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A frequency independent method for computing
the physical optics based electromagnetic fields

scattered from a hyperbolic surface

Yu Mao Wu, Weng Cho Chew, Ya-Qiu Jin, Li Jun Jiang,
Hongxia Ye, and Wei E. I. Sha

Abstract—In this communication, we propose a frequency in-
dependent approach, the numerical steepest descent path method,
for computing the physical optics scattered electromagnetic field
on the quadratic hyperbolic surface. Due to the highly oscillatory
nature of the physical optics integral, the proposed method
relies on deforming the integration path of the integral into the
numerical steepest descent path on the complex plane. Numerical
results for the PO based EM fields from the hyperbolic surface
illustrate that the proposed numerical steepest descent path
method is frequency independent in computational cost and error
controllable in accuracy.

Index Terms—Physical optics, hyperbolic surface, numerical
steepest descent path, critical point contributions.

I. INTRODUCTION

In electromagnetics (EM), when the product of the external
wave number k and the size of the considered object L, i.e.,
kL ranges from tens to thousands, the analysis of the scattered
EM field belongs to the high frequency problem. In this
case, the classical physical optics (PO) current approximation
[1], has been accepted as an efficient method to calculate
the PO based EM fields scattered from the electrically large
scatterers. PO based EM fields E(s)(r) from the considered
perfect electric conductor scatterers can be represented as three
surface integrals [3] of the type

I(k, r) =
∫

∂Ω1

s(r, r′)eikv(r,r′)dS(r′). (1)

They are called the surface PO integrals, and ∂Ω1 denotes
the surface of the lit region of the considered object, as
shown in Fig. 1. The PO integrand in (1) contains the slowly
varying amplitude term s(r, r′), and the exponential of the
phase function term eikv(r′). Due to the highly oscillatory
phase behavior of the PO integrand, it is quite challenging to
calculate the PO integral with frequency independent workload
and error controllable accuracy.
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For the calculation of the PO based EM fields, direct PO
solvers [4]- [5] make the computational cost dramatically in-
crease with k. In this sense, efficient algorithms for calculating
the PO based EM fields, especially frequency independent al-
gorithms, are in great demand. The traditional high frequency
asymptotic (HFA) approach [6]- [10], can provide the calcu-
lation of the PO based EM fields with frequency independent
workload. In [10], the authors treated the PO integrals from
a curved surface with curvilinear edges and relatively general
boundary conditions. The canonical integrals in the uniform
geometrical theory of diffraction (UTD) were used in the
evaluation of PO integrals. Furthermore, the authors developed
the efficient algorithm to calculate the “transition functions”
in canonical integrals [11]- [12].

Recently, the numerical steepest descent path (NSDP) ap-
proach [16]- [20], provides an efficient way to evaluate the
highly oscillatory PO integral. The similarity of our work and
the work in [17] is that the contour deformation technique
via steepest descent paths on the complex plane is adopted
to evaluate these PO integrals. However, there are three main
differences between these two works. First, in [17], the Abel’s
summation method, the Lebesgue integral theory and poles
extraction technique in complex analysis were adopted for the
development of NSDPs from the hyperbolic phase term. In
this work, we avoid the Abel’s summation and the Lebesgue
integral theory and obtain all NSDPS. Second, in [17], the
phase function g(x, y) = xy is considered. In this work,
the phase function g(x, y) = x2 ± y2 is considered via
affine transformation technique. Hence, the NSDPs obtained
in this paper are different from those in [17]. Importantly,
we provide the NSDPs. Third, high frequency wave physics,
like the contributions from the stationary phase point, the
boundary resonance points and the vertex points, was captured
by the proposed NSDP method. In [21], for the computation of
scattering from rough surfaces with very large surface heights,
an acceleration algorithm was successfully developed by the
steepest descent path contour deformation for the Hankel
function. In [22], the equivalence between the modified edge
representation line and the PO surface integration was devel-
oped by the Stokes theorem and the asymptotic technique.
Furthermore, a criterion on the acceleration of the PO surface
integration with the stationary phase point method was clearly
given.

The contributions in this work are that the PO based
EM fields from the hyperbolic patches are considered. Then,
the integrand of the PO integral takes the hyperbolic phase
behavior, which is different from the work in [19]. In this
case, all NSDPs are changed and re-constructed compared
to the work in [19]. With the high frequency wave physics
viewpoint, the formulations of the stationary phase point and
the boundary resonance point are all changed. Furthermore, the
coalescence of high frequency critical points is considered. We
have considered the PO based EM fields from the parabolic
and hyperbolic quadratic surfaces, and have further adopted
the numerical steepest descent path algorithm knowledge to
calculate the scattered fields.

The rest of this paper is organized as follows. In Section
II, the PO based EM fields from the hyperbolic surface is
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discussed. In Section III, the surface PO integral is first
transformed into several highly oscillatory line integrals. Then,
we propose the NSDP method to treat these highly oscillatory
line integrals. High frequency critical point contributions on
the derived NSDPs are extensively studied in Section IV.
In Section V, numerical experiments are shown to verify
the efficiency of the proposed NSDP method. We make the
conclusions in Section VI.

Fig. 1. PO current on the perfect electric conductor scatterer.

II. SURFACE PHYSICAL OPTICS INTEGRAL ON THE
QUADRATIC HYPERBOLIC SURFACE

In this paper, the time harmonic dependence of e−iωt is
adopted for the EM wave. We consider that the EM wave
is impinging on the quadratic hyperbolic surfaces ∂Ω, as
demonstrated in Fig. 2(a). The hyperbolic surface is governed
by the quadratic equation z = f(x, y), i.e., f(x, y) is a second
order polynomial in the xy cartesian coordinate system.For the
PEC with the electric conductivity σ = ∞, we denote the size
of the considered hyperbolic surface as L = diam(∂Ω), and
the distance of the observation point r to the origin as r = |r|.

In this work, we consider the far-zone of the scatterer with
r À 2L2/λ and the PO approximation of the accurate electric
equivalent current. λ is the wavelength. Then, for the incident
plane wave, E(i)(r) = E0

(i)eikr̂(i)·r, the PO based EM fields
can be written in (1), with

s(r, r′) = − ikeikr

2πr
r̂× r̂×

(
n̂(r′)× r̂(i) ×E0

(i)
)

(2)

v(r, r′) =
(
r̂(i) − r̂

)
· r′. (3)

In (2)-(3), r̂ = r/r and r̂(i) = k̂(i) are the unit vector
of r and the unit vector of k(i), respectively. And n̂(r) is
the outward unit normal vector from the hyperbolic surface.
Equations (1-3) are the bistatic scattered electric field under the
PO approximation. The vector function s(r′) in (2) is known
as the vector amplitude function, and v(r′) in (3) is the phase
function. The integrand of the vector PO surface integral in (1)
is highly oscillatory when k goes large. The highly oscillatory
property of the PO integrand makes the computational effort
grow up dramatically with the increasing k, as depicted in Fig.
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Fig. 2. (a) The electromagnetic wave impinges on the quadratic hyperbolic
surface ∂Ω, governed by equation z = f(x, y). (b) The projection of ∂Ω
onto the x-y plane, ∂Ωxy .

3(a). Furthermore, for the quadratic surface , the PO integrand
of the scattered field in (1), contains the quadratic phase
function term v(x, y) [19]. With the asymptotic technique, the
steepest descent path method could be adopted to evaluate the
PO integral in an efficient way.

To simplify the PO surface integral in (1) to its canonical
form, we follow the procedure in [19]. First, we proceed
the projection process from the surface ∂Ω to ∂Ωxy with
polygonal boundary in the x′y′ plane, as shown in Fig. 2(b).
Next, we conduct the affine transformation as that given in
[19], ∂Ωxy is transformed to another polygonal domain D. In
this manner, the PO integral from the hyperbolic surface can
be simplified into the following two canonical forms

I =
∫

D

p(x′, y′)e±ik(−x′2+y′2)dy′dx′. (4)

The x′ and y′ variables in the above integrand correspond
to the integration variables in the x′y′ plane. The amplitude
function p(x′, y′) takes the formulation

p(x′, y′) = α1 + α2x
′ + α3y

′ + α4x
′2 + α5y

′2 + α6x
′y′ (5)

and αj are complex numbers, j = 1, 2, · · · , 6. Here, the
domain D is a polygonal domain on the x′-y′ plane. In detail,
we first decompose the surface into several smaller triangular
patches. Hence, the polygonal boundary is formed after the
discretization procedure.

III. THE NUMERICAL STEEPEST DESCENT PATH METHOD

We assume D as the trapezoidal domain in (4), as shown in
Fig. 3(b). We denote the x-values of vertex points V1 and V2
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as L1 and L2, respectively. The governing line equation for
edge V3V4 is y = ax + b, with a > 0. The slope ”a” of the
edge y = ax+b could also be a < 0. Then, after a projection
of the 3-D surface to a plane of (x, y), the PO surface integral
could be simplified into highly oscillatory line integrals in the
following way
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Fig. 3. (a) Highly oscillatory PO type integrand, f(x) = (5 − 3x −
x2)eik(−x2+(ax+b)2), with k = 500. (b) The integration domain is defined
on V1V2V3V4, [L1, L2] × [ax + b, 0] for integrand eik(−x2+y2) with
a = 0.25, b = −0.5.

I(a,b) =
∫ L2

L1

∫ 0

ax+b

p(x′, y′)eik(−x′2+y′2)dy′dx′

=
∫ L2

L1

(
J

(0,0)
2 (x′)− J

(a,b)
2 (x′)

)
e−ikx′2dx′. (6)

Here, the coordinate system for (x, y) is defined with respect
to the use of the polygonal boundary. J

(0,0)
2 (x) and J

(a,b)
2 (x)

have the formulations

J
(0,0)
2 (x) = j1(x) + j

(0,0)
2 (x),

J
(a,b)
2 (x) = j1(x) erfc

(√
−ik(ax + b)

)
+ j

(a,b)
2 (x) eik(ax+b)2 .

where

j1(x) = −
√

π

2
√−ik

(
α1 + α2x + α4x

2 − α5

2ik

)
,

j
(a,b)
2 (x) =

α3 + α6x + α5(ax + b)
2ik

,j
(0,0)
2 (x) =

α3 + α6x

2ik
.

Hence, the original PO integral I(a,b) in (6) can be rewritten
as

I(a,b) = I
(0,0)
2 − I

(a,b)
2 (7)

where

I
(a,b)
2 =

∫ L2

L1

J
(a,b)
2 (x′)e−ikx′2dx′

I
(0,0)
2 =

∫ L2

L1

J
(0,0)
2 (x′)e−ikx′2dx′. (8)

Here, I
(a,b)
2 and I

(0,0)
2 are line integrals associated with edges

V1V2 and V3V4, respectively. J
(a,b)
2 (x) has complicated

formulations involving the complementary error functions.
Importantly, the difference between this paper and the paper
in [19] is that the phase term e−ikx2

was adopted in this work,
while eikx2

was considered in [19]. This difference is due to
the consideration of the hyperbolic surface in this paper.

The integrand J
(a,b)
2 (x) in (8) has the following asymptotic

behavior

J
(a,b)
2 (x) =

{
ς1(x)eik(ax+b)2 , x ∈ D1

2j1(x) + ς2(x)eik(ax+b)2 , x ∈ D2

(9)

with ς1(x) and ς2(x) denoted as slowly varying functions.
D1 and D2 are the domains separated by the Stokes’ line

on the complex plane, with the expressions

lStokes(x) : Im(x) = −Re(x)− b

a
(10)

D1 := a (Re(x) + Im(x)) + b > 0 (11)
D2 := a (Re(x) + Im(x)) + b < 0. (12)

For the case x ∈ D2 in (9), the first term 2j1(x) comes from
the Stokes’ phenomenon of the complementary error function
as shown in Fig. 4, details could be found in [19]. After

Fig. 4. Stokes’ phenomenons of the complementary error functions,
erfc

(√−ik(0.5x + 1)
)− 2 and erfc

(√−ik(0.5x + 1)
)

.

substituting (9) into (8), we get two phase function terms for
I
(a,b)
2 . They are

g1(x) = −x2 + (ax + b)2, g2(x) = −x2. (13)

The Stokes’ phenomenon of complementary error function
makes the phase behaviors of the PO integrand I

(a,b)
2 be

discontinuous.
Now we consider the phase function g1(x) of I

(a,b)
2 in (13).

Physically, there may exist a point xs, at which the phase
behavior of g1(x) is different from others. It is called the
stationary phase point (SPP). SPP corresponds to the point
at which the specular reflection occurs in the high frequency
ray physics regime. Mathematically, the SPP xs satisfies the
condition g′1(xs) = 0. As a result, we have the expression of
xs as

xs =
{

ab
1−a2 , |a| 6= 1
no stationary phase point, |a| = 1.

(14)

Remark 1. For the case |a| = 1 in the above formulation,
the phase function in (13) reduces to a linear form g1(x) =
2abx + b2. Hence, there is no stationary phase point.

Now we see the term eikg1(x) in the PO integrand

eikg1(x) = eik [Re(g1(x))+iIm(g1(x))] = e−k Im(g1(x))+ik Re(g1(x)).
(15)

Here, g1(x) is a real function. In this work, we adopt the
NSDP method. We consider the real and imaginary parts for
the consideration of the NSDP on the complex plane. The
NSDP method relies on the transformation of the above highly
oscillatory functions to exponential decay functions on the
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complex plane. In detail, for a starting point L∗, we define
a complex path function x = ϕL∗(p) as that in [2], satisfying
the following identity

−ϕL∗(p)2 +(aϕL∗(p)+ b)2 = −L2
∗+(aL∗+ b)2 + ipl (16)

with l = 1 for integration end points L1 and L2, and l = 2
for the SPP xs, respectively. Here, p is the path parameter for
the path function on the complex plane. In equation (16), L∗
could be used to represent the integration end points L1 and
L2, as demonstrated in Fig. 4.

After substituting L1, L2 and xs into (16), the correspond-
ing NSDPs are

ϕLm(p) =





sgn(L′m)√
a2−1

√
L′m

2 + ip + xs, if |a| > 1
sgn(L′m)√

1−a2

√
L′m

2 − ip + xs, if |a| < 1
Lm + ip

2ab if |a| = 1

(17)

ϕxs
(p) =





√
ip√

|1−a2| + xs, if |a| > 1
√−ip√
|1−a2| + xs, if |a| < 1

no NSDP, if |a| = 1

(18)

with p ∈ [0,∞) and p ∈ (−∞,∞) in (17) and (18),
respectively. Here,

L′m =
√
|1− a2|

(
Lm − ab

1− a2

)
=

√
|1− a2|(Lm − xs),

m = 1, 2. For instance, the diagrams of NSDPs in (17) and
(18) with |a| = 1, |a| > 1, and |a| < 1, are demonstrated in
Fig. 5(b)-Fig. 5(d), which correspond to three NSDPs defined
on three edges of the triangular patch.

IV. PO FORMULATIONS ON TRIANGULAR PATCHES BY THE
NSDP METHOD

After finding the NSDPs in Section III, we give the result of
PO surface integral formulations in (4) on triangular patches.
Firstly, the surface PO integral defined on ∆1 in Fig. 5(a) can
be separated into three line integrals

I∆1 = I
(a1,b1)
2 + I

(a2,b2)
2 − I

(a3,b3)
2 . (19)

Then, on invoking the Cauchy’s integral formulation and
following the similar mathematical manipulations as those in
[19], the above three highly oscillatory line integrals can be
rewritten as

I
(a1,b1)
2 = I

(a1,b1)
2,V1,x

− I
(a1,b1)
2,V2,x

(20)

I
(a2,b2)
2 = I

(a2,b2)
2,V2,x

+ I
(a2,b2)
2,Xr,2,x

− I
(a2,b2)
2,V3,x

+K2 ((V3,x, 0))−K2

(
A(2)

)
(21)

I
(a3,b3)
2 = I

(a3,b3)
2,V1,x

+ I
(a3,b3)
2,Xr,3,x

− I
(a3,b3)
2,V3,x

+K2 ((V3,x, 0))−K2

(
C(3)

)
. (22)

Here, in (20)-(22), Vn = (Vn,x,Vn,y) denotes the vertex
points of ∆1, n = 1, 2, 3. The variables Vn,x,Vn,y represent
the x- and y- values of the vertex points Vn. A(2) and C(3)

denote the intersection points between the NSDPs and the
Stokes’ line [19]. The superscripts ”2” and ”3” represent the

second and third edges of the triangular patch, as shown in
Fig. 4. The resonance points Xr,m in Fig. 5(a) are denoted as

Xr,m = (Xr,m,x,Xr,m,y) =
(

ambm

1− a2
m

,
bm

1− a2
m

)
(23)

am and bm correspond to the variables from three edges of
∆1, with the formulations ym(x) = amx + bm, m = 2, 3.
The above I

(an,bn)
2,Vm,x

and I
(an,bn)
2,Xr,m,x

in (20)-(22) are similar as
(30)-(31) given in [19] except the different NSDPs in (17) are
adopted. And K2(x) takes the formulation

K2(x) =
( π

2k
α1 +

π

4ik2
α4 − π

4ik2
α5

)
erfc

(√
ikx

)

+
( √

π

2ik
√−ik

α2 +
√

πx

2ik
√−ik

α4

)
e−ikx2

.(24)
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Fig. 5. (a) PO surface integral I41 defined on the triangular patch, ∆1. (b)
NSDPs diagram for I

(a1,b1)
2 defined on the edge V1V2 of ∆1. (c) NSDPs

diagram for I
(a2,b2)
2 defined on the edge V2V3 of ∆1. (d) NSDPs diagram

for I
(a3,b3)
2 defined on the edge V1V3 of ∆1.

Remark 2. The PO surface integral can always be reduced
to highly oscillatory integrals defined on polygonal edges. In
other words, for assembled triangular patches, internal vertex
and resonance points contributions are canceled with each
other [18].

A. Analysis of critical-point contributions by the NSDP
method

When the working frequency is high, the PO based EM
fields in (1) can be separated into high frequency critical
points contributions [2], [7]. In Fig. 5(a), these critical points
consist of the stationary phase point Xs (SPP), the boundary
resonance points Xr,m (RSPs) and the vertex points Vn

(Vexs), m = 2, 3, n = 1, 2, 3.
Similarly to the discussions in [20], on invoking the NSDP

method, the critical points contributions for the PO integral in
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(19) take the forms

I
(NSDP, SPP)
41

= K2

(
C(3)

)
−K2

(
A(2)

)

︸ ︷︷ ︸
contributions from lStokes

(25)

I
(NSDP, RSPs)
41

= I
(a2,b2)
2,Xr,2,x

− I
(a3,b3)
2,Xr,3,x︸ ︷︷ ︸

contributions from two RSPs

(26)

I
(NSDP, Vexs)
41

= I
(a1,b1)
2,V1,x

− I
(a3,b3)
2,V1,x

+ I
(a2,b2)
2,V2,x

− I
(a1,b1)
2,V2,x︸ ︷︷ ︸

+ I
(a3,b3)
2,V3,x

− I
(a2,b2)
2,V3,x︸ ︷︷ ︸

contributions from three vertex points

. (27)

Here, I
(NSDP, SPP)
41

, I
(NSDP, RSPs)
41

and I
(NSDP, Vexs)
41

denote the contribu-
tions coming from Xs, Xr,m and Vn, respectively. As a result,
comparing (25)–(27) with I41 in (19), we arrive at

I41 = I
(NSDP, SPP)
41

+ I
(NSDP, RSPs)
41

+ I
(NSDP, Vexs)
41

. (28)

The above critical-point contributions via the HFA method
are presented in [9], [14], [20]. Furthermore, by the HFA
theory, the asymptotic behaviors of contributions coming from
SPP, RSPs and vertices, are of orders O

(
k−1

)
, O

(
k−1.5

)
and

O
(
k−2

)
, respectively. In other words, the specular reflection

contribution by the SPP is the dominant term in the PO based
EM fields [9], [14]. Furthermore, we shall note the similarity
and difference of the uniform asymptotic solutions in [9] and
[14]. By performing uniform asymptotic techniques in [9] and
[14] for high frequency critical points, non-uniform leading
terms have the similar formulations. However, when the ob-
servation points lie around shadow boundaries, formulations
are different in [9] and [14]. Thus, different accuracies in [9]
and [14] will be generated from asymptotic solutions.

V. NUMERICAL RESULTS

We first consider the coalescence of the critical points
on the triangular patch with the hyperbolic phase behavior,
which are shown in Fig. 6(a). The triangular patches are
moving along a line l(x) = 0.5x, x ∈ [−3, 5]. In particular,
with x = −2, the edge V2V3 is governed by the line
y = −2x. Then, the stationary phase point Xs and the
resonance point Xr,3 come together. As is seen from Fig.
6(b), the contributions by the NSDP and brute force methods
agree well with each other, even when Xs and Xr,3 come
together. To compare the results among the NSDP, the HFA
and the BF methods, we consider the case x = 0. Then, the
SPP lies inside of the triangular patch. The PO integral results
are I∆ = 0.0291, 0.0290, 0.0278 by the NSDP, BF and HFA
methods.

We consider the hyperbolic surface in Fig. 2(a). The
governing equation of the hyperbolic surface is f(x, y) =
1 − 0.06

(−x2 + xy + y2
)
. The resultant PO based EM

fields is expressed in (1). ∂Ωxy is the quadrilateral domain
V1V2V3V4 shown in Fig. 2(b), with the vertex points
V1 = (−5.6036, 0.7987), V2 = (2.3455, 5.7115), V3 =
(2.9254,−4.1142), and V4 = (8.9043, 5.0974). The incident
wave propagates along r̂(i) =

[
0.5, 0.5,−√2/2

]
direction,

and the observation point is set along the direction r̂ =[√
2/4,

√
6/4,

√
2/2

]
.
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Fig. 6. (a) PO surface integral I4 defined on the triangular patches, which
are moving along the line l(x) = 0.5x denoted by the red color row. (b)
Amplitude of the PO surface integrals from the triangular patches that are
moving along the line l(x) = 0.5x, x ∈ [−3, 5].

By applying the NSDP method, we could generate the PO
based EM fields results. Meanwhile, another way to generate
PO based EM fields results is the HFA method [7], [9]. In
this paper, we consider the case that the critical points are
isolated. Hence, we adopt the non-uniform solutions for the
PO based EM fields. Meanwhile, we note that critical points
transitional behaviors are neglected in the asymptotic analysis,
which leads to low accuracy results generated for the PO
based EM fields. If the uniform asymptotic technique with
the UTD transition function is adopted, one could estimate
high accuracy as the consideration of transitional contributions
for critical points. We will consider the uniform-asymptotic
technique in the future.

In Fig. 7, we apply the NSDP method to calculate the
bistatic RCS values of E(s)(r), which are in good agreement
with the results generated by the BF method. Fig. 8 demon-
strates the frequency independent computational effort for the
scattered electric field. Finally, Table I gives comparisons of
the errors of E(s)(r) produced by NSDP and HFA methods
relative to the BF method. Compared with the HFA method,
the advantage on improving the scattered electric field accu-
racy by the NSDP method is again confirmed in Table I. In
summary, on invoking the proposed NSDP method, the PO
based EM fields on the quadratic hyperbolic surface could
be calculated with frequency independent workload and error
controllable accuracy.
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Fig. 7. Comparisons of the RCS (dBsm unit) values of the PO based EM
fields on the hyperbolic surface by using the NSDP and BF methods.
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Fig. 8. Comparisons of the CPU time (second unit) for the PO based EM
fields by using the NSDP and BF methods.

VI. CONCLUSION

In this communication, we propose the NSDP method to
calculate the PO based EM fields on the quadratic hyper-
bolic surface. The scattered electric field can be reduced to
several highly oscillatory PO surface integrals. By deforming
the original PO integration path to the numerical steepest
descent path on the complex plane, each PO integrand decays
exponentially. Extensive numerical experiments are given to
show the efficiency of the NSDP method. In conclusion, the
NSDP method for calculating the electric scattered field on
the quadratic hyperbolic surface is frequency independent and
error controllable.
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