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This paper investigates the problem of event-triggered control for semi-global stabilization of null control-
lable systems subject to actuator saturation. First, for a continuous-time system, novel event-triggered
low-gain control algorithms based on Riccati equations are proposed to achieve semi-global stabilization.
The algebraic Riccati equation with a low-gain parameter is utilized to design both the event-triggering
condition and the linear controller; a minimum inter-event time based on the Riccati ordinary differen-
tial equation is set a priori to exclude the Zeno behavior. In addition, the high-low gain techniques are
utilized to extend the semi-global results to event-based global stabilization. Furthermore, for a discrete-
time system, novel low-gain and high-low-gain control algorithms are proposed to achieve event-triggered
stabilization. Numerical examples are provided to illustrate the theoretical results.
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1. Introduction

In practical control systems, actuators are always subject to saturation, making the issue of actuator
saturation an important research problem for control science and engineering (Bernstein & Michel,
1995). When a system contains no strictly unstable modes, it can be globally stabilized in spite of
the saturation (Teel, 1992; Yang et al., 1997). Furthermore, linear control can be adopted for semi-
global stabilization (Lin et al., 1996; Teel, 1995). The global stabilization means that the domain
of attraction of the closed-loop system under the control law is the entire state space. The semi-
global stabilization means that the system is stabilized by a one-parameter family of control laws
whose domain of attraction can tend to the entire state space (Grognard et al., 2002). Recently,
the actuator saturation issue is considered in network synchronization (Chen et al., 2015b; Su et
al., 2013, 2014), where semi-global synchronization is achieved. The semi-global output regulation
subject to input saturation is achieved by composite nonlinear control in (Wang et al., 2014). The
control for nonlinear Markov jumping systems with input saturation is studied in (Chen et al.,
2014a). And the saturation problem is studied for singular Lipschitz systems in (Zuo et al., 2015).
The extensive studies on systems subject to actuator saturation demonstrate that the saturation
problem is important in control theory and applications.
Event-based sampling and control, which originate from the research on aperiodic sampling

(Gupta, 1963), have been extensively studied since the late 1990s (Aström & Bernhardsson, 1999;
Arzén, 1999). This has led to the gradually established event-triggered control (ETC), which can
prevent unnecessary samplings as well as information transmissions and require less control updates
than the traditional periodic control method. The ETC theory is first systematically studied in
(Tabuada, 2007) based on the Lyapunov stability theory. An event-triggering rule is guaranteed to
be legitimate in the sense that the inter-event time is lower bounded such that accumulative events
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known as the Zeno behavior (Ames et al., 2006) do not exist. The event-driven controllers are
studied for linear systems in (Heemels et al., 2008). The self-triggered control is proposed in (Anta
& Tabuada, 2010; Wang & Lemmon, 2009) to reduce the cost of continuous-time monitoring of the
state. And the event-trigger strategy is applied to sensor/actuator networks and generalized to a
decentralized form in (Mazo & Tabuada, 2011), where a minimum time τ is set a priori instead of
being guaranteed by the local event-triggering functions to ensure the legitimacy. In addition, the
distributed ETC is analyzed in (Wang & Lemmon, 2011); the event-triggered cooperative control
is studied in (Chen et al., 2014b; Zhang et al., 2014b); and the ETC for discrete-time network
synchronization is addressed in (Chen et al., 2015a). The discrete-time ETC is first studied in
(Eqtami et al., 2010). And in (Heemels et al., 2013), the periodic ETC is proposed for linear systems
to combine the advantages of both ETC and the traditional sampled control. The extensive studies
on event-triggered control motivate the presented work of ETC with input saturation.
Recently, the ETC strategy is applied to systems subject to actuator saturation to achieve local

stabilization. In (Lehmann & Johansson, 2012), the event-triggered PI control is studied for a
scalar system with actuator saturation. In (Kiener et al., 2014), the anti-windup compensation is
investigated to enlarge the domain of attraction of systems with actuator saturation. In (Wu et al.,
2014), the event-triggered control is studied for the discretized systems with actuator saturation,
which is similar to the periodic ETC (Heemels et al., 2013). The controller synthesis is studied
by solving the matrix optimization problem to enlarge the domain of attraction (Wu et al., 2014).
In (Ni et al., 2015), both ETC and self-triggered control are studied for input-saturated systems.
In (Kiener et al., 2014; Ni et al., 2015; Wu et al., 2014), the linear matrix inequalities (LMI) are
utilized to design the ETC laws based on a quadratic event-triggering function. The LMIs are
involved with the event-trigger parameter, making the design dependent on the selection of the
parameter. In addition, to guarantee the feasibility of the ETC algorithm, the initial states of the
unstable system are required to be located within the domain of attraction which is generally a
bounded neighborhood of the system equilibrium point.
In this paper, the problem of event-based linear semi-global stabilization of null controllable

systems subject to input saturation is investigated. The results here can be found in (Zhang, 2015).
First, for a continuous-time system, novel low-gain ETC algorithms are proposed to achieve semi-
global stabilization. The algebraic Riccati equation (ARE) with a low-gain parameter is utilized to
design both the event-triggering condition and the linear controller; a minimum inter-event time
τ based on the Riccati ordinary differential equation is set a priori to prevent the Zeno behavior.
Furthermore, for a discrete-time system, novel event-triggered control algorithms based on the
discrete-time ARE are proposed to achieve semi-global stabilization. When the initial system value
is known to be located within a bounded set, the low-gain parameter can be appropriately selected
for both continuous-time and discrete-time systems such that unnecessary control updates are
reduced while the closed-loop stability is preserved under bounded control protocol. In addition,
based on the gain-scheduling methods in (Grognard et al., 2002; Shi et al., 2013), the high-low gain
techniques are utilized to extend the semi-global results to event-based global stabilization.
The contribution and significance of the results in this paper are two-fold: (i) low-gain ETC algo-

rithms with novel event-triggering conditions are designed for both continuous-time and discrete-
time systems such that unnecessary control updates are further reduced than the ETC law based
on a simple quadratic event-triggering function; (ii) ARE is utilized to design the low-gain con-
trollers and to construct the Lyapunov functions such that the event-trigger parameters can be
freely selected while the closed-loop stability can always be guaranteed.
The remaining of the paper is organized as follows. In Section 2, the problem of event-based

semi-global stabilization is formulated. The main results for continuous-time systems are presented
in Sections 3. The main results for discrete-time systems are established in Section 4. The numerical
examples are provided in Section 5. Finally, conclusion is drawn in Section 6.
Nomenclature: Throughout this paper, Rp and Rp×q represent the p-dimensional real vector

space and the set of all p × q real matrices, respectively. For x ∈ Rp, ∥x∥ denotes its Euclidian
norm; and ∥x∥∞ , maxi |xi|. For X ∈ Rp×p, its eigenvalues are denoted by λi(X) satisfying that
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|λ1(X)| ≤ ... ≤ |λp(X)|; and ρ(X) = |λp(X)| denotes its spectral radius. For M ∈ Rp×q, MT

denotes its transpose and ∥M∥ ,
√
ρ(MTM) denotes its spectral norm. The p× p identity matrix

is denoted by Ip. A square matrix A is said to be Hurwitz if all its eigenvalues have negative
real parts Re(λi(A)) < 0; A is said to be Schur if ρ(A) < 1. A pair (A,B) is stabilizable if there
exists an F such that (A − BF ) is stable, where A ∈ Rn×n and B ∈ Rn×m. The notation X ≻ Y
(respectively, X ≽ Y ) means that (X−Y ) is positive definite (respectively, positive semi-definite).
The saturation function with threshold of ϖ is defined as satϖ(u) , sgn(u)min{|u|, ϖ}.

2. Problem Statement

Consider the following system subject to actuator saturation:

x+ = Ax(t) +B · π(u(t)), (1)

where x ∈ Rn, u ∈ Rm; x+ , ẋ(t) for continuous-time system and x+ , x(t + 1) for discrete-
time system; (A,B) is stabilizable; and π : Rm → Rm is a saturation operator defined as π(u) ,
[π1(u1), ..., πm(um)]T, with the saturation function πi(ui) , satϖ(ui) = sgn(ui)min{|ui|, ϖ}, where
ϖ > 0 is an input-saturation threshold given a priori.
The problem of event-based semi-global stabilization is as follows: for any given bounded set

X ⊂ Rn, design an event-triggering condition to generate an event-triggered updating time sequence
{t0, t1, ...}, and design a one-parameter family of linear feedback laws u(t) = −K(ε)x(tk), which
use only the feedback information at the updating time tk, k = 0, 1, ..., such that limt→∞ x(t) = 0
as long as x(0) ∈ X , and X can tend to the entire space Rn as ε approaches zero. In this paper,
the low-gain technique (Lin, 1999) will be utilized to design the bounded control protocol so that
actuator saturation never occurs.
In the proposed event-triggered control algorithms for both continuous-time and discrete-time

systems, the error variable e(t) will be used. For t ∈ [tk, tk+1), k ≥ 0, denote

e(t) = x(tk)− x(t). (2)

For the continuous-time system, a lower bound has to be guaranteed for the inter-event time so
that the Zeno behavior is prevented. In this paper, a minimum inter-event time is set a priori in
the event-trigger strategy so that the event trigger is active only after t = tk + τ .
It is well known that semi-global stabilization cannot be achieved for a control system containing

strictly unstable open-loop dynamics subject to actuator saturation (Lin et al., 1996; Teel, 1995).
Then, it is assumed that A is marginally stable.

3. Low-gain Design for Continuous-time Systems

In this section, system (1) is treated as a continuous-time system subject to actuator saturation.
A continuous-time event-trigger strategy is proposed in Section 3.1. A bounded control protocol
is designed in Section 3.2. The semi-global stabilization result is established in Section 3.3. The
high-low gain design for global stabilization is studied in Section 3.4.

3.1 Event-trigger Strategy

In this subsection, the event-triggered mechanism is described to generate the updating time se-
quence {tk} for continuous-time systems.

Algorithm 1: Event-based updating:
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Step 1. If x(0) ̸= 0, set t0 , 0; otherwise, both the controller and the event trigger are inactive.
At the beginning of each updating process, t = tk, k ≥ 0, the feedback control input u is updated.
A minimum inter-event time τ > 0, which will be designed in Section 3.3, is set a priori. During
the time interval [tk, tk + τ), the event trigger is inactive.

Step 2. At the time t = tk + τ , the event trigger is activated. An event-triggering function f(t)
satisfying f(tk) ≤ 0 will be designed in Section 3.2. Either if f(tk + τ) > 0, or if f(tk + τ) = 0
while ∥x(tk + τ)∥ ̸= 0, the next event is triggered at tk+1 = tk + τ ; if f(tk + τ) < 0, for t > tk + τ ,
the next updating event is triggered at instant tk+1 > tk + τ when f(tk+1) = 0 and f(t) < 0 for all
t ∈ [tk + τ, tk+1); if f(tk + τ) = ∥x(tk + τ)∥ = 0, stabilization has been achieved in a finite time; if
f(t) < 0 for all t ∈ [tk + τ,+∞), denote tk+1 , +∞. The feedback control will be designed in the
linear form of u(t) = −Kx(tk), t ∈ [tk, tk+1).

Step 3. When a finite tk+1 is triggered, a new updating cycle will begin, then go to Step 1.

Remark 1: This algorithm guarantees that for all possible k ≥ 0, x(t) is continuously differentiable
on (tk, tk+1), has the right derivative x

′
+ at tk, and is continuous at tk+1; when saturation does not

occur, x(t) is second-order differentiable on (tk, tk+1) and has the second-order right derivative x′′+
at tk.

3.2 Bounded Control Protocol

The following assumption plays an important role in the continuous-time stabilization through
bounded control.

Assumption 1: The pair (A,B) is asymptotically null controllable under bounded control; that is,
(i) the pair (A,B) is stabilizable; (ii) all the eigenvalues of A are located within the closed left-half
complex plane. In addition, since control is unnecessary for stabilization when A is Hurwitz, it is
assumed that A is not Hurwitz and B ̸= 0.

Lemma 1: (Lin, 1999) Let Assumption 1 hold, R ≻ 0, andQ(ε) be a parameter-dependent positive
definite matrix satisfying the monotonic convergence lim

ε→0+
Q(ε) = 0. Then, for each ε > 0, there

exists a unique positive definite matrix P = P (ε) that solves the algebraic Riccati equation (ARE)

ATP + PA− PBR−1BTP +Q(ε) = 0.

Moreover, (A−BR−1BTP ) is Hurwitz; and lim
ε→0+

P (ε) = 0.

The design of a bounded control protocol for continuous-time system (1) is performed in three
steps.

Algorithm 2: Event-based low-gain stabilization:

Step 1. Find P (ε) ≻ 0 to solve the ARE

ATP (ε) + P (ε)A− P (ε)BBTP (ε) +Q(ε) = 0, (3)

where ε > 0 is a low-gain parameter to be designed and Q(ε) is a parameter-dependent positive
definite matrix satisfying the monotonic convergence lim

ε→0+
Q(ε) = 0.
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Step 2. Denote that

K(ε) , BTP (ε). (4)

For brevity, K(ε) is denoted as K in the sequel. By Lemma 1 and Assumption 1, one has that
(A−BK) is Hurwitz and ∥K∥ > 0. Then, the event-triggering function is designed as

f(t) = max{f1(t), f2(t)}, (5)

f1(t) = −σx(t)TQ(ε)x(t)− σx(t)TKTKx(t)− 2x(t)TKTKe(t),

f2(t) = ∥Ke(t)∥ − θ∥Kx(t)∥,

where the event-trigger parameters σ, θ ∈ (0, 1) are appropriately selected.

Step 3. A feedback law using x(tk) is designed as

u(t) = −Kx(tk), t ∈ [tk, tk+1), k ≥ 0. (6)

Lemma 2: The unique positive definite solution P (ε) to ARE (3) and the controller matrix K
in (4) satisfy that ∥BTP (ε)B∥ · P (ε) ≽ KTK.

Proof. It is straightforward to verify that ∥BTP (ε)B∥ =
∥∥∥P (ε) 1

2BBTP (ε)
1

2

∥∥∥. Then, one has

∥BTP (ε)B∥P (ε) = P (ε)
1

2 (∥P (ε)
1

2BBTP (ε)
1

2 ∥In)P (ε)
1

2

≽ P (ε)
1

2 (P (ε)
1

2BBTP (ε)
1

2 )P (ε)
1

2 = KTK.

3.3 Event-based semi-global stabilization

The main continuous-time result for event-based semi-global stabilization is presented in the fol-
lowing theorem.

Theorem 1: Consider continuous-time system (1) subject to actuator saturation with saturation
threshold ϖ > 0. Let Assumption 1 hold. Then, Algorithms 1 and 2 can achieve semi-global expo-
nential stabilization of system (1). That is, for any given bounded set X ⊂ Rn, and any σ, θ ∈ (0, 1)
in the event-triggering function (5), there exist an ε∗ ∈ (0, 1] for ARE (3) and a lower bound τ > 0
for the inter-event time, such that with the low-gain parameter ε = ε∗, lim

t→∞
x(t) = 0 is achieved

exponentially as long as x(0) ∈ X .

Proof. The key point for the proof is to establish that if x(tk) ̸= 0, k ≥ 0, then for all t ∈ [tk, tk+τ ],
(i) ∥x(t)∥ > 0; (ii) ∥e(t)∥ ≤ δ∥x(t)∥ with δ to be defined in Step 3 of the proof; (iii) ∥Kx(t)∥∞ ≤ ϖ.
The rationale for this procedure is: (i) utilizing the event-triggering conditions; (ii) using the fact
that e(tk) = 0; (iii) setting the low-gain parameter such that V (x(0)) satisfies a condition to be
given in Step 3 of the proof. As a result, it will be obtained that on the interval [tk, tk + τ),
V = xTP (ε)x is decreasing and ∥Kx(t)∥∞ ≤ ϖ, despite that the event trigger is inactive.

Step 1. Closed-loop Dynamics.
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By (1), (2) and (6), one has u(t) = −K(e(t) + x(t)) and ė = −ẋ. When saturation does not
occur, the closed-loop dynamics will be

ẋ(t) = AFx(t) +BF e(t), ė(t) = −AFx(t)−BF e(t), (7)

where AF , A−BK and BF , −BK.
For the stability analysis of (1), the following quadratic Lyapunov function is used:

V (x(t)) , x(t)TP (ε)x(t), (8)

which is continuously differentiable on (tk, tk+1), has the right derivative V
′
+ at tk, and is continuous

at tk+1. When saturation does not occur, by (3), (5), (7) and (8), dV (x(t))
dt can be evaluated as follows:

V̇ = (AFx+BF e)
TP (ε)x+ xTP (ε)(AFx+BF e)

= xT(ATP (ε) + P (ε)A− 2P (ε)BBTP (ε))x− 2xTKTKe (9)

= f1(t)− (1− σ)x(t)TQ(ε)x(t)− (1− σ)x(t)TKTKx(t).

If tk+1 > tk + τ , k ≥ 0, the event-trigger strategy in Algorithm 1 enforces that f(t) ≤ 0, ∀t ∈
[tk + τ, tk+1]. Then, the following claim is straightforward.

Claim 1: For any possible t ∈ (tk + τ, tk+1], if ∥u(tk)∥∞ ≤ ϖ, then

V̇ ≤ −(1− σ)x(t)TQ(ε)x(t)− (1− σ)x(t)TKTKx(t) ≤ 0. (10)

Step 2. Bounded Control.

Define the desirable control ũ(t) as

ũ(t) , −Kx(t). (11)

One has ũ(tk) = u(tk) and u(tk+1) = ũ(tk+1). By Lemma 2, one obtains

∥ũ∥2∞ ≤ ∥Kx∥2 ≤ ∥BTP (ε)B∥ · V (x).

Denote

β(ε) , 1

∥BTP (ε)B∥
. (12)

For brevity, β(ε) is denoted as β in the sequel. Then, the following claim is straightforward.

Claim 2: For any t ∈ [tk, tk+1), if V (x(t)) ≤ βϖ2, then ∥ũ(t)∥∞ ≤ ϖ.

Step 3. Design of τ .

A lower bound τ of the event-triggering time interval will first be designed using the low-gain
parameter ε and an auxiliary parameter δ ∈ (0, 1), which are to be determined later. Denote

a0 = ∥AF ∥, a1 = ∥AF ∥+ ∥BF ∥, a2 = ∥BF ∥, (13)

where AF = A − BK(ε) and BF = −BK(ε). By Lemma 1 and Assumption 1, AF is Hurwitz,
a0 > 0; BF ̸= 0, a1 > a2 > 0; and a21 ≥ 4a2a0. Using Lemma 8 in Appendix A with t̃ = tk,
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if µ = |a0 − a2| =
√
a21 − 4a2a0 > 0, by (A1), ϕ(t) = b1

(
1− e−µ(t−tk)

)
/(e−µ(t−tk) − b2), where

b1 = (a1 − µ)/(2a2) and b2 = (a1 − µ)/(a1 + µ). Now, using ε and δ, the minimum inter-event
time τ is designed as τ(ε, θ) for Algorithm 1:

τ(ε, δ) =
1

µ
ln

2a0 + (a1 + µ)δ

2a0 + (a1 − µ)δ
> 0 (14)

so that ϕ(tk + τ(ε, δ)) = δ. If µ = |a0 − a2| = 0, then ϕ(t) = 1
a2(

2

a1
+tk−t)

− a1

2a2
, one can let

τ(ε, δ) =
2

a1
− 2

a1 + 2a2δ
=

δ

(1 + δ)a2
(15)

so that ϕ(tk + τ(ε, δ)) = δ. For brevity, τ(ε, δ) is denoted as τ in the sequel. The proof of the
following claim is given in Appendix B.

Claim 3: If ∥u(tk)∥∞ ≤ ϖ and ∥x(t)∥ is positive for all t ∈ [tk, tk + τ), then

∥e(t)∥ ≤ δ∥x(t)∥ (16)

holds on [tk, tk + τ ].

For any δ ∈ (0, 1) satisfying that

Υ(ε, δ) , Q(ε)− δ2∥K∥2In ≻ 0, (17)

by (9), if (16) holds and ∥u(tk)∥∞ ≤ ϖ, using Lemma 2 and the fact that

γaTY a+
1

γ
bTY b ≥ ±2aTY b (18)

for any Y ≽ 0 and γ > 0, one has

V̇ ≤ −xTQ(ε)x+ eTKTKe

≤ −xT
[
Q(ε)− δ2∥K∥2In

]
x

= −x(t)TΥ(ε, δ)x(t) ≤ 0. (19)

Claims 2, 3 together with Claim 4 in the following step will be used to establish that if x(tk) ̸= 0,
k ≥ 0, then for all t ∈ [tk, tk + τ ], (i) ∥x(t)∥ > 0; (ii) ∥e(t)∥ ≤ δ∥x(t)∥; (iii) ∥ũ(t)∥∞ ≤ ϖ. The
rationale for this procedure is: (i) utilizing the event-triggering conditions; (ii) using the fact that
e(tk) = 0; (iii) setting the low-gain parameter such that V (x(0)) ≤ βϖ2.

Step 4. Design of Parameters.

Noting the boundedness of X and the fact that limε→0+ P (ε) = 0, established in Lemma 1, one
can set the low-gain parameter as ε = ε∗ such that

∥BTP (ε∗)B∥ · sup
x∈X

xTP (ε∗)x ≤ ϖ2. (20)

By Claim 2 and (12), one has

V (x(0)) ≤ βϖ2 and ∥u(0)∥∞ ≤ ϖ (21)

7
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for any initial values x(0) ∈ X .
Next, using (17), δ is set as δ = δ∗ ∈ (0, 1) such that

Υ(ε∗, δ∗) ≻ 0. (22)

The proof of the following claim is given in Appendix B.

Claim 4: Let ε = ε∗ and δ = δ∗ as specified in (20) and (22). If x(tk) ̸= 0 and V (x(tk)) ≤ βϖ2,
then ∥x(t)∥ > 0, V (x(t)) ≤ βϖ2, (16) holds, and ∥ũ(t)∥∞ ≤ ϖ, ∀t ∈ [tk, tk + τ ].

Step 5. Exponential Stability.

If x(0) ̸= 0, using (19), (21), and Claims 1, 2, and 4, one has that V̇ ≤ 0 and V (x(t1)) < V (x(0)).
If x(t) ̸= 0, ∀t ≤ tk, then V̇ < 0, ∀t ≤ tk, and V (x(tk)) < βϖ2. Using (19) and Claims 1, 2, and 4,
one obtains that

x(t) ̸= 0, V̇ < 0, ∀t < tk+1, and V (x(tk+1)) < βϖ2.

Therefore, if x(t) = 0 is achieved in a finite time, t = tk+1 is triggered by f2(tk+1) = 0. Then, for
all t ≥ tk+1, one has u = 0, and x(t) ≡ 0.
If x(t) ̸= 0, ∀t ≥ 0, using (19) and Claims 1, 2, and 4, one has that either (10) or (19) holds for

t ∈ (tk, tk+1), and V ′
+ < 0 at t = tk, ∀k ≥ 0. Thus, by Lyapunov stability theory (Michel et al.,

2008), one obtains the exponential convergence lim
t→∞

∥x(t)∥ = 0.

Remark 2: The low-gain parameter is designed as ε = ε∗ specified in (20) and the lower bound τ
of the event-triggering time interval is designed as τ(ε, δ) given in (14) with ε = ε∗ and δ = δ∗,
where δ∗ is set in (22). To find an ε∗ fulfilling (20), the method of bisection (Su et al., 2014) may
be applied. For the event-trigger parameters σ and θ, if σ and θ are too small, control updates will
be very frequent. Therefore, one needs to select the values of σ and θ appropriately. In addition,
if the control performance is taken into account, the parameter-dependent matrix Q(ε) can be
designed, and the term P (ε)BBTP (ε) in ARE (3) can be substituted by P (ε)BR(ε)−1BTP (ε)
with the parameter-dependent matrix R(ε) to be designed.

Remark 3: If the bounded set X , within which the initial value x(0) is known to be located, is
X = {x ∈ Rn | ∥x∥ ≤ RX } with RX > 0, then condition (20) is satisfied by setting ε∗ such that

∥BTP (ε∗)B∥ · ∥P (ε∗)∥ < ϖ2

(RX )2
, (23)

which can easily be numerically checked when solving ARE (3). One can note that if RX is large,
the low-gain parameter ε∗ needs to be very small, which will result in slow convergence. To improve
the performance, the high-low gain design is proposed in next section.

Remark 4: The idea of the a priori setting of the inactive interval [tk, tk + τ), as well as the
proof of Claim 3 in Appendix B.1 based on the Riccati ODE, is similar to the self-triggered
control in (Anta & Tabuada, 2010; Wang & Lemmon, 2009). A difference is that the self-triggered
control is to reduce the cost of continuous-time monitoring of the state; while in this paper, the
necessity of setting an inactive interval [tk, tk + τ) is mainly due to the difficulty in providing an
inherent minimum inter-event time for the proposed ETC algorithms based on the event-triggering
function (5).
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3.4 High-low gain design

The low-gain design can be improved by scheduling the controller using the high-low gain techniques
(Grognard et al. (2002); Lin (1999)). For brevity, only the single-input systems are considered, that
is, B ∈ Rn.

Algorithm 3: Event-based updating:

Step 1. If x(0) ̸= 0, set t0 , 0; otherwise, both the controller and the event trigger are inactive.
At the beginning of each updating process, t = tk, k ≥ 0, the feedback control input u is updated.
A minimum inter-event time τk > 0, which will be designed in Section 3.3, is set a priori. During
the time interval [tk, tk + τk), the event trigger is inactive.

Step 2. At the time t = tk + τk, the event trigger is activated. An event-triggering function f(t)
satisfying f(tk) ≤ 0 will be designed in Section 3.2. Either if f(tk + τk) > 0, or if f(tk + τk) = 0
while ∥x(tk+τk)∥ ̸= 0, the next event is triggered at tk+1 = tk+τk; if f(tk+τk) < 0, for t > tk+τk,
the next updating event is triggered at instant tk+1 > tk+ τk when f(tk+1) = 0 and f(t) < 0 for all
t ∈ [tk + τk, tk+1); if f(tk + τk) = ∥x(tk + τk)∥ = 0, stabilization has been achieved in a finite time;
if f(t) < 0 for all t ∈ [tk + τk,+∞), denote tk+1 , +∞. The feedback control will be designed in
the linear form of u(t) = −Kx(tk), t ∈ [tk, tk+1).

Step 3. When a finite tk+1 is triggered, a new updating cycle will begin, then go to Step 1.

The following lemma is important for the high-low gain design.

Lemma 3: Let Assumption 1 hold, B ∈ Rn, r > 0, and Q(ε) ≻ 0, lim
ε→0+

Q(ε) = 0, where ε > 0 is

a low-gain parameter. For each ε > 0, there exists a unique positive definite matrix P = P (ε) that
solves the ARE

ATP (ε) + P (ε)A− 1

r
P (ε)BBTP (ε) +Q(ε) = 0. (24)

Moreover, (A− α
rBB

TP ) is Hurwitz for any α ≥ 1
2 ; and lim

ε→0+
P (ε) = 0.

Proof. By Lemma 1, it suffices to prove the Hurwitz stability of AF , A − αBr−1BTP . It is
straightforward that for any α ≥ 1

2 ,

−AT
FP − PAF = (2α− 1)PBr−1BTP +Q(ε) ≻ 0.

By the property of the Lyapunov equation, one has that AF is Hurwitz.

Let P = P (ε) ≻ 0 be the solution to ARE (24). Denote

T (ε) ,
{
x ∈ Rn

∣∣∣∣xTP (ε)x ≤ r2ϖ2

BTP (ε)B

}
, (25)

where ϖ is the input saturation threshold. Similar to (Grognard et al., 2002, Eq. (3)), one has that
for any x located within the set T (ε), |BTP (ε)x| ≤ rϖ.
The high-low gain design of a bounded control protocol for continuous-time system (1) is per-

formed in three steps.

Algorithm 4: Event-based high-low gain stabilization:

9
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Step 1. For any initial state x0, the low-gain parameter is set as ε = ε0:

ε0 , max
{
ε ∈ (0, 1] : xT

0P (ε)x0 ·BTP (ε)B ≤ r2ϖ2
}
. (26)

Find P0 , P (ε0) ≻ 0 to solve ARE (24) with ε = ε0. Meanwhile, denote ε1 , 1, and find
P1 , P (1) ≻ 0 to solve ARE (24) with ε = ε1 = 1. Denote

K0 , r−1BTP0, K1 , r−1BTP1. (27)

Using (25), denote

T1 , T (1), T0 , Rn \ T1. (28)

Step 2. For x(tk) ∈ Ti, a high-gain parameter α(t) is defined:

α(tk) , max

{
α ∈

[
1,

1

εi

]
: α ·

√
x(tk)TPix(tk) ≤

rϖ√
BTPiB

}
. (29)

For the event-trigger parameters σ, θ ∈ (0, 1) that are appropriately selected, denote

f1(t) = −σx(t)TQ(εi)x(t)− σ (2α(tk)− 1) · x(t)TKT
i rKix(t)− 2α(tk) · x(t)TKT

i rKie(t),

f2(t) = ∥Kie(t)∥ − θ∥Kix(t)∥.

The event-triggering function is designed as follows:

f(t) =

{
f1(t), if x(tk) ∈ T0;
max{f1(t), f2(t)}, if x(tk) ∈ T1.

(30)

Step 3. A feedback law using x(tk) ∈ Ti is designed as

u(t) = −α(tk)Kix(tk), t ∈ [tk, tk+1), k ≥ 0. (31)

Remark 5: The high-gain scheduling by the parameter α(t) is stopped once the state x(tk) reaches
the set T1. As suggested in (Grognard et al. (2002); Lin (1999)), a heuristic scheduling rule is to
let α be proportional to 1/ε. The ETC controller scheduling in the high-low gain design only relies
on the online adaptation of the scalar control gain α(t). In the traditional high-low gain design
of bounded control, the controller scheduling involves in a complicated adaptation of the low-gain
parameter ε, which cannot be easily applied to the design of the event-triggered control protocol.

Similar to Lemma 2, the following lemma holds.

Lemma 4: The controller matrices Ki in (31) satisfy that r−1BTPiB · Pi ≽ KT
i rKi.

Proof. It is straightforward that r−1BTPiB =
∥∥∥P 1

2

i Br
−1BTP

1

2

i

∥∥∥. Then, one has r−1BTPiB · Pi ≽

P
1

2

i (P
1

2

i Br
−1BTP

1

2

i )P
1

2

i = KT
i rKi.

Theorem 2: Consider continuous-time system (1) subject to actuator saturation with saturation
threshold ϖ > 0. Let Assumption 1 hold and B ∈ Rn. Then, Algorithms 3 and 4 can achieve
global exponential stabilization of system (1). That is, for any initial state x(0) ∈ Rn, and any

10
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σ, θ ∈ (0, 1) in the event-triggering function (30), there exists a sequence {τk} for Algorithm 3,
such that lim

t→∞
x(t) = 0 is achieved exponentially. Furthermore, τk ≥ τmin for some τmin > 0.

Proof. Step 1. Attractivity of T1.
Assume that x(t0) is located in T0. Denote

α(t) = α(tk), t ∈ [tk, tk+1), k ≥ 0.

Similar to (7), when saturation does not occur and x(tk) is located within T0, the closed-loop
dynamics will be

ẋ(t) = AFx(t) +BF e(t), ė(t) = −AFx(t)−BF e(t), (32)

where AF , A− α(t)BK0 and BF , −α(t)BK0.
Before the state x(tk) reaches T1, the following quadratic Lyapunov function is used:

V0(x(t)) , x(t)TP0x(t). (33)

When saturation does not occur, dV0(x(t))
dt can be evaluated as follows:

V̇0 = xT(ATP0 + P0A− 2αP0Br
−1BTP0)x− 2αxTKT

0 rK0e

= f1(t)− (1− σ)x(t)TQ(ε0)x(t)− (2α− 1) · (1− σ)x(t)TKT
0 rK0x(t). (34)

Define the desirable control ũ(t) as

ũ(t) , −α(t)K0x(t). (35)

By Lemma 4, one has ∥ũ∥2∞ ≤ α2r−2BTP0B · V0(x). Denote

β0 ,
r2

BTP0B
. (36)

For any t ∈ [tk, tk+1), if V0(x(t)) ≤ β0ϖ2

α(tk)2
, then ∥ũ(t)∥∞ ≤ ϖ.

Denote

δk , 0.95
√
λmin(Q(ε0)) · (2α(tk)− 1)

α(tk)
√
r∥K0∥

(37)

such that

Υ(δk) , Q(ε0)−
α(tk)

2

2α(tk)− 1
δ2kr∥K0∥2In ≻ 0.

Denote a0 = ∥AF ∥, a1 = ∥AF ∥ + ∥BF ∥, a2 = ∥BF ∥, where AF = A − α(tk)BK0 and BF =
−α(tk)BK0. Using Lemma 8 in Appendix A with t̃ = tk, if µ = |a0 − a2| > 0, the minimum
inter-event time τk for Algorithm 3 is designed as:

τk =
1

µ
ln

2a0 + (a1 + µ)δk
2a0 + (a1 − µ)δk

> 0 (38)

11
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so that ϕ(tk + τk) = δk. If µ = |a0 − a2| = 0, then define

τk =
δk

(1 + δk)∥BK0∥ · α(tk)
(39)

so that ϕ(tk + τk) = δk. Similar to Claim 3 in the proof of Theorem 1, if ∥u(tk)∥∞ ≤ ϖ and ∥x(t)∥
is positive for all t ∈ [tk, tk + τk), then

∥e(t)∥ ≤ δk∥x(t)∥ (40)

holds on [tk, tk + τk].

If (40) holds and ∥u(tk)∥∞ ≤ ϖ, denoting γk , 2α(tk)−1
α(tk)

and using (18), one has

V̇0 ≤ −xTQ(ε0)x− (2α− 1)xTKT
0 rK0x+ αγkx

TKT
0 rK0x+

α

γk
eTKT

0 rK0e

≤ −xT

[
Q(ε0)−

α(tk)
2

2α(tk)− 1
δ2kr∥K0∥2In

]
x

= −x(t)TΥ(δk)x(t) ≤ 0. (41)

Then, similar to Claim 4 in the proof of Theorem 1, if x(tk) ̸= 0 and V0(x(tk)) ≤ β0ϖ2

α(tk)2
, then

∥x(t)∥ > 0, V0(x(t)) ≤ β0ϖ2

α(tk)2
, (40) holds, and ∥ũ(t)∥∞ ≤ ϖ, ∀t ∈ [tk, tk + τ ].

Because x(0) ∈ T0, one has x(0) ̸= 0, and V0(x(t1)) < V0(x(0)). Before x(tk) reaches T1, by (34)
and (41), V0(x(t)) decreases exponentially. Therefore, x(tk) will reach T1 in a finite time.
Step 2. Local stability within T1.
Assume that x(tk) reaches T1 at the event time tk = tk̃. Consider the following quadratic Lya-

punov function:

V1(x(t)) , x(t)TP1x(t). (42)

By (25) and (28), one has

V1
(
x(tk̃)

)
≤ r2ϖ2

BTP1B
.

For any ∀k ≥ k̃, let α(tk) = 1, and

δk = δ̃ =
0.95

√
λmin(Q(1))√
r∥K1∥

(43)

such that

Υ(δ̃) , Q(1)− δ̃2r∥K1∥2In ≻ 0.

Denote a0 = ∥A − BK1∥, a2 = ∥BK1∥, a1 = a0 + a2. Using Lemma 8 in Appendix A, if µ =
|a0 − a2| > 0, the minimum inter-event time τk for Algorithm 3 is designed as:

τk = τ̃ =
1

µ
ln

2a0 + (a1 + µ)δ̃

2a0 + (a1 − µ)δ̃
> 0 (44)

12
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so that ϕ(tk + τ̃) = δ̃, ∀k ≥ k̃. If µ = |a0 − a2| = 0, then let

τk = τ̃ =
δ̃

(1 + δ̃)∥BK1∥
(45)

so that ϕ(tk+ τ̃) = δ̃, ∀k ≥ k̃. Similar to the proof of Theorem 1, one has that the set T1 is invariant
as V1(x(t)) is non-increasing; and the exponential convergence lim

t→∞
∥x(t)∥ = 0 is obtained. Because

τk ≡ τ̃ , ∀k ≥ k̃, it is obvious that the sequence {τk} is lower-bounded by a positive τmin.

4. Discrete-time Systems

In this section, system (1) is treated as a discrete-time system subject to actuator saturation.
A discrete-time event-trigger strategy is proposed in Section 4.1. A bounded control protocol is
designed in Section 4.2. The semi-global stabilization result is established in Section 4.3. The
high-low gain design for global stabilization is studied in Section 4.4.

4.1 Event-trigger Strategy

In this subsection, the event-triggered mechanism is described to generate the updating time se-
quence {tk} for discrete-time systems.

Algorithm 5: Event-based updating:

Step 1. The initial time is set as the first event time: t0 , 0. At the beginning of each updat-
ing process, t = tk, k ≥ 0, the feedback control input u is updated. Design an event-triggering
function f(t) such that f(tk) ≤ 0.

Step 2. For t ≥ tk + 1, the next updating event is triggered at instant tk+1 ≥ tk + 1 when
f(tk+1) > 0 and f(t) ≤ 0 for t < tk+1. If no such an event occurs, denote tk+1 , +∞.

Step 3. When a finite tk+1 is triggered, a new updating cycle will begin, then go to Step 1 and
redefine the event-triggering function f(t) such that f(tk+1) ≤ 0.

4.2 Bounded Control Protocol

The following assumption plays an important role in the discrete-time stabilization through
bounded control.

Assumption 2: The pair (A,B) is asymptotically null controllable under bounded control; that
is, (i) the pair (A,B) is stabilizable; (ii) ρ(A) ≤ 1. In addition, since control is unnecessary for
stabilization when A is Schur, it is assumed that A is not Schur and B ̸= 0.

Lemma 5: (Lin, 1999) Let Assumption 2 hold, R ≻ 0, andQ(ε) be a parameter-dependent positive
definite matrix satisfying the monotonic convergence lim

ε→0+
Q(ε) = 0. Then, for each ε > 0, there

exists a unique positive definite matrix P = P (ε) that solves the discrete-time ARE (DARE)

P = ATPA−ATPB(BTPB +R)−1BTPA+Q(ε).

Moreover, (A−B(BTPB +R)−1BTPA) is Schur; and lim
ε→0+

P (ε) = 0.

13
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The design of a bounded control protocol for discrete-time system (1) is performed in three steps.

Algorithm 6: Event-based low-gain stabilization:

Step 1. Find P = P (ε) ≻ 0 to solve the DARE

P = ATPA−ATPB(BTPB + In)
−1BTPA+Q(ε), (46)

where ε > 0 is a low-gain parameter to be designed and Q(ε) is a parameter-dependent positive
definite matrix satisfying the monotonic convergence lim

ε→0+
Q(ε) = 0.

Step 2. Denote that

K(ε) , (BTP (ε)B + In)
−1BTP (ε)A. (47)

For brevity, P (ε) and K(ε) are denoted as P and K, respectively in the sequel. By Lemma 5 and
Assumption 2, one has that (A− BK) is Schur and BK ̸= 0. Then, the event-triggering function
is designed as

f(t) = max{f1(t), f2(t)}, (48)

f1(t) , −σx(t)TQ(ε)x(t)− σx(t)TKTKx(t) + e(t)TKTBTPBKe(t)− 2x(t)TKTKe(t),

f2(t) , ∥Ke(t)∥ − θ∥Kx(t)∥,

where the event-trigger parameters σ, θ ∈ (0, 1) are appropriately selected.

Step 3. A feedback law using x(tk) is designed as

u(t) = −Kx(tk), tk ≤ t < tk+1, k ≥ 0. (49)

Lemma 6: The unique positive definite solution P to DARE (46) and the controller matrix K
in (47) satisfy that

P −Q(ε) ≽ KTK = ATPBK −KTBTPBK. (50)

Proof. It is straightforward to verify that ATPBK = KT(BTPB + In)K = KTBTPBK +KTK
and

P −Q(ε) = ATPA−ATPBK = AT
FPAF +KTK (51)

≽ KTK, AF , A−BK.

4.3 Event-based semi-global stabilization

The main discrete-time result for event-based semi-global stabilization is presented in the following
theorem.

14
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Theorem 3: Consider discrete-time system (1) subject to actuator saturation with saturation
threshold ϖ > 0. Let Assumption 2 hold. Then, Algorithms 5 and 6 can achieve semi-global ex-
ponential stabilization of system (1). That is, for any bounded set X = {x ∈ Rn | ∥x∥ ≤ RX }
with RX > 0, and any σ, θ ∈ (0, 1) in the event-triggering function (48), there exists a low-gain
parameter ε = ε∗ such that lim

t→∞
x(t) = 0 is achieved exponentially as long as x(0) ∈ X .

Proof. Step 1. Closed-loop Dynamics.

By (1), (2) and (49), one has u(t) = −K(e(t) + x(t)). When saturation does not occur, the
closed-loop dynamics will be

x(t+ 1) = AFx(t) +BF e(t), (52)

where AF , A−BK and BF , −BK.
For stability analysis, the following quadratic Lyapunov function is used:

V (x(t)) , xTPx.

By (46), (48), (52), and Lemma 6, when ∥u∥∞ ≤ ϖ, one can evaluate ∆V (t) , V (x(t+ 1)) −
V (x(t)), which is the variation of V along the trajectory of x(t), as follows:

∆V (t) = xT(AT
FPAF − P )x+ eTKTBTPBKe− 2xTKTKe.

= −xTQ(ε)x− xTKTKx+ eTKTBTPBKe− 2xTKTKe

= f1(t)− (1− σ)xTQ(ε)x− (1− σ)∥Kx∥2. (53)

The event-trigger strategy in Algorithm 5 enforces f1(t) ≤ 0. By (53), if ∥u(tk)∥∞ ≤ ϖ, one has

∆V (t) ≤ −(1− σ)xTQ(ε)x− (1− σ)∥Kx(t)∥2 ≤ 0. (54)

Step 2. Bounded Control.

Define the desirable control ũ(t) as

ũ(t) , −Kx(t). (55)

Using (50), one obtains that

∥ũ(t)∥2∞ ≤ xTKTKx ≤ V (x)− xTQ(ε)x

≤ η(ε)V (x(t)), η(ε) , 1− λ1(Q(ε))

∥P (ε)∥
.

For brevity, η(ε) is denoted as η in the sequel. Noting that K ̸= 0 and by (50), one has η > 0. The
following claim is straightforward.

Claim 5: If V (x(t)) ≤ ϖ2/η, then ∥ũ(t)∥∞ ≤ ϖ.

Step 3. Design of Parameters.

By the fact that limε→0+ P (ε) = 0, established in Lemma 5, the low-gain parameter ε can be set

15
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as ε = ε∗ such that

sup
x(0)∈X

x(0)TP (ε∗)x(0) ·
(
1− λ1(Q(ε∗))

∥P (ε∗)∥

)
≤ ϖ2. (56)

When X = {x ∈ Rn | ∥x∥ ≤ RX } with RX > 0, condition (56) can be guaranteed by

∥P (ε∗)∥ − λ1(Q(ε∗)) ≤ ϖ2

(RX )2
. (57)

If (56) is satisfied, it is straightforward that V (x(0)) ≤ ϖ2/η for any initial values x(0) ∈ X .
Using Claim 5 and (54), one obtains ∥u(0)∥∞ ≤ ϖ, V (x(t)) ≤ ϖ2/η, ∥ũ(t)∥∞ ≤ ϖ, and (54) holds
for all t ≥ 0, that is,

∆V (t) ≤ −(1− σ)x(t)TQ(ε∗)x(t)− (1− σ)∥K(ε∗)x(t)∥2

≤ −(1− σ)λ1(Q(ε∗))∥x(t)∥2.

By the Lyapunov stability theory, one obtains the exponential convergence lim
t→∞

∥x(t)∥ = 0. In

addition, if the possible finite-time stabilization is achieved, that is, x(tk + s) = 0 for some s ≥ 0,
k ≥ 0, then one has f2(tk + s) ≥ 0. Thus, either tk+1 = tk + s if f2(tk + s) > 0, or tk+1 = +∞ if
Kx(tk) = 0. In both cases, one has that x(t) = 0, ∀t > tk + s, and the updating event will not be
triggered thereafter.

4.4 High-low gain design

The low-gain design can be improved by scheduling the controller using the high-low gain techniques
(Lin (1999)). For brevity, only the single-input systems are considered, that is, B ∈ Rn. The
following lemma is important for the high-low gain design.

Lemma 7: Let Assumption 2 hold, B ∈ Rn, Q(ε) ≻ 0 and lim
ε→0+

Q(ε) = 0. For each ε > 0, the

unique positive definite solution P = P (ε) of the DARE

P = ATPA−ATPB(BTPB + 1)−1BTPA+Q(ε) (58)

satisfies that (A− αB(BTPB + 1)−1BTPA) is Schur for α ∈ [α1(ε), α2(ε)], where

α2(ε) = 1 +
1

BTPB
,

1

2
< α1(ε) < 1 < α2(ε),

α1(ε) = α2 −
√
BTPB + 1

BTPB
.

(59)

Proof. Denote AF , A − αB(BTPB + 1)−1BTPA, and β , −(BTPB)α2 + 2(BTPB + 1)α −
(BTPB + 1). It can be easily verified that

P −AT
FPAF = Q(ε) +

β

(BTPB + 1)2
·ATPBBTPA.

Noting that β ≥ 0 for α ∈ [α1(ε), α2(ε)], one has P − AT
FPAF ≽ Q(ε) ≻ 0. Therefore, by the

property of Lyapunov equation, AF is Schur.
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The high-low gain design of a bounded control protocol for discrete-time system (1) is performed
in three steps.

Algorithm 7: Event-based high-low gain stabilization:

Step 1. Let α1(ε) be defined in (59). For any initial state x0, the low-gain parameter is set as
ε = ε0:

ε0 , max

{
ε ∈ (0, 1] : α1(ε)

2 · xT
0Px0 ·

(
1− λ1(Q(ε))

∥P∥

)
≤ ϖ2

}
. (60)

Find P = P (ε0) ≻ 0 to solve ARE (58) with ε = ε0. Denote

K , −(BTPB + 1)−1BTPA. (61)

Step 2. For x(tk) ∈ Ti, a high-gain parameter α(t) is defined:

α(tk) , max {α ∈ [α1(ε0), α2(ε0)] : |αKx(tk)| ≤ ϖ} . (62)

The event-triggering function is designed as follows:

f(t) =max{f1(t), f2(t)}, (63)

f1(t) ,− σx(t)TQ(ε0)x(t)− σβ(tk)x(t)
TKTKx(t)

+ α(tk)
2e(t)TKTBTPBKe(t)− γ(tk)x(t)

TKTKe(t),

f2(t) ,∥Ke(t)∥ − θ∥Kx(t)∥,

where the event-trigger parameters σ, θ ∈ (0, 1) are appropriately selected, and β(tk) ,
−(BTPB)α(tk)

2 + 2(BTPB + 1)α(tk)− (BTPB + 1) ≥ 0, γ(tk) , 2α(tk)(B
TPB)[α2(ε0)− α(tk)].

Step 3. A feedback law using x(tk) is designed as

u(t) = −α(tk)Kx(tk), t ∈ [tk, tk+1), k ≥ 0. (64)

Theorem 4: Consider discrete-time system (1) subject to actuator saturation with saturation
threshold ϖ > 0. Let Assumption 2 hold and B ∈ Rn. Then, Algorithms 5 and 7 can achieve global
exponential stabilization of system (1). That is, for any initial state x(0) ∈ Rn, and any σ, θ ∈ (0, 1)
in the event-triggering function (63), lim

t→∞
x(t) = 0 is achieved exponentially.

Proof. By (1), (2) and (64), one has u(t) = −α(tk)K(e(t) + x(t)). When saturation does not
occur, one has x(t + 1) = AFx(t) + BF e(t), where AF , A − α(tk)BK and BF , −α(tk)BK.
Consider the Lyapunov function V (x(t)) , xTPx. Similar to (53), one can evaluate ∆V (t) =
V (x(t+ 1))− V (x(t)) as follows:

∆V (t) = xT(AT
FPAF − P )x+ eTBT

FPBF e− γ(tk)x
TKTKe

= −xTQ(ε0)x− β(tk)x
TKTKx

+α(tk)
2eTKTBTPBKe− γ(tk)x

TKTKe

= f1(t)− (1− σ)xTQ(ε0)x− (1− σ)β(tk)∥Kx∥2.
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The event-trigger strategy in Algorithm 5 enforces f1(t) ≤ 0. The remaining of the proof is similar
to that of Theorem 3.

5. Numerical Examples

In this section, numerical examples are presented to verify the theoretical results and to illustrate
the effectiveness of the proposed event-based control algorithms. Simulations are performed for:
(i) the double integrators in Example 1; (ii) a continuous-time system with a pair of double defective
eigenvalues on the imaginary axis in Example 2; and (iii) a linear system model of the inverted
pendulum in Example 3.
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Figure 1. Event-based high-low gain control for double integrators: (a) the bounded control input; (b) the state trajectories.

Example 1: Consider system (1) as the continuous-time input-saturated double integrators with

A =

[
0 1
0 0

]
, B =

[
0
1

]
, ϖ = 1.

The high-low gain ETC algorithms in Section 3.4 are applied to the initial condition x(0) =
[−10, 0]T. Following (Grognard et al., 2002, Eq. (18)), the matrix Q(ε) used for ARE (24) is in the
following form:

Q(ε) =

[
ε4 0
0 ε2

]
. (65)

In (24), we let r = 15. The event-trigger parameters in Algorithm 4 are chosen as σ = θ = 0.99.
The low-gain parameter ε is selected as ε0 = 0.5076 following (26). By (31), the controller matrices
are obtained with K0 = [0.0665, 0.3876] and K1 = [0.2582, 0.7636]. When the state x(tk) is located
in the set T0, the high-gain parameter α(tk) in (29) and the minimum inter-event time τk in (38)
are on-line scheduled. After x(tk) reaches the set T1, the minimum inter-event time is set a priori
as τ̃ = 0.19 sec. For the initial value x(0) = [−10, 0]T, the simulation results are shown in Fig. 1.
Practical stabilization is achieved within 15 sec. The total number of event-based feedback updates
is 21. The minimum inter-event time for the 21 updates is 0.10 sec. The stars in Fig. 1(b) indicate
that it takes 7.33 sec for the state trajectories to reach the set T1 from x(0), to be compared
with 6.79 sec for the algorithm in Grognard et al. (2002) using continuous-time feedback control
updating.

18



October 9, 2015 International Journal of Control TCON-2015-0033˙R2˙Authors

Meanwhile, for double integrators subject to actuator saturation, the global stabilization can be
achieved via linear event-triggered control law. Applying the global ETC algorithm in Zhang &
Chen (2015), there are 12 event-triggered updates within 15 seconds of simulation. The minimum
inter-event time for the 12 updates is 0.7 sec. To demonstrate the advantage of the low-gain results
in this paper, a system with double defective open-loop poles on the imaginary axis is considered
in next example, for which the global ETC algorithm in Zhang & Chen (2015) is not applicable.

Example 2: Consider system (1) as a continuous-time input-saturated system with saturation
threshold ϖ = 1 and

A =


0 1 1 0

−1 0 0 1
0 0 0 1
0 0 −1 0

 , B =


0
0
0
1

 ,
which has double defective open-loop poles at {j, j,−j,−j}. The system matrices are equivalent
to those in (Lin, 1999, Example 2.2.1) by similarity transformation.
The high-low gain ETC algorithms in Section 3.4 are applied to the initial condition x(0) =

[−10, 0, 0, 0]T. The matrix Q(ε) used for ARE (24) is in the form of Q(ε) = εI4. To illustrate the
characteristics of our ETC algorithms, we consider three cases with different parameters as shown
in Table 1.

Case r σ θ ε0 tr N
(i) 1 0.99 0.99 0.0023 24 39
(ii) 15 0.99 0.99 0.0359 12.71 33
(iii) 15 0.01 0.01 0.0359 12.62 354

Table 1. Three cases with different parameters
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Figure 2. Event-based high-low gain control for Example 2 Case (i): (a) the bounded control input; (b) the state trajectories.

If r = 1, σ = θ = 0.99, the low-gain parameter ε is selected as ε0 = 0.0023 following (26). By (31),
one obtains that K0 = [0.0089, 0.0672, 0.0695, 0.5252] and K1 = [0.8178, 1.1538, 1.8858, 2.6607].
When x(tk) ∈ T0, α(tk) and τk are on-line scheduled. After x(tk) reaches T1, the minimum inter-
event time is set a priori as τ̃ = 0.05 sec. The simulation results are shown in Fig. 2, where the
practical stabilization is achieved within 30 sec. It takes tr = 24 sec for the state trajectories to
reach T1 from x(0). The total number of event-based updates is N = 39. The minimum inter-event
time for the 39 updates is 0.02 sec.
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Figure 3. Event-based high-low gain control for Example 2 Case (ii): (a) the bounded control input; (b) the state trajectories.

If r = 15, σ = θ = 0.99, we let ε0 = 0.0359, K0 = [0.0092, 0.0686, 0.0710, 0.5305], and K1 =
[0.1135, 0.3471, 0.4116, 1.2586]. When x(tk) ∈ T0, α(tk) and τk are on-line scheduled. After x(tk)
reaches T1, the minimum inter-event time is set a priori as τ̃ = 0.066 sec. The simulation results are
shown in Fig. 3, where the practical stabilization is achieved within 25 sec. It takes tr = 12.71 sec
for the state trajectories to reach T1 from x(0). The total number of event-based updates is N = 33.
The minimum inter-event time for the 33 updates is 0.066 sec.
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Figure 4. Event-based high-low gain control for Example 2 Case (iii): (a) the bounded control input; (b) the state trajectories.

If r = 15, σ = θ = 0.01, the simulation results are shown in Fig. 4. It takes tr = 12.62 sec for the
state trajectories to reach T1 from x(0). The total number of event-based updates is N = 354. The
minimum inter-event time for the 354 updates is 0.017 sec. In Fig. 4(a), the control input updating
is nearly continuous-time after 15 sec; while the control performance in Fig. 4(b) is not essentially
improved than that in Fig. 3(b).
It is shown that increasing the value of the ARE parameter r can obtain a faster convergence.

However, by (44), if r is too large, an extremely small τ̃ will be obtained and the updating can be
very frequent. Furthermore, although the event-trigger parameters can be freely selected without
losing stability, small value of σ, θ can lead to frequent control updating.

Example 3: Consider a linear system model of the inverted pendulum as shown in Fig. 5. Denote
x1 = ϕ and x2 = ϕ̇. Following Wu et al. (2015, 2014), we let |u| ≤ 1, M = m = 0.1 kg, and
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Figure 5. The inverted pendulum.

L = 0.545 m. Compared with the simple event rule ∥x − x(tk)∥ ≤ σ∥x∥, the advantage of the
event-triggering condition defined by two functions in (30) and (63) will be investigated. When the
angle ϕ is small, the dynamics can be described by continuous-time system (1) with

A =

[
0 1
36 0

]
, B =

[
0

−18.3486

]
, ϖ = 1.

This is a strictly unstable system with open-loop poles ±6. The initial value x(0) = [0.02, 0.8]T

is considered such that the ARE-based algorithms designed for marginally stable systems are still
applicable.
Applying the high-low gain ETC algorithms in Section 3.4, we let Q(ε) = εI2, r = 1, ε0 = 0.8453,

σ = θ = 0.95, K0 = [−4.1287,−1.1381] and K1 = [−4.1642,−1.2058]. The simulation results are
shown in Fig. 6(a), where the practical stabilization is achieved within 1.5 sec. The total number
of event-based updates is 10. The minimum inter-event time for the 10 updates is 0.004 sec.
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(a) System response by Theorem 2
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(b) System response by algorithm in Wu et al. (2014)

Figure 6. Event-triggered control for inverted pendulum subject to actuator saturation: (a) system response by Theorem 2;
(b) system response by algorithm in Wu et al. (2014).

Considering the zero-order-hold discretized system with sampling period 0.01 sec:

Ad =

[
1.002 0.01
0.36 1.002

]
, Bd =

[
−0.0009
−0.1836

]
, ϖ = 1,

which is the same as (Wu et al., 2014, Eq. (32)). Applying the algorithm in (Wu et al., 2014,
Example 3.2), that is, the event rule ∥x − x(tk)∥ ≤ σ∥x∥ with σ = 0.1 and the control u(t) =
6.3717x1(tk) + 2.6619x2(tk), the simulation results are shown in Fig. 6(b), where the practical
stabilization is achieved within 150 steps. The total number of event-based updates is 38.

21



October 9, 2015 International Journal of Control TCON-2015-0033˙R2˙Authors

Applying the high-low gain ETC algorithms in Section 4.4 to the discretized system, we let
Q(ε) = εI2, ε0 = 0.2398, σ = θ = 0.99, K = [−3.8529,−0.7828]. The simulation results are
shown in Fig. 7, where the practical stabilization is achieved within 100 steps. The total number
of event-based updates is 14, which is much smaller than the total steps of simulation.
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Figure 7. Event-triggered control for inverted pendulum subject to actuator saturation: system response by Theorem 4.

If there is no saturation constraint, applying the algorithm in (Wu et al., 2014, Example 3.1), that
is, the event rule ∥x−x(tk)∥ ≤ σ∥x∥ with σ = 0.1 and the control u(t) = 5.394x1(tk)+5.024x2(tk),
the simulation results are shown in Fig. 8, where the fast practical stabilization is achieved within
only three steps and the control input is larger than 4 at the beginning. However, with the input
saturation constraint |u| ≤ 1, the practical stabilization cannot be achieved within 50 steps.
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Figure 8. ETC for inverted pendulum subject to actuator saturation: system response with no saturation constraint.

When the system is subject to the actuator saturation constraint, it is shown that the system
response by Theorem 2 has the least updates, and the system response by Theorem 4 has the
fastest convergence. Compared with the simple event rule ∥x−x(tk)∥ ≤ σ∥x∥, the event-triggering
condition defined by two functions in (30) and (63) can further reduce the updating events. In
addition, the event-trigger parameters σ, θ in our algorithms can be freely selected while the stability
is always theoretically guaranteed by Theorems 2 and 4.

Remark 6: The research interest in the semi-global ETC is motivated by the ETC studies in (Chen
et al., 2015a; Zhang et al., 2014a) and the input saturation studies in (Chen et al., 2015b; Su et al.,
2013). When considering the ETC and the input saturation simultaneously, the research difficulties
can be noted in both the stability analysis and the numerical examples. From the theoretical point
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of view, it is mathematically involving to perform the Lyapunov stability analysis, see Claims 1–4 in
the proof of Theorem 1. It is not straightforward to show that the input saturation is never attained
under the low-gain ETC design. From the practical point of view, the issue of actuator saturation
can significantly affect the system performance of the ETC design. In Example 3, it is noted that
the fast stabilization with no saturation constraint (see Fig. 8) can be lost if there is the input
saturation constraint (see Fig. 6(b)). In the future, the semi-global ETC design will be extended to
the Markov jump systems (Chen et al., 2014a; Li et al., 2012) and the multi-agent systems (Chen
et al., 2014b; Su et al., 2013), where the considered systems will be more complicated.

6. Conclusion

In this paper, the problem of event-based stabilization has been investigated for null control-
lable systems subject to input saturation. For both continuous-time and discrete-time systems,
novel event-triggered low-gain control algorithms based on Riccati equations have been proposed
to achieve semi-global stabilization. Furthermore, the semi-global results are extended to event-
triggered global stabilization by utilizing the high-low gain techniques. Future studies include the
robust event-triggered control for systems with disturbance, the event-triggered control for the
output-feedback systems, the optimal event-triggered control considering the control performance,
and the extensions of the results to Markov jump systems and multi-agent systems.
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Appendix A. Two Lemmas used for Proof of Theorem 1

Lemma 8: Let ϕ(t), t ≥ t̃, be a real-valued function, and a2, a1, a0 be positive constants satisfying

a21 − 4a2a0 ≥ 0. Denote µ ,
√
a21 − 4a2a0. Consider the Riccati equation (Hille, 1969)

d
dtϕ = a2ϕ

2 + a1ϕ+ a0

with zero initial condition ϕ(t̃) = 0. It has a unique solution as

ϕ(t) =
b1

(
1− e−µ(t−t̃)

)
e−µ(t−t̃) − b2

, t ∈
[
t̃, t̃+

1

µ
ln

1

b2

)
(A1)

if µ > 0, where b1 , a1−µ
2a2

and b2 , a1−µ
a1+µ ; for ∀ϕ̄ > 0, there exists a unique τ̄ ∈ [0, 1µ ln 1

b2
) such

that ϕ(t̃+ τ̄) = ϕ̄. If µ = 0, the unique solution is

ϕ(t) =
1

a2(
2
a1

+ t̃− t)
− a1

2a2
, t ∈

[
t̃,

2

a1
+ t̃

)
;

and there exists a unique τ̄ ∈ [0, 2
a1
) such that ϕ(t̃+ τ̄) = ϕ̄ for any ϕ̄ > 0.

Proof. Denote ψ = ϕ+ a1

2a2
> µ

2a2
and ψ(t̃) = a1

2a2
. One has

dψ

dt
= a2ψ

2 − µ2

4a2
= a2

(
ψ +

µ

2a2

)(
ψ − µ

2a2

)
.

If µ > 0, then ∫
µ2

a2
dt =

∫
1(

a2

µ ψ + 1
2

)(
a2

µ ψ − 1
2

)dψ;
µ2

a2
(t− t̃) =

µ

a2
ln

(
ψ − µ

2a2

)
(a1 + µ)(

ψ + µ
2a2

)
(a1 − µ)

;

ψ =
µ

2a2
· e

−µ(t−t̃) + b2

e−µ(t−t̃) − b2
.

Thus, ϕ(t) is solved as in (A1). Since ϕ ≥ 0, e−µ(t−t̃) − b2 > 0, that is,

0 ≤ t− t̃ <
1

µ
ln

1

b2
.
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In fact, one has

lim
t→

(
t̃+ 1

µ
ln 1

b2

)
+0−

ϕ(t) = +∞.

Then, for ∀ϕ̄ > 0, since ϕ(t̃) = 0 and d
dtϕ(t) > 0, it is straightforward to verify that there exists a

unique τ̄ < 1
µ ln 1

b2
such that ϕ(t̃+ τ̄) = ϕ̄.

If µ = 0, one has∫
1

ψ2
dψ =

∫
a2dt;

2a2
a1

− 1

ψ
= a2(t− t̃); ψ =

1

a2(
2
a1

+ t̃− t)
;

and for ∀ϕ̄ > 0, the unique

τ̄ =
2

a1
− 2

(a1 + 2a2ϕ̄)

makes ϕ(t̃+ τ̄) = ϕ̄.

Lemma 9: Let y(t) : (t̃,+∞) → Rq be a continuously differentiable map and has the right
derivative y′+(t̃) = limt→t̃+ ẏ(t); denote φ(t) , ∥y(t)∥. Then, for t > t̃, one has that

• (i) φ̇(t) = 1
∥y∥y

Tẏ if y(t) ̸= 0;

• (ii) Dφ(t) ≤
√
2∥ẏ∥ if y(t) = 0, where Dφ(t) denotes the Dini derivative of φ(t);

• (iii) if y(t) = 0 and the second-order derivative ÿ(t) exists, then Dφ(t) ≤ ∥ẏ(t)∥.

Furthermore, one has

• (iv) φ′
+(t̃) =

1
∥y(t̃)∥y(t̃)

Ty′+(t̃) if y(t̃) ̸= 0;

• (v) D+φ(t̃) ≤
√
2∥y′+(t̃)∥ if y(t̃) = 0;

• (vi) if y(t̃) = 0 and the second-order right derivative y′′+(t̃) exists, then D
+φ(t̃) ≤ ∥y′+(t̃)∥.

Proof. (i) If y(t) ̸= 0, one has

d
dt∥y(t)∥ = d

dt

√
yTy = 1

2
√

yTy
· d
dt(y

Ty) = 1
∥y∥y

Tẏ.

(ii) If y(t) = 0, denote ζ(h) , y(t + h)Ty(t + h); ζ(0) = 0, ζ ′(0) = 0. Applying the Taylor series
with the Lagrange remainder, one has

ζ(h) = ζ ′(µ1h)h = 2y(t+ µ1h)
Tẏ(t+ µ1h)h,

where µ1 ∈ [0, 1]; and y(t+ µ1h) = ẏ(t+ µ2µ1h)µ1h, where µ2 ∈ [0, 1]. Then,

ζ(h) = 2µ1h
2ẏ(t+ µ2µ1h)

Tẏ(t+ µ1h).

Since 0 ≤ µ1 ≤ 1, one has

D+φ(t) ≤ D+φ(t) = lim
h→0+

√
ζ(h)/h ≤

√
2∥ẏ(t)∥; D−φ(t) ≤ D−φ(t) ≤ 0.

(iii) If ÿ exists, then one has ζ(h) = 1
2h

2ζ ′′(µ3h) = h2y(t + µ3h)
Tÿ(t + µ3h) + h2∥ẏ(t + µ3h)∥2,

lim
h→0

ζ(h)/h2 = ∥ẏ(t)∥2, and Dφ(t) ≤ ∥ẏ(t)∥.
One can obtain (iv)–(vi) similarly to (i)–(iii).
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Appendix B. Proof of Claims 3 and 4

B.1 For Claim 3

If no saturation occurs and x ̸= 0, then x and e are twice differentiable on (tk, tk+1), have second-
order right derivatives x′′+ and e′′+ at tk, and are continuous at tk+1. Applying Lemma 9, one obtains
that ∥x∥ is differentiable on (tk, tk+1) and has right derivative at tk; x

′
+(tk) = AFx(tk), and

∥x(tk)∥′+ =
1

∥x(tk)∥
xT(tk)x

′
+(tk).

By (2), one has e′+(tk) = −AFx(tk) and D
+∥e(tk)∥ ≤ ∥AFx(tk)∥.

Define a real-valued function z(t) of time t as

z(t) =
∥e(t)∥
∥x(t)∥

, t ∈ [tk, tk+1); z(tk) = 0.

From the above analysis, one has

D+z(tk) ≤
∥AFx(tk)∥
∥x(tk)∥

≤ ∥AF ∥ = a0.

When t ∈ (tk, tk+1), by (7) and Lemma 9, and similar to (Tabuada, 2007, Eq. (11) and (15)), one
has

ż(t) ≤ a2z
2 + a1z + a0 if e(t) ̸= 0;

and

Dz(t) ≤ ∥ė∥
∥x∥

≤ ∥AF ∥ = a0 if e(t) = 0.

As a result, D+z(t) ≤ a2z
2 + a1z+ a0, t ∈ [tk, tk+1). Applying the comparison principle (Michel et

al., 2008, Theorem 3.8.1), and by Lemma 8, one has

z(t) ≤ ϕ(t) ≤ ϕ(tk + τ) = δ, t ∈ [tk, tk + τ).

�

B.2 For Claim 4

Since e(tk) = 0, V (x(tk)) ≤ βϖ2, using Claim 2 and similar to (9), one has ∥u(tk)∥∞ ≤ ϖ and
V ′
+ < 0 at t = tk. Denote

τ̂1 , sup {s− tk | (16) holds on [tk, s], s ≤ tk + τ }

and

τ̂2 , sup
{
s− tk

∣∣V (x(t)) ≤ βϖ2 on [tk, s], s ≤ tk + τ
}
.

It is straightforward that τ̂2 > 0, and τ̂1 > 0 due to x(tk) ̸= 0. Applying Claim 2, one obtains that
for all t ∈ (tk, tk +min{τ̂1, τ̂2}),

∥ũ(t)∥∞ ≤ ϖ, and V̇ ≤ 0 due to (19).

Furthermore, V̇ < 0 holds on (tk, tk+τ̂0) for a sufficiently small τ̂0 > 0. Thus, at t = tk+min{τ̂1, τ̂2},
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V < V (x(tk)) ≤ βϖ2,

which implies τ̂1 ≤ τ̂2.
One has

either τ̂1 = τ or τ̂1 < τ .

By (2), the condition x(tk) ̸= 0 implies that for ∀t ∈ [tk, tk + τ), either x(t) ̸= 0 or e(t) ̸= 0.
Suppose that x(t̄) = 0 for some t̄ ∈ (tk, tk + τ ]. Denote

τ̂3 , inf{t− tk|x(t) = 0, t ∈ (tk, t̄ ]} and τ̂4 , min{τ̂1, τ̂3}.

Since e(t) and x(t) are differentiable on (tk, tk + τ) and have right derivative at t = tk, one has

τ̂3 > 0, τ̂4 > 0, and x(t) ̸= 0 for t ∈ [tk, tk + τ̂3).

For all t ∈ [tk, tk + τ̂4), x(t) ̸= 0 and (16) holds. If τ̂4 = τ̂3 < τ̂1, then

x(tk + τ̂4) = 0 and ∥e(tk + τ̂4)∥ ≤ 0, e(tk + τ̂4) = 0,

which is impossible. Therefore, τ̂3 ≥ τ̂4 = τ̂1. Similar to Claim 3, by Lemma 8, one obtains

∥e(tk + τ̂1)∥ ≤ ϕ(tk + τ̂1)∥x(tk + τ̂1)∥.

Thus, τ̂1 ≥ τ and τ̂1 = τ ; otherwise,

ϕ(tk + τ̂1) < ϕ(tk + τ) = δ,

and a contradiction results from the definition of τ̂1. Therefore,

τ̂3 = τ = τ̂2 = τ̂1,

by which one has x(tk + τ) = 0 and lim
t→tk+τ

∥x∥+ ∥e∥ = 0, which is impossible due to (2). Thus, it

is concluded that

x(t) ̸= 0, ∀t ∈ [tk, tk + τ ].

Suppose that τ̂1 < τ , which implies

∥e(tk + τ̂1)∥ = δ∥x(tk + τ̂1)∥.

On [tk, tk + τ̂1], no saturation occurs and ∥x∥ is positive. Then, similar to Claim 3, by Lemma 8,
one obtains

∥e(tk + τ̂1)∥ ≤ ϕ(tk + τ̂1)∥x(tk + τ̂1)∥ < ϕ(tk + τ)∥x(tk + τ̂1)∥

and δ < ϕ(tk + τ), which is a contradiction. Thus, τ̂1 = τ̂2 = τ , for ∀t ∈ [tk, tk + τ ], (16) holds,
V (x(t)) ≤ βϖ2, and ∥ũ(t)∥∞ ≤ ϖ due to Claim 2. �
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