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Abstract. In this contribution the low-excitation structural properties of the doubly mid-shell nucleus 170Dy are discussed, with a

special empasis on the evolution of the ground state rotational band within the dysprosium isotopic chain. Recent results from an

experiment with the EURICA setup at RIKEN are shown in the context of previous measurements at the PRISMA+CLARA as

well as the PRISMA+AGATA setups at Laboratori Nazionali di Legnaro. A brief outlook on future planned measurements is also

given.

INTRODUCTION

One of the most successful descriptions of the structure of nuclei is the nuclear shell model. However, far from the

closed shells it is the interplay between the macroscopic shape degrees of freedom and the microscopic nature of the

underlying single-particle orbitals in the deformed basis that offers an explanation for the nuclear behaviour. Lying

precisely in the middle of the the closed proton Z = 50, 82 and neutron N = 82, 126 shells, the Z = 66 and N = 104

nucleus 170Dy has for a long time been somewhat of a “holy grail” for the collective models of nuclear physics.

However, the shape evolution can also be influenced by the presence of sub-shell closures and residual interactions

dependent on the neutron excess [1]. Thus, understanding of the neutron-rich Dy region would be useful for testing

competing nuclear mean-field model calculations of nuclear shapes [2, 3, 4].

Recently several experiments have been performed aiming for 170Dy. In these proceedings, we will focus on the

evolution of the ground state band in the context the discussion provided in the previous experimental work on this

nucleus [5].

BACKGROUND

The first experiment that successfully observed excited states in 170Dy was carried out at the PRISMA and CLARA

set-up [6] in May 2007 at the LNL accelerator complex using multi-nucleon transfer reactions between 82Se and
170Er. By using two-body kinematics it was possible to reconstruct the A, Z, and the velocity vector of the target-like

fragments before neutron evaporation. Together with neutron-evaporation suppression techniques based on time-of-

flight very clean spectra of the target-like fragments were obtained. In this experiment, the yrast band of 168Dy was

observed up to 10+ and a tentative identification of the 4+ → 2+ transition in 170Dy at 163 keV was obtained for the

fist time [5].

This study was followed up in October 2011 [7] with an experiment using the AGATA [8] setup together with

the PRISMA spectrometer. This time, a 136Xe beam was used on a 170Er target to populate 168Dy, 170Dy, and 172Dy,

respectively. According to GRAZING calculations, including neutron evaporation, the use of a 136Xe beam instead

of an 82Se beam would give a large increase of the yield of the neutron-rich reaction products [9] as well as of the

angular momentum transferred to the fragments. In that experiment, the DANTE detector array [10] was included for

additional channel selection using delayed γ rays in AGATA. Besides the possibility to tag on the predicted 6+ isomer

in 170Dy itself, it would be possible to identify 168,170Dy from the 10+ isomers in the binary partners 136Ba and 134Ba.

The data from this experiment is currently under analysis by the Uppsala group [11].

As a next step, with the high-intensity fission beams available at the Radioactive Isotope Beam Factory (RIBF)

at RIKEN, it is natural to pursue this topic at this facility. An isotope search experiment in October 2011 proved the

feasibility of a dedicated decay experiment in this region. Together, the experimental cross-sections as well as the

existence of an isomeric state provided valuable information for a detailed study of the structure of 170Dy [12].

RIKEN EXPERIMENT

From December 2011, 84 high-purity germanium crystals were delivered from GSI to the RIBF. These crystals were

assembled into the Euroball-RIKEN Cluster Array (EURICA) [13, 14] and installed at the end of the BigRIPS and

ZeroDegree beam-line [15, 16] into a decay spectroscopy setup. In April 2012, the setup was successfully commis-

sioned [14] and since then a number of large data sets have been collected focused on different regions of the Segré

chart. The first experiment with a uranium beam was performed in December 2012 in the 78Ni region [17] and since

then β-decay data have been collected covering most of the neutron-rich part of the nuclear chart up to the rare-earth

region [18, 19, 20]. In parallel to the decay data, isomer decay information has been collected reaching all the way up

to 166Gd [21].
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FIGURE 1. Particle identification of the nuclei produced in the RIKEN experiment (left) and the low-energy γ-ray spectrum

associated with the isomer decay of 170Dy (right).

In these experiments, the radioactive isotopes are typically produced by in-flight fission of a 345 MeV/u 238U

beam on a beryllium target with beam intensities around 10 pnA. The secondary beams are then separated and identi-

fied using the BigRIPS and ZeroDegree spectrometers on an event-by-event basis by their mass-to-charge ratio (A/q)

and atomic number (Z), before being implanted in the WAS3ABi active stopper [13, 22, 23]. This stopper consists

of up to eight 40 × 60 mm2 double-sided silicon-strip detectors with strip widths of 1 mm in horizontal and vertical

direction.

In November 2014, the experiment aimed at identifying the low-lying structures in 170Dy was performed. In this

experiment as well as during the experiment aiming at 110Zr in spring 2013, an array of 18 LaBr3:Ce detectors [24, 25]

was mounted in three empty positions of the EURICA support structure for fast timing measurements [26, 27]. The

experiment was carried out with two settings with 13.5 hours focusing on 170Dy (∼ 10000 implantations) and 45 hours

during which ∼ 2500 170Tb nuclei, the β-decay mother of 170Dy, were implanted. The particle identification plot from

this experiment is shown in Fig. 1a. For isomer decays, EURICA was triggered by a thin plastic scintillator at the end

of the beam line and read out for a time window of 100 µs after the passing of an ion. For β-decay events the read-out

was triggered by an electron signal in WAS3ABi. The correlation between ion implantation and β-delayed γ-rays was

constructed based on an electron signal within 2 mm of the implanted ion. Due to the high contamination from lighter

fragments, a plastic veto detector was placed behind WAS3ABi for ions passing through the silicon detector.

The low energy part of the isomer decay spectrum is shown in Fig. 1b. The γ-ray spectrum obtained during a

time window of 0.3–6 µs after the implantation of 170Dy. Peaks belonging to 170Dy have been labeled according to

their γ-ray energy, while unlabeled peaks have been identified to originate from H-like charge states of 165Tb nuclei,

which were not fully separated in Z. The ground state rotational band of 170Dy can clearly be seen up to the 6+ state,

as shown in Fig. 2, with an energy ratio between the first 4+ and 2+ states, R(4/2) = 3.321(7). This ratio is consistent

with 168Dy that has the experimental R(4/2) = 3.3128(30). Despite the increase being small, it is the highest value

found in this region and it implies that 170Dy is very close to the idealised rotor. This means that the E(2+) should

indeed reflect the deformation suggesting that, contrary to Refs. [3, 4, 28], the deformation maximum in the isotopic

chain is located at N = 104. This picture should, however, be confirmed by more direct measurements mentioned in

the outlook.

GROUND STATE BAND SYSTEMATICS

Self-consistent Hartree-Fock calculations with a variety of Skyrme parametrizations all suggest that the deformation

maximum is expected at either 166Dy or 168Dy [3]. This is also consistent with one of the standard references for

nuclear masses and deformations, the calculations made by Möller and Nix using the finite range liquid drop model

[28], where 168Dy has the largest value. However, the decrease in E(2+), E(4+), as well as the increase of R(4/2)

suggest that the collectivity and deformation continue to increase at least until N = 104. This is more consistent with

the naïve neutron mid-shell picture rather than the more comprehensive nuclear models.
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FIGURE 2. Systematics of the yrast bands in the dysprosium chain up to the 10+ state. Data from Ref. [5] are marked in blue and

RIKEN experimental results is marked in red.

Another interesting feature is the irregularity at N = 98. This irregularity is not reproduced by Total Routhian

Surface (TRS) calculations [29, 30, 31] shown in Fig. 3 and is yet to be explained, although recent experimental

results suggest a connection to a possible deformed shell closure at N = 100 [21]. It is also worth noting that the TRS

calculations underestimate the moment of inertia of 170Dy and suggest a maximum at lower values of N, consistent

with other theoretical work. The interpretation that the irregularity is an effect at N = 98, 100 and not in neighboring

isotopes is strengthened by the identification of the 6+, 4+, and 2+ transitions in 170Dy.
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between measured rotational frequencies. Data from Ref. [5] are marked in blue and RIKEN experimental results is marked in red.
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OUTLOOK

In these proceedings the first results of the ground state structure in 170Dy were presented from measurements with

CLARA and EURICA. Completing the analysis of the experiments mentioned here will provide more detailed infor-

mation about the γ deformation, single particle structure, octupole deformation, and the evolution of the yrast band at

higher spins. This may help solving some of the questions currently unanswered about the structure evolution around

mid-shell. In addition, future experiments may shed more light on the underlying physics. While the E(2+) and R(4/2)

observables were discussed here, for a complete picture the B(E2) values have a strong dependency on the evolution

of collectivity. Such information can be obtained with the ROSPHERE array [32, 33] that has previously been used

successfully in this region [34], or with a fast timing campaign using AGATA at GANIL [35].
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