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Pinning of fermionic occupation numbers: General concepts and one spatial dimension
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Analytical evidence for the physical relevance of generalized Pauli constraints (GPCs) has recently been
provided in Schilling et al. [Phys. Rev. Lett. 110, 040404 (2013)]: Natural occupation numbers �λ ≡ (λi) of the
ground state of a model system in the regime of weak couplings κ of three spinless fermions in one spatial
dimension were found extremely close, at a distance Dmin ∼ κ8 to the boundary of the allowed region. We
provide a self-contained and complete study of this quasipinning phenomenon. In particular, we develop tools
for its systematic exploration and quantification. We confirm that quasipinning in one dimension occurs also for
larger particle numbers and extends to intermediate coupling strengths, but vanishes for very strong couplings.
We further explore the nontriviality of our findings by comparing quasipinning by GPCs to potential quasipinning
by the less restrictive Pauli exclusion principle constraints. This allows us to eventually confirm the significance
of GPCs beyond Pauli’s exclusion principle.
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I. INTRODUCTION AND ELEMENTARY CONCEPTS

Since its formulation in 1925, Pauli’s exclusion principle [1]
has played a crucial role in the understanding of various
phenomena, such as the atomic structure and related spectral
observations, the stability of matter (see, e.g., Refs. [2,3]), and
neutron stars. Only one year after its discovery, Heisenberg
and Dirac recognized Pauli’s exclusion principle to be a
consequence of the more substantial fermionic exchange
symmetry arising due to the indistinguishability of identical
particles [4,5]. In terms of natural occupation numbers (NONs)
λi , the eigenvalues of the one-particle reduced density opera-
tor, Pauli’s exclusion principle can be stated as

0 � λi � 1 , ∀ i. (1)

Here the NONs are normalized to the particle number N ,
λ1 + · · · + λd = N and we assume that the one-particle
Hilbert spaceH(d) is finite, d-dimensional. From a geometrical
viewpoint, by ordering the λi decreasingly and introducing the
λ vector �λ ≡ (λi)di=1 and ‖�x‖1 ≡ ∑d

i=1 |xi |, Eq. (1) restricts
such vectors of NONs to the Pauli simplex �,

� ≡ {�λ ∈ Rd | ‖�λ‖1 = N , 1 � λ1 � · · · � λd � 0}. (2)

In a number of works [6–10] the antisymmetry of the N -
fermion wave function was found and proven only recently to
impose a family of greater restrictions on �λ,

Dj (�λ) ≡ κ
(0)
j + �κj · �λ � 0, j = 1,2, . . . ,rN,d , (3)

with rN,d < ∞. Note that (κ (0)
j ,�κj ) ∈ Zd+1 as well as the

number of constraints rN,d depend on the number of fermions
N and the dimension d of the underlying one-particle Hilbert
space. It should be stressed that this recent breakthrough by
Klyachko and Altunbulak [7–9] was part of a more general
effort in mathematical physics and quantum information
theory [11–23] addressing the quantum marginal problem.
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This problem explores and describes the relations between
reduced density operators (marginals) of subsystems arising
from a common multipartite quantum state. One of the most
prominent examples is the (two-body) N -representability
problem which is about describing the set of two-particle
reduced density operators being compatible to N -fermion
quantum states [24].

The so-called generalized Pauli constraints (GPCs) (3)
determine a polytope-shaped subset P (see also Fig. 1),

P � � ⊂ [0,1]d . (4)

In other words, a λ vector of NONs is compatible to a pure
N -fermion quantum state |�〉 ∈ ∧N [H(d)] if and only if �λ lies
in the polytope P . Here and in the following we typically
suppress the dependence of P and � on N,d.

Given the remarkable result on the GPCs, there is little
doubt that these constraints will have some physical relevance
as well. For instance, from a general viewpoint, the GPCs
may lead to new insights in reduced density matrix functional
theory (RDMFT): Usually the minimization of a functional
of the one-particle reduced density operator to determine the
ground state is erroneously considered to be only constrained
by (1). Recently it has been demonstrated for the first time
that the GPCs can have a strong influence on the results of the
minimization process for several functionals [25]. In addition,
the concept of master equations describing the dynamics of
NONs may be modified by taking the GPCs into account.
The GPCs might be also useful in tomography used for the
reconstruction of the one-particle reduced density matrix given
some one-particle information.

A more specific but potentially quite spectacular relevance
of GPCs was postulated by Klyachko [26,27] in the form of the
pinning effect: For some systems—from the viewpoint of the
one-particle picture—the ground-state minimization process
of the energy expectation value 〈�N |Ĥ |�N 〉 for a Hamiltonian
Ĥ might get stuck on the boundary of the polytope P since
any further minimization would violate some GPC (3). Yet,
in a first analytic investigation strong evidence was found for
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FIG. 1. (Left) Schematic illustration of the (dark-gray) polytope
P of possible vectors �λ ≡ (λi) of decreasingly ordered NONs. P
is a proper subset of the medium-gray “Pauli simplex” � within the
light-gray hypercube [0,1]d . (Right) Minimal l1 distances Dmin = D1,
D2 of two different vectors �λ and �λ′ to the polytope facets F1 and F2

are depicted [see Eq. (8) and text for more details].

quasipinning [28]. There, for the ground state of a few-fermion
system the NONs were approximately saturating some GPC,
Dj (�λ) ≈ 0, and therefore �λ was found very close to, but not
exactly on, the boundary of P .

The occurrence of (quasi-)pinning gives rise to a number of
important structural implications, such as a reduced complex-
ity of the N -fermion wave function under expansion in terms
of Slater determinants [20,26,29] and a constrained dynamical
evolution of the system [29,30].

Over the past few years the study of GPCs, and the search for
systems exhibiting (quasi)pinning in particular, has therefore
become a subject of growing interest among many branches
of physics and quantum chemistry [20,22,25,26,30–34]. Yet
most of those works resorted to numerical methods and, in
addition, employed quite strong approximations: The one-
particle Hilbert space was truncated from infinite dimensions
to, at most, six up to eight. As an unfortunate consequence, the
NONs of the approximated ground states turn out to differ quite
a lot from those of the correct ground state and no conclusive
statement on the occurrence of (quasi)pinning for the correct
ground state was possible [35]. This also renews the caveat
already expressed in [28]: “it is likely extremely challenging
to use numerical methods to distinguish between genuinely
pinned and mere quasipinned states. This underscores the need
for analytical analyses, ...”. Moreover, little, if anything, has
been understood so far about the origin of (quasi-)pinning.

The present paper thus aims to shed light onto these
open questions and aspects. A self-contained description of
how to investigate quasipinning systematically is provided.
In a comprehensive analysis, the scope of quasipinning is
explored with respect to different particle numbers and varying
coupling strengths. The paper is organized as follows. In
Sec. II the concept of a systematic (quasi-)pinning analysis
is explained, accompanied with some insights on the polytope
structure/GPCs. Section III stresses that quasipinning in some
cases is trivial (e.g., as a consequence of weak correlations)
and discusses a measure for distinguishing nontrivial from
such trivial quasipinning. The physical model and its key
characteristics are defined and outlined in Sec. IV. In the main
section, Sec. V, the occurrence of quasipinning is analyzed for
this harmonium model in one spatial dimension for arbitrary

particle numbers, from weak, intermediate, and even up to
very strong couplings.

II. QUASIPINNING MEASURE
AND CONCEPT OF TRUNCATION

In this section we elaborate on possible measures for
quasipinning and provide some geometric insights on the
polytope defined by the GPCs.

A. Quasipinning measures

First of all, since each setting of N particles and dimension d

of the one-particle Hilbert space gives rise to several GPCs, Dj ,
j = 1,2, . . . ,rN,d , the information of (quasi)pinning might be
further specified by stating the corresponding GPC showing
(quasi)pinning. This is expressed geometrically: If a given
vector �λ of NON saturates a GPC Dj (·) � 0, we say that the
corresponding vector of NON is pinned to the corresponding
facet FDj

of the polytope P , which is defined by

FDj
≡ {�λ ∈ P | Dj (�λ) = 0}. (5)

To quantify the strength of quasipinning one is tempted to
choose just the value D(�λ). Yet this involves a subtlety. Since
any GPC D(·) � 0 is equivalent to αD(·) � 0 for any α > 0
there is an ambiguity which can be fixed by expressing each
GPC (3) in its canonical form. This form is given by choosing
the minimal possible integer coefficients κ (0), . . . ,κ (d).1 In that
way, we have defined for each GPC a corresponding natural
quasipinning measure given by the value Dj (�λ).

Alternatively, the geometric structure in the form of a
polytope suggests to choose as quasipinning measure the lp

distances of �λ to the corresponding facets FDj
for some p.

Since the one-particle reduced density operator is normalized
with respect to the trace,

tr[ρ] =
d∑

i=1

λi = ‖�λ‖1
!= N, (6)

the l1 norm seems to be the most obvious one. It turns out to
be closely related to the natural measure given by D(�λ) (see
Supplemental Material of Ref. [36]),

dist1(�λ,ED) = 2 D(�λ). (7)

Here ED denotes the hyperplane obtained by extending FD

to “points” �λ outside of the polytope P (but still normalized
to N ). Consequently, as long as the minimal l1 distance of �λ
to ED is attained within the polytope, dist1(�λ,FD) coincides
with D(�λ) (up to a factor “2”). For any other p, relations
for distp(�λ,ED) of the same form as (7) can be found. The
prefactor of 2, however, is replaced with a specific function
of the coefficients κ (i) (depending on p). The independence of
the factor “2” on {κ (i)} in Eq. (7) for p = 1 also makes the use
of the l1 distance preferable.

Further insights on the choice of the most significant
quasipinning measure can only be obtained by understanding

1That one can choose all coefficients κ (i) as integers is a nontrivial
mathematical fact [7].
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the potential physical relevance of quasipinning. To briefly
comment on that, recall that pinning of �λ, as an effect
in the one-particle picture, allows one to reconstruct the
structure of the corresponding N -fermion quantum state
|�N 〉 ∈ ∧N [H(d)]. In addition, |�N 〉 is significantly simplified
since it is given by a linear combination of only a few,
specific Slater determinants (for details, we refer the reader to
Refs. [20,26,29,33]). In case of quasipinning the same holds
for |�N 〉 up to a small error. First results provided in Ref. [33]
show that this error is bounded linearly in D(�λ) from above
(and also from below). These results suggest D(�λ) to be the
most significant quasipinning measure.

Since there are quite a few GPCs for settings with N � 4
and d � 8, we also define the overall quasipinning measure by

Dmin ≡ min
j

[Dj (�λ)]. (8)

Up to a prefactor, Dmin thus resembles the distance measure
dist1(·,·) with respect to the l1 norm between the λ vector and
the boundary ∂P .2

B. Concept of truncation

For quasipinning analyses in practice one faces a major
problem. On the one hand, the complete family of GPCs is
known so far only for the settings (N,d) up to d = 10 [9]
and in addition also for the settings (3,11),(8,11) [37]. On
the other hand, most few-fermion models are based on an
infinite-dimensional one-particle Hilbert space given by H ≡
L2(C) since the one-particle configuration space C is typically
continuous (e.g., C = R3).

A common (see Refs. [25,26,31,32,34]), but less reasonable
way to circumvent that problem is to truncate H from the very
beginning to just d = 10 or even fewer dimensions (i.e., to
at most five orbitals in the case of electrons) and restrict the
Hamiltonian to the corresponding (d

N)-dimensional subspace

∧N [H(d)]. Unfortunately, for most physical models this drastic
approximation does not allow one to conclusively explore
the occurrence of quasipinning for the exact ground state.
Besides the objection that the system may be, in general, too
correlated in order to justify such a truncation also a less
optimal (erroneous) choice for the truncated H(d) can lead to
wrong results on quasipinning. This is even the case for weakly
correlated systems, such as atoms.

A systematic way to avoid the error related to the choice of
H(d) is to implement such a truncation to a small d after having
obtained a sufficiently accurate approximation for the exact
ground state. We briefly explain how this concept of truncation
works and discuss the underlying mathematical structure.
The main idea is that the pinning analysis for �λ = (λi)d

′
i=1

belonging to the setting (N ′,d ′) (e.g., with d ′ infinite) can

2By ∂P we only refer to that part of the boundary of the polytope
P which corresponds to saturation of some GPC. The remaining
part of the polytope boundary described by saturation of an ordering
constraint λi − λi+1 � 0 is not relevant here. In particular, notice that
the saturation of an ordering constraint does not, in general, lead
to any directly accessible simplification for the N -fermion quantum
state |�N 〉.

be simplified by skipping various NONs sufficiently close to
1 and 0. Then possible quasipinning of the truncated vector
containing the remaining NONs can be explored in the setting
of smaller N and smaller d. The corresponding result on
possible quasipinning in the truncated setting translates (up
to a subtlety) to quasipinning of the same strength in the larger
setting up to a small error. This is based on the following
polytope relation [we reintroduce indices “(N,d)”]

PN ′,d ′ | λ1 = · · · = λr = 1 = PN,d,

λd ′+1−s = · · · = λd ′ = 0

(9)

where 0 � r � N ′, 0 � s � d ′ − N ′, N ≡ N ′ − r , and d ≡
d ′ − r − s. In words, relation (9) states that restricting the
polytope PN ′,d ′ to the hyperplane defined by λ1 = · · · = λr =
1, λd ′+1−s = · · · = λd ′ = 0 leads to the corresponding poly-
tope for the setting (N ′ − r,d ′ − r − s) (which is embedded in
the larger space Rd ′

).
On the level of GPCs this implies that for every GPC Dj

of the smaller setting (N,d) there exists at least one so-called
extended constraint D′

j in the larger setting (N ′,d ′), i.e.,

Dj (�λ) = D′
j (1, . . . ,1︸ ︷︷ ︸

r

,�λ, 0, . . . ,0︸ ︷︷ ︸
s

) , ∀ �λ ∈ PN,d . (10)

For such associated constraints, the linearity of GPCs (3)
implies

D′
j (�λ′) = Dj (�λ) + O(1 − λ′

r ) + O(λ′
d ′+1−s), (11)

where �λ ≡ (λ′
j )d

′−s
j=r+1.

All the remaining constraints of the larger setting lead to
restrictions which are redundant in the smaller setting.

These two situations are also illustrated in Fig. 2, where
two half-spaces, S1 and S2, are shown. Each of them is defined
by all vectors �x ∈ Rd fulfilling a specific GPC D′ of the larger
setting after restricting it to the smaller setting (N,d),

S = {�x ∈ Rd | D′(1, . . . ,1︸ ︷︷ ︸
r

,�x, 0, . . . ,0︸ ︷︷ ︸
s

) � 0}, (12)

with r ≡ N ′ − N and s ≡ (d ′ − N ′) − (d − N ). For instance,
the half-space S1 in Fig. 2 corresponds to a proper GPC of
the smaller setting. In contrast, the half space S2 does not
describe a proper GPC in the smaller setting and is therefore
redundant. Among the latter class of constraints D′ of the

FIG. 2. Polytope PN,d and illustration of half-spaces defined by
generalized Pauli constraints of larger setting (N ′,d ′) restricted to
smaller setting (N,d).
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larger setting there are also a few taking even a simpler form
after restriction to the setting (N,d). They reduce to simple
tautologies, D′(1, . . . ,1︸ ︷︷ ︸

r

,�x, 0, . . . ,0︸ ︷︷ ︸
s

) ≡ const � 0. The case const =

0 deserves some attention, however. Such constraints D′ are
automatically pinned whenever we restrict them to the smaller
setting (N,d). Yet a careful analysis [38] shows that whenever
we consider smaller settings (N,d) with N � 3 and d − N � 4
there is in any larger setting (N ′,d ′) at most one such constraint,
namely the exclusion principle constraint 1 − λ′

1 � 0.
Based on these insights on the polytope structure (9), which

led to Eq. (11), the concept of truncation emerges: NONs
sufficiently close to 0 can be neglected and the error of the
truncated pinning analysis is given by Eq. (11). In principle,
also NONs λ′

i sufficiently close to 1 can be neglected for the
analysis with the error given by Eq. (11), but one needs to
keep in mind the additional constraint D′(�λ′) = 1 − λ′

1 � 0
in the original setting.3 In Sec. V we successfully make use
of that concept to conclusively explore quasipinning for a
system based on an infinite-dimensional one-particle Hilbert
space.

The concept of truncation and relation (9) in particular,
also emphasizes the choice of {Dj (�λ)} and Eq. (8) as the most
natural quasipinning measures: It is a desirable property of
such measures to lead to the same results on quasipinning for
vectors �λ ∈ PN,d and �λ′ ∈ PN ′,d ′ differing only by 0’s and 1’s.
This so-called truncation consistency is given for the natural
measures {Dj (�λ)} and Eq. (8) but not for distance measures
given by the lp norm for p > 1. The latter statement follows
from the fact that for p > 1 the prefactor on the right-hand side
in Eq. (7) is not independent of the κ (i)’s. By extending a given
�λ by 0’s the values Di(�λ) will not change but the prefactor
will (since the κ (j ) for the extra dimensions will enter and can
change it). In that case the lp distance will change, although �λ
was extended only by “irrelevant” 0’s.

III. GENERALIZED PAULI CONSTRAINTS BEYOND
PAULI’S EXCLUSION PRINCIPLE CONSTRAINTS

The values {Dj (�λ)} (recall their canonical form as described
in the previous section) and definition (8), respectively, provide
natural measures for quasipinning.

Whenever quasipinning is very strong, i.e., some Dj (�λ)
are found to be very small, we can expect that the fermionic
exchange symmetry becomes significant for the system from
the one-particle picture’s viewpoint. Yet such potential rele-
vance of GPCs for many physical systems is not surprising
at all. Due to the inclusion relation (4), illustrated in Fig. 1,
the relevance of GPCs already follows from the well-known
relevance of the less restrictive Pauli exclusion principle
constraints: Whenever �λ ∈ P lies close to the boundary of the
Pauli simplex � it lies close to the boundary of P as well. For

3The Pauli exclusion principle constraint 1 − λ′
1 � 0 turns out to

be a nonredundant constraint for any setting with N � 4 and d � 9.
Therefore, it is considered in the definition of Dmin (8) as well. Yet,
if we explore the influence of the GPCs beyond the Pauli exclusion
principle constraints, this constraint will effectively drop out again
(see also next section).

instance, for weakly correlated systems the vector of NONs
lies close to the Hartree-Fock point given by (1, . . . ,1,0, . . .)
(shown as red dot in Fig. 1). Therefore, it lies also close to
the polytope boundary. Even strongly correlated fermionic
quantum systems have typically some fermions (electrons)
which are strongly bound, e.g., in atomic 1s shells. This
quasipinning of the first Pauli exclusion principle constraints
1 − λi � 0, i = 1,2, . . . geometrically implies quasipinning
by GPC.

Consequently, the question is whether GPCs have any
additional relevance, i.e., beyond Pauli’s exclusion principle.
Do given NONs �λ lie significantly closer to any polytope facet
than one could expect from a possibly small distance of �λ to
the boundary of the Pauli simplex (2)?

Recently, a measure for the degree by which quasipinning
by GPCs exceeds that by the Pauli exclusion principle con-
straints has been introduced [36], the so-called Q parameters.
For each GPC Dj , Qj evaluates the ratio of the distances
of �λ to the facet Fj and the corresponding part of the
boundary of the Pauli simplex. For the technical details and
the properties of those Q parameters we refer the reader to
Ref. [36]. A λ vector with associated Qj (�λ) lies 10Qj times
closer to the facet Fj of the polytope than could be expected
from its possibly small distance to the boundary of the Pauli
simplex �.

Similar to the definition (8) of an overall quasipinning
measure, we define Q(�λ) as the maximum of various Qj (�λ).
These concepts are visualised in Fig. 1 where on the right
minimal l1 distances Dmin = D1, D2 of two different vectors �λ
and �λ′ to the polytope facets F1 and F2 are shown. In contrast to
�λ, the Pauli exclusion principle constraint is not approximately
saturated by �λ′, which leads to Q(�λ′) > Q(�λ).

We like to conclude this section by commenting on the term
“trivial quasipinning.” First of all, quantifying quasipinning
on an absolute scale by {Dj (�λ)} and Dmin(�λ), respectively, has
its own justification. In that way, one can explore the absolute
influence of the exchange symmetry in the one-particle picture.
Yet, to emphasize the potential indispensable necessity of the
concept of GPCs, one needs to explore in addition whether
quasipinning by GPCs exceeds that by Pauli’s exclusion
principle. In the following we always carefully distinguish
between such nontrivial and trivial quasipinning, as quantified
by the Q parameter.

IV. MODEL

In this section we introduce an analytically solvable few-
fermion model and explain how to calculate the NONs of its
ground state. This particularly includes the technical details of
Ref. [28].

In order to investigate the influence of the fermionic
exchange symmetry from the one-particle picture’s viewpoint,
it is particularly instructive to choose a model system that
exhibits a considerable conflict between the energy minimiza-
tion and the antisymmetry. The system of N harmonically
interacting fermions in a harmonic external trapping potential
provides these features since the particle-particle interaction
diminishes with decreasing particle distance. Accordingly, it
is not the pair interaction which prevents the particles from
sitting on top of each other but solely the fermionic exchange
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symmetry. The corresponding Hamiltonian reads as

HN =
N∑

i=1

(
p 2

i

2m
+ m

2
ω2xi

2

)
+ K

2

∑
1�i<j�N

(xi − xj )2, (13)

where pi and xi represents the momentum and position
operators of the ith particle. In the present paper this model is
referred to as harmonium.4

The choice of this particular model offers additional
advantages. First, being analytically solvable, it allows us
to gain structural insights and has therefore been chosen
for thorough investigation in this paper. Second, the model,
which is also known as a Moshinsky-type atom, has seen
interest and successful application in various branches of
physics and physical chemistry, such as atomic physics,
quantum dots, quantum information theory, and entanglement
theory [40,42–54]. This may trigger cross links and will permit
our results to be used in the context of other disciplines as well.

We explore the characteristic behavior of (quasi-)pinning
in various coupling regimes by studying cases of different
particle numbers N . Such a comprehensive investigation will
also allow us to shed light onto the origin of quasipinning.

A. Fermionic ground state

A priori, Hamiltonian (13) acts as an operator on the N -
particle Hilbert space HN = ⊗N

i=1H, where the one-particle
Hilbert space has been denoted by H. Here H is given by
H ≡ L2(R).

HN is invariant under any permutation of particles. This
particularly allows us to consider (13) as a Hamiltonian for
identical fermions (or bosons). In case of fermions we need
to restrict (13) to the subspace of fermionic quantum states,
given by all states being antisymmetric,

H(f )
N ≡ ∧N [H] � HN ≡ H⊗N

. (14)

In order to derive the set of fermionic eigenstates of (13),
one may therefore initially derive the set of all N -particle
eigenstates on HN followed by a projection onto the fermionic
subspace H(f )

N . In Ref. [55] the fermionic spectrum and
corresponding eigenstates were determined. For the ground
state one finds

�(f )(�x) = N

⎡
⎣ ∏

1�i<j�N

(xi − xj )

⎤
⎦ exp

[
− 1

2l̃2
�x2

]

× exp

[
1

2N

(
1

l̃2
− 1

l2

)
(x1 + · · · + xN )2

]
, (15)

where �x ≡ (xi)Ni=1 andN is a normalization constant. Here l ≡√
�

mω
denotes the natural length scale for the center-of-mass

motion and l̃ ≡
√

�

mω
√1+NK/(mω2) that for the relative motion.

4In the literature, the term harmonium has been used for two
different systems: (a) N harmonically interacting particles in a
harmonic external trapping potential (see, e.g., Refs. [39,40]); (b)
N particles interacting via Coulomb forces in a harmonic external
trapping potential (see, e.g., [41]); we follow convention (a).

It is also worth noticing that the fermionic ground state (15)
differs from the bosonic ground state only by the additional
polynomial prefactor, the Vandermonde determinant.

Finally, it should be emphasized that the specific structure
of the Hamiltonian (13) implies that the NONs of the fermionic
ground state (and of any other eigenstate) do not depend on
mω2 and K separately but just on their ratio. This suggests the
following definition of a dimensionless coupling strength,

κ ≡ NK

mω2
=

(
l

l̃

)4

− 1. (16)

B. One-particle reduced density operator

To determine the fermionic one-particle reduced density
operator ρ(x,y) (in spatial representation) we need to integrate
out N − 1 fermions. For fixed particle number, as an exercise
in Gaussian integration, one finds [52]

ρ(f )(x,y) = F (x,y) e−α(x2+y2)+βxy, (17)

where the symmetric polynomial F and the parameters α,β

depend on N and the coupling strengths mω2,K and the
length scales l,l̃, respectively. ρ(f )(x,y) coincides with the
one-particle reduced density operator (see Ref. [52])

ρ(b)(x,y) =
√

2α − β

π
e−α(x2+y2)+βxy (18)

of the bosonic ground state up to the polynomial prefactor
F (x,y), originating from the Vandermonde determinant in
Eq. (15).

Notice that ρ(b)(x,y) is the Euclidean Feynman propagator
for the harmonic oscillator and can therefore be diagonalized,

ρ(b)(x,y) = c(κ)
∞∑

k=0

q(κ)k

k!
ϕ

(L)
k (x) ϕ

(L)
k (y). (19)

Here c(κ) ≡ N [1 − q(κ)] and the bosonic natural orbitals, i.e.,
the eigenstates of ρ(b)(x,y), are given by the Hermite functions

{ϕ(L)
k (x)}∞k=0 with natural length scale L ≡

√
l l̃ [ (N−1)l̃2+l2

l̃2+(N−1)l2 ]
1
4

[52]. The decay factor q(κ) can easily be calculated by using
the results in Ref. [52] and one obtains

q(κ) = 1 − 2N

N+
√

N2 − (N − 1)[2−(1 + κ)2−1/(1 + κ)2]
.

(20)

In contrast to ρ(b)(x,y), ρ(f )(x,y) cannot be diagonalized
analytically. Yet we can diagonalize ρ(f )(x,y) for given
N either by numerical means for fixed couplings or by a
perturbative approach for the regime of weak couplings. As
a first step for this we need to map ρ(f )(x,y) as a density
kernel to a matrix. The similarity between ρ(f )(x,y) and
ρ(b)(x,y) strongly suggest to choose the bosonic natural
orbitals {ϕ(L)

k (x)} as a reference basis. The corresponding
matrix (

ρ
(f )
kn

) ≡ (〈
ϕ

(L)
k

∣∣ρ(f )
∣∣ϕ(L)

n

〉)
k,n�0 (21)

has a simplified form based on the following three properties.
(1) Since the polynomial prefactor F (x,y) is of finite

degree 2(N − 1) and since x,y can be replaced by ladder
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operators with respect to the harmonic oscillator states with
length scale L, (ρ(f )

kn ) is a band matrix; i.e.,

ρ
(f )
kn = 0, whenever |k − n| > 2(N − 1). (22)

(2) Since Hamiltonian (13) has a one-particle symmetry,
[HN,U (P )⊗

N

] = 0, given by the simultaneous reflections P :
xi → −xi , the ground state and its one-particle reduced den-
sity operator inherit this symmetry [56]. Since [ρ(f ),U (P )] =
0, we have

ρ(f ) = ρ(f )
even ⊕ ρ

(f )
odd, (23)

where “even” and “odd” stand for the corresponding parity
of U (P ) [recall U (P )2 = 1]. Moreover, since each reference
basis state ϕ

(L)
k also respects that symmetry, U (P )ϕ(L)

k =
(−1)kϕ(L)

k , we find, in particular, (ρ(f )
kn ) = 0 whenever k + n

odd.
(3) The dominating exponential factor in (17), also leading

to the decaying factor q(κ) < 1 in Eq. (19), implies the
following decaying behavior for the matrix elements,

ρ
(f )
kn � const × q(κ)n, (24)

for |k − n| < 2(N − 1) and |k − n| even. According to the
previous two points, all other matrix elements vanish.

The strong decaying hierarchy (24) of the matrix elements
allows us to calculate numerically all relevant NONs for any
fixed coupling strength κ with very high precision. For this we
truncate the corresponding infinite-dimensional one-particle
reduced density matrix to the left-upper R × R block. For
R sufficiently large the corresponding eigenvalues �λ(R) ≡
(λ(R)

i )Ri=1 are very close to the correct NONs. In particular, one
can prove by using a norm estimate on the difference of spectra
given the difference of the corresponding two matrices [57]
that

‖�λ − �λ(R)‖1 � const × q(κ)R+1, (25)

where �λ(R) was extended to infinite dimensions by adding
0’s. Due to the significance of the decay constant q(κ) we
present it in Fig. 3 for a large coupling regime. The behavior
of q(κ) and the estimate (25) guarantee that even the regime of
ultrastrong couplings can be treated numerically. For instance,
in Ref. [58] NONs were calculated numerically for couplings
up to κ = 1012.

For the regime of weak couplings we find

q(κ) = N − 1

N2
κ2 + N − 1

N2
κ3 + O(κ4), (26)

FIG. 3. Dependence of the decay constant q(κ), defined in
Eq. (20), on the interaction strength κ .

which makes a perturbational approach for the weak coupling
regime feasible. To explain this, we expand the one-particle
reduced density matrix in a series,

ρ(f ) ≡
∞∑

n=0

1

n!
ρn κn. (27)

The hierarchy (24) then implies that the corresponding
degenerate Rayleigh-Schrödinger perturbation theory up to
a fixed order κs involves only matrices of finite (even very
small) rank.

In Ref. [28] such a perturbational approach was used for
the case of N = 3 and in the next section it is used for N = 4.
It is worth noticing that such an approach can be significantly
simplified by referring to a duality of NONs first observed
in Ref. [48] and proven in Ref. [59]: �λ(l/l̃) = �λ(l̃/ l) [recall
Eq. (16)]. By employing the alternative coupling parameter

δ := ln

(
l

l̃

)
= 1

4
ln (1 + κ) = 1

4
κ + O(κ2), (28)

this duality reads �λ(δ) = �λ(−δ). As a consequence, the series
expansions of various NONs simplifies since it contains even
orders in δ only.

V. PINNING ANALYSIS FOR HARMONIUM IN 1D

We use the techniques discussed in Sec. IV B to determine
analytically for weak couplings and numerically for interme-
diate and strong couplings the NONs of the N -harmonium
ground state (15). Then, by using the concept of truncation
as introduced in Sec. II B we systematically explore the
occurrence of quasipinning.

A. Weak couplings

A first analysis of 3-harmonium in one spatial dimension
for the regime of weak interactions was presented in Ref. [28].
It revealed the remarkable κ8 quasipinning, i.e., Dmin ∼ κ8. It
was also explained that this quasipinning is nontrivial since
Dmin is by four orders in κ smaller than the distance of �λ(κ)
to the Hartree-Fock point �λHF (recall Fig. 1), behaving as
dist1(�λ(κ),�λHF ) ∼ κ4. We explore whether such quasipinning
occurs for larger particle numbers as well and quantify
its nontriviality in a more elaborated way by using the Q

parameter.
As a first step beyond the work in Ref. [28], we consider the

4-harmonium ground state. By applying degenerate Rayleigh-
Schrödinger perturbation theory we determine expansion
series for the NONs. According to the remarks at the end
of Sec. IV B, the choice of δ [recall Eq. (28)] as coupling
parameter simplifies the perturbation theory. We obtain the
following series expansions up to corrections of the order
O(δ10):

λ1(δ) = 1 − 555

65536
δ8 + O(δ10),

λ2(δ) = 1 − 5

64
δ6 + 11735

196608
δ8 + O(δ10),

λ3(δ) = 1 − 15

64
δ4 + 95

256
δ6 − 30387

65536
δ8 + O(δ10),
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TABLE I. Leading-order corrections to the values 1 and 0,
respectively, for the decreasingly ordered NONs λi(κ) for the N -
harmonium ground state for small coupling κ .

· · · λN−3 λN−2 λN−1 λN λN+1 λN+2 λN+3 λN+4 · · ·
· · · κ8 κ6 κ4 κ4 κ4 κ4 κ6 κ8 · · ·

λ4(δ) = 1 − 15

64
δ4 + 75

256
δ6 − 63281

196608
δ8 + O(δ10),

λ5(δ) = 15

64
δ4 − 75

256
δ6 + 58361

196608
δ8 + O(δ10),

λ6(δ) = 15

64
δ4 − 95

256
δ6 + 30987

65536
δ8 + O(δ10),

λ7(δ) = 5

64
δ6 − 15455

196608
δ8 + O(δ10),

λ8(δ) = 2835

65536
δ8 + O(δ10),

λ9(δ) = O(δ10) . (29)

We have worked out such expansion series for all ground states
up to N = 8 particles.

For 3 � N � 8 a well-pronounced hierarchy of active
spaces occurs: By considering the scale O(δ4) always two
NONs (λN−1,λN ) have corrections to the value 1 and two
NONs (λN+1,λN+2) to 0, respectively. On the finer scale
O(δ6), also the NONs λN−2 and λN+3 deviate from their zero-
interaction values. This hierarchy continues in that systematic
way to higher orders in δ: Whenever two more orders in δ are
taken into account two additional NONs begin to deviate from
1 and 0, respectively. According to the linear leading-order
relation between δ and κ (28) the same hierarchy is found
by referring to the more intuitive coupling strength κ . This
hierarchy is also illustrated in Table I.

In the following, we exploit the concept of truncation, as
developed in Sec. II B for a systematic (quasi)pinning analysis
of the NONs (29). The given hierarchy will simplify this task
significantly.

(i) On the scale O(δ4), all NONs except λ3, . . . ,λ6 are
identical to 1 and 0, respectively, and can therefore be
neglected. Yet since the remaining setting (2,4) is still
trivial in the sense that the GPCs do not take the form
of proper inequalities, the corresponding pinning analysis is
meaningless [33].

(ii) By considering the next significant scale, O(δ6), we
obtain the truncated setting (3,6). This so-called Borland-
Dennis setting [6] has the following GPCs (to avoid any
confusion with the NONs in (29) we denote the NONs by
λ′

i , i = 1,2, . . . ,6):

λ′
1 + λ′

6 = λ′
2 + λ′

5 = λ′
3 + λ′

4 = 1, (30)

D(3,6)(�λ′) ≡ 2 − (λ′
1 + λ′

2 + λ′
4) � 0. (31)

As a consistency check we observe λi(δ) + λ9−i(δ) = 1 +
O(δ8) for i = 2,3,4. This means that the GPCs (30) are indeed
fulfilled up to the truncation error, which is of the order
O(δ8). Only for GPC (31) is the question of (quasi)pinning

meaningful. We find

D(3,6){[λi(δ)]7
i=2

} = −47 569

65 536
δ8. (32)

Hence, GPC (31) is pinned up to corrections of the same
order than the truncation error. According to the concept
of truncation, this implies that the full spectrum of NONs
is saturating at least some GPCs within the correct setting
(4,∞) up to corrections of order r = 8 or larger, Dmin ∼ δr .
To explore whether the quasipinning of the NONs is stronger
or turns even into pinning, we need to consider a finer scale.

(iii) On the scale O(δ8) the truncated setting increases to
(4,8). There are 14 GPCs listed in the Appendix, all taking
the form of proper inequalities. The corresponding truncation
error is given by O(λ9) = O(δ10). The pinning analysis yields
that all 14 GPCs are saturated up to corrections of order δ8.
Since this is larger by a factor 1/δ2 than the truncation error this
already completes the (quasi)pinning analysis for the regime
of not too strong couplings: The NONs of the 4-harmonium
ground states are not pinned. Yet they show surprisingly strong
quasipinning of the order Dmin ∼ δ8.

Similar (quasi)pinning analyses for various particle num-
bers up to N = 8 show that the NONs of the corresponding
N -harmonium ground state are strongly quasipinned in the
regime of weak couplings. In detail, we find for 4 � N � 8
[recall Eq. (28)]

Dmin = cN δ2N + O(δ2N+2)

= dN κ2N + O(κ2N+1), (33)

with dN = cN

42N . Recall that for N = 3 one has Dmin ∼ δ8 [28].
There is little doubt that result (33) holds for N > 8 as well.

It is particularly remarkable that by adding another particle
to the system the quasipinning becomes stronger by two
additional orders in δ and κ , respectively. This, as well as
the hierarchy of active spaces shown in Table I, expresses
the existence of a kind of a “microscopic Pauli pressure.” This
pressure built up by the additional particles is pressing �λ closer
to the boundary of the polytope P and the Pauli simplex �,
respectively.

Besides result (33) on the absolute influence of the antisym-
metry on the one-particle picture for the harmonium ground
state, we also need to explore its relative influence, as it was
explained in Sec. III: To which extent can quasipinning (33)
by GPCs be deduced from possible quasipinning by Pauli
exclusion principle constraints? Since the distance of �λ(δ)
(29) to the Hartree-Fock point �λHF ≡ (1, . . . ,1,0, . . .) is of the
order δ4 at least four orders of the quasipinning Dmin ∼ δ8 are
trivial. They already follow from weak correlations and thus
from quasipinning by Pauli exclusion principle constraints.
A thorough analysis of the extent of trivial quasipinning in
form of the elaborated Q parameter (recall Sec. III), however,
implies

Q ∼ 2 log10 δ. (34)

The same result is found for various N that were considered
in this work, namely 3 � N � 8. This means that the strong
quasipinning (33) is nontrivial by two orders in δ and κ ,
respectively.
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TABLE II. There are shown all NONs λi � 10−12 of the 3-
harmonium ground state in one spatial dimension with particle
interaction strength κ = 1.

λ1 0.999 998 533 821 λ6 0.000 001 455 434
λ2 0.999 807 955 780 λ7 0.000 000 028 353
λ3 0.999 806 535 259 λ8 0.000 000 000 265
λ4 0.000 193 443 778 λ9 0.000 000 000 002
λ5 0.000 192 047 307 . . . ...

B. Intermediate and strong couplings

The results on quasipinning for the 3-harmonium ground
state in Ref. [28] and for the next few particle numbers
N = 4, . . . ,8, derived and discussed in the previous section,
concern the regime of weak interaction. The series expansions,
e.g., Eq. (29), are valid as long as the mathematically more
convenient coupling parameter (28) is sufficiently small, δ �
1.5 To determine the corresponding regime for the physically
more significant coupling κ (16) we observe that κ(δ = 1) ≈
53.6. Thus, δ � 1 covers indeed the whole regime of weak
physical couplings, i.e., κ � 1. In this section we extend
the (quasi)pinning analysis also to intermediate and even
strong and ultrastrong coupling strengths. For this, we use
the numerical tools discussed in Sec. IV B. Since increasing
the coupling between the fermions also leads to an increase
of the correlations and particularly of the required dimension
of the truncated one-particle Hilbert space we need to carefully
keep track of the truncation error as well.

As a first example, we explore pinning for the one-
dimensional harmonic analog of the lithium atom, i.e., Hamil-
tonian (13) for N = 3 with 3K = mω2 (implying κ = 1). The
most relevant NONs are listed in Table II. Very similar to
the electrons in an atom the trapping potential makes this a
weakly correlated system: All NONs are close to either 1
or 0. Due to the decaying hierarchy of NON, which is still
well pronounced for κ = 1, we can still follow the same
procedure as in Sec. V A, namely to consider successively
different scales. The final result on quasipinning for the exact
ground state is found as

Dmin = 7.66 × 10−9. (35)

Note that Dmin is of the same order as λ7 and λ8 � Dmin.
This implies that such quasipinning (35) can conclusively
be confirmed already within the truncated setting (3,7). To
elaborate on its nontriviality, we observe that the distance of �λ
to the Hartree-Fock point is given by

dist1(�λ,�λHF ) ≡
3∑

i=1

(1 − λi) +
∞∑

j=4

λj = 7.74 × 10−4. (36)

The distance Dmin of �λ to the polytope boundary is smaller
by about a factor 105. Yet to confirm the nontriviality of
quasipinning (35), we resort to the overall Q parameter [36]
and eventually find Q = 1.85. This means that �λ is closer by

5In principle, the radius of convergence may be larger and even
extend to O(1). Yet we could not gain any profound insights on that.

FIG. 4. Quasipinning exhibited by the 3-harmonium ground state
in one spatial dimension: Numerical data points of minimal l1 distance
Dmin of the NONs �λ to polytope boundary ∂P for intermediate up to
very strong interaction strengths (blue circles). Upper and lower error
margins (red crosses) within the largest known setting (N,d) = (3,11)
are found negligible for even strong interactions up to κ ≈ 5000.

a factor 101.85 ≈ 71 to some facets of the polytope P than
one can expect from small distances of �λ to the facets of
the Pauli simplex (2). In other words, the quasipinning by
GPC is stronger by a factor 71 than the quasipinning by PEP
constraints.

In the same way as for κ = 1 we now explore the occurrence
of quasipinning and its nontriviality measured by the Q

parameter for various κ quasicontinuously chosen within the
regimes of intermediate, strong, and ultrastrong couplings.
First, for the case of N = 3 the results of the (quasi)pinning
analysis are presented in Fig. 4. The λ vectors have been
determined numerically for a set of logarithmically distributed
κ values. The associated quasipinnings Dmin have been
interpolated and plotted in Fig. 4 (blue circles), together with
the related upper and lower error margins arising due to the
truncation (red crosses).6 In particular, this also demonstrates
that the concept of truncation (given the GPCs for N = 3 up
to dimension d = 11) allows us to conclusively explore and
quantify quasipinning even for very strong couplings, up to
κ � 5000. For κ � 50 000 the truncation error becomes larger
than the value for Dmin found in the truncated setting (3,11)
and a pinning analysis becomes meaningless.

The results for the 3-harmonium ground state show that the
existence of quasipinning extends to intermediate and even
strong couplings. Yet it also reduces the more we increase
κ . Only in the regime of quite strong couplings does the
quasipinning vanish and the distance of �λ(κ) to the polytope
boundary reach the scale of the diameter of the polytope, i.e.,
O(1).

6We made a quite conservative and probably too pessimistic choice
for the truncation error: We defined it by

�Dmin =
r∑

i=1

(1 − λi) +
d∑

j=d−s+1

λj , (37)

for the case that r NONs close to 1 and s NONs close to 0 were
neglected. The definition of a truncation error is a bit arbitrary as
long as it is not known yet how the coefficients in a GPC (3) could
grow by adding more dimensions to the one-particle Hilbert space.
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FIG. 5. Nontriviality of quasipinning: Q measure for the N -
harmonium ground state with N = 3,5,8 as functions of the coupling
κ . Q is seen to be similar for various particle numbers. The
logarithmic plot reveals a linear behavior for small interaction
strengths κ . As the corresponding slope is 2, this confirms that the
quasipinning is nontrivial by two orders in κ .

For the next larger particle numbers 4 � N � 8 we find
qualitatively similar quasipinning curves Dmin(κ) as for
N = 3. For the regime of weak and up to intermediate
couplings of O(1), the behavior of Dmin(κ) is described by the
perturbational result (33). Yet for κ � 10 all curves Dmin(κ)
begin to approach each other more and more, the quasipinning
reduces and eventually vanishes for very strong couplings.

The nontriviality of the quasipinning is explored and
quantified again by the Q parameters. The corresponding
results are shown in Fig. 5. Q(κ) is very similar for all
N = 3, . . . ,8. It decreases with increasing coupling κ and
one finds Q ∼ −2 log10(κ), independent of N in the regime of
weak couplings in agreement with the analytic result, Eq. (34).
This proves that in comparison to the approximate saturation of
Pauli exclusion principle constraints, the distance between the
λ vector and the polytope boundary is smaller by two orders in
κ . The results in Fig. 5 further demonstrate that quasipinning
remains nontrivial up to medium interaction strengths but
becomes quite trivial for larger couplings.

VI. SUMMARY

The fermionic exchange symmetry implies restrictions on
occupation numbers stronger than Pauli’s exclusion princi-
ple. Those generalized Pauli constraints (GPCs) restrict the
vector �λ ≡ (λi)di=1 of natural occupation numbers (NONs),
the eigenvalues of the one-particle reduced density operator,
to a polytope P ⊂ [0,1]d . Physical significance of GPCs is
particularly given whenever the vector �λ of NONs is found on
(pinning) or at least very close (quasipinning) to the polytope
boundary ∂P .

We have provided a conclusive analysis of the occurrence of
pinning and quasipinning for a one-dimensional few-fermion
quantum system.

We have first elaborated on measures allowing us to
quantify quasipinning. Although measures given by the lp

distance distp(�λ,∂P) have some significance for all p, it is
explained that the 1-norm is the most preferred one. We have

introduced and explained the concept of truncation which
allows one to simplify the analysis of possible quasipinning
by skipping various NONs sufficiently close to 1 and 0. This
is of practical importance since most few-fermion models
are typically based on very large (even infinite) dimensional
one-particle Hilbert spaces but the families of GPCs are known
so far only up to dimension d = 11.

To explore the occurrence of pinning and quasipinning,
we have thoroughly studied the few-fermion model system
harmonium (13). In detail, we have explained how to determine
the natural occupation numbers for the ground states for
various particle numbers: For the regime of weak couplings
we have resorted to degenerate Rayleigh-Schrödinger pertur-
bation theory and for intermediate up to ultrastrong couplings
we have used an exact numerical diagonalization.

By applying the concept of truncation to the infinite vector
�λ(κ) of NONs we succeeded in conclusively exploring quasip-
inning and in providing further evidence against the existence
of the pinning effect. For the regime of weak interactions,
we have confirmed the existence of quasipinning reported for
N = 3 in Ref. [28] also for the next larger particle numbers
up to N = 8. It turns out that this quasipinning behaves as
Dmin ∼ κ2N for 4 � N � 8, which likely extends to N > 8 as
well. This especially means that quasipinning becomes even
stronger for larger particle numbers. We speculate that this
may be understood as a consequence of a “microscopic Pauli
pressure” built up from the particles and “pressing” �λ closer
to the polytope boundary.

Independent of N , we have also found that quasipinning
extends to the regime of intermediate and also strong couplings
but vanishes for ultrastrong interaction strengths.

Since the GPCs are more restrictive than the Pauli exclusion
principle (recall Fig. 1) quasipinning by GPCs can be a conse-
quence of quasipinning of Pauli exclusion principle constraints
(as, e.g., in case of weak correlations). By employing the
recently developed Q parameter [36] we have systematically
explored and quantified such potential trivialities of quasipin-
ning. The investigation proves that quasipinning by GPCs in
the regime of weak couplings κ and for all considered N � 8
is nontrivial by two orders in κ . This means that the distance of
�λ to the polytope boundary is by two orders in κ smaller than
one would expect from the approximate saturation of some
Pauli exclusion principle constraints. In the regime of strong
couplings the quasipinning becomes trivial.
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APPENDIX: GENERALIZED PAULI CONSTRAINTS
FOR THE SETTING (4,8)

For the setting (N,d) = (4,8) there are 14 generalized Pauli
constraints (see Ref. [9]):

D
(4,8)
1 (�λ) := 0 − λ5 + λ6 + λ7 + λ8 � 0, (A1)

D
(4,8)
2 (�λ) := 0 − λ1 + λ2 + λ7 + λ8 � 0, (A2)

D
(4,8)
3 (�λ) := 0 − λ1 + λ3 + λ6 + λ8 � 0, (A3)

D
(4,8)
4 (�λ) := 0 − λ1 + λ4 + λ6 + λ7 � 0, (A4)

D
(4,8)
5 (�λ) := 0 − λ1 + λ4 + λ5 + λ8 � 0, (A5)

D
(4,8)
6 (�λ) := 0 − λ3 + λ4 + λ7 + λ8 � 0, (A6)

D
(4,8)
7 (�λ) := 0 − λ2 + λ4 + λ6 + λ8 � 0, (A7)

D
(4,8)
8 (�λ) := 2 − λ2 − λ3 − λ5 + λ8 � 0, (A8)

D
(4,8)
9 (�λ) := 2 − λ1 − λ3 − λ6 + λ8 � 0, (A9)

D
(4,8)
10 (�λ) := 2 − λ1 − λ2 − λ7 + λ8 � 0, (A10)

D
(4,8)
11 (�λ) := 2 − λ1 − λ2 − λ3 + λ4 � 0, (A11)

D
(4,8)
12 (�λ) := 2 − λ1 − λ4 − λ5 + λ8 � 0, (A12)

D
(4,8)
13 (�λ) := 2 − λ1 − λ2 − λ5 + λ6 � 0, (A13)

D
(4,8)
14 (�λ) := 2 − λ1 − λ3 − λ5 + λ7 � 0. (A14)
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