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Abstract 
 

This paper presents a detailed and rigorous mathematical verification of Yue’s 
approach, Yue’s treatment, Yue’s method and Yue’s solution in the companion paper for the 
classical theory of elasticity in n-layered solid. It involves three levels of the mathematical 
verifications. The first level is to show that Yue’s solution can be automatically and 
uniformly degenerated into these classical solutions in closed-form such as Kelvin’s, 
Boussinesq’s, Mindlin’s and bi-material’s solutions when the material properties and 
boundary conditions are the same. This mathematical verification also gives and serves a 
clear and concrete understanding on the mathematical properties and singularities of Yue’s 
solution in n-layered solids.  The second level is to analytically and rigorously show the 
convergence and singularity of the solution and the satisfaction of the solution to the 
governing partial differential equations, the interface conditions, the external boundary 
conditions and the body force loading conditions. This verification also provides the easy and 
executable means and results for the solutions in n-layered or graded solids to be calculated 
with any controlled accuracy in association with classical numerical integration techniques. 
The third level is to demonstrate the applicability and suitability of Yue’s approach, Yue’s 
treatment, Yue’s method and Yue’s solution to uniformly and systematically derive and 
formulate exact and complete solutions for other boundary-value problems, mixed-boundary 
value problems, and initial-boundary value problems in layered solids in the frameworks of 
classical elasticity, boundary element methods, elastodynamics, Biot’s theory of 
poroelasticity and thermoelasticity. All of such applications are substantiated by peer-
reviewed journal publications made by the author and his collaborators over the past 30 years.  

Keywords: elasticity, boundary element method, elastodynamics, poroelasticity, 
thermoelasticity 
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1 Introduction 

In the companion paper [1], details of the Yue’s approach, Yue’s treatment, Yue’s 
method and Yue’s solution have been presented for the mathematical formulation of the 
solutions in n-layered solids in both transform and physical domains and in both Cartesian 
and cylindrical coordinate systems, where n is an arbitrary non-negative integer. This paper 
presents a detailed and rigorous mathematical verification of the approach, the treatment, the 
method and the solution. To achieve this objective, the author has used the following three 
levels of the mathematical verifications. 

Since Yue’s solution for the n-layered solid is a logical extension of these classical 
solutions in homogeneous solid, it shall be automatically degenerated into these classical 
solutions (or basic solutions) such as Kelvin’s, Boussinesq’s and Mindlin’s solutions. If the 
material properties and boundary conditions are the same, they shall be exactly the same. The 
fundamental singular solutions in exact closed-form are systematically and uniformly 
presented for the basic and classical boundary-value problems in either homogeneous or bi-
homogeneous solids. This is the first level of the mathematical verification of Yue’s solutions 
in the n-layered solid. It shows that Yue’s approach gives all the classical solutions in closed-
form by different authors with different mathematical tools and also many complete sets of 
new fundamental singular solutions in closed-form. In addition, the mathematical properties 
and singularities of the classical fundamental singular solutions in both the transform and 
physical domains are examined analytically and in closed-form. They give and serve a clear 
and concrete understanding on the mathematical properties and singularities of Yue’s 
solution in n-layered solids.  

Secondly,  Yue’s solution of the displacement vector ),,( zyxu , the vertical stress 
vector ),,( zyxzT , and the plane strains ),,( zyxpΓ  in the n-layered solid of either transverse 

isotropy or isotropy due to the internal loading concentrated on a horizontal plane 
( )(),(),,( dzyxzyx −= δff ), can be exactly and uniformly expressed as follows in the 
Cartesian coordinate systems. 

∫∫
+∞

∞−

+∞

∞−

= ηξηξρ
ρπ

dKdzzyx ),(~),(1
2
1),,( *fΠΠΦu    (1a) 

∫∫
+∞

∞−

+∞

∞−

= ηξηξρ
π

dKdzzyxz ),(~),(
2
1),,( *fΠΠΨT     (1b) 

∫∫
+∞

∞−

+∞

∞−

= ηξηξρ
π

dKdzzyx pp ),(~),(
2
1),,( *fΠΦΠΓ    (1c) 

where +∞<<∞− zyx ,, , n is a positive integer and the body force vector ),(~ ηξf in the 
transform domain is expressed as follows, 
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∫∫
+∞

∞−

+∞

∞−

= dxdyKyx *),(
2
1),(~ ff
π

ηξ     (1d) 

The solution in (1) is in the forms of improper integrals of infinite intervals either 
over the entire horizontal plane ),( +∞<<−∞ ηξ or along the radial axis +∞<≤ ρ0 . The 
improper integrals have many depending parameters including )2(5 +× n elastic 
constants )1,,...,1,0;5,4,3,2,.1,( +== nnjicij  , n layer thicknesses ),...,2,1,( njh j = , the three 

independent variables ),,( zyx  and the applied loading vectors ),(~ ηξf . Therefore, the second 
level of the mathematical verification of Yue’s solution is presented by analytically and 
rigorously examining the following three questions: a) the convergence of the solution; b) the 
singularity of the solution; c) satisfaction of the solution to the governing partial differential 
equations, the interface conditions, the external boundary conditions and the body force 
loading conditions. This verification also provides the easy and executable means and results 
for the solutions in n-layered or graded solids to be calculated with any controlled accuracy in 
association with classical numerical integration techniques. It is noted that the other three 
stresses pT and three strains zΓ can be obtained and examined using the Hooke’s law (6) and 

the solution of zT and pΓ in (1). 

The third level of the mathematical verification of Yue’s solution is to demonstrate 
the applicability and suitability of Yue’s approach, Yue’s treatment and Yue’s method to 
uniformly and systematically derive and formulate exact and complete solutions for other 
boundary-value problems, mixed-boundary value problems, and initial-boundary value 
problems in the n-layered solids. Therefore, the applications to other problems in layered 
solids are further briefly presented in the frameworks of classical elasticity, boundary element 
methods, elastodynamics, Biot’s theory of poroelasticity and thermoelasticity. All of such 
applications are substantiated by peer-reviewed journal publications made by the author and 
his collaborators over the past 30 years. They show that the solutions for other problems can 
also be derived and formulated similarly and systematically and in the form of Yue’s matrix 
operations in both Cartesian and cylindrical coordinates.  

 

2 Basic Solutions in Closed-form 

2.1 General 

To better understand and verify the solution derived above for the general layered 
solid, this section examines the basic solutions and their properties and singularities for some 
simplified material cases. They include  

(a) The Kelvin’s case: one isotropic homogeneous solid of infinite extent subject 
to )(),( dzyxf −= δf ;  
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(b) The Boussinesq’s case: one isotropic homogeneous solid of semi-infinite extent 
subject to boundary loading )(),( zyxf δ−=f ; 

(c) The Mindlin’s case: one isotropic homogenous solid of semi-infinite extent subject 
to )(),( dzyxf −= δf ;  

(d) The bi-material case: two perfectly bonded isotropic homogenous solid of infinite 
extent subject to )(),( dzyxf −= δf ; 

(e) The extended Kelvin’s case:  one transversely isotropic homogenous solid of 
infinite extent subject to )(),( dzyxf −= δf  ; 

(f) The extended bi-material case: two perfectly bonded transversely isotropic 
homogenous solids of infinite extent subject to )(),( dzyxf −= δf .  

Since ),(),(),,( ηξρηξ gΦw zz =  and ),(),(),,( ηξρηξ gΨY zzz = , ),( zρΦ and  
),( zρΨ are only dependent on the solid materials and their occupied regions. They are 

derived and examined at first. The loading vector ),( ηξg is independent on the solid materials 
and is examined afterward for the closed-form solutions of the elastic field variables 
(u , zT and pΓ ) in physical domain.  

2.2 Basic solutions of ),( zρΦ and ),( zρΨ  

2.2.1 The Kelvin’s case 

In this case, the isotropic homogenous solid of infinite extent is subjected to the 
concentrated body force )(),( dzyxf −= δf . Its solution of ),( zρΦ and ),( zρΨ is given 
below. 

( )10),( kk
z

k zez ΦΦΦ ρρ ρ += −      (2a) 

( )10),( kk
z

k zez ΨΨΨ ρρ ρ += −      (2b) 

where +∞<≤ ρ0 , +∞<−=<∞− )( dzz , and 

















+

+
=

α

α

µ
100

020
001

4
1

0kΦ ; 














 −−
−

=
10
000

01

4
)1(

1

z
z

z
z

k µ
αΦ    (2c) 
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















−

−
−=

z
z

z
z

z
z

k

0
00

0

2
1

0

α

α
Ψ ; 

















−−

−
=

z
z

z
z

k

01
000
10

2
)1(

1
αΨ    (2d) 

2.2.2 The Boussinesq’s case 

In this case, the isotropic homogenous solid of semi-infinite extent is subjected to the 
concentrated body force )(),( zyxf δ−=f  on the external boundary 0=z . Its solution of 

),( zρΦ and ),( zρΨ is given below. 

( )10),( bb
z

b zez ΦΦΦ ρρ ρ += −      (3a) 

( )10),( bb
z

b zez ΨΨΨ ρρ ρ += −      (3b) 

where +∞<≤ ρ0 , +∞<≤ z0 , and 
















−

−
−=

10
0)1(20

01

)1(2
1

0

α
α

α

αµbΦ ; 11 2
1

ab IΦ
µ

=  ; 30 IΨ =b ; 11 ab IΨ −=   (3c) 

where 
















=

100
010
001

3I ;  
















−−
=

101
000
101

1aI    (3d) 

2.2.3 The Mindlin’s case 

In this case, the isotropic homogenous solid of semi-infinite extent is subjected to the 
concentrated body force )(),( dzyxf −= δf . Its solution of ),( zρΦ and ),( zρΨ is given 
below. 

( ) ( )102
2

110
)(),( kk

z
mdmzmm

dz
m zedzdzez ΦΦΦΦΦΦΦ ρρρρρ ρρ +++++= −+−  (4a) 

( ) ( )102
2

110
)(),( kk

z
mdmzmm

dz
m zezddzez ΨΨΨΨΨΨΨ ρρρρρ ρρ +++++= −+−  (4b) 

where +∞<≤ ρ0 , +∞<≤ z0 , +∞<≤ d0 and 

















+
−

+

−
=

2

2

0

102
0)1(20

201

)1(4
1

αα
α

αα

αµmΦ ;    















−=

10
010

01

2
1

0

α

α

mΨ        (4c) 
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11 4
)1(

azm IΦ
µ
α+

−= ;  21 4
)1(

adm IΦ
µ
α+

−= ;  32 2
)1(

am IΦ
µ
α−

=  (4d) 

11 2
)1(

azm IΨ α+
= ;  21 2

)1(
adm IΨ α−

= ;   32 )1( am IΨ −= α  (4e) 

where 

















−

−
=

101
000
101

2aI ;  
















−

−
=

101
000
101

3aI    (4f) 

It can be easily shown that the equations (4) are reduced to those in (3) if 
assuming 0=d . In other words, the solution for the Mindlin’s case includes that for the 
Boussinesq’s case. 

2.2.4 The bi-material case 

In this case, the two perfectly bonded isotropic homogenous solid of infinite extent is 
subjected to the concentrated body force )(),( dzyxf −= δf . The solid is perfectly bonded at 

±= 0z and. It is assumed that +∞<≤+ d0 . Its solution of ),( zρΦ and ),( zρΨ is given below. 

In the solid of upper halfspace region )0( +∞<≤ z with the two elastic constants 

1µ and 1α , we have 

( ) ( )1021
2

111101
)(),( kk

z
tdtztt

dz
t zezddzez ΦΦΦΦΦΦΦ ρρρρρ ρρ +++++= −+−   (5a) 

( ) ( )1021
2

101101
)(),( kk

z
tztdtt

dz
t zezddzez ΨΨΨΨΨΨΨ ρρρρρ ρρ +++++= −+−   (5b) 

where +∞<≤ ρ0 , +∞<≤ z0 , ,01tΦ ,11dtΦ ,11ztΦ ,21tΦ  ,01tΨ ,11dtΨ 11ztΨ and 21tΨ are eight 
constant square matrices and defined in Appendix A. 

In the solid of lower halfspace region )0( −≤<−∞ z  with the two elastic constants 

2µ and 2α , we have 

( )212102
)(),( ztdtt

zd
t dzez ΦΦΦΦ ρρρ ρ ++= −−    (6a) 

( )212102
)(),( ztdtt

zd
t dzez ΨΨΨΨ ρρρ ρ ++= −−    (6b) 

where +∞<≤ ρ0 , +∞<≤ z0 , ,02tΦ ,21ztΦ ,21dtΦ ,02tΨ 21dtΨ  and 21ztΨ are six constant 
square matrices and defined in Appendix A. 
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2.2.5 The extended Kelvin’s case 

In this case, the transversely isotropic homogenous solid of infinite extent is subjected 
to )(),( dzyxf −= δf . Its five material constants are ,1jc where .5,4,3,2,1=j  Its solution of 

),( zρΦ and ),( zρΨ is given below in Cases 1 and 2 for 01 ≠∆ and ,01 =∆ respectively, 

where 412131111 2cccc −−=∆ . 

Case 1: 01 ≠∆  

)()(),( 2111
211101 γγρ ργργργ

u
z

u
z

v
z

kt eeez ΦΦΦΦ −−− −+=    (7a) 

)()(),( 2111
211101 γγρ ργργργ

u
z

u
z

v
z

kt eeez ΨΨΨΨ −−− −+=    (7b) 

where +∞<≤ ρ0 , +∞<−=<∞− )( dzz , and 
















=

000
010
000

2
1

0141γcvΦ ;  
















−−

−

−
=

+

+

3141

2

4131

4121

4131

4121

3141

2

1

1

2
21

2
11 0

000
0

)(2
1)(

cccc
cc

z
z

cc
cc

z
z

cc

u
χ

χ

χ

χ

χγγ
χΦ     (7c) 
















−=

000
00
000

2
1

z
z

vΨ ; 
( )

( )















+−−

++

−
−

=
χχχ

χχχ

χγγ
χ

1
32

23

2
21

2
11 0

000
0

)(2
1)(

31

21

31

11

31

21

31

21

qz
z

c
c

c
c

c
c

c
c

z
z

u

c
Ψ  (7d) 

Case 2: 01 =∆  

( )10
3101),( uu

z
v

z
kt zeez ΦΦΦΦ ρρ ργργ ++= −−    (8a) 

( )10
3101),( uu

z
v

z
kt zeez ΨΨΨΨ ρρ ργργ ++= −−    (8b) 

where +∞<≤ ρ0 , +∞<−=<∞− )( dzz , and 
















+

=
2
31

3
314131

4121
0

00
000
001

4
3

γ
γcc
cc

uΦ ; 














 −−
+

=
2
3131

31

3
314131

4121
1

0
000

01

4
γγ

γ

γ
z
z

z
z

u cc
ccΦ  (8c) 

















−

−
=

z
z

c
c

c
c

z
z

u

0
000

0

2
1

3
3131

41

3131

41

0

γ

γ

Ψ ;  
















−−

+
=

31

2
3131

2
3131

4121
1

01
000

0

2
γ

γγ

γ
z
z

z
z

u c
ccΨ   (8d) 
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It is noted that the following limits are valid. 

( ) ( )102111
312111

2111

)()(lim uu
z

u
z

u
z zeee ΦΦΦΦ ργγ ργργργ

γγ
+=− −−−

→
  (9a) 

( ) ( )102111
312111

2111

)()(lim uu
z

u
z

u
z zeee ΨΨΨΨ ργγ ργργργ

γγ
+=− −−−

→
  (9b) 

It can also be shown that the solution for Case 2 ( 01 =∆ ) in (8) can be degenerated to the 
solution for the Kelvin’s case in (2) if the transversely isotropic material becomes to the 
isotropic material. 

2.2.6 The extended bi-material case 

In this case, the two perfectly bonded transversely isotropic homogenous solids of 
infinite extent is subjected to )(),( dzyxf −= δf . The two solids are perfectly bonded 

at ±= 0z . The upper halfspace region is occupied by the solid 1 with the five material 
constants are ,1jc where .5,4,3,2,1=j  The lower halfspace region is occupied by the solid 2 

with the five material constants ,2jc where .5,4,3,2,1=j  The loading plane is located within 

the solid 1, where +∞<≤+ d0 . There are four combinations of 1∆ and 2∆ as follows: a) 
01 ≠∆ and 02 ≠∆ ; b) 01 =∆ and 02 ≠∆ ; c) 01 ≠∆ and 02 =∆ ; d) 01 =∆ and 02 =∆ , 

where 422232212 2cccc −−=∆ . The solution of ),( zρΦ and ),( zρΨ  for each of the four cases 

is specifically given below. 

Case a: 01 ≠∆ and 02 ≠∆  

In the solid of upper halfspace region ),0( 1 +∞<≤= + zk  

)()(),( 2111

4

1
101

211101101 γγρ ργργργρρ
u

z
u

z
v

z

J
aJ

zz
kt eeeeez aJ ΦΦΦΦΦΦ −−−

=

−− −+++= ∑   (10a) 

)()(),( 2111

4

1
101

211101101 γγρ ργργργρρ
u

z
u

z
v

z

J
aJ

zz
kt eeeeez aJ ΨΨΨΨΨΨ −−−

=

−− −+++= ∑   (10b) 

where ),(0101 zdz += γ ),(1111 zdza += γ ,211121 zdza γγ += ,112131 zdza γγ += )(2141 zdza += γ ; 

The constant square matrices 01Φ , 01Ψ , 1aJΦ and 1aJΨ  ( 4,3,2,1=J ) are given in [2, 3]. 

In the solid of lower halfspace region ),0( 2 +≤<−∞= zk  

∑
=

−− +=
4

1
202

202),(
J

aJ
zz

kt
aJeez ΦΦΦ ρρρ     (11a) 
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∑
=

−− +=
4

1
202

202),(
J

aJ
zz

kt
aJeez ΨΨΨ ρρρ     (11b) 

where ,020102 zdz γγ −= ,121112 zdza γγ −= ,221122 zdza γγ −= ,122132 zdza γγ −=

zdza 222142 γγ −= ; The constant square matrices 02Φ , 02Ψ , 2aJΦ and 2aJΨ  ( 4,3,2,1=J ) are 
given in [2, 3]. 

Case b: 01 =∆ and 02 ≠∆  

In the solid of upper halfspace region ),0( 1 +∞<≤= + zk  

( )
( )10

41
2

31211101

3101

101

              

),(

uu
z

v
z

bbbb
zz

kt

zee

zddzeez b

ΦΦΦ

ΦΦΦΦΦΦ

ρ

ρρρρ
ργργ

ρρ

+++

++++=
−−

−−

  (12a) 

( )
( )10

41
2

31211101

3101

101

              

),(

uu
z

v
z

bbbb
zz

kt

zee

zddzeez b

ΨΨΨ

ΨΨΨΨΨΨ

ρ

ρρρρ
ργργ

ρρ

+++

++++=
−−

−−

  (12b) 

where ),(311 zdzb += γ 1bJΦ and 1bJΨ  ( 4,3,2,1=J ) are given in [2, 3]. 

In the solid of lower halfspace region ),0( 2 +≤<−∞= zk  

( ) ( )4232221202
221202),( bb

z
bb

zz
kt dedeez bb ΦΦΦΦΦΦ ρρρ ρρρ ++++= −−−  (13a) 

( ) ( )4232221202
221202),( bb

z
bb

zz
kt dedeez bb ΨΨΨΨΨΨ ρρρ ρρρ ++++= −−−  (13b) 

where ,123112 zdzb γγ −=  ,223122 zdzb γγ −=   2bJΦ and 2bJΨ ( 4,3,2,1=J ) are given in [2, 3]. 

Case c: 01 ≠∆ and 02 =∆  

In the solid of upper halfspace region ),0( 1 +∞<≤= + zk  

)()(),( 2111

4

1
101

211101101 γγρ ργργργρρ
u

z
u

z
v

z

J
cJ

zz
kt eeeeez aJ ΦΦΦΦΦΦ −−−

=

−− −+++= ∑    (14a) 

)()(),( 2111

4

1
101

211101101 γγρ ργργργρρ
u

z
u

z
v

z

J
cJ

zz
kt eeeeez aJ ΨΨΨΨΨΨ −−−

=

−− −+++= ∑    (14b) 

where ),(1111 zdza += γ ,211121 zdza γγ += ,112113 zdza γγ += )(2114 zdza += γ ; 

1cJΦ and 1cJΨ are given in [2, 3]. 

In the solid of lower halfspace region ),0( 2 +≤<−∞= zk  
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( ) ( )4232221202
221202),( cc

z
cc

zz
kt zezeez cc ΦΦΦΦΦΦ ρρρ ρρρ ++++= −−−   (15a) 

( ) ( )4232221202
221202),( cc

z
cc

zz
kt zezeez cc ΨΨΨΨΨΨ ρρρ ρρρ ++++= −−−   (15b) 

where ,321112 zdzc γγ −=  ,322122 zdzc γγ −=   2cJΦ and 2cJΨ ( 4,3,2,1=J ) are given in [2, 3]. 

Case d: 01 =∆ and 02 =∆  

In the solid of upper halfspace region ),0( 1 +∞<≤= + zk  

( )
( )10

41
2

31211101

3101

101),(

uu
z

v
z

dddd
zz

kt

zee

zddzeez b

ΦΦΦ

ΦΦΦΦΦΦ

ρ

ρρρρ
ργργ

ρρ

+++

++++=
−−

−−

  (16a) 

( )
( )10

41
2

31211101

3101

101),(

uu
z

v
z

dddd
zz

kt

zee

zddzeez b

ΨΨΨ

ΨΨΨΨΨΨ

ρ

ρρρρ
ργργ

ρρ

+++

++++=
−−

−−

  (16b) 

where ),(311 zdzb += γ 1dJΦ and 1dJΨ  ( 4,3,2,1=J ) are given in [2, 3]. 

In the solid of lower halfspace region ),0( 2 +≤<−∞= zk  

( )42
2

32221202
202),( dddd

zz
kt zddzeez d ΦΦΦΦΦΦ ρρρρ ρρ ++++= −−    (17a) 

( )42
2

32221202
202),( dddd

zz
kt zddzeez d ΨΨΨΨΨΨ ρρρρ ρρ ++++= −−    (17b) 

where ,32312 zdzd γγ −=  2dJΦ and 2dJΨ ( 4,3,2,1=J ) are given in [2, 3]. 

2.3 Constant Limits of ),( zρΦ and ),( zρΨ at loading plane 

2.3.1 The Kelvin’s case 

For this case, the solution of ),( zρΦ and ),( zρΨ has the following constant limits at 
loading plane dz = .  

0),(lim kk
dz

z ΦΦ =
±→

ρ        (18a) 

032
1),(lim ΨIΨ +=

±→
zkdz

ρ       (18b) 

where +∞<≤ ρ0 , and 
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















+

+
=

α

α

µ
100

020
001

4
1

0kΦ ; 















=

00
000

00

2
1

0

α

α
Ψ ; 
















=

100
010
001

3I   (18c) 

2.3.2 The Boussinesq’s case 

For this case, the solution of ),( zρΦ and ),( zρΨ has the following constant limits at 
loading plane 0=z .  

0
0

),(lim bb
z

z ΦΦ =
+→

ρ       (19a) 

3
0

),(lim IΨ =
+→

zb
z

ρ       (19b) 

where +∞<≤ ρ0 . 

2.3.3 The Mindlin’s case 

For this case, the solution of ),( zρΦ and ),( zρΨ has the following constant limits at 
loading plane dz = , where 0≥d . 

( )2
22

110
2

0),(lim mdmzmm
d

km
dz

dddez ΦΦΦΦΦΦ ρρρρ ρ ++++= −

→ ±
  (20a) 

( )2
22

110
2

032
1),(lim mdmzmm

d
m

dz
dddez ΨΨΨΨΨIΨ ρρρρ ρ +++++= −

→ ±
   (20b) 

where +∞<≤ ρ0 .  

In particular, if 0=d , we have, 0),(lim bm
dz

z ΦΦ =
+→

ρ and 3),(lim IΨ −=
+→

zm
dz

ρ , which 

is the Boussinesq’s case. 

2.3.4 The bi-material case 

For this case, the solution of ),( zρΦ and ),( zρΨ has the following constant limits at 

loading plane dz = , where the two solids are bonded at ±= 0z and +∞<≤+ d0 . 

( )21
22

111101
2

0),(lim tztdtt
d

kt
dz

dddez ΦΦΦΦΦΦ ρρρρ ρ ++++= −

→ ±
   (21a) 

( )21
22

101101
2

032
1),(lim tztdtt

d
t

dz
dddez ΨΨΨΨΨIΨ ρρρρ ρ +++++= −

→ ±
   (21b) 

where +∞<≤ ρ0 .  
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In particular, if 0=d , we have 02001
0

),(lim tktt
z

z ΦΦΦΦ =+=
+→

ρ and 

01032
1

0
),(lim tt

z
z ΨΨIΨ ++=

+→
ρ . 

2.3.5 The extended Kelvin’s case 

For this case, the solution of ),( zρΦ and ),( zρΨ has the following cases of constant 
limits at loading plane dz = .  

Case 1: 01 ≠∆  

1),(lim Lktdz
z ΦΦ =

±→
ρ        (22a) 

132
1),(lim Lktdz

z ΨIΨ +=
±→

ρ       (22b) 

where +∞<≤ ρ0  and 

















+

+

+
= +

211131

41

01

2111

211131

41

100
00
001

)(2
1

211141
1

γγ

γ
γγ

γγ

γγ
c

c

c
c

L c
Φ    (22c) 

















−

−

+
=

001
000

00

)(2
1

211131

21

31

21

211131

11

2111
1

γγ

γγ

γγ
c

c

c
c

c
c

LΨ    (22d) 

Case 2: 01 =∆  

2),(lim Lktdz
z ΦΦ =

±→
ρ        (23a) 

232
1),(lim Lkt

dz
z ΨIΨ +=

±→
ρ       (23b) 

where +∞<≤ ρ0  and 

















=
+

+

3131

4121

01

3
3131

4121

2
3

1
2

3

41
2

00
00
00

2
1

γ

γ

γ

c
cc

c
cc

L c
Φ      (23c)  
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















=
001
000

00

2

2
31

3
3131

41
2

γ

γc
c

LΨ       (23d) 

It is noted that 21
2111

lim LL ΦΦ =
→γγ

and 21
2111

lim LL ΨΨ =
→γγ

for 01 =∆ . 

2.3.6 The extended bi-material case 

For this case, the solution of ),( zρΦ and ),( zρΨ has the following constant limits at 

loading plane dz = , where the two solids are bonded at ±= 0z and +∞<≤+ d0 . 

Case a: 01 ≠∆ and 02 ≠∆  

∑
=

−−

→
++=

±

4

1
1011

101),(lim
J

aJ
zz

Lkt
dz

aJeez ΦΦΦΦ ρρρ       (24a) 

∑
=

−−

→
+++=

±

4

1
101132

1 101),(lim
J

aJ
zz

Lkt
dz

aJeez ΨΨΨIΨ ρρρ       (24b) 

where ,2 0101 dz γ=  ,2 1111 dza γ=  ,211121 ddza γγ +=  ,112131 ddza γγ +=  and .2 2141 dza γ=   

Case b: 01 =∆ and 02 ≠∆  

( )41
22

312111012
101),(lim bbbb

zz
Lkt

dz
dddeez b ΦΦΦΦΦΦΦ ρρρρ ρρ +++++= −−

→ ±
 (25a) 

( )41
22

31211101232
1 101),(lim bbbb

zz
Lkt

dz
dddeez b ΨΨΨΨΨΨIΨ ρρρρ ρρ ++++++= −−

→ ±
   (25b) 

where .2 311 dzb γ=  

Case c: 01 ≠∆ and 02 =∆  

∑
=

−−

→
++=

±

4

1
1011

101),(lim
J

cJ
zz

Lkt
dz

aJeez ΦΦΦΦ ρρρ    (26a) 

∑
=

−−

→
+++=

±

4

1
101132

1 101),(lim
J

cJ
zz

Lkt
dz

aJeez ΨΨΨIΨ ρρρ    (26b) 

where ,2 1111 dza γ=  ,211121 ddza γγ +=  ,112113 ddza γγ +=  and dza 2114 2γ= .  

Case d: 01 =∆ and 02 =∆  
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( )41
22

312111012
101),(lim dddd

zz
Lkt

dz
dddeez b ΦΦΦΦΦΦΦ ρρρρ ρρ +++++= −−

→ ±
   (27a) 

( )41
2

31211101232
1 101),(lim dddd

zz
Lkt

dz
zddzeez b ΨΨΨΨΨΨIΨ ρρρρ ρρ ++++++= −−

→ ±
  (27b) 

where .2 311 dzb γ=  

In particular, if 0=d , we have 

Case a: 01 ≠∆ and 02 ≠∆  

∑
=→

+==
±

4

1
1011

0
),(lim

J
aJLkt

z
z ΦΦΦΦ ρ        (28a) 

∑
=→

+++=
±

4

1
101132

1

0
),(lim

J
aJLkt

z
z ΨΨΨIΨ ρ       (28b) 

Case b: 01 =∆ and 02 ≠∆  

11012
0

),(lim bLkt
z

z ΦΦΦΦ ++=
±→

ρ      (29a) 

1101232
1

0
),(lim bLkt

z
z ΨΨΨIΨ +++=

±→
ρ     (29b) 

Case c: 01 ≠∆ and 02 =∆  

∑
=→

++=
±

4

1
1011

0
),(lim

J
cJLkt

z
z ΦΦΦΦ ρ      (30a) 

∑
=→

+++=
±

4

1
101132

1

0
),(lim

J
cJLkt

z
z ΨΨΨIΨ ρ     (30b) 

Case d: 01 =∆ and 02 =∆  

11012
0

),(lim dLkt
z

z ΦΦΦΦ ++=
±→

ρ      (31a) 

1101232
1

0
),(lim dLkt

z
z ΨΨΨIΨ +++=

±→
ρ     (31b) 

where +∞<≤ ρ0 . 

2.4 The properties of ),( zρΦ and ),( zρΨ  
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It is evident that the above specific solutions of ),( zρΦ and ),( zρΨ have only the 

exponential functions in the form of zaedzazadaa ρρρ −+++ )( 2
3210 (where 3210 ,,,, aaaaa are 

material constants (or zero) and 0)Re( >a ). Their mathematical properties can be listed as 
follows. 

All of ),( zρΦ and ),( zρΨ are continuous functions of ρ , where +∞<≤ ρ0 .  

),( zρΦ in (2a) for the Kelvin’s case and in (7a) for the extended Kelvin’s case are 
continuous functions of z , where +∞<<∞− z . ),( zρΦ in (3a) for the Boussinesq’s case and 

in (4a) for the Mindlin’s case are continuous functions of z , where +∞<≤+ z0 .  ),( zρΦ in 
(5a) and (6a) for the bi-material case and in (10a)-(17a) for the extended bi-material case are 
continuous functions of z for +∞<<∞− z .  

),( zρΨ in (2b) for the Kelvin’s case and in (7b) for the extended Kelvin’s case are 

continuous functions of z for either −≤<∞− dz  or +∞<≤+ zd . ),( zρΨ in (3b) for the 

Boussinesq’s case are continuous functions of z for +∞<≤+ z0 . ),( zρΨ in (4b) for the 

Mindlin’s case are continuous functions of z for either −+ ≤≤ dz0 or +∞<≤+ zd . ),( zρΨ  
in (5b) and (6b) for the bi-material case and in (10a)-(17b) for the extended bi-material case 
are continuous functions of z for either −≤<∞− 0z or −+ ≤≤ dz0 or +∞<≤+ zd . 

At the loading plane dz = , ),( zρΨ has the unit step discontinuity as follows. 

 3),(),( IΨΨ −=− −+ dd ρρ      (32) 

The partial differentiations of ),( zρΦ and ),( zρΨ with respect to z  are continuous 
functions for any z  and ρ within each region of the homogeneous solids, except at the 
loading plane dz = or at the interface 0=z of the two dissimilar solids.  

As +∞→ρ and dz ≠ , ),( zρΦ and ),( zρΨ  converge to zero with the rate of dze −−ρω , 
where .0>ω  Specifically, 1=ω for isotropic solid; 01γω = , 21γω = for 01 >∆ ; 1ac=ω for 

01 <∆ ; and 31γω =  for 01 =∆ . At the loading plane dz = , ),( zρΦ and ),( zρΨ have the 
constant limits for +∞<≤ ρ0 . These constant limits are given in (18a)-(31a) for ),( dρΦ  and 

(28b)-(31b) for ),( ±dρΨ . They are the singularities of the solutions in the physical domain, 
which are discussed in the ensuing.  

2.5 The Green’s function matrices 

2.5.1 Definitions in Cartesian coordinate system 

At first, ten basic functions qkm  are defined as follows. 
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100 =q          (33a) 

        ; 0110 ρ
η

ρ
ξ iqiq ==        (33b) 

2

2

022112

2

20      ;     ; 
ρ
η

ρ
ξη

ρ
ξ

=== qqq      (33c) 

q
i

q
i

q
i

q
i

30

3

3 21

2

3 12

2

3 03

3

3= = = =
ξ
ρ

ξ η
ρ

ξη
ρ

η
ρ

; ; ;              (33d) 

Secondly, the following harmonic functions LIJg are defined,  

∫∫
+∞

∞−

−−
+∞

∞−

== ηξρ
π

ρ dKdfqefzyxgg IJ
zL

LIJLIJ
~

2
1)~,,,( 1    (34) 

where L, I and J are non-negative integers, 30 ≤+≤ JI ; for ,1or  0=L 0≥z ; for ,2≥L 0>z ; 
and )( ηξ yxieK += .  

It can be shown that the harmonic functions )~,,,( fzyxg LIJ satisfy the Laplace 
equations as follows: 

0)~,,,()~,,,()~,,,( 2

2

2

2

2

2

=++ fzyxg
z

fzyxg
y

fzyxg
x LIJLIJLIJ ∂

∂
∂
∂

∂
∂ . (35b) 

They also have the following recursive relations: 

)~,,,()~,,,()1( fzyxg
z

fzyxg LIJIJL ∂
∂

−=+     (36a) 

g x y z f
y

g x y z f121 020( , , , ~) ( , , , ~)=
∂
∂

     (36b) 

g x y z f
y

g x y z f103 002( , , , ~) ( , , , ~)=
∂
∂

     (36c) 

)~,,,()~,,,()~,,,( 002121112 fzyxg
x

fzxygfzyxg
∂
∂

==    (36d) 

)~,,,()~,,,()~,,,( 020103130 fzyxg
x

fzxygfzyxg
∂
∂

==    (36e) 



18-64 

 

Accordingly, the Green’s function matrices [ ]φG ,, zLv  and [ ]φG ,, zLp  

( 0 ;3,2,1,0 ≥= zL ) are defined as follows.  

















−−
+
















−

−
=

= ∫∫
+∞

∞−

−−
+∞

∞−

003301311031

011302111111

101311112011

2011

1102

22

*1

000
0
0

2
1),,(4

LLL

LLL

LLL

LL

LL

zL
v

ggg
ggg
ggg

gg
gg

dKdezL

φφφ
φφφ
φφφ

φ

ηξρ
π

π ρ ΠφΠφG

   (37a) 

















−
−
−

+
















−
−−

−
=

= ∫∫
+∞

∞−

−−
+∞

∞−

021303111211

111312112111

201321113011

2112

12302
1

21032
1

2112

22

*1

0
0)()(
0

2
1),,(4

LLL

LLL

LLL

LL

LLLL

LL

p
zL

p

ggg
ggg
ggg

gg
gggg

gg

dKdezL

φφφ
φφφ
φφφ

φ

ηξρ
π

π ρ φΠΠφG

 (37b) 

where 11φ , 22φ , 33φ , 13φ , and 31φ are the five elements of the material constant matrix 
φ defined as follows. 
















=

3331

22

1311

0
00

0

φφ
φ

φφ
φ      (37c) 

2.5.2 Closed-form results for point loading 

The point body force ),(int yxf po and its Fourier integral transform int
~

pof can be 

expressed as follows, 

)()(
2
1),(int yx=yxf po δδ
π

.     (38a) 

1=),(~=~
intint ηξpopo ff .     (38b) 

The six basic harmonic functions IJg0 for 0=L can be integrated in closed-forms in 

terms of elementary functions [2, 4, 5]. The other harmonic functions LIJg for 1≥L and 
30 ≤+≤ JI  can be found using the recursive relations (36). Expressions of those harmonic 

functions are specifically given in Appendix B. 

2.5.3 Closed-form results for rectangular loading 
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The rectangular loading is the uniformly distributed for over a horizontal rectangular area. It 
and its Fourier integral transform can be expressed as follows. 







>>

≤≤

byaxif

byaxif
ab=yxf rect

||or       ||  0

||   and  ||  
4

1
),( .     (39a) 

ξηπ
ηξ

π
ηξ

ab
badydxKyxfff rectrect

)sin()sin(   ),( 
2
1=),(~=~ * =∫ ∫

∞

∞−

∞

∞−

.  (39b) 

where a > 0; b > 0.   

The six basic harmonic functions IJg0 for 0=L can be integrated in closed-forms in 

terms of elementary functions [3, 6]. The other harmonic functions LIJg for 1≥L and 
30 ≤+≤ JI  can be found using the recursive relations (36). Expressions of those harmonic 

functions are specifically given in Appendix C. 

2.5.4 Closed-form result for circular ring loading  

The circular ring loading is the body force vector uniformly concentrated on the 
circular ring and can be expressed as follows in cylindrical coordinate system. 

r
rr

rf ring π
δ

θ
2

)(
),( 0−
=        (40) 

Four basic functions qkm  are defined as follows in terms of products of the Bessel 
functions of orders of zero and one. 

)()( 00000 rJrJq ρρ=        (41a) 

)()( 01001 rJrJq ρρ=        (41b) 

)()( 00110 rJrJq ρρ=        (41c) 

)()( 01111 rJrJq ρρ=        (41d) 

Secondly, the following harmonic functions LIJg are defined,  

∫
+∞

−−==
0

1
0 ),,( ρρ ρ dqezrrqq IJ

zL
LIJLIJ      (42) 
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where L, I and J are non-negative integers, 1or  0,1or  0 == JI ; for ,1or  0=L 0≥z ; 
for ,2≥L 0>z . It can be shown that the harmonic functions )~,( PzgLIJ satisfy the Laplace 
equations as follows: 

0),,,(),,( 02

2

0 =+







∂
∂ zrrq

z
zrrq

r
r

rr LIJLIJ ∂
∂

∂
∂ .   (43) 

They also have the following recursive relations: 

)~,,,()~,,,()1( fzyxg
z

fzyxg LIJIJL ∂
∂

−=+     (44) 

Accordingly, the Green’s function matrices [ ]φG ,, zLv  and [ ]φG ,, zLp  

( 0 ;3,2,1,0 ≥= zL ) are defined in the following. 


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∞+
−

00330131

112

10131111

0
000

0
00

0
)()(),,(4

LL

L

LL

cc
zL

v

gq
g

gq
drrezL

φφ
φ

φφ
ρρρρπ ρ φΠΠφG  (45a) 
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)()(
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1),,1(4
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gq

r
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qq

drrezL

φφ
φ

φφ
φ

φφ

ρρρρ
π

π ρ φΠΠφG

 (45b) 

The four basic harmonic functions IJq0 for 0=L can be integrated in closed-forms in 
terms of the complete elliptic integrals of the first, second and third kind [2, 4, 5]. The other 
harmonic functions LIJq for 1≥L can be found using the recursive relations (44). Expressions 
of those harmonic functions are specifically given in Appendix D. 

2.6 The basic solutions ofu , zT and pΓ   

Accordingly, the solution of the displacement vector u , vertical stresses zT  and the 
plane strains pΓ  induced by the concentrated loading Lf )(),(),,( dzyxfzyx −= δ or 

Lf )(),,( 2
)(

0
0 dzzrr r

rr −= − δπ
δ can be presented in the following unified matrix forms.  For the 

three particular loading in (38), (39) and (40), the solutions are presented in closed-form as 
follows. 

2.6.1 The solutions for the three Kelvin’s cases 
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( ) ( ){ }LΦGΦGu 10 ,,1,,0 kvkv zzz +=     (46a) 

( ) ( ){ }LΨGΨGT 10 ,,2,,1 kvkvz zzz +=        (46b) 

( ) ( ){ }LΦGΦGΓ 10 ,,2,,1 kpkpp zzz +=     (46c) 

where +∞<<∞− zyx ,,  and .dzz −=   

In particular, the Kelvin’s solution for the point loading can be specifically expressed 
as follow, 

Lu
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
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


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where 222 zyxR ++= . 

2.6.2 The solutions for the three Boussinesq’s cases 

( ) ( ){ }LΦGΦGu 10 ,,1,,0 bvbv zzz +=      (48a) 

( ) ( ){ }LΨGΨGT 10 ,,2,,1 bvbvz zzz +=        (48b) 

( ) ( ){ }LΦGΦGΓ 10 ,,2,,1 bpbpp zzz +=     (48c) 

where +∞<<∞− zyx ,,  and +∞<≤ z0 . In particular, the solution for the point loading is the 
Boussinesq’s solution.  

2.6.3 The solutions for the three Mindlin’s cases 
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( ) ( ) ( ) ( )
( ) ( ) L

ΦGΦG
ΦGΦGΦGΦG
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( ) ( ) ( ) ( )
( ) ( ) L
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( ) ( ) ( ) ( )
( ) ( ) L

ΦGΦG

ΦGΦGΦGΦG
Γ













++

+++
=

10

21111101

,,2,,1

,,3,,2,,2,,1

kpkp

mpzmpdmpmp
p zzz

zdzzzzdz
 (49c) 

where ,, +∞<<∞− yx ,0 +∞<≤ z ,1 zdz +=  and .dzz −=  The solution has a part of the 
boundary effect and a part of Kelvin solution. In particular, the point loading case is the 
Mindlin’s solution. 

2.6.4 The solutions for the three bi-material cases 

 In the rock solid of the semi-infinite region 1=k ( +∞<≤ z0 ), we have 

( ) ( ) ( ) ( )
( ) ( ) L
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( ) ( ) ( ) ( )
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( ) ( ) ( ) ( )
( ) ( ) L
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
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211111111011
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where +∞<<∞− zyx ,,  and .1 zdz +=  The solution has a part of the interface effect and the 
part of Kelvin solution. 

 In the rock solid of the semi-infinite region ( )02 ≤<∞−= z  k , we have 

( ) ( ) ( ) ( ){ }LΦGΦGΦGΦGu 222212212022 ,,2,,1,,1,,0 tvztvdtvtv zdzzzzdz +++=  (51a) 

( ) ( ) ( ) ( ){ }LΨGΨGΨGΨGT 2222122120122 ,,3,,2,,2,,1 tvztvdtvtvz zdzzzzdz +++=  (51b) 

( ) ( ) ( ) ( ){ }LΦGΦGΦGΦGΓ 222212212022 ,,3,,2,,2,,1 tpztpdtptpp zdzzzzdz +++=  (51c) 

where +∞<<∞− zyx ,,  and .2 zdz −=  

2.6.5 The solutions for the three extended Kelvin’s cases 
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Case 1: 01 ≠∆  

( ) ( ){ ( )}LΦGΦGΦGu )(,,0 )(,,0,,0 2121111101 γγγγγ uvuvvv zzz −+=   (52a) 

( ) ( ){ ( )}LΨGΨGΨGT )(,,1 )(,,1,,1 2121111101 γγγγγ uvuvvvZ zzz −+=   (52b) 

( ) ( ){ ( )}LΦGΦGΦGΓ Γ )(,,1 )(,,1,,1 2121111101 γγγγγ upuvpp zzz
p

−+=  (52c) 

Case 2: 01 =∆  

( ) ( ){ ( )}LΦGΦGΦGu 13103101 ,,1 ,,0,,0 uvuvvv zzzz γγγ ++=   (53a) 

( ) ( ){ ( )}LΨGΨGΨGT 13113101 ,,2 ,,1,,1 uvuvvvZ zzzz γγγ ++=   (53b) 

( ) ( ){ ( )}LΦGΦGΦGΓ 13103101 ,,2 ,,1,,1 upupvpp zzzz γγγ ++=   (53c) 

2.6.6 The solutions for the three extended bi-material cases.  

Case a: 01 ≠∆  and 02 ≠∆  

In the rock solid of the semi-infinite region 1=k ( +∞<≤ z0 ), we have 
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In the rock solid of the semi-infinite region ( )02 ≤<∞−= z  k , we have 
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Case b: 01 =∆  and 02 ≠∆  

In the rock solid of the semi-infinite region 1=k ( +∞<≤ z0 ), we have 
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In the rock solid of the semi-infinite region ( )02 ≤<∞−= z  k , we have 
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Case c: 01 ≠∆  and 02 =∆  

In the rock solid of the semi-infinite region 1=k ( +∞<≤ z0 ),  
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In the rock solid of the semi-infinite region ( )02 ≤<∞−= z  k , we have 
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Case d: 01 =∆  and 02 =∆  

In the rock solid of the semi-infinite region 1=k ( +∞<≤ z0 )  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) L

ΦGΦGΦGΦG
ΦGΦGΦGΦG

u








++++

+++
=

13103101411

3112111110101

,,1,,0,,0,,2
,,1,,1,,0,,0

uvuvvvdbv

dbvdbvdbvv

zzzzzzd
zdzzzz

γγγ
 (60a) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) L

ΨGΨGΨGΨG
ΨGΨGΨGΨG

T








++++

+++
=

13103101411

3112111110101

,,2,,1,,1,,3
,,2,,2,,1,,1

uvuvvvdbv

dbvdbvdbvv
z zzzzzzd

zdzzzz
γγγ

 (60b) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) L

ΦGΦGΦGΦG

ΦGΦGΦGΦG
Γ













++++

+++
=

13103101411

3112111110101

,,2,,1,,1,,3

,,2,,2,,1,,1

upupvpdbp

dbpdbpdbpp
p zzzzzzd

zdzzzz

γγγ
 (60c) 

In the rock solid of the semi-infinite region ( )02 ≤<∞−= z  k , we have 
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2.7 Singularities of the basic solutions  

The harmonic functions LIJg in terms of the improper integrations in (34) and (42) are 

absolutely and uniformly convergent if 0>>− εdz , where ε is a positive small value. 

However, at the loading plane ±→ dz ( 0≥d ), ),( zρΦ and ),( zρΨ have the constant matrix 

terms for +∞<≤ ρ0 . The LIJg for ±→ dz  at the loading plane are expressed in terms of the 
following singular integrals.  
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They are convergent in the sense of Cauchy principal values. They cannot be directly 
integrated accurately and rapidly with normal numerical integration methods. They have to 
be isolated and integrated analytically in closed-forms.  

For the point loading, using the closed-form results, we have the following limiting 
results of the singular integrations IJg0 and IJg1 as +→ 0z . 
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where .022 >+= yxr  

Similarly, the singular integrals for LIJq at the horizontal plane of the concentrated 
circular ring loading have the following results.   
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→
)(1)(11)()(lim 1

0
1

000
0101010

κκ
π

ρρρ K
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E
rrr
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 (66b) 

)(1)()(lim 0
00

0001110
rr

r
drJrJq

z
−== ∫

+∞

→
δρρρ     (66c) 

For general body force f~ , in particular, the rectangular body force, the above singular 
integrals can be integrated in their closed-forms using the expressions in Appendix C. 

2.8 Summary notes 

In the above, exact solutions of ),( zρΦ and ),( zρΨ have been given for specific 
boundary-value problems in either a homogenous solid of infinite or semi-infinite extent or a 
bi-material solid of infinite extent. The materials are either isotropic or transversely isotropic. 
The solutions of ),( zρΦ and ),( zρΨ are independent to the applied loading 

)(),( dzyxf −= δf on a horizontal plane and can be directly used to systematically formulate 
the solutions ofu ,  zT  and pΓ  in matrix form for any specific load distribution ),( yxf .  

The three specific forces ),( yxf  (i.e., point, rectangular and ring force distributions) 
are considered in details. Their solutions in physical domain are given exactly and 
systematically in closed-forms in terms of some harmonic functions.  The closed-form results 
include those given by Kelvin in 1848, Boussinesq in 1885, Mindlin in 1936 and some others 
with various methods.  

Furthermore, it can be shown that the closed-form solutions can be systematically and 
easily obtained for any other specific force ),( yxf if the following basic harmonic integral 
can be integrated in closed-form. 

∫∫
+∞

∞−

−+∞

∞−

= ηξηξ
ρπ

ρ

dKdfefzyxQ
z

),(~
4
1)~,,,( 3     (67a) 

or 

[ ]∫∫
+∞

∞−

+∞

∞−

−+= dsdttsfRRzzfzyxQ ),()ln(
2
1),,,(
π

   (67b) 

where 0>z and 222 zyxR ++= .  
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It is because of the following recursive relations of differentiations for the four basic 
harmonic functions and other harmonic functions. 

)~,,,()~,,,( 2

2

000 fzyxQ
z

fzyxg
∂
∂

= .     (68a) 

)~,,,()~,,,(
2

010 fzyxQ
zx

fzyxg
∂∂
∂

=      (68b) 

)~,,,()~,,,,(
2

011 fzyxQ
yx

fzyxg
∂∂
∂

=      (68c) 

)~,,,()~,,,( 2

2

020 fzyxQ
x

fzyxg
∂
∂

=      (68d) 

 The mathematical properties of the basic solutions of ),( zρΦ and ),( zρΨ have been 
examined exactly and clearly. For all the cases, the improper integrals of u ,  zT  and pΓ  are 

uniformly and absolutely convergent if 0>>− εdz . At the loading plane, the improper 

integrals become the singular integrals and have been analytically integrated for the point, 
ring and rectangular forces.   

The solutions for the bi-solid cases are given under the perfectly bonded interface 
condition. Other interface bonding conditions for the bi-solids and other boundary conditions 
for a homogeneous solid of semi-infinite can also be examined similarly and systematically. 
In particular, the smooth bonded interface condition and the horizontally inextensible bonded 
interface condition have been examined in [4, 5]. Their solutions in closed-forms have been 
derived. The solutions in a homogeneous transversely isotropic solid of semi-infinite extent 
with traction free boundary condition have been examined in [6]. Their closed-formed 
solutions of the complete elastic field variables for all the boundary-value problems in the 
homogeneous solids of infinite or semi-infinite extent due to the three forces in (38a), (39a) 
and (40) have been given exactly and similarly with the above method. The three 
concentrated loadings can be re-expressed as follows. 

Lf )()()(
2
1),,( dzyxzyx −= δδδ
π

     (69a) 

Lf )(
2

)(),,( 0 dz
r
rrzr −

−
= δ

π
δθ      (69b) 







>>

≤≤−
=

byax

byaxdz
abzyx

or     if0

 and  if)(
4

1
),,( Lf δ    (69c) 
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where L is a constant force vector. 

 

3 Mathematical Properties of the Solution 

3.1 General  

The basic solutions given in the above section show the basic properties of the basic 
solutions and their common singularities. Similarly, they can be used to show the solutions 
given in the Sections 4 and 5 for the layered solids in [1] because they are also systematically 
expressed in matrix forms in terms of either inverse 2-D Fourier integral transforms or 
inverse Hankel integral transforms. The integrals are improper integrals with depending 
parameters and 2D-infinite or semi-infinite integration intervals. Therefore, the following 
issues have to be examined and answered in this section:  

1) the mathematical properties of the solution matrices ),( zρΦ  and ),( zρΨ (or 
similarly ),( zV ρΨ and ),( zU ρΨ ) in the transform domain;  

2) the convergence of the improper integrals of the solution;  

3) the singularities of the solution;  

4) the interchangeability of the integration limits and the integrations and the partial 
differentiations for the solution of displacements, stresses and strains expressed in the forms 
of the improper integrals; and  

5) Satisfaction of the solution to the governing equations, interfacial conditions and 
the imposed boundary and internal loading conditions. 

3.2 The properties of ),( zV ρΨ and ),( zU ρΨ   

Using the principal of mathematical induction and/or numerical techniques and under 
the positive strain energy constraints of the five elastic parameters of each layer (7) in [1], it 
can be shown that the determinants of the four coefficient matrices ApM , AqM , QpM  and 

QqM  respectively in (55c), (60c), (73c) and (78c) as well as the Appendices A to D in [1] do 

not have any zero value for anyρ in +∞<≤ ρ0  [7, 8]. i.e., 

0)(det ≠ρApM       (70a) 

0)(det ≠ρAqM       (70b) 

0)(det ≠ρQpM       (70c) 
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0)(det ≠ρQqM       (70d) 

where +∞<≤ ρ0 . 

Accordingly, it is evidently that ),( zV ρΨ and ),( zU ρΨ have the following properties, 
which are similar to those of the basic solutions of ),( zρΦ  and ),( zρΨ  in the above section.  

(a) ),( zV ρΨ  and ),( zU ρΨ are continuous functions of ρ , where +∞<≤ ρ0 .  

(b) ),( zV ρΨ and ),( zU ρΨ are continuous functions of z , where −≤<∞− dz  or 

+∞<≤+ zd .  

(c) Within every single layer, ),( zV ρΨ  and ),( zU ρΨ  are partial differentiable of any 
orders with respect to z except at the loading plane dz = .  

(d) At dz = , the leading diagonal elements of the six matrix solutions have the 
discontinuity of the first kind while the non-diagonal elements are continuous. The difference 
between the diagonal elements as += dz and −= dz is unity, i.e.,  

2),(),( IΨΨ −=− −+ dd VV ρρ      (71a) 

4),(),( IΨΨ −=− −+ dd UU ρρ      (71b) 

where 22 ofmatrix unit 2 ×=I and 44 ofmatrix unit 4 ×=I .  

(e) In particular, as M→ρ (M is a very large value approaching ∞+ ), ),( zV ρΨ  and 

),( zU ρΨ  have asymptotic representations and can be expressed as follows. 

(i) For −≤<∞− dz  and ,0 kj ≤≤   

Apj
p
j

HdhhzH
VM

Hzez kkkkjjjj ΓAΨ )(),(lim 1
)(...)( 101)1(01)1(00

−
−−−−−−−

→
−≈ −−−++ ργργργργ

ρ
ρ  (72a) 

Qpj
p
j

HdhhzH
UM

Hzez kakkkajjajaj ΓQΨ )(),(lim 1
)(...)( 11)1(1)1(

−
−−−−−−−

→
−≈ −−−++ ργργργργ

ρ
ρ  (72b) 

(ii) For +∞<≤+ zd  and ,1+≤≤ njk  

Aqj
q
j

dHhhHz
VM

Hzez kkkkjjjj ΓAΨ )(),(lim )(...)( 0)1()1(0)1()1(010 −≈ −−−−−−−

→

++−−− ργργργργ

ρ
ρ  (72c) 

Qqj
q
j

dHhhHz
UM

Hzez kakkkajjajaj ΓQΨ )(),(lim )(...)( )1()1()1()1(1 −≈ −−−−−−−

→

++−−− ργργργργ

ρ
ρ  (72d) 
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where ApΓ , QpΓ , AqΓ and QqΓ are dependent on the material parameters.  

(f) Furthermore, all the elements of ),( zV ρΨ  and ),( zU ρΨ  and their mth differential 
derivatives with respect to z have the following bounds. 

(i) For −≤<∞− dz  and ,0 kj ≤≤   

m
V

zdm

m
V

HdhhzHm
Vm

m

e

ez
z

kkkkjjjj

max
)(

max
)(...)(

min0

101)1(01)1(00),(

Ψ

ΨΨ

−−

−−−−−−−

≤

≤
∂
∂ −−−++

ργ

ργργργργ

ρ

ρρ
  (73a) 

m
U

zdm

m
U

HdhhzHm
Um

m

a

kakkkajjajaj

e

ez
z

max
)(

max
)(...)(

min

11)1(1)1(),(

Ψ

ΨΨ

−−

−−−−−−−

≤

≤
∂
∂ −−−++

ργ

ργργργργ

ρ

ρρ
  (73b) 

(ii) For +∞<≤+ zd  and ,1+≤≤ njk   

m
V

dzm

m
V

dHhhHzm
Vm

m

e

ez
z

kkkkjjjj

max
)(

max
)(...)(

min0

0)1()1(0)1()1(010),(

Ψ

ΨΨ

−−

−−−−−−−

≤

≤
∂
∂ ++−−−

ργ

ργργργργ

ρ

ρρ
 (73c) 

m
U

dzm

m
U

dHhhHzm
Um

m

a

kakkkajjajaj

e

ez
z

max
)(

max
)(...)(

min

)1()1()1()1(1),(

Ψ

ΨΨ

−−

−−−−−−−

≤

≤
∂
∂ ++−−−

ργ

ργργργργ

ρ

ρρ
 (73d) 

where +∞<≤ ρ0 , ),,...,,min( )1(000100min0 += nn γγγγγ , ),,...,,min( )1(10min += naanaaa γγγγγ ,

,...3,2,1,0=m ; m
V maxΨ and m

U maxΨ are two positive square matrices and dependent on the 
material parameters only.  

(g) Correspondingly, ),( zρΦ  and ),( zρΨ and their mth differential derivatives with 
respect to z have the following bounds. 

mdzm
m

m

ez
z max

min),( ΦΦ −−≤
∂
∂ ργρρ      (74a) 

mdzm
m

m

ez
z max

min),( ΨΨ −−≤
∂
∂ ργρρ      (74b) 
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where +∞<≤ ρ0 , ),min( minmin0min aγγγ = , ,...3,2,1,0=m ; m
maxΦ and m

maxΨ are two positive 
square matrices and dependent on the material parameters only. 

(h) Finally, as ,0|| →− dz and M→ρ (M is a very large value approaching ∞+ ),  
),( zV ρΨ  and ),( zU ρΨ have the following asymptotic solutions. 

))((),(lim
0

dzz two
VVdz

−≈
→−

ρρ ΨΨ       (75a) 

))((),(lim
0

dzz two
UUdz

−≈
→−

ρρ ΨΨ       (75b) 

where ))(( dztwo
V −ρΨ  and ))(( dztwo

U −ρΨ  are the matrix solutions for the body force vector 
acting in the interior of two perfectly bonded elastic halfspace with the material properties of 
the th)1( −k and thk layers for dHHd kk −≥− −1 or the thk and th)1( +k layers for 

dHHd kk −<− −1 . They can also be obtained from the solution in (10)-(17) using the 

following method. (a) for dHHd kk −≥− −1 , letting )1( −= kllj cc where 5,4,3,2,1=l  and 

2,...,1,0 −= kj  and lklj cc = where 5,4,3,2,1=l  and 1,...,,1 ++= knnj ; (b) for 

dHHd kk −<− −1 , letting ikij cc = where 5,4,3,2,1=i  and kj ,...,1,0= and )1( += kiij cc where 

5,4,3,2,1=i  and 2,...,,1 ++= knnj . 

3.3 Convergence of the solution 

Without loss of generality, the internal loading of the body force vector in the 
transform domain ),(~ ηξf can be assumed to be a normal function of the independent 
variables ),( ηξ . It has no singularity for any values of ),( ηξ in ),( +∞<<−∞ ηξ  and 
approaches to constant values as .+∞→ρ  In other words,  

aF If 0|),(~| ≤ηξ    (76) 

where ;, +∞<<∞− ηξ constant;a 0 =F ( )Ta 1,1,1=I . 

Accordingly, for a given small positive value )0( >εε , under the 
condition 0|| >≥− εdz , it can be shown that the solutions of ),,( zyxu , ),,( zyxzT  
and ),,( zyxpΓ  as well as their partial derivatives with respect to x, y and z can be expressed 

in the following double improper integrals depending on parameters. The integrals are 
uniformly and absolutely convergent.   

∞<







∂∂∂

∂
=

∂∂∂
∂

∫∫
+∞

∞−

+++∞

∞−

++

ηξηξρ
ρπ

ddKz
zyx

zyx
zyx mlk

mlk

mlk

mlk

),(~),(1
2
1),,( *fΠΠΦu  (77a) 
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[ ]∫∫
+∞

∞−

+++∞

∞−
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∞<
∂∂∂

∂
=

∂∂∂
∂ ηξηξρ

π
ddKz

zyx
zyx

zyx mlk

mlk

zmlk

mlk

),(~),(
2
1),,( *fΠΠΨT  (77b) 

[ ] ∞<
∂∂∂

∂
=

∂∂∂
∂

∫∫
+∞

∞−

+++∞

∞−

++

ηξηξρ
π

ddKz
zyx

zyx
zyx pmlk

mlk

pmlk

mlk

),(~),(
2
1),,( *fΠΦΠΓ  (77c) 

where the integers 0,, ≥mlk , +∞<<∞− zyx ,, , and if jHz = ,the partial derivatives have 

the values in the sense of either −= jHz or += jHz , .1,,...,2,1,0 += nnJ  

Secondly, under the condition )0(|| ><− εεdz , the convergence of the solutions and 
their partial derivatives with respect to x, y and z can be examined using the asymptotic 
solutions in equations (72). In general, the solutions can be re-expressed as follows. 

),,(),,(),,( zyxzyxzyx twoa uuu +=     (78a) 

),,(),,(),,( zyxzyxzyx two
z

a
zz TTT +=     (78b) 

),,(),,(),,( zyxzyxzyx two
p

a
pp ΓΓΓ +=     (78c) 

where ),,( zyxau , ),,( zyxa
zT , and ),,( zyxa

pΓ  are expressed as follows.  

[ ]∫∫
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dKddzzzyx twoa ),(~))((),(1
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1),,( * fΠΦΦΠu  (79a) 
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dKddzzzyx twoa
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1),,( * fΠΨΨΠT  (79b) 

[ ]∫∫
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dKddzzzyx two
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1),,( * fΠΦΦΠΓ  (79c) 

 It can be shown that [ ]),(),( zz two ρρ ΦΦ − and [ ]),(),( zz two ρρ ΨΨ − have the following 
bounds  
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where +∞<≤ ρ0 , ,...3,2,1,0=m , m
MaxΦ and m

MaxΨ are two positive square matrices and 
dependent on the material parameters only.  

Accordingly, ),,( zyxau , ),,( zyxa
zT  and ),,( zyxa

pΓ  as well as their partial derivatives 

with respect to x, y and z in the double improper integrals depending on parameters are 
uniformly and absolutely convergent.  The uniform and absolute convergence of the double 
improper integrals in (77) and (79) can be shown using the following result of the bounds: 

( ) mlk
mlkmlk FmlkdeFddeF

++

+∞
−++

+∞

∞−

−++
+∞

∞−

++
== ∫∫∫ εγ

ρρηξρ
π

εργεργ

min

0

0
0

0 )!(
2

minmin   (81) 

 Thirdly, ),,( zyxtwou , ),,( zyxtwo
zT , and ),,( zyxtwo

pΓ are expressed as follows. 
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∞−
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−= ηξηξρ
ρπ

dKddzzyx twotwo ),(~))((1
2
1),,( * fΠΠΦu   (82a) 

∫∫
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∞−
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−= ηξηξρ
π

dKddzzyx twotwo
z ),(~))((

2
1),,( * fΠΠΨT    (82b) 

∫∫
+∞

∞−

+∞

∞−

−= ηξηξρ
π

dKddzzyx two
p

two
p ),(~))((

2
1),,( * fΠΦΠΓ    (82c) 

where ))(( dztwo −ρΦ  and ))(( dztwo −ρΨ  are the matrix solutions for the body force vector 
acting in the interior of two bonded elastic halfspace with the material properties of the 

th)1( −k and thk layers for dHHd kk −≥− −1 or the thk and th)1( +k layers for 

dHHd kk −<− −1 .  

The improper integrals in (82) are convergent in the sense of the Cauchy principal 
value. It can be shown that as M→ρ (M is a very large value approaching ∞+  and 

,0|| →− dz ),( zρΦ  and ),( zρΨ have asymptotic solutions and can be expressed as follows. 

))((),(limlim
0

dzz two

dzM
−=

→−→
ρρ

ρ
ΦΦ      (83a) 

))((),(limlim
0

dzz two

dzM
−=

→−→
ρρ

ρ
ΨΨ      (83b) 

3.4 Closed-form singularity of the solution 

According to (79) to (82), it is evident that the singularity of the solutions in the 
layered heterogeneous solid is exactly the same as that of the solutions for the body force 
vector )(),( dzyx −δf concentrated at a horizontal plane in the interior of two perfectly 
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bonded elastic halfspaces. The upper halfspace has the material properties of the 
th)1( −k layer and the lower halfspace has the material properties of the thk layer, under the 

condition of dHHd kk −≥− −1 (i.e., the loading plane dz = is closer to the interface of 
the th)1( −k and thk layers). On the other hand, the upper halfspace has the material properties 
of the thk layer and the lower halfspace has the material properties of the th)1( +k layer, 
under the condition of dHHd kk −<− −1  (i.e., the loading plane dz = is closer to the 
interface of the thk and th)1( +k layers).  

))(( dztwo −ρΦ  and ))(( dztwo −ρΨ  have been given exactly given in (10) to (17) and 

Yue [2]. The solutions of ),,( zyxau , ),,( zyxa
zT  and ),,( zyxa

pΓ in (82) have been derived 

systematically and exactly in the closed-form in terms of elementary harmonic functions or 
the complete elliptic integrals of the first, second and third kinds for the three concentrated 
body force vectors (see the above Section 2 and [2, 3, 6]). 

3.5 Satisfaction of the required conditions 

Under the condition of 0>≥− εdz , the improper integrals of the solution and their 

partial differentiations with respect to x, y and z are uniformly and absolutely convergent.  
Consequently, the integration limits and the integrations and the partial differentiations for 
the solution in the forms of the improper integrals are interchangeable. Accordingly, it can be 
shown that the solution given in (1) satisfies the governing partial differential equations using 
the following method. Based on the geometric equations (2), the static equilibrium equations 
(4) and the Hooke’s law (6) in [1], the governing partial differential equations for the j-th 
layer can be re-expressed in terms of the displacement vector u as follows. 

[ ] 0gΠΦLuL == ∫∫
+∞

∞−

+∞

∞−

ηξηξρ
ρπ

ddKzzyx jj ),(),(1
2
1),,(   (84a) 

where +∞<<∞− yx, and jj HzH <<−1 for knnj ≠+= j and 1,,..,1,0 or dzH k <<−1 and 

kHzd << for kj = ; 
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The (84a) is valid because of the following identify. 

[ ] 0ΠΦL =Kzj ),(ρ    (85) 
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 Secondly, the solution in (1) satisfies Hooke’s law and the geometric equations within 
each single layer because of the following two identifies.  

[ ] ),,(),(),(1
2
1),,( zyxddKzzyx ppjpj ΓgΠΦLuL == ∫∫
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  (86b) 

where +∞<<∞− yx, and jj HzH <<−1 for knnj ≠+= j and 1,,..,1,0 or dzH k <<−1 and 

kHzd << for kj = ; 
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The two identifies in (86a) and (86b) are valid because of the following two identifies. 

[ ] KK ppj ΠΠL ρ=    (87a) 

[ ] KzKzzj ),(),( ρρρ ΠΨΠΦL =    (87b) 

 Thirdly, the solution of ),,( zyxu , ),,( zyxzT and ),,( zyxpΓ in (1) satisfies the 

perfectly bonded interface condition. The solution of ),,( zyxu  and ),,( zyxpΓ in (1) is 

continuous functions of zyx  and , , where +∞<<∞− zyx ,, . The solution of ),,( zyxzT  in (1) 
is continuous functions of zyx  and , , where +∞<<∞− yx, and dz <<∞− or +∞<< zd .  

 Fourthly, the solution of ),,( zyxzT  satisfies the internal loading condition of the 
concentrated body force )(),( dzyx −δf because the following identity. In other word, the 
discontinuity (71) is due to the body force loading concentrated at dz = .  
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 Finally, the solution of ),,( zyxu , ),,( zyxzT and ),,( zyxpΓ in (1) satisfies the natural 

regularity conditions as +∞→R , where 22 )( dzrR −+= and 22 yxr += In other words, 
it can be shown the following limiting results are valid. 
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where )sincos(
0

θηθξ += ieK and the following inequalities can be shown. 
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where 00 >F .  

 It can be shown that the following bounds are valid with the constant parameters  
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where 0
maxΦ and 0

maxΨ are constant square matrices with positive elements depending on the 
material parameters.  

 On the other hand, it can be shown that the following integrations are convergent in 
the sense of the Cauchy principal value. 
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where ),0( zΦ and ),0( zΨ are two constant matrices.  

3.6 Summary notes 

 The solution given in (82) is uniformly and absolutely convergent provided that 
dz <<∞− or +∞<< zd . If −= dz or += dz , the solution is convergent in the sense of 

Cauchy principal value, where dz = is the loading plane of the concentrated body force 
vector. The solution satisfies the governing partial differential equations, the interfacial 
connection conditions, the internal loading condition and the external regularity conditions as 

+∞→R . The singularity of the solution occurs only at the loading plane location and can be 
exactly presented in closed-form in terms of elementary harmonic functions and the special 
functions. It is also noted that the above mathematical properties of the solution can be 
examined and are also valid in the cylindrical coordinate system. 

 

4 Applications to Other Solutions 

4.1 General  

The classical elasticity theory is the common foundation of many other continuum 
mechanics. They include contact mechanics, fracture mechanics, inclusion mechanics, 
elastodynamics, thermo-elasticity, thermo-elastodynamics, poroelasticity and viscoelasticity. 
The matrix Fourier integral transform approach presented above can be applied to derive and 
formulate analytical solutions for many other boundary-value and initial-boundary-value 
problems of linear continuum mechanics [9-29]. For the initial-boundary-value problems, the 
Laplace integral transform method has to be applied to the independent variable of time t 

).0( +∞<≤ t  Some cases and examples are further discussed in this section. 

4.2 Other boundary-value problems in n-layered solids 

4.2.1 Solutions in n-layered solids of semi-infinite extent 

Similar to the solution in the n-layered solid of infinite extent, the solutions can be 
derived and formulated systematically for the boundary-value problems in a general layered 
elastic solid of semi-infinite extent )( 0 +∞<≤ zH . The general layered solid has (n+1) 

dissimilar layers. For ,1
−+

− ≤≤ jj HzH it is the jth homogeneous elastic layer with the layer 

thickness −
−

+ −= 1jjj HHh  ),...,3,2,1( nj = . For ,+∞<≤+ zHn it is the (n+1)th homogeneous 

elastic halfspace. The five elastic constants for the jth layer 
are jjjjj ccccc 54321 ,,,, )1,,...,3,2,1( += nnj .  
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In addition to the internal loading of the body force vector )(),(),,( dzyxzyx −= δff  
),( 0 +∞<≤ dH  the external boundary conditions on the external boundary 0Hz = can be 

described as one of the following four conditions. 
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The corresponding loading conditions in the transform domain can be expressed by 
one of the following four loading vectors at 0Hz =  and plus the internal body force vector g .  
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For each of the four boundary loading cases, the solution can be obtained using the 
same equations and the formulation procedure given in Sections 4 and 5 in [1] and the above 
Sections 2 and 3 except the three regularity boundary conditions at 0Hz = in (50) and (68) in 

[1]. They have to be replaced by the given three boundary conditions at 0Hz =  as follows, 
respectively. 

a
aa H VqVq =)( 0      (95a) 

a
qaqa H UPUP =)( 0      (95b) 
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 For each boundary condition case, two sets of the solution can be obtained. One set is 
for the internal loading of the body force vector g in the transform domain or f in the 

physical domain. The other set is for each of aw , a
zY , a

zuY and a
uzY  in the transform domain or 

each of au , a
zT , a

zuT and a
uzT in the physical domain. More details can be found in Yue [8], Yue 

and Yin [12] and Yue et al. [13] 

4.2.2 Solutions in n-layered solid of finite thickness 
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Similarly, the solutions in general layered solid of finite thickness )( 0 nHzH ≤≤ can 
be systematically derived and formulated. The solid has n dissimilar layers. For 

,1
−+

− ≤≤ jj HzH it is the jth homogeneous elastic layer with the layer thickness −
−

+ −= 1jjj HHh  

and the five elastic constants jjjjj ccccc 54321 ,,,, ).,...,3,2,1( nj = . In addition to the internal 

loading of the body force vector )(),(),,( dzyxzyx −= δff )( 0 nHdH << and the external 

boundary conditions on the external boundary 0Hz = in (93), the other boundary conditions 

on the external boundary nHz = can be described as one of the following four conditions. 
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The corresponding loading conditions in the transform domain can be expressed by 
one of the following four loading vectors at nHz =  and plus the internal body force vector g .  

















=
















=
















=
















=
b

b

b

b
uz

b

b

b

b
zu

b

b

b

b
z

b

b

b

b

w
w
w

w
w
w

3

2

1

3

2

1

3

2

1

3

2

1

 , , , τ
τ

ττ
τ
τ

YYYw    (97) 

where the given boundary conditions b
uz

b
zu

b
z

b YYYw  , , , can be obtained by changing the 
superscript a with b in (97).  

 For each of the four boundary loading cases, the solution can be obtained using the 
same equations and the formulation procedure given in Sections 4 and 5 in [1] and the above 
Sections 2 and 3 except the following changes. The three regularity boundary conditions at 

0Hz = in (50) and (68) in [1] have to be replaced by (95). The three regularity boundary 
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conditions at nHz = in (51) and (69) in [1] have to be replaced by the following three given 

boundary conditions at nHz = .  
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 Each of the two boundaries at 0Hz = and nHz = has four types of three given 
conditions. Hence, there are sixteen cases of the boundary-value problems. Each case has 
three sets of solutions in terms of the body force vector, the three given conditions at 0Hz =  

and the given three conditions at nHz = . At 0Hz = , the three given conditions are either 
aw , a

zY , a
zuY or a

uzY  in the transform domain and either au , a
zT , a

zuT or a
uzT in the physical 

domain. At nHz = , the three given conditions are either bw , b
zY , b

zuY or b
uzY  in the transform 

domain and either bu , b
zT , b

zuT or b
uzT in the physical domain.  

4.3 Mix-boundary value problems 

 Mix-boundary value problems in elasticity are usually called contact mechanics 
problems and fracture mechanics. Two methods can be used to derive and formulate solutions 
for the mixed-boundary value problem. The first method is the integral equation method [9, 
30, 31].  The second method is the boundary element method [14-19]. They are discussed 
below.  

4.3.1 Integral equation method 

An example is given to illustrate how to use the matrix Fourier integral approach to 
solve the mix-boundary value problems in the general layered solids [9]. This mixed 



45-64 

 

boundary value problem is a layered solid of semi-infinite extent subjected to the eccentric 
indentation of a rigid circular and smooth plate. The mixed boundary conditions at the 
surface 0Hz = of the layered solid are written in the cylindrical coordinate system as follows. 

  πθσ 20for                        ,0),,( 0 <≤+∞<≤= + θ, raHrzz   (99a) 

πθ, arrDHru yzz 200for     ,cos),,( 0 <≤≤≤Ω+= −θθ   (99b) 

πθσ 200for                        ,0),,( 0 <≤+∞<≤= θ, rHrrz   (99c) 

πθσθ 200for                        ,0),,( 0 <≤+∞<≤= θ, rHrz   (99d) 

where a is the radius of the rigid circular plate; zD is the axial translation of the rigid plate 
along the z-axis; yΩ is the central rotation of the rigid plate about the y-axis.  

 The axial load zP and its associated moment yM acting on the rigid plate have the 

following integral relations with the contact normal stress ),,( 0Hrzz θσ . 

∫ ∫−=
a

zzz drrdHrP
0

2

0
0 ),,(

π

θθσ       (100a) 

∫ ∫−==
a

zzzy drdrHrbPM
0

2

0

2
0 cos),,(

π

θθθσ     (100b) 

where b is the eccentricity of the external load zP acting on the rigid circular plate.  

 Using the approach presented above, the )(zw and )(zzY can be expressed as follows 

in terms of the boundary loading vector a
zY  

a
zzz YΦw ),(),,( ρϕρ =        (101a) 

a
zz zz YΨY ),(),,,( ρϕρ =        (101b) 

Because of (99c) and (99d), so ,01 =aτ and 02 =aτ . Then, the following results are valid.  

),,(),(),, 03131 Hzzw ϕρτρϕρ Φ=      (102a) 

0),,(2 =zw ϕρ        (102b)  

),,(),(),,( 03333 Hzzw ϕρτρϕρ Φ=      (102c) 
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),,(),(),,( 03131 Hzz ϕρτρϕρτ Ψ=       (102d) 

0),,(2 =zϕρτ         (102e) 

),,(),(),,( 03333 Hzz ϕρτρϕρτ Ψ=       (102f) 

where ),,( 03 Hϕρτ is the unknown and to be found using the mixed boundary condition (99a) 
and (99b).  

Secondly, because of (102c) and (102f), the mixed boundary condition (99a) and (99b) 
can be expressed as follows. 

    
20for ,0),,(

2
1

200for ,cos),,()0,(
2
1

0

2

0
03

0

2

0
0333











<≤+∞<<=

<≤<≤Ω+=Φ

∫ ∫

∫ ∫
∞

∞

πρϕρϕρτ
π

θρϕϕρτρ
π

π

π

θ, raddKH

πθa, rrDdKdH yz

(103) 

 Using the Fourier series expansions of )(sin2)(),,( 313003 ρϕτρτϕρτ iH −= , the 
equation (103) can be decoupled into the following two sets of dual integral equations.  

    
for   ,0)()(

0for  ,)()()0,(

0
030

0
03033











+∞<<=

<≤=Φ

∫

∫
∞

∞

radrJ

arDdrJ z

ρρρρτ

ρρρτρ
   (104a) 

and 

    
for   ,0)()(

0for  ,
2

)()()0,(

0
131

0
13133











+∞<<=

<≤Ω=Φ

∫

∫
∞

∞

radrJ

arrdrJ y

ρρρρτ

ρρρτρ
   (104b) 

Furthermore the following solution representations are used. 

∫=
a

dsss
0

030 )cos()()( ρφρτ ;      (105a) 

∫=
a

dsss
0

131 )sin()()( ρφρτ       (105b) 
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Then, the equations (104a) and (104b) can be respectively reduced to the following two sets 
of Fredholm integral equations of the second kind. 

∫ =+
a

za D
A

dtttsKs
0

00
2)(),()(
π

φφ      (106a) 

where as ≤≤0 , )0,(lim 33 ρ
ρ

Φ=
+∞→

A  and 

( )∫
∞

−Φ=
0

33
1 )cos()cos(1)0,(2),( ρρρρ

π
dtstsK Aa    (106b) 

∫−=
a

z dssP
0

0 )(2 φπ        (106c) 

and 

∫ Ω=+
a

yb A
sdtttsKs

0
11

2)(),()(
π

φφ      (107a) 

where as ≤≤0 ,  and 

( )∫
∞

−Φ=
0

33
1 )sin()sin(1)0,(2),( ρρρρ

π
dtstsK Ab    (107b) 

∫−=
a

y dsssM
0

1 )(4 φπ        (107c) 

The above integral equations can be calculated numerically and accurately. The 
numerical results can be used to find the solution of u , zT and pΓ in (93) or (100) in [1] with 

the following solution expressions. 









+

−
= ∫∫ )(),,()(

2
),,()(

2
),,(

1

0
1

1

0
1 θψφ

π
θ auyuz

z
a dttzst

a
bdttzst

a
Pzs ΠKKu   (108a) 









+

−
= ∫∫ )(),,()(

2
),,()(

2
),,(

1

0
1

1

0
12 θψφ

π
θ azyzz

z
az dttzst

a
bdttzst

a
Pzs ΠKKT   (108b) 









+

−
= ∫∫ )(),,()(

2
),,()(

2
),,(

1

0
1

1

0
12 θψφ

π
θ apypz

z
ap dttzst

a
bdttzst

a
Pzs ΠKKΓ   (108c) 
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where ,)/(0 +∞<=≤ ars ,)/(0 1 +∞<=≤ azz π20 <≤ θ , zPras /)(2)( 0φπφ −= , 

yMras /)(4)( 1
2φπψ −= . uzK , uyK , pzK and pyK are functions of ),(13 zρΦ and 

),(33 zρΦ . zzK and zyK are functions of ),(13 zρΨ and ),(33 zρΨ ., which are exactly given in 

[9]. 
















=

θ
θ

θ
θ

cos00
0sin0
00cos

)(aΠ     (108d) 

 Details of the analytical formulation and numerical solution can be found in [9]. 

4.3.2 Boundary element methods 

The classical closed-form fundamental singular solutions given by Kelvin in 1848 [32] 
and Mindlin in 1936 [33] have been used in the formulation and development of the powerful 
boundary element methods (BEM) [19]. These Kelvin’s and Mindlin’s solutions based BEMs 
have some drawbacks in solving both boundary-value and mixed boundary-value problems in 
layered and functionally graded materials.  Since 2002, Yue’s fundamental singular solution 
given in (84) to (89) in [1] has been used to replace the Kelvin’s and Mindlin’s solutions and 
formulate the Yue’s solution based BEMs [14-19]. They have been used to find the solutions 
for many specific problems of interests in science and technology. 

The singular terms of the Yue’s solutions are presented in exact closed-form in terms 
of the elementary functions given in Appendix B and can be analytically isolated and exactly 
calculated in the new BEMs. The remaining parts of the Yue’s solutions (say, rΦ  for 
example) are presented in the forms of the inverse Hankel transform integrals with the Bessel 
functions )( rJ K ρ  ( 3,2,1,0=K ) and can be accurately calculated with any numerical 
integration techniques. For example, the following proceeding limit technique has been used 
[7, 8, 9, 14, 19]. 

 

∫

∫∫∫
+

Φ+

⋅⋅⋅⋅⋅⋅+Φ+Φ≈Φ
∞

1

2

1

1

)(),,(                                     

)(),,()(),,()(),,(
00

m

m

A

A
Kr

A

A
Kr

A

KrKr

drJdz

drJdzdrJdzdrJdz

ρρρ

ρρρρρρρρρ

(109a) 

where 12100 +<<⋅⋅⋅⋅⋅⋅<<<= mm AAAAA is a sequence of numbers that approaches infinity 

and can be selected using the rule ,1−= lcl AA λ where ,1,,...,3,2 += mml and in particular, 

21 =A and .5.1=cλ  Each finite integral on the right-hand is a proper integral and can be 
calculated using the Simpson’s quadrature based adaptively iterative integration with a pre-
specified allowable error cδ as follows. 
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cA

A
Kr

A

A
Kr

m

m

m

m

drJdz

drJdz

δ

ρρρ

ρρρ

≤

Φ+

Φ

∫

∫
+

+

1

1

)(),,(1

)(),,(

    (109b) 

4.4 Elastodynamics 

4.4.1 The governing equations 

The governing equations of the mathematical theory of elastodynamics are exactly the 
same as those given in (1)-(3) and (5)-(9) in [1] for the elastostatics [20, 34-36]. The 
equations of static equilibrium (4) in [1] are replaced by the equations of equilibrium of 
motion at any point within the solid. They take the following form by adding the inertial 
force vector on the left side of the equation (4) in [1] along the x, y and z directions, 
respectively. 

2

2

t
uf

zyx
x

x
xzxyxx

∂
∂

=+
∂
∂

+
∂
∂

+
∂
∂ γσσσ     (110a) 

2

2

t
u

f
zyx

y
y

yzyyyx

∂
∂

=+
∂
∂

+
∂
∂

+
∂
∂

γ
σσσ

    (110b) 

2

2

t
uf

zyx
z

z
zzzyzx

∂
∂

=+
∂
∂

+
∂
∂

+
∂
∂ γσσσ     (110c) 

whereγ is the density of the solid material and t is the independent variable of time. 

4.4.2 Two sets of governing ordinary differential equations 

 The matrix Fourier integral transform in (14) to (17) in [1] are used on the two 
horizontal axes x and y. Then the classical Laplace transform is used on the time t. The two 
unknown vectors ),,,( tzηξw  and ),,,( tzz ηξY  and the internal body force loading vector 

),,,( tzηξg  have to be changed in the forms of Laplace transform as follows. 

dtetzsz st−
+∞

∫=
0

),,,(),,,(ˆ ηξηξ ww     (111a) 

dtetzsz st
zz

−
+∞

∫=
0

),,,(),,,(ˆ ηξηξ YY     (111b) 



50-64 

 

)0,,,()0,,,(),,,(),,,(ˆ
0

zz
t

sdtetzsz st ηξγηξγηξηξ wwgg −
∂
∂

−= −
+∞

∫  (111c) 

where s is the independent variable corresponding to the time t in Laplace transform.  

.0)Re( >s  )0,,,( zηξw and )0,,,( z
t

ηξw
∂
∂  are the initial displacement and initial velocity 

vectors in the Fourier transform domain, respectively. 

Accordingly, the governing equations can be reduced two sets of first order ordinary 
differential equations [20]. The first set is due to the anti-symmetry about the z-axis and has 
two linear ordinary differential equations with two field variables and variable coefficients 
with z. It can be expressed as follows. 

 )(ˆ)(ˆ)(ˆ)(ˆ zzzz
dz
d

vv GVCV += ρ       (112a) 

where bza ≤≤ , +∞<≤ ρ0 , and 
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 The second set is due to the axial symmetry about the z-axis and has four linear 
ordinary differential equations with four field variables and variable coefficients with z. It can 
be expressed as follows. 

)(ˆ)(ˆ)(ˆ)(ˆ zzzz
dz
d

uu GUCU += ρ     (113a) 

where bza ≤≤ , +∞<≤ ρ0 , and 
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The five elastic parameters in (112b) and (113b) can be arbitrary functions of the 
depth z, i.e., .5,4,3,2,1),( == izcc ii  Most importantly, the matrix approach eliminates the two 
independent variables ξ and η  in the six governing ordinary differential equations and 
preserves only the radial distance ρ  of the material axial symmetry about the z-axis. The two 
coefficient matrices )(zvC and )(zuC contain only the five material parameters 

)5,4,3,2,1),(( == izcc ii and the combined variable 22 / ργs . 
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4.4.3 The general solution of (z)V̂  

The basic solution for the first set with constant elastic parameters can be obtained as 
follows [20],  

∫ −−−=
z

z
v dzzzzz

1

)(ˆ)(ˆ)(ˆ)(ˆ)(ˆ
11 ςςς GAVAV      (114a) 

where 1zz ≥ or 1zz ≤ . The first basic square matrix )(ˆ zA  is defined as follow. 

zz eez ργργ γγ 00 ˆ
0

ˆ
0 )ˆ()ˆ()(ˆ −−+= BBA      (114b) 

where the material characteristic root 0γ̂  and the material square matrix )(χB are defined as 
follows.  

0ˆ
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5
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c
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c
cγ        (114c)  
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4

4
χ

χχ
c
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where 2

2

ρ
γsS = . 

It is evident that the above basic solution matrix )(ˆ zA automatically reduces to the 
basic solution matrix )(zA in (20) in [1] once 0=S or 0=s . It also has the following 
properties. 

1)(ˆdet =zA         (115a) 

 2)0(ˆ IA =         (115b) 

)(ˆ)(ˆ)(ˆ
11 zzzz += AAA       (115c) 

)(ˆ)(ˆ 1 zz −=− AA        (115d) 

4.4.4 The general solution of )(ˆ zU  

Similarly, the general matrix solution can be obtained as follows for the second set of 
four linear ordinary differential equations with constant coefficients [20], 
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∫ −−−=
z

z
u dzzzzz

1

)(ˆ)(ˆ)(ˆ)(ˆ)(ˆ
11 ςςς GQUQU      (116a) 

where 1zz ≥ or 1zz ≤ . The second basic square matrix )(ˆ zQ  is defined as follow. 

zzzz eeeez ργργργργ γγγγ 2211 ˆ
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2

ˆ
1

ˆ
1 )ˆ()ˆ()ˆ()ˆ()(ˆ −− −−−−+= CCCCQ      (116b) 

where 1γ̂ and 2γ̂ are the roots of the following material characteristic equation, 

( )[ ] ( )( ) 041
2
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2
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4
43 =+++++−−− ScScSccccccccc χχ   (116c) 

They can be expressed as follows. 
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The material square matrix )(χC is defined as follows. 
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where 

( )[ ]SccBcC −+= 2
2

3411 )( χχ        (117b) 

( )[ ]χχχ /)( 423412 SccccBC ++−=       (117c) 

( )4213 )( ccBC +−=χ         (117d) 

( )[ ]χχχ /)( 4314 SccBC +−=        (117e) 

( )[ ]χχχ /)( 12421 SccBcC ++=       (117f) 

( ) ( )[ ]ScccccccBC +−++= 13422
2

3422 )( χχ      (117g) 

( )[ ]χχχ /)( 1423 SccBC +−=        (117h) 
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( ) ( )[ ]ScccccBcC 23
2
2134431 )( ++−=χ       (117i) 

( ) ( )[ ] ( ){ }χχχχ /2)( 4
2
2134223

32
3432 SccSccccccccBC +++−++=   (117j) 

( ) ( )[ ]χχχχ /2)( 12
3

3
2
441 ScSccBcC ++−+=     (117k) 

where ( )2
2

2
143 ˆˆ
1

γγ −
=

cc
B .         

It is also evident that the above basic solution matrix )(ˆ zQ automatically reduces to 
the basic solution matrix )(zQ in (22) in [1] once 0=S or 0=s . It also has the following 
properties. 

1)(ˆdet =zQ         (118a) 

4)0(ˆ IQ =         (118b) 

)()(ˆ)(ˆ
11 zzzz += QQQ       (118c) 

 )(ˆ)(ˆ 1 zz −=− QQ .       (118d) 

4.4.5 Formulation of solutions 

The above general solutions can be used to derive and formulate solutions for specific 
initial-boundary value problems in elastodynamics in layered solids. The mathematical 
formulation procedures are similar to those given above for the boundary-value problems in 
elastostatics in the transform domain. The remaining issue is the inverse Hankel and Laplace 
transforms for the solution in spatial and time domain. Such inverse integral transforms can 
have singularities because of the dynamic behavior. Their accurate results in the spatial and 
time domain are difficult and need further studies with both analytical and numerical methods. 
Furthermore, it can be shown that the results given in (112) to (117) can be reduced to those 
given in [35] for isotropic layered solid in frequency domain.  

4.5 Poroelasticity 

The theory of three dimensional linear poroelasticity for a saturated porous material 
(say, soil) was formulated by Biot in 1941 and 1956 [37, 38] to model the behavior of 
saturated soils within the working load range.  The saturated soils are modeled as deformable, 
linear, porous, elastic materials saturated with compressible fluids. A set of partial differential 
equations was established to describe the coupled behavior of saturated soils and make the 
poroelasticity become a completely self-consistent initial-boundary value problem. Many 
people have derived solutions for poroelasticity.  
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 In particular, the above matrix Fourier and Laplace transform approach has been used 
to derive analytical solutions for the initial-boundary value problems of the poroelasticity 
[21-28]. The set of governing partial differential equations in the physical domain has 
reduced into two sets of first order ordinary differential equations in the transform domain. 
Their general solutions have been derived for a homogeneous poroelastic layer. They are 
further used for solving specific initial-boundary value problems in layered poroelastic solids.  
These solutions have been used to examine and predict the ground settlements and porewater 
pressure in saturated poroelastic layers due to flexible and rigid foundation loadings and the 
time-dependent behavior of rigid disc in a saturated poroelastic material. Details can be found 
in the publications [21-28].  

4.6 Thermoelasticity  

Similarly, the above matrix Fourier and Laplace transform approach can be used to 
derive analytical solutions for the initial-boundary value problems of the mathematical theory 
of linear thermoelasticity. The Hooke’s law shall include the temperature expansion effect for 
the linear relationship of the three normal stresses with the three normal strains plus the 
thermal expansion terms. In addition, there are four time-dependent heat conduction 
equations. The following material parameters shall be added: the coefficient of linear heat 
expansion, the specific heat, the heat conduction coefficient, the thermoelastic coefficient. 
The set of governing partial differential equations in the physical domain can be reduced into 
two sets of first order ordinary differential equations in the transform domain. Their general 
solutions can be derived for a homogeneous thermoelastic layer.  They can be further used for 
solving specific initial-boundary value problems in layered or functionally graded 
thermoelastic solids. Details of the mathematical formulations and equations can be found in 
Yue [29] and Ai et al. [39]. 

 

5 Concluding remarks 

In the above, the author has verified Yue’s approach, Yue’s treatment, Yue’s method 
and Yue’s solution for complete set of exact and analytical solutions for boundary-value 
problems in n-layered elastic solids of either transverse isotropy or isotropy. Three levels of 
the mathematical verification have made and presented. They are the degeneration of Yue’s 
solution to the basic solutions in closed-form, the convergence, singularity and satisfaction of 
Yue’s solution, and the systematic and uniform applications of Yue’s approach, treatment and 
method to derive and formulate new solutions of other problems with wide interests in 
science and engineering.  

In particular, for the three cases of loading distribution ),( yxf  including the point 
loading, the concentrated ring loading and the concentrated rectangular loading, the 
singularities of the solutions have been isolated and integrated analytically in exact closed-
forms in terms of elementary harmonic functions and special functions. Consequently, the 
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solutions at any point in n-layered or graded solids can be calculated with any controlled 
accuracy in association with any classical numerical integration techniques. Furthermore, the 
author has shown that the closed-form singularity can be systematically and easily obtained if 
the following basic harmonic integral in (67a) or (67b) can be integrated analytically. They 
are re-expressed as follows. 

∫∫
+∞
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= ηξηξ
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dKdfefzyxQ
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2
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π

   (119b) 

where 0>z and 222 zyxR ++= .  

It is further noted that, the mathematical tools used by the author are classical tools of 
more than 150 years history. They include the Fourier integral transform, Hankel  transforms, 
Laplace transforms, Fourier series, matrix operations, linear algebra equations, integrations, 
differentiations, partial differential equations, ordinary differential equations, improper 
integrals with depending parameters, harmonic functions and special functions.  Using these 
classical mathematical tools, the author has systematically and uniformly presented the 
mathematical formulation and verification of the solutions in n-layered solid in matrix forms. 
Accordingly, from 1984 to present, the author has found and presented many new solutions 
with known mathematical properties and singularities in homogeneous or layered solid.  
Because the classical elasticity theory is the common foundation of many other continuum or 
field theories, the approach, the treatment, the method and the solutions have been applied to 
systematically and uniformly derive and formulate many new solutions in elastodynamics, 
poroelasticity and thermoelasticity and with boundary element methods.  

Hence, the researchers at Research Centre Jülich and Massachusetts Institute of 
Technology have shortly named these mathematical formulation, verification and solutions as 
Yue’s approach, Yue’s treatment, Yue’s method and Yue’s solution.  
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Appendix A The constant matrices for two perfectly bonded isotropic solids of infinite 
extent 
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where αµ  and are the two elastic constants for the solid of +∞<≤ z0 ; αµ  and 1 are the two 

elastic constants for the solid of 0≤<∞− z , and 
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Appendix B The harmonic functions for the point force 

The harmonic functions ),,( zyxgLIJ ( 3,2,1,0=L ) are expressed as follows. 

a) For 0=L , the six basic harmonic functions are: 

R
zyxg 1),,(000 = .  (b1) 

)(
),,(010 zRR

xzyxg
+

−
= .  (b2) 

2011 )(
),,(

zRR
xyzyxg
+

−
= .   (b3) 

2

2

020 )(
1),,(

zRR
x

zR
zyxg

+
−

+
= .  (b4) 

3

3

2030 )()(2
3),,(

zRR
x

zR
xzyxg

+
+

+
−= .  (b5) 

3

2

2021 )()(2
),,(

zRR
yx

zR
yzyxg

+
+

+
−= .  (b6) 

b) For 1=L , the first order derivative harmonic functions are: 
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c) For 2=L , the second order derivative harmonic functions are: 
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d) For 3=L , the third order derivative harmonic functions are: 
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where R x y z= + +2 2 2 and 0>z . 
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Appendix C The harmonic functions for the rectangular force 

The basic harmonic functions ),,( zyxgLIJ ( 0=L ) are expressed as follows. 
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where the six elementary functions are defined as follows. 
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Appendix D The harmonic functions for the ring force 
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