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Abstract
Hong Kong imposed a partial restriction on application of organotin-based antifouling paints

in 1992. Since September 2008, the International Maritime Organization prohibited the use

of such antifouling systems on all sea-going vessels globally. Therefore, it is anticipated a

gradual reduction of organotin contamination in Hong Kong’s marine waters. Using the rock

shell Reishia clavigera as a biomonitor, we evaluated the organotin contamination along

Hong Kong’s coastal waters over the past two decades (1990–2015). In 2010 and 2015,

adult R. clavigera were examined for imposex status and analysed for tissue concentrations

of six organotins. We consistently found 100% imposex incidence in female R. clavigera
across all sites. Tissue triphenyltin (TPT) concentrations were high in most samples. A prob-

abilistic risk assessment showed that there were over 69% of chance that local R. clavigera
would be at risk due to exposure to phenyltins. Comparing with those of previous surveys

(2004–2010), both imposex levels and tissue concentrations of organotins did not decline,

while the ecological risks due to exposure to organotins were increasing. We also observed

high concentrations of monobutyltin and TPT in seawater and sediment from locations with

intense shipping activities and from stormwater or sewage discharge. Overall, organotins

are still prevalent in Hong Kong’s marine waters showing that the global convention alone

may be inadequate in reducing organotin contamination in a busy international port like

Hong Kong. Appropriate management actions should be taken to control the use and

release of organotins in Hong Kong and South China.

Introduction
Organotin compounds (OTs), such as tri-butyltin (TBT) and tri-phenyltin (TPT), have been
extensively used as active ingredients in antifouling paints on ship hulls, open-sea mariculture
cages and other submerged marine infrastructures, and as pesticides since the 1960s [1]. These
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compounds are also toxic to non-targeted marine organisms causing growth abnormalities and
reproductive failure in bivalves and gastropods [2]. The best-documented example is OT-
mediated imposex (i.e., the superimposition of penis and vas deferens on females) which is
found in nearly 200 neogastropod species [3]. Although the induction mechanism is yet to be
fully elucidated, imposex can be developed in the dogwhelk Nucella lapillus after exposure to
TBT at concentrations as low as 1 ng L-1 [4] and the pseudo-penis of female rock shell Reishia
clavigera (= Thais clavigera) can be lengthened after injection with 0.1 ng g-1 TPT [5]. Imposex
may lead to reproductive failure and mortality in female gastropods, thus causing extinction of
local populations [6].

Being a major international port, Hong Kong receives with more than 348,000 vessels annu-
ally [7] together with numerous local fishing and recreational boats. Since 1988, TBT and its
degradation products, i.e., mono-butyltin (MBT) and di-butyltin (DBT) have been frequently
detected in water and sediment especially in areas close to shipyards and marinas [8, 9]. Phe-
nyltin compounds (PTs), however, were seldom monitored in this region.

Owing to the adverse environmental impacts of OTs, many countries have banned OT-
based antifouling paints since the mid-1980s [10]. For instance, in 2002, the European Union
(EU) prohibited the use of TPT as pesticide [11] and in 2003, the European Commission Par-
liament adopted a regulation (No. 782/2003) which banned the use of all OT-based antifouling
paints on all vessels of EU member countries [12]. These helped reduce the contaminations of
OTs in European waters. Globally, the International Maritime Organization (IMO) adopted
the International Convention on the Control of Harmful Anti-fouling Systems on Ships (i.e.,
AFS Convention) in November 2001 [13], which prohibited the application of OTs in any anti-
fouling systems worldwide. The AFS Convention finally received enough signatories among
IMOmembers and was entered into force on 17 September 2008 [10]. Locally, Hong Kong has
banned the use of TBT on small vessels (i.e.,< 25 m in length) since 1992 [14]. TPT, on the
other hand, is not a registered pesticide in Hong Kong. Therefore, it is hypothesized that after
the commencement of the global ban of OT-based antifouling paints, OT contamination in the
local coastal waters should have been reduced gradually.

This study used the rock shell R. clavigera as a biomonitor, together with water and sedi-
ment collected from Hong Kong’s coastal waters to test the above hypothesis. This species has
been used for monitoring OT contamination over the Asia-Pacific region [3] since its first
description of imposex [15]. In Hong Kong, 100% of imposex incidence was first noted in 11
sampling sites in 1992 [16]. Subsequent surveys reported that over 91% of female R. clavigera
developed imposex [17, 18]. Recent studies again showed 100% imposex incidence in all survey
sites [14, 19, 20]. With commencement of the global prohibition of OT-based antifouling
paints, this study tested the hypothesis of recovery of OT contamination through six specific
objectives: (1) examination of imposex status of R. clavigera along the coast of Hong Kong in
2010 and 2015; (2) determination of tissue concentrations of BTs and, for the first time PTs, in
R. clavigera in Hong Kong; (3) quantification of concentrations of OTs in water and sediment
samples; (4) temporal comparisons of current imposex status and tissue concentrations of BTs
in R. clavigera with data obtained from previous studies (i.e., Leung et al. [14] and Qiu et al.
[20]); (5) assessment of ecological risks of total BTs and total PTs to R. clavigera populations in
Hong Kong using a tissue-residue based probabilistic approach; and (6) elucidation of potential
sources of OTs in Hong Kong. The results generated from this study can provide important
information for indicating the ecological risks associated with OTs in this region and evaluat-
ing the effectiveness of global regulatory measures on the reduction of OT contamination in a
busy international port like Hong Kong.
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Materials and Methods

Sample collection of rock shells
About 40 adult R. clavigera (shell length� 17 mm [15]), having actual shell lengths between 23
and 36 mm, were randomly collected on each of the 29 rocky shores along the coast of Hong
Kong (22°08' to 22°35' N, 113°49' to 114°31' E) during May to September 2010 (Fig 1; S1 Table
with geographical coordinates of all sampling sites). These sites were visited by Leung et al.
[14] and Qiu et al. [20] showing different degrees of OT contamination. No specific permis-
sions were required for sampling in these locations because they are not protected areas and
are accessible by general public. Reishia clavigera were present in all sites except Heng On
where the natural rocky shore was turned into concrete block of Ma On Shan Waterfront
Promenade. The animals were transported to the laboratory within 6 h after collection, and
kept at -20°C before conducting imposex and chemical analyses. No depuration of the collected
rock shells was conducted. The sampling was repeated on 10 selected shores in July and August
2015 (S2 Table with geographical coordinates of all sampling sites).

Imposex determination
Each animal was measured for its shell length and fresh weight using vernier calipers (SPI 31-
415-3, USA) and an electronic balance (Libror EB-430HU, Japan), respectively, then was
cracked using a bench vice. Their reproductive features were examined using a dissecting
microscope (Olympus SZH10, Japan). Penis length was determined using the scale in the
microscopic lens. Vas Deferens Sequence Index (VDSI) and Relative Penis Size Index (RPSI)
were evaluated (S3 Table) by the same person to ensure consistency.

Fig 1. Sampling sites of seawater and/or sediments (dark diamonds), and the rock shell Reishia clavigera (brown circles) along the coast of Hong
Kong in 2010, 2014 and 2015. Locations of the major facilities with intense marine traffic are indicated by red triangles. Arrows indicate the outfalls of
stormwater drainage, and the blue star indicates the Stanley Sewage Treatment Works.

doi:10.1371/journal.pone.0155632.g001
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Seawater, in/effluent and sediment samples
Seawater and sediment were collected from five sampling stations which are proximal to ship-
ping activities (Fig 1; see S4 Table for geographical coordinates of sites A to E) during January
2014. One litre of mixture of surface and sub-surface water (ca. 0.5 m below the water surface)
and one kilogram of sediment were collected in duplicates using Van Dorn water sampler/glass
bottle and Ekman grab, respectively. The seawater sampling was repeated in 2015, at 10
selected locations covering different potential sources of OTs. The influent and effluent of Stan-
ley Sewage Treatment Works were also collected (S4 Table with geographical coordinates of all
sampling sites). All samples were collected in two or three replicates, and were kept in ice and
sent to the laboratory for analysis within 6 h of collection.

Chemical analysis
Rock shells from each site were pooled as three or four replicates, each having 8–15 individuals.
We adopted established methods for analyses for OTs ([21] for rock shell and sediment; [22]
for water with slight modifications; see S5 Table). HPLC grade solvents were used (Tedia,
USA). Chemical standards were purchased from Sigma-Aldrich (St. Louis, USA) and Chiron
(Trondheim, Norway). Quantification of six OTs, including MBT, DBT, TBT, monophenyltin
(MPT), diphenyltin (DPT) and TPT, was conducted using a gas chromatograph (GC; Agilent
6890, USA) equipped with a mass-selective detector (Agilent 5973). A DB-5MS fused silica
capillary GC column (J&W Scientific Inc., USA) was used with film thickness of 0.25 mm i.d. ×
30 m × 0.25 μm (more analytical parameters are available in S6 Table). Satisfactory recovery
rates were obtained for the six OTs ranging from 64.6%–93.5% except DPT (S7 Table). The
method was further validated by using a certified reference material [21]. A procedural blank
was simultaneously analysed every batch of five samples. The detection limits were estimated
at 0.2–1.5 μg kg-1 dry weight (dw) for tissue and sediment samples, and 0.4–2.6 ng L-1 for water
samples (except 29.1 ng L-1 for MBT). All concentrations were reported without correction to
the recovery rates.

Degradation indices of butyltins (BDI) and phenyltins (PDI) were calculated based on the
measured tissue concentrations [23]:

BDI ¼ ð½MBT� þ ½DBT�Þ = ½TBT�

PDI ¼ ð½MPT� þ ½DPT�Þ = ½TPT�

Statistical analysis
Mean VDSI, RPSI, percentage of sterile female, tissue TBT, TPT and total OTs concentrations
were temporally compared among surveys in 2004 [14], 2005/06 [20], 2010 and 2015 (present
study) using paired-samples t test (with log10-transformed data) or Wilcoxon signed-rank test.
Correlations among tissue OTs concentrations, imposex indices and condition index (= fresh
tissue weight x 100 / (fresh tissue weight + dry shell mass) [24] were tested using Spearman’s
rank correlation analyses followed by sequential Bonferroni correction [25]. Relationships of
the distance between the sampling site and its nearest harbour or marina (estimated using Goo-
gle Map) and imposex indices, OTs concentrations and condition index were tested using
Spearman’s rank correlation analyses with Bonferroni correction.

All statistical tests were conducted using SPSS Statistics 19.0 (SPSS Inc., USA) and Microsoft
EXCEL 2003 (Microsoft Corporation, USA).
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Probabilistic ecological risk assessment
To evaluate the ecological risk of BTs and PTs on the populations of R. clavigera, a probabilistic
risk assessment was conducted by calculating the risk quotient (RQ; see S8–S10 Tables):

RQ ¼ Measured tissue concentration ðMTCÞ
Predicted no effect tissue concentration ðPNETCÞ

If the calculated RQ� 1, the R. clavigera population is at risk due to the exposure to BTs or
PTs [14]. Distributions of RQs (for BTs and PTs respectively), based on the distributions of
respective MTCs and PNETCs which were fitted with log-logistic or Pareto models, were com-
puted using Monte Carlo simulation with 10,000 iterations for 10 times. The RQ distribution
was truncated as only RQ� 0 was relevant. The simulations were carried out using @Risk 5.7
(Palisade Corporation, USA).

Results

Imposex status of rock shell
Imposex occurred in all females in both the 2010 and 2015 surveys (i.e., 100% imposex;
Table 1). In 2010, the highest imposex levels were observed in rock shells from Sok Kwu
Wan (VDSI = 5.73, RPSI = 37.70) and Sai Kung Pier (VDSI = 4.94, RPSI = 94.66), whereas the
lowest VDSI (2.61) and RPSI (1.19) were observed in Waglan Island. In 2015, among the 10
survey sites, the highest imposex levels were still observed in individuals from Sok KwuWan
(VDSI = 5.22, RPSI = 38.87) and Sai Kung Pier (VDSI = 4.78, RPSI = 48.00), while the lowest
were in Po Toi (VDSI = 3.61, RPSI = 9.61) and Turtle Cove (VDSI = 3.74, RPSI = 8.05) respec-
tively. Stage-1 individuals were found in four sites (Clear Water Bay, Deep Water Bay, Mui Wo
and Kadoorie Beach) in 2010, while none of them were found in 2015. Conversely, stage-6 indi-
viduals were observed in only 17 sites (59%) in 2010, whereas in 2015 they were present in all
of the 10 sites.

Temporally, the females continued displaying 100% imposex from surveys in 2004 to 2015
(Table 1). Site-to-site comparisons showed no differences of VDSI between 2004–06 and 2010
(Wilcoxon signed-rank test: Z = 0.330, p> 0.05), while VDSI slightly increased during 2010 to
2015 (Paired-samples t test: t = 2.412, p< 0.05). RPSI, however, increased steadily between
2004–06 and 2010 (t = 4.350, p< 0.001), and between 2010 and 2015 (t = 2.429, p< 0.05). On
the other hand, the percentage of sterile females increased significantly between 2004–2006
and 2010 (Z = 3.943, p< 0.001), and 8 out of 10 sites continued this increasing trend between
2010 and 2015 (Table 1).

Tissue OT concentrations and degradation indices
Tissue concentrations of total OTs in R. clavigera ranged from 318.5–11,278.9 μg kg-1 dw in
2010 (equivalent to 24.2–769.0 μg Sn kg-1 wet weight (ww)), and from 643.9–15,304.9 μg kg-1

dw in 2015 (equivalent to 46.5–1039.4 μg Sn kg-1 ww) (Fig 2A). TPT, which ranged from
227.9–11,108.0 μg kg-1 dw in 2010 (equivalent to 15.4–751.4 μg Sn kg-1 ww) and 612.4 to
15,059.6 μg kg-1 dw in 2015 (equivalent to 41.4–1,018.6 μg Sn kg-1 ww) respectively, was the
predominant residue accounting for 46–99% (2010) and 90–98% (2015) of total OTs. Concen-
trations of TBT ranged from 5.8 to 422.0 μg kg-1 dw in 2010 (equivalent to 0.5–34.5 μg Sn kg-1

ww), and from below detection limit to 117.3 μg kg-1 dw in 2015 (equivalent to below detection
limit–9.6 μg Sn kg-1 ww). MBT, DBT, MPT and DPT were also detected (S11 Table for dry
weight and S12 Table for wet weight, respectively). Eighteen out of 26 sites had BDI< 1 in
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2010, while 9 out of 10 sites in 2015 showed BDI> 1. All sites showed PDI< 1 in 2010 was
except in Chek Chau, while they all fell below 1 in 2015 (S13 Table).

Fig 2. Concentrations of total organotins. These include triphenyltin (TPT), diphenyltin (DPT), monophenyltin (MPT), tributyltin (TBT), diphenyltin (DPT)
and monobutyltin (MBT) in (a) tissue samples of Reishia clavigera collected in 2010 and 2015 (n = 3 or 4); (b) sediment samples collected in 2014 (n = 2);
and (c) seawater samples collected in 2014 and 2015, plus samples of sewage in/effluent collected in 2015 (n = 2 or 3). NA means data not available.

doi:10.1371/journal.pone.0155632.g002
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Site-to-site comparisons among years showed that tissue TBT concentrations significantly
increased during 2004–2006 and 2010 (t = 3.637, p< 0.001), while it decreased from 2010 to
2015 (Z = -2.803, p< 0.01). For TPT and total OTs, their concentrations remained similar
between 2010 and 2015 (Z = 0.866, p> 0.05) (S11 and S12 Tables).

Correlations among OT concentrations, imposex indices and condition
index
Tissue concentration of total OTs was positively correlated with TPT concentration (in 2010:
rs = 0.994, p< 0.001; S14 Table and in 2015: rs > 0.999, p< 0.001; S15 Table). There was, in
general, good agreement among mean VDSI, median VDSI and RPSI although sometimes it
was statistically insignificant after Bonferroni corrections. A significant positive relationship
was also found between tissue TBT concentration and RPSI (rs = 0.560, p< 0.01) in 2010, and
between tissue TPT concentration and RPSI (rs = 0.855, p< 0.01) in 2015 (S14 and S15
Tables).

Relationships between shipping activities and OT contaminations
In general, imposex status (VDSI, RPSI and percentage of sterile females) and tissue concentra-
tions of OTs decreased with the distance to the nearest facility with high shipping activities as
shown in 2010 and 2015, although some combinations showed statistically insignificant results
after Bonferroni corrections (S16 Table).

OT concentrations in seawater and sediment
Total OTs concentrations ranged from 83.7 to 255.5 ng g-1 dw in sediment, and 20.5 to 41.9 ng
L-1 in seawater, respectively measured in 2014. The two sampling stations in Aberdeen (A and
B) showed the highest OTs concentrations in seawater and sediment (Fig 2B and 2C). TPT was
the most abundant among all OT residues, accounting for 45–63% in seawater and 71–72% in
sediment, respectively. TBT accounted for a higher percentage among OTs in seawater (25–
37%) than that in sediment (13%).

In 2015, the range of total OTs concentrations was between 74.5 and 753.3 ng L-1 in seawa-
ter and sewage (Fig 2C; S4 Table). Among all, the influent of the sewage treatment plant
showed the highest OTs concentration. MBT was the predominating compound (75–95% of
total OTs) in these samples.

Ecological risk assessment
Cumulative distributions of six PNETC values were constructed for BTs (S8 Table) and PTs
(S9 Table), respectively. In 2010, all 29 sites were seriously impacted by PTs, as shown by the
overlap of MTC and PNETC distributions (Fig 3A). This situation continued in 2015, where all
10 sites had MTCs higher than the lowest PNETC. The results of the probabilistic risk assess-
ment suggested that local R. clavigera collected in 2010 had 17.6% of chance to be at risk from
exposure to PTs (i.e., RQ� 1; Fig 3B), while the chance that R. clavigera being at risk has signif-
icantly increased to 69.4% in 2015 (Fig 3C).

Using total BTs instead of TBT, we reconstructed the distribution of tissue concentrations
of total BTs and the computed risk quotients for 2004 (data extracted from Leung et al. [12]).
The number of sites that was severely impacted by BTs reduced from five (2004) to two (2010),
while all 10 sites had MTCs lower than the smallest PNETC in 2015 (Fig 4A). The chance for
R. clavigera being impacted by BTs decreased from 1.6% to 0.7% during 2004 to 2010, but
slightly increased to 3.4% in 2015 (Fig 4B–4D).
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Discussion

Spatial variation of OT contamination
Generally, the eastern waters of Hong Kong, except inner Sai Kung, exhibited lower OT con-
tamination (i.e., low VDSI and RPSI) in R. clavigera, due to less intense shipping activities and
the prevailing ocean current helped mix, dilute and wash away the pollutants. The western
waters, however, were more polluted due to (1) intense shipping activities around the container
terminals in Kwai Chung, Tsing Yi and Tuen Mun and (2) contaminated freshwater input

Fig 3. Results of the probabilistic ecological risk assessment. These include (a) species sensitivity
distribution to phenyltins (PTs) constructed based on chronic toxicity data from literatures (PNETCs; filled
circle) and distribution of tissue concentrations of total PTs in Reishia clavigera from this study (MTCs; 2010:
open circle; 2015: open diamond); and (b) distribution of the computed risk quotients (RQs) of 2010 and (c)
2015 generated fromMonte Carlo simulation. Site numbers (see Table 1) are labelled next to the open circles
and diamonds in (a).

doi:10.1371/journal.pone.0155632.g003
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Fig 4. Results of the probabilistic ecological risk assessment. These include (a) species sensitivity
distribution to butyltins (BTs) constructed based on chronic toxicity data from literatures (PNETCs; filled
circle) and distribution of tissue concentrations of total BTs in Reishia clavigera from this study (MTCs; 2010:
open circle; 2015: open diamond) and from the study in 2004 (Leung et al. [14]; open triangle); (b) distribution
of the computed risk quotients (RQs) of the study in 2004 (modified from Leung et al. [14]), (c) 2010 and (d)
2015 generated fromMonte Carlo simulation. Site numbers (see Table 1) are labelled next to the open
circles, triangles and diamonds in (a).

doi:10.1371/journal.pone.0155632.g004
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from the Pearl River Delta (PRD) originated from agricultural and industrial activities. Con-
ventionally, the water, sediment and biota in PRD were heavily contaminated by OTs [26]. For
example, TBT concentration in PRD’s estuarine water could reach 38.5 ng L-1 which was 4–20
folds higher than the environmental standards in the United States and United Kingdom [27].
We also detected higher concentrations of OTs in seawater samples (over 200 ng L-1) from the
western waters of Hong Kong (sites F, G, H and I; Fig 2C).

Specifically, areas of fish villages and typhoon shelters with intense shipping activities such
as Sok KwuWan and Aberdeen, exhibited the highest levels of VDSI in R. clavigera. Sai Kung
Pier, which recorded the highest RPSI and tissue concentrations of TPT and total OTs, is a hot-
spot for ferries and leisure boats especially during summer. The highest TBT levels in R. clavi-
gera were observed in Kadoorie Beach and Butterfly Beach, where are close to the typhoon
shelter in Tuen Mun. These results were in line with the lowest PDI and BDI found in these
areas, indicating recent inputs of TPT and TBT, respectively. The findings were also supported
by the highest TBT concentration and the second highest TPT concentration found in seawater
in the same location (site H). Moreover, the positive association between OT contamination
and proximity to shipping activities was consistent with previous studies [28], and this further
supported that marine shipping activities are highly possibly a major source of OT contamina-
tion. The input of TPT might reflect the replacement of TPT from TBT as the active antifouling
agent in Hong Kong and South China which deserves further investigations on the ingredients
of the currently used antifouling paints.

The concentrations of OTs in sediment and in seawater measured in this territorial-wide
study, i.e., in sediment (83.7–255.5 ng g-1 dw) and in seawater samples of 2014 (20.5–41.9 ng
L-1) and 2015 (74.5–461.1 ng L-1), were much higher than those measured in a parallel study
that sampled in four marine protected areas in Hong Kong (46.2–126.4 ng g-1 dw in sediment
and 0.8–7.8 ng L-1 in seawater; Xu et al., unpublished results). Considering the results in 2015,
the highest concentrations of butyltins (mainly MBT and DBT) in water were linked to storm-
water drainage (site F, G), nullah discharge (site K and I) and sewage (influent and effluent of
treatment plant). This could be due to the industrial and domestic releases of such compounds
from PVC pipes, antifungal coatings on textiles and wood preservatives [29] especially during
the wet summer season when there were increased amounts of rainfall and surface runoff. Sim-
ilarly, we observed increased concentrations of nonylphenols in a marine reserve in Hong
Kong during summer [30]. In contrast, phenyltins were likely associated with shipping activi-
ties as sites C, F and H showed the highest concentrations among seawater samples, as well as
in the influent of the sewage treatment plant (S4 Table). In Hong Kong, over 80% of population
uses seawater for toilet flushing and such saline wastewater enters sewage treatment plants
[31]. Thus, it is not surprised to see the sewage influent being contaminated with organotins.
Overall, OT contamination is still a widespread problem in Hong Kong which requires more
in-depth investigations on the sources of these pollutants.

Temporal trends of OT contamination
We consistently showed 100% imposex in female R. clavigera and further noted the increases
of imposex indices and the percentage of sterile females in 2010 and 2015, suggesting that OT
contamination is persistent. Interestingly, although there was a reduction of TBT concentration
in R. clavigera during 2010 to 2015, the ecological risks of the rock shell populations exposed to
BTs increased over the period. This is attributed to the increases in concentrations of MBT and
DBT, in which the former compound is the most abundant among all OTs found in the seawa-
ter samples. However, in certain less impacted sites such as Shek Mei Tao, Clear Water Bay
and Chek Chau, there were elevated tissue concentrations of TBT in 2010 comparing to those
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in 2004 and the maximum amount of increase was 384.5 μg kg-1 dw, or 195 folds. This may be
attributed to the proximity of these sites towards the fish culture zones in Po Toi O and Tap
Mun. Although TBT was detected at low concentrations in the seawater samples in the present
study, it could be due to the fact that TBT is easily degraded into DBT, and further into MBT
in seawater as compared to their degradation rates in sediment and biota [30]. Moreover,
marine organisms can readily take up the pollutants once they passively diffused from sedi-
ment into seawater [32] in addition to the terrestrial sources of butyltins. The lack of regula-
tions to control the use and release of these compounds [33], or the lack of proper enforcement
of existing regulations [34] worsens the situation. Not surprisingly, high levels of TBT were still
detected in Asia where there is a lack of comprehensive regulations on its use and release [35,
36], or there are antifouling fragments remained in shipyards [37] and illegal uses of TBT in
places such as mariculture farms [38].

As TPT is applied as co-toxicant in antifouling systems with TBT [39], these two compounds
often coexisted in marine organisms with high concentrations [40], and both have comparative
potencies in triggering imposex in R. clavigera [5, 41]. The present study was the first one quanti-
fying concentrations of various PTs (i.e., MPT, DPT and TPT) in the tissues of R. clavigera and
in coastal water and sediment from Hong Kong. In the past, TPT and its degradation products
were seldommeasured in any compartment (i.e., water, sediment and biota) of local waters.
Nakayama et al. first reported higher TPT concentration (up to 400 ng g-1 ww) in the liver of the
finless porpoise (Neophocaena phocaenoides) collected locally as compared to cetaceans from
other Asian locations [42]. Recent studies also documented TPT as the dominating compounds
among OTs in several gastropod species including R. clavigera collected in Shenzhen [43, 44],
and in several seafood species sampled in Hong Kong [23] suggesting that the coastal marine
environment of South China was severely contaminated with TPT. The present study confirmed
the high concentrations of TPT not only in marine organisms but also in seawater and sediment
fromHong Kong waters, whereas the concentrations of TBT relatively low.

Comparison of OT contamination with other regions
We found fluctuations in concentrations of TBT in R. clavigera. This does not agree with the
global decreasing trend [45] which could possibly due to the terrestrial input of TBT and the
passive diffusion from sediment. While plentiful information of TBT is available, only limited
monitoring studies had incorporated measurements of TPT. Shim et al. recorded TPT concen-
tration in R. clavigera up to 2,460 ng Sn g-1 dw (ca. 7,256 μg TPT kg-1 dw) in Korea [40], which
was comparable to the highest TPT concentration (i.e., 15,060 μg kg-1 dw) measured in the
present study. In Japan, however, tissue TPT concentrations in R. clavigera were relatively low
and decreasing [46]. Nonetheless, notable amount of TPT, with comparison of TBT, was
detected in sediment from a Japanese fishing port [47]. In agreement with the present study,
higher tissue concentrations of TPT, compared to TBT, were also detected in R. clavigera from
Korea [40] and Taiwan [48]. In fishes collected from Bohai Bay, China, TPT concentrations
(34.7 ng g-1 wet weight) were higher than those of TBT [49], but they were much lower than
the concentrations measured in gastropods in the present study. This suggested that contami-
nation of TPT could be a widespread problem in Asia. A more comprehensive study covering a
wider range of areas is needed to understand the environmental fate and contemporary sources
of OTs especially TPT in Asian coasts.

Implications for management action
Being an associate member of IMO which has yet to ratify the AFS Convention [50], Hong
Kong demonstrated to other countries or areas of similar status, such as Thailand, Vietnam
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and Philippines, that only internationally-bound regulatory measures are not sufficient to con-
trol chemical contamination, such as OTs, in regional scale. Based on the experience from the
US, Europe and Japan, local legislations in controlling the use of OTs as antifouling paints, pes-
ticides, fungicides and other industrial uses should be more promising and effective in reducing
OT contamination [51]. The Legislative Council of Hong Kong passed the Merchant Shipping
(Control of Harmful Anti-Fouling Systems on Ships) Regulation (under Cap. 413) on 3 June
2015, and the government is now requesting the Central People's Government of China to
notify the IMO the extension of the Convention to Hong Kong [52]. The present study, there-
fore, call for urgent implementation of the Convention and appropriate management actions
to remediate the pollution and impacts of these compounds in the marine environment of this
region.

Conclusions
Although OTs, as antifouling agents, were banned globally, they have been contaminating the
coastal marine environment of Hong Kong over the past two decades and causing ecological
risk to local rock shell populations. This study demonstrated that the implementation of the
international regulation alone may not be effective enough in controlling widespread environ-
mental problems, local and regional management actions are urgently needed to remediate the
pollution of these compounds from various sources.

Supporting Information
S1 Table. Geographical and morphological information of Reishia clavigera collected in
Hong Kong in 2010.
(DOCX)

S2 Table. Geographical and morphological information of Reishia clavigera collected in
Hong Kong in 2015.
(DOCX)

S3 Table. Method of evaluating Vas Deferens Sequence Index (VDSI) and Relative Penis
Size Index (RPSI).
(DOCX)

S4 Table. Concentrations of organotins in water.
(DOCX)

S5 Table. Chemical analyses (sample collection, extraction and clean-up) of organotin in
samples of rock shell and sediment, and in water.
(DOCX)

S6 Table. Analytical parameters of gas chromatography-mass spectrometer.
(DOCX)

S7 Table. Average recoveries of spiked organotin standards into clean mussel samples.
(DOCX)

S8 Table. Method of evaluating risk quotient.
(DOCX)

S9 Table. Chronic and sub-chronic toxicity values of body concentration of tributyltin for
molluscs.
(DOCX)

Spatio-Temporal Trends of Organotin Contaminations in Hong KongWaters

PLOS ONE | DOI:10.1371/journal.pone.0155632 May 13, 2016 13 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155632.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155632.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155632.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155632.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155632.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155632.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155632.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155632.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155632.s009


S10 Table. Chronic and sub-chronic toxicity values of body concentration of triphenyltin
for molluscs.
(DOCX)

S11 Table. Tissue concentrations (in μg kg-1 dry weight) of six organotins (OTs): monobu-
tyltin (MBT), dibutyltin (DBT), tributyltin (TBT), monophenyltin (MPT), diphenyltin
(DPT) and triphenyltin (TPT) in Reishia clavigera collected in 2004–06, 2010 and 2015
from Hong Kong.
(DOCX)

S12 Table. Tissue concentrations (in μg Sn kg-1 wet weight) of six organotins (OTs): mono-
butyltin (MBT), dibutyltin (DBT), tributyltin (TBT), monophenyltin (MPT), diphenyltin
(DPT) and triphenyltin (TPT) in Reishia clavigera collected in 2004–06, 2010 and 2015
from Hong Kong.
(DOCX)

S13 Table. Degradation indices (Butyltin Degradation Index, BDI and Phenyltin Degrada-
tion Index, PDI) of butyltin and phenyltin compounds in the tissues of Reishia clavigera.
(DOCX)

S14 Table. Results of Spearman’s rank correlation analyses among tissue concentrations of
total organotins (total OTs), triphenyltin (TPT), diphenyltin (DPT), tributyltin (TBT),
Relative Penis Size Index (RPSI), median Vas Deferens Sequence Index (VDSI), mean
VDSI and condition index (CI) in Reishia clavigera collected in 2010.
(DOCX)

S15 Table. Results of Spearman’s rank correlation analyses among tissue concentrations of
total organotins (total OTs), triphenyltin (TPT), diphenyltin (DPT), tributyltin (TBT),
Relative Penis Size Index (RPSI), median Vas Deferens Sequence Index (VDSI), mean
VDSI and condition index (CI) in Reishia clavigera collected in 2015.
(DOCX)

S16 Table. Spearman’s rank correlation analyses between the distance to major shipping
activities and imposex status (including Vas Deferens Sequence Index (VDSI) and Relative
Penis Size Index (RPSI)), condition index and tissue concentrations of organotins.
(DOCX)

S17 Table. List of references of Supporting Information (S1–S16 Tables).
(DOCX)

Acknowledgments
We thank the student helpers for their assistance in sampling, Helen Leung and Jessie Lai for
their technical support, Edward Lau for proofreading the draft manuscript. We are also grateful
to the Academic Editor of PLOS ONE, Professor Jong-Seong Khim and the four anonymous
reviewers for providing their valuable and constructive comments on this work.

Author Contributions
Conceived and designed the experiments: KKYH GJZ EGBX XWKMYL. Performed the exper-
iments: KKYH GJZ EGBX. Analyzed the data: KKYH GJZ EGBX. Contributed reagents/mate-
rials/analysis tools: KKYH GJZ EGBX. Wrote the paper: KKYH GJZ EGBX XW KMYL.

Spatio-Temporal Trends of Organotin Contaminations in Hong KongWaters

PLOS ONE | DOI:10.1371/journal.pone.0155632 May 13, 2016 14 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155632.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155632.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155632.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155632.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155632.s014
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155632.s015
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155632.s016
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155632.s017


References
1. Yi AXL, Leung KMY, LamMHW, Lee JS, Giesy JP. Review of measured concentrations of triphenyltin

compounds in marine ecosystems and meta-analysis of their risks to humans and the environment.
Chemosphere. 2012; 89: 1015–1025. doi: 10.1016/j.chemosphere.2012.05.080 PMID: 22704212

2. Alzieu C, Sanjuan J, Michel P, Borel M, Dreno JP. Monitoring and assessment of butyltins in Atlantic
coastal waters. Mar Pollut Bull. 1989; 20: 22–26.

3. Shi HH, Huang CJ, Zhu SX, Yu XJ, Xie WY. Generalized system of imposex and reproductive failure in
female gastropods of coastal waters of mainland China. Mar Ecol Prog Ser. 2005; 304: 179–189.

4. Gibbs PE, Bryan GW, Pascoe PL, Burt GR. The use of dog-whelk, Nucella lapillus, as an indicator of tri-
butyltin (TBT) contamination. J Mar Biol Assoc UK. 1987; 67: 507–523.

5. Horiguchi T, Shiraishi H, Shimizu M, Morita M. Effects of triphenyltin chloride and five other organotin
compounds on the development of imposex in the rock shell, Thais clavigera. Environ Pollut. 1997; 95:
85–91. PMID: 15093477

6. Gibbs PE, Bryan GW. Reproductive failure in populations of the dog-whelk, Nucella lapillus, caused by
imposex induced by tributyltin from antifouling paints. J Mar Biol Assoc UK. 1986; 66: 767–777.

7. Marine Department. Port of Hong Kong Statistical Tables 2014. 2015. Available: http://www.mardep.
gov.hk/en/publication/pdf/portstat_ast_2014.pdf.

8. Kueh CSW, Lam JYC. Monitoring of toxic substances in the Hong Kong marine environment. Mar Pollut
Bull. 2008; 57: 744–757. doi: 10.1016/j.marpolbul.2008.01.044 PMID: 18358499

9. Lau MMM. Tributyltin antifoulings: A threat to the Hong Kong marine environment. Arch Environ Con-
tam Toxicol. 1991; 20: 299–304. PMID: 1859205

10. Sonak S, Pangam P, Giriyan A, Hawaldar K. Implications of the ban on organotins for protection of
global coastal and marine ecology. J Environ Manage. 2009; 90: S96–S108. doi: 10.1016/j.jenvman.
2008.08.017 PMID: 18977581

11. RPA, Risk & Policy Analysts Limited. Risk assessment studies on targeted consumer applications of
certain organotin compounds—Final Report. 2005. Available: http://ec.europa.eu/enterprise/sectors/
chemicals/files/studies/organoti ns_3rd_report_16_sept_2005_en.pdf.

12. Morton B. Recovery from imposex by a population of the dogwhelk,Nucella lapillus (Gastropoda: Cae-
nogastropoda), on the southeastern coast of England since May 2004: A 52-month study. Mar Pollut
Bull. 2009; 58: 1530–1538. doi: 10.1016/j.marpolbul.2009.05.012 PMID: 19501847

13. IMO, International Maritime Organization. International Convention on the Control of Harmful Anti-foul-
ing Systems on Ships. 2008. Available: http://www.imo.org/en/About/Conventions/ListOfConventions/
Pages/International-Convention-on-the-Control-of-Harmful-Anti-fouling-Systems-on-Ships-(AFS).
aspx.

14. Leung KMY, Kwong RPY, NgWC, Horiguchi T, Qiu JW, Yang R, et al. Ecological risk assessments of
endocrine disrupting organotin compounds using marine neogastropods in Hong Kong. Chemosphere.
2006; 65: 922–938. PMID: 16674992

15. Tong LKY. The reproductive biology of Thais clavigera andMorula musiva (Gastropoda: Muricidae) in
Hong Kong. Asian Mar Biol. 1988; 5: 65–75.

16. Mak YM. The Effects of TBT on Dogwhelk Population around Hong Kong. Environmental Science Proj-
ect Report. Hong Kong: The University of Hong Kong; 1992.

17. Blackmore GR. Imposex in Thais clavigera (Neogastropoda) as an indicator of TBT (tributyltin) bioavail-
ability in coastal waters of Hong Kong. J Mollus Stud. 2000; 66: 1–8.

18. Li Z. The Incidence of Imposex in Intertidal Gastropods from Hong Kong. In: Shin PKS, editor. Turning
the Tides, a Festschrift in Honour of Professor Brian Morton. Hong Kong: The Marine Biological Asso-
ciation of Hong Kong; 2003. pp. 227–254.

19. Chan KM, Leung KMY, Cheung KC, Wong MH, Qiu JW. Seasonal changes in imposex and tissue bur-
den of butyltin compounds in Thais clavigera populations along the coastal area of Mirs Bay, China. Mar
Pollut Bull. 2008; 57: 645–651. doi: 10.1016/j.marpolbul.2008.02.040 PMID: 18413276

20. Qiu JW, Chan KM, Leung KMY. Seasonal variations of imposex indices and butyltin concentrations in
the rock shell Thais clavigera collected from Hong Kong waters. Mar Pollut Bull. 2011; 63: 482–488.
doi: 10.1016/j.marpolbul.2011.02.032 PMID: 21429533

21. Guðmundsdóttir LÓ, Ho KKY, Lam JCW, Svavarsson J, Leung KMY. Long-term temporal trends
(1992–2008) of imposex status associated with organotin contamination in the dogwhelkNucella lapil-
lus along the Icelandic coast. Mar Pollut Bull. 2011; 63: 500–507. doi: 10.1016/j.marpolbul.2011.02.
012 PMID: 21388643

Spatio-Temporal Trends of Organotin Contaminations in Hong KongWaters

PLOS ONE | DOI:10.1371/journal.pone.0155632 May 13, 2016 15 / 17

http://dx.doi.org/10.1016/j.chemosphere.2012.05.080
http://www.ncbi.nlm.nih.gov/pubmed/22704212
http://www.ncbi.nlm.nih.gov/pubmed/15093477
http://www.mardep.gov.hk/en/publication/pdf/portstat_ast_2014.pdf
http://www.mardep.gov.hk/en/publication/pdf/portstat_ast_2014.pdf
http://dx.doi.org/10.1016/j.marpolbul.2008.01.044
http://www.ncbi.nlm.nih.gov/pubmed/18358499
http://www.ncbi.nlm.nih.gov/pubmed/1859205
http://dx.doi.org/10.1016/j.jenvman.2008.08.017
http://dx.doi.org/10.1016/j.jenvman.2008.08.017
http://www.ncbi.nlm.nih.gov/pubmed/18977581
http://ec.europa.eu/enterprise/sectors/chemicals/files/studies/organoti ns_3rd_report_16_sept_2005_en.pdf
http://ec.europa.eu/enterprise/sectors/chemicals/files/studies/organoti ns_3rd_report_16_sept_2005_en.pdf
http://dx.doi.org/10.1016/j.marpolbul.2009.05.012
http://www.ncbi.nlm.nih.gov/pubmed/19501847
http://www.imo.org/en/About/Conventions/ListOfConventions/Pages/International-Convention-on-the-Control-of-Harmful-Anti-fouling-Systems-on-Ships-(AFS).aspx
http://www.imo.org/en/About/Conventions/ListOfConventions/Pages/International-Convention-on-the-Control-of-Harmful-Anti-fouling-Systems-on-Ships-(AFS).aspx
http://www.imo.org/en/About/Conventions/ListOfConventions/Pages/International-Convention-on-the-Control-of-Harmful-Anti-fouling-Systems-on-Ships-(AFS).aspx
http://www.ncbi.nlm.nih.gov/pubmed/16674992
http://dx.doi.org/10.1016/j.marpolbul.2008.02.040
http://www.ncbi.nlm.nih.gov/pubmed/18413276
http://dx.doi.org/10.1016/j.marpolbul.2011.02.032
http://www.ncbi.nlm.nih.gov/pubmed/21429533
http://dx.doi.org/10.1016/j.marpolbul.2011.02.012
http://dx.doi.org/10.1016/j.marpolbul.2011.02.012
http://www.ncbi.nlm.nih.gov/pubmed/21388643


22. Okoro HK, Fatoki OS, Ximba BJ, Adekola FA, Snyman RG. Development of an analytical method for
determining tributyltin and triphenyltin in seawater, sediment, and mussel samples using GC-FPD and
GC-MS-TOF. Pol J Environ Stud. 2012; 21: 1743–1753.

23. Ho KKY, Leung KMY. Organotin contamination in seafood and its implication for human health risk in
Hong Kong. Mar Pollut Bull. 2014; 85: 634–640. doi: 10.1016/j.marpolbul.2013.12.039 PMID:
24456855

24. Lau DCP, Leung KMY. Feeding physiology of the carnivorous gastropod Thais clavigera (Küster): do
they eat “soup”? J Exp Mar Biol Ecol. 2004; 312: 43–66.

25. RiceWR. Analyzing tables of statistical tests. Evolution. 1989; 43: 223–225.

26. Fu J, Mai B, Sheng G, Zhang G, Wang X, Peng P, et al. Persistent organic pollutants in environment of
the Pearl River Delta, China: an overview. Chemosphere. 2003; 52: 1411–1422. PMID: 12867171

27. Zhang G, Yan J, Fu JM, Parker A, Li XD, Wang ZS. Butyltins in sediments and biota from the Pearl
River Delta, South China. Chem Speciat Bioavailab. 2002; 14: 35–42.

28. Wang XH, Hong HS, Zhao DM, Hong LY. Environmental behavior of organotin compounds in the
coastal environment of Xiamen, China. Mar Pollut Bull. 2008; 57, 419–424. doi: 10.1016/j.marpolbul.
2008.04.034 PMID: 18513756

29. Antizar-Ladislao B. Environmental levels, toxicity and human exposure to tributyltin (TBT)—contami-
nated marine environment. A review. Environ Int. 2008; 34: 292–308. PMID: 17959247

30. Xu EGB, Morton B, Lee JH, Leung KM. Environmental fate and ecological risks of nonylphenols and
bisphenol A in the Cape D’Aguilar Marine Reserve, Hong Kong. Mar Pollut Bull. 2015; 91: 128–138.
doi: 10.1016/j.marpolbul.2014.12.017 PMID: 25561005

31. Tang SL, Yue DPT, Li XZ. Comparison of engineering costs of raw freshwater, reclaimed water and
seawater for toilet flushing in Hong Kong. Water Environ J. 2007; 20: 240–247.

32. Ruiz JM, Díaz J, Albaina N, Couceiro L, Irabien A, Barreiro R. Decade-long monitoring reveals a tran-
sient distortion of baseline butyltin bioaccumulation pattern in gastropods. Mar Pollut Bull. 2010; 60:
931–934. doi: 10.1016/j.marpolbul.2010.04.005 PMID: 20430408

33. Cao D, Jiang G, Zhou Q, Yang R. Organotin pollution in China: An overview of the current state and
potential health risk. J Environ Manage. 2009; 90: S16–S24. doi: 10.1016/j.jenvman.2008.06.007
PMID: 18973975

34. ChampMA. Economic and environmental impacts on ports and harbors from the convention to ban
harmful marine anti-fouling systems. Mar Pollut Bull. 2003; 46: 935–940. PMID: 12907186

35. Harino H, Eguchi S, Ohji M. Occurrence of antifouling biocides in Japan and Southeast Asia: The sur-
vey for 10 years. Coast Mar Sci. 2012; 35: 246–254.

36. Tang CH, WangWH. Organotin accumulation in oysters and rock shells under field conditions. J Envi-
ron Monit. 2009; 11: 1601–1607. doi: 10.1039/b907172e PMID: 19724828

37. Choi JY, Hong GH, Ra K, Kim KT, Kim K. Magnetic characteristics of sediment grains concurrently con-
taminated with TBT and metals near a shipyard in Busan, Korea. Mar Pollut Bull. 2014; 85: 679–685.
doi: 10.1016/j.marpolbul.2014.03.029 PMID: 24703766

38. Murai R, Takahashi S, Tanabe S, Takeuchi I. Status of butyltin pollution along the coasts of western
Japan in 2001, 11 years after partial restrictions on the usage of tributyltin. Mar Pollut Bull. 2005; 51:
940–949. PMID: 16112144

39. Stäb JA, Traas TP, Stroomberg G, Kesteren J, Leonards P, Hattum B, et al. Determination of organotin
compounds in the foodweb of a shallow freshwater lake in The Netherlands. Arch Environ Contam Tox-
icol. 1996; 31: 319–328. PMID: 8854825

40. ShimWJ, Kahng SH, Hong SH, Kim NS, Kim SK, Shim JH. Imposex in the rock shell, Thais clavigera,
as evidence of organotin contamination in the marine environment of Korea. Mar Environ Res. 2000;
49: 435–451. PMID: 11285722

41. Horiguchi T, Shiraishi H, Shimizu M, Morita M. Imposex in sea snails, caused by organotin (tributyltin
and triphenyltin) pollution in Japan: a survey. Appl Organomet Chem. 1997; 11: 451–455.

42. Nakayama K, Matsudaira C, Tajima Y, Yamada TK, Yoshioka M, Isobe T, et al. Temporal and spatial
trends of organotin contamination in the livers of finless porpoises (Neophocaena phocaenoides) and
their association with parasitic infection status. Sci Total Environ. 2009; 407: 6173–6178. doi: 10.1016/
j.scitotenv.2009.08.043 PMID: 19772937

43. Deng L, Liu GH, Zhang HM, Xu HL. Levels and assessment of organotin contamination at Futian Man-
groveWetland in Shenzhen, China. Reg Stud Mar Sci. 2015; 1: 18–21.

44. Ho KKY, Leung KMY. Spatio-temporal comparisons of imposex status and tissue organotin concentra-
tion in the whelk Reishia clavigera collected along the coasts of Dapeng Bay and Daya Bay in

Spatio-Temporal Trends of Organotin Contaminations in Hong KongWaters

PLOS ONE | DOI:10.1371/journal.pone.0155632 May 13, 2016 16 / 17

http://dx.doi.org/10.1016/j.marpolbul.2013.12.039
http://www.ncbi.nlm.nih.gov/pubmed/24456855
http://www.ncbi.nlm.nih.gov/pubmed/12867171
http://dx.doi.org/10.1016/j.marpolbul.2008.04.034
http://dx.doi.org/10.1016/j.marpolbul.2008.04.034
http://www.ncbi.nlm.nih.gov/pubmed/18513756
http://www.ncbi.nlm.nih.gov/pubmed/17959247
http://dx.doi.org/10.1016/j.marpolbul.2014.12.017
http://www.ncbi.nlm.nih.gov/pubmed/25561005
http://dx.doi.org/10.1016/j.marpolbul.2010.04.005
http://www.ncbi.nlm.nih.gov/pubmed/20430408
http://dx.doi.org/10.1016/j.jenvman.2008.06.007
http://www.ncbi.nlm.nih.gov/pubmed/18973975
http://www.ncbi.nlm.nih.gov/pubmed/12907186
http://dx.doi.org/10.1039/b907172e
http://www.ncbi.nlm.nih.gov/pubmed/19724828
http://dx.doi.org/10.1016/j.marpolbul.2014.03.029
http://www.ncbi.nlm.nih.gov/pubmed/24703766
http://www.ncbi.nlm.nih.gov/pubmed/16112144
http://www.ncbi.nlm.nih.gov/pubmed/8854825
http://www.ncbi.nlm.nih.gov/pubmed/11285722
http://dx.doi.org/10.1016/j.scitotenv.2009.08.043
http://dx.doi.org/10.1016/j.scitotenv.2009.08.043
http://www.ncbi.nlm.nih.gov/pubmed/19772937


Shenzhen, China. Mar Pollut Bull. 2014; 85: 254–260. doi: 10.1016/j.marpolbul.2014.06.017 PMID:
24998799

45. Sousa A, Laranjeiro F, Takahashi S, Tanabe S, Barroso CM. Imposex and organotin prevalence in a
European post-legislative scenario: Temporal trends from 2003 to 2008. Chemosphere. 2009; 77:
566–573. doi: 10.1016/j.chemosphere.2009.06.049 PMID: 19656548

46. Horiguchi T, Cho HS, Shiraishi H, Kojima M, Kaya M, Morita M, et al. Contamination by organotin (tribu-
tyltin and triphenyltin) compounds from antifouling paints and endocrine disruption in marine gastro-
pods. RIKEN Rev. 2001; 35: 9–11.

47. Harino H, Yamamoto Y, Eguchi S, Kawai S, Kurokawa Y, Arai T, et al. Concentrations of antifouling bio-
cides in sediment and mussel samples collected from Otsuchi Bay, Japan. Arch Environ Contam Toxi-
col. 2007; 52: 179–188. PMID: 17165102

48. Hung TC, HsuWK, Mang PJ, Chuang A. Organotins and imposex in the rock shell, Thais clavigera,
from oyster mariculture areas in Taiwan. Environ Pollut. 2001; 112: 145–152. PMID: 11234530

49. Hu J, Zhen H, Wan Y, Gao J, AnW, An L, et al. Trophic magnification of triphenyltin in a marine food
web of Bohai Bay, North China: Comparison to tributyltin. Environ Sci Technol. 2006; 40: 3142–3147.
PMID: 16749673

50. IMO, International Maritime Organization. Status of Conventions. 2014. Available: http://www.imo.org/
en/About/Conventions/StatusOfConventions/Pages/Default.aspx.

51. ChampMA. A review of organotin regulatory strategies, pending actions, related costs and benefits.
Sci Total Environ. 2000; 258: 21–71. PMID: 11007277

52. LegCo, The Legislative Council of the Hong Kong Special Administrative Region. Subcommittee on
Merchant Shipping (Control of Harmful Anti-Fouling Systems on Ships) Regulation and Merchant Ship-
ping (Prevention and Control of Pollution) (Fees) (Amendment) Regulation 2015. 2015. Available:
http://www.legco.gov.hk/yr14-15/english/hc/sub_leg/sc109/general/sc109.

Spatio-Temporal Trends of Organotin Contaminations in Hong KongWaters

PLOS ONE | DOI:10.1371/journal.pone.0155632 May 13, 2016 17 / 17

http://dx.doi.org/10.1016/j.marpolbul.2014.06.017
http://www.ncbi.nlm.nih.gov/pubmed/24998799
http://dx.doi.org/10.1016/j.chemosphere.2009.06.049
http://www.ncbi.nlm.nih.gov/pubmed/19656548
http://www.ncbi.nlm.nih.gov/pubmed/17165102
http://www.ncbi.nlm.nih.gov/pubmed/11234530
http://www.ncbi.nlm.nih.gov/pubmed/16749673
http://www.imo.org/en/About/Conventions/StatusOfConventions/Pages/Default.aspx
http://www.imo.org/en/About/Conventions/StatusOfConventions/Pages/Default.aspx
http://www.ncbi.nlm.nih.gov/pubmed/11007277
http://www.legco.gov.hk/yr14-15/english/hc/sub_leg/sc109/general/sc109

