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Abstract 

Here we used a hidden Markov model (HMM) based ap-
proach to infer individual choices from eye movements in 
preference decision-making. We assumed that during a deci-
sion making process, participants may switch between explo-
ration and decision-making periods, and this behavior can be 
better captured with a Switching HMM (SHMM). Through 
clustering individual eye movement patterns described in 
SHMMs, we automatically discovered two groups of partici-
pants with different decision making behavior. One group 
showed a strong and early bias to look more often at the to-be 
chosen stimulus (i.e., the gaze cascade effect; Shimojo et al., 
2003) with a short final decision-making period. The other 
group showed a weaker cascade effect with a longer final de-
cision-making period. The SHMMs also showed capable of 
inferring participants’ preference choice on each trial with 
high accuracy. Thus, our SHMM approach made it possible to 
reveal individual differences in decision making and discover 
individual preferences from eye movement data.  

Keywords: hidden Markov model; gaze preference; eye 
movement; face recognition. 

Introduction 

 Gaze plays a crucial role in our social lives because it 

helps to signify the target of one’s attention and interest in a 

complex environment. For example, studies have shown 

that gaze is an important cue for infants to infer what adults 

mean and therefore a precursor to their language develop-

ment (Brunet, 1985). Gaze also has been shown to be an 

indicator of people’s preferences. The phenomenon of pref-

erential looking (Franz, 1964) suggested that the liked stim-

uli are usually looked at for longer time. Some researchers 

argue that gaze not only reflects individual attentions and 

preferences, it also helps to shape them. Shimojo et al. 

(2003) conducted a two-alternative-forced-choice (2AFC) 

preference task, in which participants were required to look 

at two face images and then to decide which one they liked 

more. The two face images were shown on the left and the 

right side of the screen. Their results showed that the partic-

ipants spent significantly more time on the side that they 

were about to choose, starting from about 800ms before 

they made and indicated their decisions. They coined the 

term “gaze cascade effect” to distinguish it from the mere 

exposure effect, which suggested that people tend to prefer 

things that they are familiar with (Zajonc, 1968). Shimojo et 

al., (2003) argued that gaze shifts are essential to shaping 

preferences. In other words, it is not exposure to the stimuli 

alone that shaped the mere exposure effect; gaze shifts have 

to be involved (Shimojo et al., 2011). 

 In order to experimentally demonstrate this argument, in 

one of their follow-up studies (Simion & Shimojo, 2006), 

they adopted the same 2AFC settings but forced the partici-

pants to look at a fixation point located at the center of the 

screen. The participants’ eye movements were therefore 

constrained. The two face images were sequentially super-

imposed in the foveal region for different time lengths. They 

found no bias that favored the longer-exposed images over 

the shorter ones, which argued for the role of gaze shifts in 

actively shaping one’s preferences. 

 Although these studies discovered the role of gaze in re-

flecting and shaping preferences, the finding was based on 

group-level analysis and thus was not able to address indi-

vidual differences in preference decision-making behavior. 

Some studies have shown that participants' eye movements 

in preference decision-making tasks may to some extent 

reflect their traits. For instance, it was found that when 

faced with happy faces and angry faces, old participants 

paid more attention toward the happy faces, while young 

participants paid more attention toward the angry faces 

(Isaacowirz, 2006). It was also found that when participants 

were shown unpleasant images, the optimistic participants 

paid significantly less attention toward the images than their 

pessimistic counterparts. 

 Studies have shown that people have substantial and per-

sistent differences in their eye movements in cognitive 

tasks. For example, Castelhano and Henderson (2008) found 

that fixation durations and saccade amplitudes were highly 

consistent within-individuals. Participants showed similar 

fixation patterns when viewing different types of image. 

Peterson and Eckstein (2013) found that when looking at 

human faces, people had different preferred fixation loca-

tions and that these individual differences persisted over 

time and tasks.  

 In our previous studies (Chuk et al., 2014; Chan et al., 

2015), we used hidden Markov models (HMMs) to address 

individual differences in eye movements. We conducted 

face recognition studies and found that individual differ-
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ences in eye movements were useful indicators of partici-

pants' performance. We used an HMM to summarize the 

fixation locations and the scan-paths of an individual. We 

then clustered the individual HMMs into groups according 

to their similarities and found that while some people pre-

ferred to look at specific facial features (i.e. the analytic eye 

movement pattern), others preferred to look at the center of 

the faces (i.e. the holistic eye movement pattern). We found 

that people who showed analytic eye movement patterns 

performed significantly better than those who showed holis-

tic eye movement patterns (Chuk et al., 2014). We also 

found that old people were significantly more likely to use 

holistic eye movement patterns than young people, and the 

more holistic their patterns, the lower their cognitive abili-

ties (Chan et al., 2015). These findings were not possible 

with other existing methods that do not take individual dif-

ferences into account. 

 The above findings suggested that one's eye movement 

pattern could be used to infer one's recognition perfor-

mance, which also implied the possibility of using one's eye 

movement pattern to infer one's preference in decision-

making tasks. Our HMM approach is more capable of cap-

turing individual differences because it takes into account 

the spatial (i.e., fixation locations) and temporal (i.e., scan 

paths) information of one’s eye movement simultaneously, 

when many of the alternatives only focus on the spatial in-

formation. 

 In this study, we try to read participants’ mind through 

their eye movements. We aim to infer participants' prefer-

ences in a preference decision-making task by modeling 

their eye movements using HMMs. However, the standard 

HMMs may not be suitable for the purpose of this task. The 

gaze cascade effect showed that in these tasks, participants 

might go through at least two mental periods during a trial: 

exploration and decision-making. During the exploration 

period, they may switch their gaze between the two sides 

equally; during the decision-making period, they may look 

more often at the images to-be-chosen (Shimojo et al., 

2003). This finding suggests that participants' patterns of 

switching their gazes between the two images could be dif-

ferent during the two periods. The standard HMM with one 

set of hidden states and a transition matrix is unable to cap-

ture this. Therefore, instead of using a standard HMM, we 

create a ‘switch’ for two HMMs, such that a high-level 

HMM consists of two low-level HMMs, each representing 

gaze patterns of a particular mental period (Figure 1). 

 Here we train the SHMMs on individual fixation data and 

cluster the models. The analysis separates participants into 

groups based on their eye movement differences. This helps 

to reveal common eye movement patterns when they make 

decisions, and in turn allows us to examine whether differ-

ent patterns are associated with different decision-making 

behavior. We then use the models to infer their preferences 

on each trial and examine the models’ accuracy.  

Method 

Materials and Procedure 

 We performed our analysis using the data collected in a 

preference decision-making study (Shimojo et al., 2011). A 

total of 12 participants were recruited for the 2AFC task. 

There were in total 60 trials.  On each trial, two face images, 

one on the left and one on the right, were shown on the 

screen for the participants to make their choices. There was 

no time limit. Participants were allowed to move their eyes 

to compare the two images. They were told to press a button 

to indicate which image (left or right) they preferred once 

they had made their decisions. Eye movements were record-

ed using an Eyelink 2 eye tracker. 

Switching hidden Markov model 
 A standard hidden Markov model (HMM) contains a vec-

tor of prior values, a transition matrix, and a Gaussian emis-

sion for each hidden state. The prior values indicate the 

probabilities of the time-series data to begin with the specif-

ic hidden states; the transition matrix indicates the transition 

probabilities between any two hidden states; the Gaussian 

emissions indicate the probabilistic associations between the 

time-series data and the hidden states. In our current con-

text, the hidden states correspond to the regions of interest 

(ROIs), which were learned from the fixation locations, and 

the emissions are the fixation locations. 

 In contrast to a standard HMM, a switching HMM 

(SHMM) contains two levels of HMMs; the high-level 

HMM indicates the transitions between the low-level 

HMMs (Figure 1). In our implementation, the high-level 

hidden states represent the current gaze strategy (i.e., explo-

ration or decision-making), whereas the low-level hidden 

states correspond to ROIs over the stimuli.  Each high-level 

state has its own low-level prior values and transition ma-

trix. The low-level states (ROIs) are shared among the high 

level states (gaze strategies). The high-level HMM has its 

own transition matrix, which governs the switching between 

gaze strategies. The high-level state sequences and the low-

level state sequences are both 1st-order Markov chains.  

In practice, the SHMM can be turned into a standard 

HMM by combining the high-level and the low-level hidden 

state variables into a single hidden state variable, whose 

values are the Cartesian product of the low- and high-level 

state values.  In the current case, since the low-level states 

are shared among the high level states, the number of low-

level states (K) is the same for each high-level state. Hence, 

the equivalent HMM has S*K hidden states, where S is the 

number of high-level hidden states; the transition matrix has 

block structure. Because the Gaussian emissions are shared 

among the high-level hidden states, they are independent 

from the high-level switches and are only attached to the 

low-level hidden states (Figure 1).  

 We performed the EM algorithm to estimate the SHMM 

parameters. In the E-step, the responsibilities were calculat-

ed using the standard forward-backward algorithm with the 

block transition matrix, initial state vector, and emission 

densities. In the M-step, the prior and pairwise responsibili-

ties were summed over the high-level and the low-level 

states respectively to yield the parameter updates for both 

the high-level states and the low-level states. 

183



 For instance, the prior responsibilities were summed over 

the low-level hidden states for each of the high-level state in 

order to yield the parameter updates for the low-level states, 

and then they were summed over the high-level states to 

yield the parameter updates for the high-level states. Simi-

larly, the pairwise responsibilities were summed over the 

low-level hidden states for each high-level state to yield the 

transition matrix updates for each transition matrix, and then 

were summed over the high-level hidden states to yield the 

updates for the switching matrix. 

 

 
Figure 1: An illustration of the SHMM used in the current 

study. The high-level HMM states consisted of two gaze 

strategies: exploration and decision-making. The blue ar-

rows indicate the transitions between them, and the numbers 

indicate transition probabilities. Eye movements within each 

period were modeled with a low-level HMM. The red ar-

rows represent transitions between ROIs. The two periods 

have the same ROIs but different transition probabilities. 

 

Training and clustering individual SHMMs 

 For each participant, we trained an SHMM using the fixa-

tion locations collected from all trials. In order to simplify 

the analysis, we used only two Gaussian emissions per 

model; one on each side. This helped to focus the analyses 

on the transition information between the two face stimuli 

(Figure 1). The advantage of using Gaussian rather than 

discrete emissions is that it can be easily extended to anal-

yses that explore the ROIs on each face. We used two high-

level hidden states to reflect that the participants may switch 

between exploration and decision-making periods during a 

trial.  

For SHMM estimation, we initialized the transition matri-

ces based on the actual data. The exploration period usually 

happened at the beginning of a trial and the decision-making 

period usually happened at the end of a trial. Therefore, we 

initialized the exploration and the decision-making transi-

tion matrices based on the first 5 and the final 5 fixations of 

each trial.  

Since participants’ exploration and decision-making may 

influence each other during a trial (e.g., Shimojo et al., 

2003), here we assumed that participants may switch back 

to exploration after decision making before they made the 

final decision. To reflect this, the high-level transitions be-

tween the exploration and the decision-making periods were 

set to [0.5, 0.5; 0.4, 0.6] (Figure 1). That is, once the partici-

pant had switched from the exploration period to the deci-

sion-making period, the chance of switching back to the 

exploration period (0.4) was slightly lower than the chance 

of him or her staying in the decision-making period (0.6).  

 To reveal a common eye movement pattern shared by all 

individuals during the exploration period, we created an 

HMM using the exploration transition matrix and Gaussian 

emissions for each individual, and clustered these HMMs 

into a group using the VHEM algorithm (Coviello et al., 

2014). To reveal whether participants had different fixation 

patterns when they were making decisions, we clustered 

their HMMs for the decision-making period into two groups 

and examined their differences.  

 To infer when the participants were in the exploration or 

decision-making period, we used the Viterbi algorithm to 

find the most likely hidden state sequence for each trial. In 

this sequence, a change in the value of the high-level hidden 

state indicated a switching point. Next, we examined wheth-

er SHMMs can be used to infer individual preferences on 

each trial. We used only the fixations in the last decision-

making period to perform our inferences. That is, the infer-

ence was performed using only the fixations after the final 

switch from exploration to decision-making. We split the 

trials into two sets: one for all the trials on which the left 

side images were chosen, and one for all the trials on which 

the right side images were chosen. For each set, we used all 

but one trial to train an SHMM and used the held-out trial 

for testing. If, for example, on the test trial, the participant 

selected the image on the right, the SHMM trained on the 

trials in which the right image was chosen should fit the trial 

better than the SHMM trained on the left-selected trials. To 

test this, we compared the log-likelihoods generated by the 

two SHMMs (Chuk et al., 2014). We hypothesized that the 

SHMM for the right-selected trials should produce a higher 

log-likelihood than the SHMM for the left-selected trials. 

This was repeated over all the trials and all the participants. 

The accuracy of our inferences was evaluated using one-

sample t-tests. We hypothesized that we can infer partici-

pants' decisions at a level that is significantly above chance.   

Results 

Categorization of individual SHMMs 

First, we clustered the 12 participants' exploration HMMs 

into one representative HMM using the VHEM algorithm. 

The output showed that participants did not look more often 

at the side that they were going to choose during the explo-

ration period. This is evident from the fact that both the not-

chosen images and the chosen images had a prior value of 

roughly 0.5. The transition probabilities were also around 

the chance level for both sides, indicating that at the explo-

ration stage of the trials, participants paid roughly equal 

attention to the two images. Table 1 below shows the transi-

tional information of the representation HMM. 

 For the decision-making period, we clustered their deci-

sion-making HMMs into two groups. The two groups had 

an equal number of participants. Each participant had a 

probability of being associated with each group. The proba-

bilities showed a clear-cut division between the two groups, 
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indicating that the two groups were clearly separated, t (11) 

= 3.32, p = .007.  Tables 2 and 3 below show the representa-

tive transition matrices of the two groups generated by the 

VHEM algorithm. Participants in group A showed apparent 

fixation bias toward the side that they were about to choose, 

whereas those in group B showed only mild bias. Although 

participants in group B also paid more attention to the imag-

es that they were about to choose, the transition matrices 

suggested that their fixation pattern were not that different 

from the exploration period.   

 

Table 1: The exploration period for all the participants 

 to not-chosen to chosen 

Priors .50 .50 

from not-chosen .55 .45 

from chosen .53 .47 

 

Table 2: The decision-making period for group A.  

 to not-chosen to chosen 

from not-chosen .32 .69 

from chosen .32 .69 

 

Table 3: The decision-making period for group B.  

 to not-chosen to chosen 

from not-chosen .44 .56 

from chosen .43 .57 

 

  

Cascade plots  
 In order to visually compare the two groups in terms of 

the magnitude of their gaze cascade effects, we generated 

the gaze cascade plots as that seen in Shimojo et al. (2003). 

The plots show the proportion of time that the participants 

spent on looking at the chosen images, and span 2.5 seconds 

(see Figure 2). It can be seen from the plot generated from 

all participants that as it got closer to the end, participants 

spent more time on inspecting the side that they were about 

to choose. The proportion of time spent on the chosen sides 

went from about chance level (0.5) steadily up until it 

reached almost 0.9. Chi-square test showed that the trend 

began at around 900 ms before the end of the trials, χ2 (1) = 

3.92, p = .05. The plots of the two groups show some more 

interesting differences. It can be found that although the 

general trend was shared between the two groups, partici-

pants in group A showed a more stable gaze cascade effect. 

Chi-square test showed that the cascade effect occurred at 

around 1100 ms before the end of the trials, χ2 (1) = 4.74, p 

= .03, which was earlier than the general trend. The propor-

tion of time on the chosen image reached about 0.95 by the 

end, which was also higher than the general trend. Group B, 

however, showed a decrease in the proportion of time spent 

on the chosen images between 1.5 seconds and 1 second. 

 
Figure 2: The cascade plots. 

 

 Chi-square test showed that the cascade effect occurred at 

around 600 ms before the end of the trials, χ2 (1) = 6.51, p = 

.01, The proportion of time on the chosen image then accu-

mulated continuously to about 0.85, which was lower than 

the general trend. Although both groups showed the gaze 

cascade effect, neither their magnitudes nor their onset times 

were the same. However, the observation that the two 

groups did not show qualitative differences in eye move-

ment pattern suggests that there may be a continuum be-

tween the two groups. 

Inference of individual preferences  

 We performed the inference of individual preferences 

using the fixations after the last time that the participant 

switched from the exploration to the decision-making period. 

The inference was done on every trial for every participant. 

The accuracy of the inferences is shown in Table 4 below. 

 

Table 4: Inference of participants’ preference. 

participant no. group accuracies 

01 A .98 

03 A .94 

07 A .97 

08 A 1 

10 A .98 

11 A .96 

02 B .78 

04 B .85 

05 B .93 

06 B .58 

09 B .94 

12 B .52 

  

It can be seen that for participants in group A, the infer-

ence accuracies were both high and consistent (M = 0.97). 

One sample t-test showed that the inference accuracies were 

significantly above the chance level, t(5) = 56.6, p < .001. 

For group B (M = 0.77), while for some of the participants 

the inference accuracy was also high, there was a larger 

variance within the group. For instance, for participant 6 and 

participant 12, the models showed only around chance level 
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accuracies, but for participant 5 and participant 9, the mod-

els showed a high level of accuracies comparable to that of 

group A. One sample t-test showed that the inference accu-

racies of group B were also significantly higher than chance, 

t (5) = 3.66, p = .01. However, Group A's inference accura-

cies were significantly higher than that of group B, t(10) = 

2.79, p = .02. 

 In addition, we examined the time length of the final deci-

sion-making period for each participant. Table 5 below 

shows the average time length of the decision-making peri-

od and the average number of fixations within the period. 

 

Table 5: Average time length of the final decision-making 

period 

participant  group time length 

(sec)  

number of fixa-

tions 

01 A 1.32 4.76 

03 A 1.39 4.89 

07 A 1.78 5.88 

08 A 1.89 5.5 

10 A 6.09 17.22 

11 A 2.79 7.17 

02 B 2.93 9.14 

04 B 3.87 9.75 

05 B 3.71 12.72 

06 B 4.82 16.95 

09 B 3.92 12.52 

12 B 5.26 13.2 

 

 It can be seen that on average, the participants switched to 

the final decision-making period at about 9.97 fixations pri-

or to the end of the trials. The average duration of the period 

was 3 seconds. This was earlier than what the cascade plots 

showed, which suggested that our SHMM analysis was able 

to detect participants' preferences at an earlier stage. The 

final decision-making period for group B (4.09 secs) was 

longer than that for group A (2.54 secs). The difference be-

tween the two groups was marginal, t(10) = 2.12, p = .06. 

Note that the clustering of the two groups was completely 

based on the eye movement data, and thus the group differ-

ence in inference accuracy and in length of the final deci-

sion period emerged naturally as the results of the clustering. 

Discussion 

In this study, we revealed individual differences in decision-

making behavior from their eye movements and also suc-

cessfully inferred participants' preferences using their eye 

movements through the HMM-based approach. More spe-

cifically, by assuming a decision process involves an explo-

ration and a decision-making period, and using SHMMs to 

model these two periods, we discovered two participant 

groups with different decision-making behavior automati-

cally from the eye movement data. Although all participants 

showed a tendency of looking more often at the to-be-

chosen images by the end of the trials, our SHMMs showed 

that this tendency was obvious only among 6 of the 12 par-

ticipants. As shown in Table 2, for group A, the transition 

matrix showed a strong bias to look at the chosen images. 

The cascade plot showed that the cascade effect happened 

early, roughly 1.5 seconds before the end of the trials (Fig-

ure 2). They also had a stronger gaze cascade effect: and 

onset time was about 600 ms before the end of the trials, and 

the proportion of time spent on the chosen images reached 

almost 95%. For group B (Table 3), although they also 

showed the gaze cascade effect, it was both later and less 

obvious. The cascade plot showed that its onset time was 

about 1100 ms before the end of the trials, and the propor-

tion of time on the chosen images was about 85%. 

 The fact that all the 12 participants showed the gaze cas-

cade effect suggests its robustness. However, our SHMM 

analysis revealed that the 12 participants could be separated 

into two groups with substantial differences in their fixation 

patterns for preference decision making. This demonstrated 

the advantage of our approach: by summarizing partici-

pants’ fixation patterns using the SHMM, those who had 

similar fixation patterns could be clustered together. The 

grouping was done automatically based on eye movement 

data alone, and participants’ differences in decision making 

behavior emerged naturally as the result of the clustering.  

 In addition, the SHMM approach allowed us to infer indi-

vidual preferences with very high accuracies. This was 

made possible because the structure of the SHMM allowed 

us to capture the eye movements during the final decision-

making period, which were informative for such inferences. 

Both groups' inference accuracies were significantly above 

the chance level. The inference accuracy for group A was 

significantly higher than group B, suggesting that eye 

movement was a more accurate indicator of preference for 

participants in group A than those in group B. There was 

also a much larger individual difference among participants 

in inference accuracy in group B. It is worth noting that the 

two groups were discovered from the eye movement data 

without considering the participants’ other behavioral dif-

ferences. Therefore, although for some participants (e.g., 

participant 5 and 9), the inference accuracies were high, 

they were nevertheless clustered into group B because of 

their eye movement patterns. Having that said, the fact that 

some of these participants in group B also showed a high 

level of accuracies suggest that this group could be further 

divided into sub-groups, so that a more fine-grained catego-

rization should be possible. This could be done in future 

studies. 

The analysis of the time length of the final decision-

making period showed a different pattern from the cascade 

plots (see Tables 2-3 and Figure 2). Our analysis results 

suggested that the final switch from the exploration period 

to the decision-making period happened at a much earlier 

time than that suggested by the cascade plots. The average 

number of fixations within the period, for all the partici-

pants, was 9.97 fixations, which translated to about 3 sec-

onds of time. In contrast, in the cascade plots, the cascade 

effect emerged at around 900 ms before the trial end. The 

average time length of the final decision-making period in 

group B (4.09 secs) was longer than that in group A (2.54 
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secs; see Table 5). This is possibly because the transition 

matrix of group B showed a milder tendency towards the to-

be-chosen side than group A, and hence it took longer for 

the gaze cascade effect to become noticeable. For group A, 

the transition matrix showed a more obvious tendency, so 

that the cascade effect appeared earlier even though the par-

ticipants started the decision-making period later than group 

B. 

Note that the cascade plots did not show a turning point 

which shifted a flat line to a steep slope. The accumulation 

of the proportion of time on the chosen image was gradual 

and slow. The accumulation only became apparent by the 

end of the trials, which therefore suggested that it would be 

hard to use the cascade plots to determine when the deci-

sion-making period had begun. Our analysis showed the 

advantage of being able to distinguish and isolate the fixa-

tions in the final decision-making period, which allowed us 

to infer participants' preferences with high accuracy using 

only their eye movements. Note however that the model 

assumes a separation of the two periods with the possibility 

to switch between the two periods during the decision-

making process. It remains possible that there is an addi-

tional period between these two periods, in which explora-

tion and decision making are mixed (e.g., Shimojo et al., 

2013). This additional period could be represented by add-

ing an additional high-level state to the SHMM. Future 

work will examine this possibility.   
 The finding that some people have a longer final decision 

period might imply some traits of these individuals. Previ-

ous studies demonstrated relationship between personality 

and response time when making decisions. For instance, 

extraverts were found to respond slower than introverts 

(Doucet & Stelmack, 2000). Reflective people have longer 

response time than impulsive people (Sternberg & Grigo-

renko, 1997). These findings point to the possibility that the 

two groups we found might also differ in terms of their per-

sonalities. In future studies, this should be explored.       

In summary, here we used SHMMs to analyze eye 

movement data collected from a preference decision-making 

task. The SHMM assumes an exploration period and a deci-

sion-making period during the decision making process. By 

clustering individual models into groups in a data-driven 

fashion, we discovered two participant groups with different 

decision-making behavior: one group had a stronger and 

longer-lasting gaze cascade effect and a shorter decision-

making period than the other group. These group differences 

emerged naturally as the results of the clustering based on 

eye movement data alone, demonstrating the power of the 

HMM approach of eye movement data analysis for the un-

derstanding of individual cognitive behavior. We also found 

that participants’ preferences on each trial can be inferred 

from their fixation patterns with high accuracy. This result 

thus provides a strong evidence for the possibility of mind 

reading from eye movement behavior.  
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