a 2
aaazx + gyly + a8022 + fz =y aatliz (110C)
X z

where y is the density of the solid material and t is the independent variable of time.

4.4.2 Two sets of governing ordinary differential equations

The matrix Fourier integral transform in (14) to (17) in [1] are used on the two
horizontal axes x and y. Then the classical Laplace transform is used on the time t. The two
unknown vectors w(¢&,n,z,t) and Y, (&,n,z,t) and the internal body force loading vector

g(&,n,z,t) have to be changed in the forms of Laplace transform as follows.

W(&,m,2,8) = Tw(g,n, z,t)e"dt (111a)
‘AGUEDE TYZ (£,,2,0)e " dt (111b)
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Q(il nz, S) = jg(éj! 1, Z!t)eistdt - ﬁ%w(gi 1, Z!O) - %N(é:! 1, Z!O) (111C)

where s is the independent variable corresponding to the time t in Laplace transform.
Re(s) > 0. w(&,n,2,0) and %w(f,n,z,O) are the initial displacement and initial velocity

vectors in the Fourier transform domain, respectively.

Accordingly, the governing equations can be reduced two sets of first order ordinary
differential equations [20]. The first set is due to the anti-symmetry about the z-axis and has
two linear ordinary differential equations with two field variables and variable coefficients
with z. It can be expressed as follows.

dif/(z) = pC,(2)V(2) + G, (2) (112a)
z
wherea<z<bh, 0< p <+, and
. AR 0) - 0
V(Z)=(VY2J, G, =(A ] Cv(z){ - VC“} (112b)
7, d, c.+)-5° 1 p 0

The second set is due to the axial symmetry about the z-axis and has four linear
ordinary differential equations with four field variables and variable coefficients with z. It can
be expressed as follows.

%U(z) - pC,(2)0(2) + 6, (2) (113a)

wherea<z<bh, 0< p <+, and

W, 0 0 -1 0 1,

N W, - 0 A c,/c 0 1/c

U(z) = ;, G, = 6 | C,(2)= 2(/) ’ 571 7 03 . (113b)
3 3
7 g, Cp+?’32/,02 0 -C,/c; 0

The five elastic parameters in (112b) and (113b) can be arbitrary functions of the
depth z, i.e., ¢,=c,(z),i =1,2,3,4,5. Most importantly, the matrix approach eliminates the two
independent variables £ and 7 in the six governing ordinary differential equations and
preserves only the radial distance p of the material axial symmetry about the z-axis. The two
coefficient matrices C,(z) and C_,(z) contain only the five material parameters

¢, (=¢;(2),i =1,2,3,4,5) and the combined variable j5°/p*.
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4.4.3 The general solution of V(2)

The basic solution for the first set with constant elastic parameters can be obtained as
follows [20],

V(2)=Az-2)V(z) - [A(z-5)G,(5)ds (114a)
where z >z, orz < z,. The first basic square matrix A(z) is defined as follow.

A(2) = B(7,)e”" +B(~7,)e 7" (114b)

where the material characteristic root 7, and the material square matrix B(y) are defined as

follows.
P S (114c)
¢, G
1
11 1 —
B(x)= > Cux (114d)
c,y 1
2
where S :75—2.
Yo,

It is evident that the above basic solution matrix A(z)automatically reduces to the
basic solution matrix A(z)in (20) in [1] once S=0o0r s=0. It also has the following
properties.

det A(z) =1 (115a)
A(0) =1, (115b)
A@A(z)=A(z+1,) (115c)
A@2)* =A(-2) (115d)

4.4.4 The general solution of U(z)

Similarly, the general matrix solution can be obtained as follows for the second set of
four linear ordinary differential equations with constant coefficients [20],
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0(2) = Q(z-2)0(z) - [Q(z—4)G,(5)ds

where z > 7, 0rz < z,. The second basic square matrix Q(z) is defined as follow.
Q(z) = C(7,)e"" +C(~7,)e " — C(7,)e™* — C(~7,)e ™
where 7, and 7, are the roots of the following material characteristic equation,

C.Cox’ - [c1c3 —c2—c,c, +(c, + c4)S];(2 +(c,+S)c, +S)=0

They can be expressed as follows.

~ c1c3—c22—c2c4+(c3+04)S+\/[c1c3—c§—c2c4+(c3+c4)S]2+4c3c4(c1+5)(c4+s)
V1= 2¢5Cy

~ \/c1c3 —c3—c,c,+(ca+cy )S—\/[c1c3—c§ —c,c+(c34+C,y )S]2 +4c,c, (c,+5)(cy +5)
2 = 2C3Cy

The material square matrix C(y) is defined as follows.

Cu(r) Cp(x) Cis(x) Cu(x)

Cly) = Culr) Culr) Culr) —-Culx)
Culr) Caulr) Culr) -Cnlx)
Culr) —Cu(x) -Culx) Culx)

where
Cu(x) = Be,[e” +(c, - 9))
Cyo() = -Bleseaz +¢,(c, +5)/ £]
Cu() =-B(c, +¢,)
Cu(x) =Ble,y —(c, +S)/ 7]
Coi(x) =Be,[c,x +(c,+S)/ 7]
C() =Blecor? +¢,(c, +¢,)— ¢y(c, + 9)]

Cul(r) = B[CU(_ (Cl + S)/Z]
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Cou(7) = Beyy[leie, - ¢2)+ (¢, +¢, )s] (117i)

Cu(x)= B{C4C513 +Cg [Cz (Cz + 204)_ C3(C1 + S)]Z + C§ (C4 + S)/Z} (117j)
Ca(2) =BeZ[csr +(2c, - 8)y +(c, + )/ 7] (117K)
1

where B = .
C3C4(712_722)

It is also evident that the above basic solution matrix Q(z)automatically reduces to
the basic solution matrix Q(z)in (22) in [1] once S=00r s=0. It also has the following
properties.

detQ(z) =1 (118a)
Q) =1, (118b)
Q(2)Q(z) =Q(z +12) (118c)
Qz)" =Q(-2). (118d)

4.45 Formulation of solutions

The above general solutions can be used to derive and formulate solutions for specific
initial-boundary value problems in elastodynamics in layered solids. The mathematical
formulation procedures are similar to those given above for the boundary-value problems in
elastostatics in the transform domain. The remaining issue is the inverse Hankel and Laplace
transforms for the solution in spatial and time domain. Such inverse integral transforms can
have singularities because of the dynamic behavior. Their accurate results in the spatial and
time domain are difficult and need further studies with both analytical and numerical methods.
Furthermore, it can be shown that the results given in (112) to (117) can be reduced to those
given in [35] for isotropic layered solid in frequency domain.

45  Poroelasticity

The theory of three dimensional linear poroelasticity for a saturated porous material
(say, soil) was formulated by Biot in 1941 and 1956 [37, 38] to model the behavior of
saturated soils within the working load range. The saturated soils are modeled as deformable,
linear, porous, elastic materials saturated with compressible fluids. A set of partial differential
equations was established to describe the coupled behavior of saturated soils and make the
poroelasticity become a completely self-consistent initial-boundary value problem. Many
people have derived solutions for poroelasticity.
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In particular, the above matrix Fourier and Laplace transform approach has been used
to derive analytical solutions for the initial-boundary value problems of the poroelasticity
[21-28]. The set of governing partial differential equations in the physical domain has
reduced into two sets of first order ordinary differential equations in the transform domain.
Their general solutions have been derived for a homogeneous poroelastic layer. They are
further used for solving specific initial-boundary value problems in layered poroelastic solids.
These solutions have been used to examine and predict the ground settlements and porewater
pressure in saturated poroelastic layers due to flexible and rigid foundation loadings and the
time-dependent behavior of rigid disc in a saturated poroelastic material. Details can be found
in the publications [21-28].

4.6  Thermoelasticity

Similarly, the above matrix Fourier and Laplace transform approach can be used to
derive analytical solutions for the initial-boundary value problems of the mathematical theory
of linear thermoelasticity. The Hooke’s law shall include the temperature expansion effect for
the linear relationship of the three normal stresses with the three normal strains plus the
thermal expansion terms. In addition, there are four time-dependent heat conduction
equations. The following material parameters shall be added: the coefficient of linear heat
expansion, the specific heat, the heat conduction coefficient, the thermoelastic coefficient.
The set of governing partial differential equations in the physical domain can be reduced into
two sets of first order ordinary differential equations in the transform domain. Their general
solutions can be derived for a homogeneous thermoelastic layer. They can be further used for
solving specific initial-boundary value problems in layered or functionally graded
thermoelastic solids. Details of the mathematical formulations and equations can be found in
Yue [29] and Ai et al. [39].

5 Concluding remarks

In the above, the author has verified Yue’s approach, Yue’s treatment, Yue’s method
and Yue’s solution for complete set of exact and analytical solutions for boundary-value
problems in n-layered elastic solids of either transverse isotropy or isotropy. Three levels of
the mathematical verification have made and presented. They are the degeneration of Yue’s
solution to the basic solutions in closed-form, the convergence, singularity and satisfaction of
Yue’s solution, and the systematic and uniform applications of Yue’s approach, treatment and
method to derive and formulate new solutions of other problems with wide interests in
science and engineering.

In particular, for the three cases of loading distribution f (x,y) including the point

loading, the concentrated ring loading and the concentrated rectangular loading, the
singularities of the solutions have been isolated and integrated analytically in exact closed-
forms in terms of elementary harmonic functions and special functions. Consequently, the
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solutions at any point in n-layered or graded solids can be calculated with any controlled
accuracy in association with any classical numerical integration techniques. Furthermore, the
author has shown that the closed-form singularity can be systematically and easily obtained if
the following basic harmonic integral in (67a) or (67b) can be integrated analytically. They
are re-expressed as follows.

QUuy.2 D= [ [E5 Temkaan (119%)
T —0  —00 IO
or
Q(x,y,z, f)= iT +f[z In(z + R) — R]f (s, t)dsdt (119b)
27

—00 —00

wherez >0andR = /x* + y* + 2% .

It is further noted that, the mathematical tools used by the author are classical tools of
more than 150 years history. They include the Fourier integral transform, Hankel transforms,
Laplace transforms, Fourier series, matrix operations, linear algebra equations, integrations,
differentiations, partial differential equations, ordinary differential equations, improper
integrals with depending parameters, harmonic functions and special functions. Using these
classical mathematical tools, the author has systematically and uniformly presented the
mathematical formulation and verification of the solutions in n-layered solid in matrix forms.
Accordingly, from 1984 to present, the author has found and presented many new solutions
with known mathematical properties and singularities in homogeneous or layered solid.
Because the classical elasticity theory is the common foundation of many other continuum or
field theories, the approach, the treatment, the method and the solutions have been applied to
systematically and uniformly derive and formulate many new solutions in elastodynamics,
poroelasticity and thermoelasticity and with boundary element methods.

Hence, the researchers at Research Centre Jilich and Massachusetts Institute of
Technology have shortly named these mathematical formulation, verification and solutions as
Yue’s approach, Yue’s treatment, Yue’s method and Yue’s solution.
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Appendix A The constant matrices for two perfectly bonded isotropic solids of infinite

extent
B-1-a 0
1 2(p—n)
Dy =— 0 Ry
4,Ll Ht
B 0
o _A-a)m—m),
tlzl — al?
Auy,
v A=)
tlzl — al’
2y,
B0
D _ L A
t02 4/1 Y72
B 0
l-a), .
D, = : IaZ’ Dy, =
2y,

B, B+l 0 pBi-«a
0 : ¥,=-| 0 A% (al)
,Bl—l—a ﬂs—a 0 ﬁ0+1
o, - Q- ) — 1) | @, - (L-a) (u—m) L (@2
Auy, 2y,
1-a)*(u-— 1-a)? —
lPtldl — ( ) (/Ll /’ll) Iaz, lPtZJ_ — ( ) (/Lll ILJ) Ia3 (a3)
2y, Yo
b . 2+, O Bs
0| Y., =5 R (ad)
B Bs 0 2+4
(-1 . Q-a)w | . (a-1)u
_—IaZ’ ‘Ptlzzz—lllaZ"PtleZ—llaZ (ad)
2y, 4! Yo

where g and « are the two elastic constants for the solid of 0 <z < +o0; g and « are the two

elastic constants for the solid of —0c <z <0, and

1 0 1 1 0 -1 1 0 -1
l,={0 0 0};1,=(0 0 O0[;l,={0 0 O0y,=l-a)u+Q+a)y,; (ab6)
-1 0 -1 1 0 -1 -1 0 1
a-1 o, +1 a+l o, +1
l//lz(l_al)ﬂ1+(1+al)ﬂ; ﬁoz( )/J_( 1 )/U’ ﬂ]_:( )#+( 1 )/,l (a7)
YV, ¥, ¥V, 4
a+l a, +1 a-1 o, +1
ﬂ2=( Ju_ (e )ﬂ:ﬂsz( ) (e +hu (a8)

Vo 4

¥, 4
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Appendix B The harmonic functions for the point force

The harmonic functions g,,;(x,y,z) (L =0,1,2,3) are expressed as follows.

a) For L =0, the six basic harmonic functions are:
1
oo (X, Y, 2) R (b1)
—X
H H = . b2
Joo (X, Y,2) R(R+2) (b2)
Jour (X, Y,2) = RR+2)7 (b3)
1 x?
1Yit) = - : b4
Jozo (X, Y, 2) R 1z R(R+Z)2 (b4)
R P S & (b5)
w (%, Yo 2(R+2)> R(R+12)*
Goa(x,y,7) ==L Y (56)
A 2(R+z2)> R(R+12)°
b) For L =1, the first order derivative harmonic functions are:
z
glOO(X’ Y, Z) :E- (b7)
- X
gllO(X1 Y, Z) = ? . (b8)
- Xxy(2R + 2)
X,Y,2)=———". b9
glll( y ) R3(R + Z)g ( )
1 x*(2R +2)
X,¥,2) = - . b10
9120( y ) R(R+Z) R3(R+Z)2 ( )
x*(3R +2) 3x
1 Y = - . bll
gl3O(X y Z) R3(R+ 2)3 R(R+Z)2 ( )
x’Yy(3R + z
0l y,2) = YERED) Y (b12)

R(R+2)® R(R+2)?*
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C) For L = 2, the second order derivative harmonic functions are:

322 1

9200 (X, Y, 2) "R R (b17)
3xz
U0 (X, Y,2) = 5 (b18)
3x
ngl(X1 y,2) = _R_sy ‘ (b20)
1 3x°
U200(X, Y, 2) R RS (b21)
x*(8R* +9zR +3z°) 3x(2R+12)
X,VY,2) = - . b23
Oz (X.Y:2) R*(R +2)° R}(R +2)? (23)
x°y(8R* +9zR +3z°) y(2R+12)
X,Y,2) = - . b24
9221( y ) R5(R+Z)3 RS(R+Z)2 ( )
d) For L = 3, the third order derivative harmonic functions are:
152° 9z
gsoo(x’ Y, Z) = R’ _E- (b27)
15xz>  3x
Ua(X, Y, 2) = R + R (b28)
15x*z 3z
gazo(xl Y, Z) =- R +E- (b30)
15xyz
Jau (X, y,2) = - R7y : (b31)
15x®  9x
Uaa0 (X, Y, 2) = S (b33)
15x’y 3
G, y,2) = =2~ 2% (b34)

where R=4/x* +y? +z?and z>0.
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Appendix C The harmonic functions for the rectangular force

The basic harmonic functions g,,,(x,y,z) (L =0) are expressed as follows.

Jooo (X, Y, Z, F)

=G,(x+a,y+b,z)-G,(x+a,y—-b,z)-G,(x-a,y+b,z) +G,(x—a,y —b, z)
+G,(x+a,y+b,z2)-G,(x+a,y-b,z2)-G,(x—-a,y+b,2)+G,(x—a,y—Db,2)
+G,(x+a,y+b,z2)-G,(x+a,y—-b,z)-G;(x—a,y+b,z) +G;(x—a,y —b, z).

Gowo (X, ¥, 2, T)
=-G,(z,y+b,x+a)+G,(z,y-b,x+a)+G,(z,y+b,x-a)-G,(z,y—b,x—a)

-G,(z,y+b,x+a)+G,(z,y—b,x+a)+G,(z,y+b,x—-a)-G,(z,y—b,x—-a)

-G,(z,y+b,x+a)+G;(z,y—b,x+a) +G;(z,y +b,x—a) -G,(z,y —b,x - a).
Gou(x ¥,2, T)
=G,(x+a,y+b,z)-G,(x+a,y—-b,z)-G,(x-a,y+b,z)+G,(x—a,y—b,z)
+G(x+a,y+Db,z)-Gy(x+a,y—b,z)-Gs(x—a,y+b,z) +G,(x—a,y —Db, z).

Jozo (X, ¥, 2, f~)
=G,(x+a,y+b,z2)-G,(x+a,y—-b,z)-G,(x-a,y+b,2)+G,(x—a,y—b,z)
-G,(x+a,y+b,z2)+G,(x+a,y—b,z)+G,(x—a,y+b,z)-G,(x—a,y—b,z).

9001(Xr Yy, Z, F) = gom(y,x,z, F)

gOOz(X! y! Z! i;-) = gozo(y! X! Zr i;-)

where the six elementary functions are defined as follows.

4abGl(p,q,z):%In(pﬂ/p2 +0°+12%).

4abG,(p,q,2) = gln{tan{% arctan(%) + ﬁ}} _

z 1 q
4abG,(p,q,z) = zarctans ————tan| —arctan(—) | .
’ {p+w/p2+z2 L p? + 22
4abG,(p,q,2) =%1/ p>+q®+12°.
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p 1 q
4abG,(p,q,z) = zarctans ———tan| —arctan(—) | ; - (cl1)
: 2+4/pP+22 |2 p? +2°
4abGG(p,q,z)=—§In(z+w/p2+q2 +17%). (c12)

Appendix D The harmonic functions for the ring force

Qoo 115, 2) = ﬂ% K(x) (@)
(112 = K(6) K)}%H(ro—r) (@)
G (1, 15,7) = 10R1 [ReK () - RZE(0)] (3)
oo (15 2) = Gy (7,7, 2) (d4)
o (1113, 2) = %K(x) (d5)
e ) (@0
Guua(1,15,2) = mle {%E(x) - K(z«)} (d7)
g (1 3,2) = ERRZ{{Z(Z <)z 1}E<x>—é—}K(x>} (@8)
s 2) = — {2(2 LRI R5)+3}E<z<) 2R—1R§K(K)} (d9)

1 2(2-«x*)2°R? 2°R;
Q,,,(r,15,2) = TR {R { R§ 2 _322—R22 E(x)+|1- RfR2§ K(x) (d10)
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27 12R? 3 47’
G0 (115, 2) =m{(zzRa - REREZJE(K) +(R_12_R_12Rb]K(K)} (d11)

[22(2r2 - R2)R, - 2(2r2 - R2 - 522 R, — 3[E(x)

Q301(r1 fos Z) = (d12)

mMRR? |+ %[2%2 ~R2-52% —422(212 - R2)R, JK (x)

1

[2R?R, - 2(52% + 3R2)R, + 9]E (x)
(d13)

rhr.z)=
Gonr (1 1o:2) ArLRRE +%(522+3R22—422R22Rb)|<(1<)

1

2,/IT, 24/1T,
where R, =/(r+1,)°+2%, R, =4/r?+1r°+2%, Ry=/(r-r) +2%, k= o © K = :
1

r+r, '
K(x), E(x)and I(x,,«)are respectively the complete elliptic integrals of the first, second
and third kind. H (r, —r)is the Heaviside step function. They are defined as follows.

7l2 d(l)
K(x)= [ ———=%
0 ! J1-x?sin’ g

7l2

E(x) = J.\/l—Kz sin pde (d15)

(d14)

712

do
IM(xy,x) = (d16)
’ '!)‘ (1—Klsin2goMl—Kzsin2(p
0 0<r<r
H(p-r) =43 r=r (d17)
1 p>r
=S T8 (d18)
Rl Rl R3 R3
1 1
R =~ 4 — d19

64-64



