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Abstract— Identifying the causalities for air pollutants and 

answering questions, such as, where do Beijing’s air pollutants 
come from, are crucial to inform government decision-making. In 
this paper, we identify the spatio-temporal (ST) causalities among 
air pollutants at different locations by mining the urban big data. 
This is challenging for two reasons: 1) since air pollutants can be 
generated locally or dispersed from the neighborhood, we need to 
discover the causes in the ST space from many candidate locations 
with time efficiency; 2) the cause-and-effect relations between air 
pollutants are further affected by confounding variables like 
meteorology. To tackle these problems, we propose a coupled 
Gaussian Bayesian model with two components: 1) a Gaussian 
Bayesian Network (GBN) to represent the cause-and-effect 
relations among air pollutants, with an entropy-based algorithm 
to efficiently locate the causes in the ST space; 2) a coupled model 
that combines cause-and-effect relations with meteorology to 
better learn the parameters while eliminating the impact of 
confounding. The proposed model is verified using air quality and 
meteorological data from 52 cities over the period Jun 1st 2013 to 
May 1st 2015. Results show superiority of our model beyond 
baseline causality learning methods, in both time efficiency and 
prediction accuracy. 
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I.  INTRODUCTION 
Air pollution has become a global concern, impacting the 

health of billions of people and the sustainable development of 
the world [1]. Many cities have built on-the-ground air quality 
monitoring stations to measure hourly concentration of air 
pollutants, such as PM2.5 and NO2. Besides monitoring and 
forecasting [2] air quality, there is a strong demand on 
diagnosing the causalities of air pollutants. For example: 

� Where do a city’s air pollutants come from in the spatio-
temporal (ST) space? 

� How is one pollutant affected by other pollutants, given 
different weather conditions?  

Identifying the causalities for air pollution will help inform 
governments’ decision-making on mitigating air pollution. As 
there are many uncertain factors affecting air pollution, a 
comprehensive causality analysis is needed to 1) discover where 
these factors are in the ST space and 2) how much they influence 
the target air pollutant. 

In practice, the cause-and-effect relation “X to Y” is usually 
a non-deterministic problem, and requires probabilistic 

languages to represent the uncertainty, e.g., using ��(�|�) to 
represent the treatment effect of Y given X. There are two major 
streams of causality modelling. One is Pearl’s causality model 
[3]  based on the Bayesian network [4] which encodes the cause-
and-effect relations in a graphical structure and conducts causal 
inference via a “do” operator ������	(�)
. The other is unit-
level causality [5-6], which estimates the potential outcome 
(effects) given different treatments (causes). Applications 
extended from the two causality frameworks have been 
developed to learn the cause-and-effect of medicine on recovery, 
advertising on behavior change, genes on phenotype, etc. [7-9]. 
Recently, with advances in computation, causality modelling is 
greatly driven by learning the patterns between events, which is 
more practical and operable to predict future events than 
modelling the strict cause-and-effect relations [10-13]. 

Note that there may be a biased estimation of effect Y given 
cause X when a confounding variable K exists [14], as shown in 
Fig. 1(a). The confounding variable here refers to a third variable 
that simultaneously correlates the cause X and effect Y, e.g., 
gender K may affect the effect of recovery Y given a medicine X. 
To guarantee an unbiased causal inference, the treatment effect 
is usually adjusted by averaging all the sub-classification cases 
of K [15], i.e. ������	(�)
 = ∑ �� (�|�, �)
 ∙ ��(�). 

 
Fig. 1. Examples of cause-and-effect with confounding.  

However, to identify the causalities among air pollutants 
with the existing causal modelling frameworks, one must 
overcome two challenges. First, an ST representation of cause-
and-effect relations is needed, e.g., Fig. 1(b) shows an example 
where air pollutants ��, ��, ��  at locations ��, ��, ��  cause the 
pollutant Y at location �� . Since the air pollution could be 
generated locally or dispersed from the neighborhood, we need 
to locate the causes in the ST space from many candidate 
locations efficiently. Second, the cause-and-effect relations 
between air pollutants can be further affected by confounding 
variables. As shown in Fig. 1(b), the confounding variable K 
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may contain the information from various environmental factors 
��, ��, … �� (wind, humidity, etc.).   

To tackle the challenges, we propose a coupled Gaussian 
Bayesian model with two major components: a Gaussian 
Bayesian Network (GBN)-based representation for cause-and-
effect relations in the ST space, and a model that couples the 
cause-and-effect relations with meteorology. The contribution 
of this paper is two-fold: 

� First, the GBN-based representation captures both the 
local and neighborhood cause-and-effect relations, 
with an entropy-based algorithm to efficiently locate 
the causes in the ST space.  

� Second, we propose a coupled model that integrates the 
influence of the meteorology into the cause-and-effect 
relations, to help better estimate the parameters while 
eliminating the impacts of confounding.  

The causality analysis for air pollution is different from basic 
causality inference [3]. The latter is verified via intervention of 
specific treatments in a predefined causal structure [16].  But for 
air pollution, it is impossible to conduct interventions, besides, 
the causal structure is unknown in the complex ST space. Thus 
the major part of this paper will discuss the ST causality 
representation for air pollutants, and the parameter learning of 
the cause-and-effect relations. Verification is conducted via a 
prediction task instead of intervention-based causal inference. 
We evaluate the model with air quality and meteorological data 
from 52 cities over the period Jun 1st 2013 to May 1st 2015, and 
demonstrate both time efficiency and prediction accuracy. This 
suggests the model is capable of identifying the causalities for 
air pollutants in the ST space, finding where the air pollutants 
come from and understanding how they interact with each other.  

II. COMPONENT 1: GAUSSIAN BAYESIAN NETWORK (GBN) FOR 
CAUSE-AND-EFFECT REPRESENTATION 

We first describe the general idea of GBN and its benefits 
for modelling the causality. Second, we introduce the GBN-
based representation of cause-and-effect in the ST space. 
Thirdly, we propose an algorithm to locate the causes for a target 
air pollutant based on transfer entropy. An optimization of the 
algorithm is presented at the end of this section.  

A. Gaussian Bayesian Network (GBN) 
GBN is a special form of Bayesian network [4], capable of 
encoding the causal relations in a directed acyclic graph (DAG) 
and providing a graphical representation of conditional depen-
dencies among variables.  

In GBN, all the variables are assumed Gaussian and all the 
dependencies linear Gaussian [17-18]. For example, If � is a 
linear Gaussian of its parents � = {��, ��, … , ��}, then: 
 

Pr(�|�)~�(�� + (� − ��) ∙ � , Σ(�))                  (1) 
 

where �  is the corresponding linear regression coefficients 
matrix for the regression function � = �� + � ∙ � + � , and 
Σ(�) is the covariance of � conditioned on � with � denoting 
the  covariance operator. By using ordinary least square (OLS) 
to find � that minimizes the regression error, i.e. ��!"#(Σ(�)), 
the covariance Σ(�) can be rewritten as: 

Σ(�) = Σ(�|�)) = Σ(�) − �$ ∙ Σ(�) ∙ �    
= Σ(�) − Σ(�, �) ∙ Σ(�)%� ∙ Σ(�, �)$   (2) 

In this way, GBN provides a simple way to capture many 
dependencies among multiple variables. Furthermore, the 
characteristics of urban data fit the GBN model well.  As shown 
in Fig. 2, the 1-hour difference (current value minus the value 1-
hour ago) air pollutants time series at two cities, Beijing PM2.5 
and Shijiazhuang PM10, after being normalized by their 
corresponding standard deviations, obey Gaussian distribution. 
In addition, the distribution of Beijing PM2.5 normalized 1-hour 
difference when conditioned on the value of Shijiazhuang PM10 
normalized 1-hour difference at the same timestamp to be 
between (0.5, 1) is observed to be Gaussian. This suggests the 1-
hour difference of air pollutants are Gaussian and their depen-
dencies are also Gaussian. 

For other air quality and meteorological data, [19] found that 
all the temporal differences obey Gaussian distribution. Thus in 
this paper, we use 1-hour differences as inputs of multi-source 
time series data for the GBN, to represent the cause-and-effect 
relations in the ST space. 

Fig. 2. Histograms of normalized 1-hour difference of Beijing PM2.5, 
Shijiazhuang PM10, and their dependency.  

B. Cause-and-Effect Representation in the ST Space 
We first denote air pollutants at each location � and time �, as a 
random vector &'*, which is the effect caused by the historical 
air pollutants at the same location, as well as neighborhood 
locations. For each instance of &'* , its value -'* = (.�/0, .�/0,
… , .�1/0)  is the value vector of 23  types of pollutants. For 
example, -'* = (1, −1,0.2,0.5, −2.7,3) represents the normalized 
1-hour temporal difference values at location � and time � for 
23 = 6 types of pollutants, i.e. PM2.5, PM10, NO2, CO, O3, 
SO2. Fig. 3(a) gives an example of the GBN representation for 
air pollution data. The child node is the air pollutants &'�*  at 
location �� and time �, and the parent nodes are the historical air 
pollutants (1 and 2 hours ago) &'�(*%<), &'�(*%>) at ��  and 
&'<(*%<), &'<(*%>), &'>(*%<), &'>(*%>)  at two neighborhood 
locations ��, ��.  

Fig. 3. Representation of the GBN-based ST cause-and-effect. 

For the general representation (as shown in Fig. 3(b)), 
suppose the air pollutants at location ��  are influenced by ? 
historical time lags locally and at �  neighbor locations. The 
local pollutants in the past time are denoted as &'�*

(@) =
&'�(*%<)⨁ &'�(*%>)⨁ ⋯ ⨁&'�(*%@), which is a 1 × 23? vector with 
? lags of &'�*. ⨁ is the notion for vector concatenation.  

The neighborhood pollutants in the past time are denoted by  
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&C'�*
[D]  = &'<*

(@) ⨁  &'>*
(@) ⨁ ⋯ ⨁&'D*

(@) , which is a 1 × 23�? random 
vector for each � and represents the historical pollutants at � 
neighbor locations. The parents of &'�*  are &E�&'�*
 =
&'�*

(@)  ⨁&C'�*
[D]. Based on Equation (1), the distribution of &'�* con-

ditioned on its parents &E�&'�*
 can be represented by a Gau-
ssian distribution: 

Pr F&'�* = -'�*G&E�&'�*
H ∼ �(�'�* +  
∑ ∑ JK@LM�-'K(*%@) − �'K(*%@)
NOQ�R�Q� , S��'�*
)   (3) 

�'�*  is the marginal mean for &'�* , JK@LM  is the regression 
coefficient of &'�* given its parents. The regression function is 
as follows: 

&'�* = �� + F&'�*
(@)⨁&C'�*

[D]H � + �'�*                   (4) 

where �� = �'�* − ∑ ∑ JK@LM�'K(*%@)NOQ�R�Q� .  
By finding a 23(� + 1)? × 23 matrix � that minimizes the 

uncertainty of &'�* given its parents, we obtain: 

S��'�*
 = S�&'�*
 − � ∙ � F&E�&'�*
H%� ∙ A$          (5) 

However, to minimize S��'�*
 is very time consuming as 
there are many combinations of � neighborhood locations.  

C. Locating the N Most Influential Neighbors 
This subsection introduces how to select a combination of � 
neighborhood locations that could minimize S��'�*
 in equation 
(5), and guarantee the time efficiency. For air pollution &'�* at 
location �� , assuming there are totally U  neighbor locations 
within a given distance � , the complexity for selecting its � 
most influential neighborhood locations would be  V(UR). To 
optimize the selection process, we first use ST transfer entropy 
to measure the pairwise information transfer for air pollution 
from one neighbor location to the target location ��, and then we 
propose an ST hierarchical pruning algorithm. 

Transfer entropy is a metric to measure the amount of 
directed (time-asymmetric) transfer of information between two 
random processes � and �: 

        WX→Z = \(�0|�0%�:0%N) − \(�0|�0%�:0%N, �0%�:0%N)      (6) 

The transfer entropy from a process � to another process � 
is the amount of uncertainty reduced in the future values of � by 
knowing the past values of � given past values of �. In our case, 
the transfer entropy from the 2th neighbor location to the target 
location �� is defined as: 

W'K→'� = \ F&'�*G&'�*
(@)H − \ F&'�*G&'�*

(@)⨁&C'K*
(@)H        (7) 

When the variables are Gaussian, Equation (7) could be 
transformed to: 

W'_→'�
`Ja''bJKcddddde �

� f2 ( gh&'�*i&'�*
(@)j

gh&'�*i&'�*
(@)⨁&C'K*

(@) j
) = �

� f2 (|�F�'�*k H|
|���'�*
|)    (8) 

Details of the proof can be found in [20]. Here W'K→'� is used 
to represent the pairwise transfer entropy, i.e. the reduced uncer-
tainty of air pollution at ��  reduced by the history of its 2th 
neighbor given the past value of the air pollution. 

Similarly, we calculate the transfer entropy from � locations 
to the target location �� , which characterizes how the air 
pollution at � neighbor locations could together reduce the un-
certainty of the target pollution at ��: 

W'<:D→'�
`Ja''bJKcddddde �

� f2 ( gh&'�*i&'�*
(@)j

gh&'�*i&'�*
(@)⨁&C'�*

[D]j
) = �

� f2 (|gF�'�*k H|
|gF�'�*kk H|)    (9) 

 

Besides selecting � locations from the neighbor locations by 
brute force, there are two common ways to maximize the ST 
transfer entropy W'<:D→'� , such as randomly selecting � 
locations or greedily selecting the top �  locations based on 
pairwise transfer entropy W'_→'� . However, these two 
approaches fail to achieve high performance regarding to the ST 
transfer entropy, either due to the randomness or missing data. 
Thus we propose an ST hierarchical algorithm integrating the 
ST characteristics into the spatial selection. 

Fig. 4(a) illustrates the idea of the ST hierarchical algorithm. 
Given a spatial radius �, the region is initially divided into 9 
squares with �� at the center. Then we do the following steps: 

1) Average the pollution concentration in each region, and select 
a percentage l of the neighborhood regions with minimum 
pairwise transfer entropy in order. 

2) Quad-tree based division for the remaining regions. 
3) Again remove a percentage l of the neighborhood regions in 

each remaining sub-region with minimum transfer entropy in 
order, until the remaining locations = 3� (The choice of 3� is 
due to its generating the best results). 

4) Finally, perform �m0no (�m0no = 50 in our experiment) Monte 
Carlo iterations and choose the combination of �  neighbor 
locations that maximizes ST transfer entropy.  

We show an example of ST transfer entropy vs. the selected 
number of neighbors in Fig. 4(b). The ST hierarchical algorithm 
with the selection rate l = 50%  and l = 75%  greatly out-
perform the greedy and random algorithm. Compared to the 
brute force method, the ST hierarchical selection algorithm 
achieves acceptable performance with low complexity V(U +
9(1 + logv

�R
w ) + �m0no) . l = 25%  does not generate as good 

performance as l = 50% or l = 75%, but still outperforms the 
greedy algorithm. This is because the missing data severely 
distort the calculation of ST transfer entropy, while the Monte 
Carlo process in the ST hierarchical selection could avoid the 
missing items by using the neighborhood value as an alternative. 
When l = 12.5%, the performance of ST hierarchical algorithm 
is similar to greedy.  To achieve the optimum ST entropy and 
time efficiency, we use l = 50% in the following experiments. 

 
Fig. 4. Illustration of (a) ST hierarchical selection algorithm with l =
50%, and (b) the peformance with different l compared to the greedy 
and random selection methods. 

III. COMPONENT 2: THE COUPLED MODEL 
We further propose a coupled model that integrates the 
meteorology data into the cause-and-effect relations between air 

(a) ST Hierarchical Selection 
with ρ=50% (b) ST Transfer Entropy vs. Selected Number of Neighbors
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pollution as Component 2, to eliminate the confounding induced 
by meteorology. Below we will introduce the coupled model, 
datasets selection and parameter learning. 

A. Model Description 
The coupled model assumes the cause-and-effect relations 
between air pollutants P and the environmental factors E in the 
format of GBN are simultaneously controlled by a hidden 
confounding variable �  as shown in Fig. 5. �  determines the 
parameters �, x  of the cause-and-effect relations for air 
pollutants and environmental factors (meteorology), which are 
further determined by a hyper-parameter y.  

 
Fig. 5. The coupled Gaussian Bayesian model.  

The notations for this model are listed as follows: 
� z: Number of time windows (as training documents), 

each containing the air pollution and the corresponding 
meteorology data, within a time window [���, ���] 

� W: Number of timestamps for each document 
� �: A hidden confounding variable that simultaneously 

determines parameters � and x 
� y: A hyper parameter which determines the distribution 

of K (z × �-dimensional) 
� �, x: Parameters for air pollutants and meteorology in 

the corresponding coupled model 
For location � and time � and for each selected time window 

(document) [���, ���], the generation process for the current air 
pollutants values & and the environmental factors � is based on 
their histories locally and in the neighborhood: 

1) Choose �~z�f��2	��!f(y) 
2) Choose ���, x�� corresponding to each �  
3) Find the � most influential neighbor locations with the 

cause-and-effect relations for time period [���, ���]. (&C'�*
[D]

 

represents the air pollutants at the most influential � 
neighbor locations, and we rank them based on W'_→'� 
in descending order) 

4) For each of the W� = [���, ���] timestamps �: 
� Generate -'*~Pr F&'*G&'*

(@)⨁&C'*
[D],  ���H 

� Generate ���~Pr F���G���
(�) ⨁����

[�],  B��H , with the 
locations in �C'*

[D] the same with &C'*
[D] 

B. Training Datasets Selection 
We select the training datasets by cropping the time windows 
reflecting the increasing (+) and decreasing (−) periods of air 
pollution. There are two reasons for selecting the (+) and (−) 
periods instead of randomly selecting the time windows: 1) we 
care mostly about the variations, e.g. why the air pollution 
increases to an unhealthy level or what causes the air pollution 
to decrease. 2) This way of data selection will help the coupled 

model converge more efficiently, since otherwise there will be 
many fluctuation periods and it will be hard to recognize their 
patterns. Fig. 6(a) illustrates the logic of time window cropping 
of the air pollutants. For each time series, we detect the peaks 
and bottoms, and choose the adjacent bottom to peak as the start 
and ending of an increasing period [�1

�, �3�]  (similar for the 
decreasing period selection which is [�3

�, �5�]). Note that when 
there are many pollutant time series at a location �, we observe 
almost all the (+) or (–) periods of these time series have the 
same trends. Therefore, the final cropped period is a “union” of 
an increasing or decreasing case for  2. air pollutants ([�1

�, �4�], 
as Fig. 6(b) shows). After cropping time windows, we put the 
air pollutants datasets &'*, &'*

(@), &C'*
[D] and the meteorological data 

at the same locations �'*, �'*
(@), �C'*

[D]
 into each training document. 

Fig. 6. The logic for training datasets selection. 

C. Parameter Learning  
Learning the parameters �, x  for the GBNs and the hidden 
variable �, y for the Gaussian mixture clustering is an expec-
tation maximization (EM) problem [24]. The EM algorithm iter-
atively estimates the parameters that maximize the log like-
lihood of the observed air pollutants and meteorological data. In 
the E-step, we calculate the expectation of log likelihood (Equa-
tion (10)) with the current parameters, and the M-step re-
computes the parameters of the coupled causality model. 

1) E-step: Given the existing parameters �, x  and �, y , 
EM assumes the membership probability of a document � 
belonging to the �0� cluster to be: 

              Pr(�|�) = ��(�) ��F��G�H
��(��) =                                      

���D(-'*� |�&'*|&E(&'*)� , (�&'*|&E(&'*)� ))D(¡'*� |��'*|&E(�'*)� , (��'*|&E(�'*)� ))
∑ ��¢D(-'*� |�&'*|&E(&'*)

£ , (�&'*|&E(&'*)
£ ))D(¡'*� |��'*|&E(�'*)

£ , (��'*|&E(�'*)
£ ))¤£¥¦

    (11) 

2) M-step: The membership probability is used to calculate 
new parameters. Determining the most likely assignment tag of 
each document d to cluster k, i.e. W!§� = �!¨�∈[�,
] ª��, we union 
the timestamps in the documents in the �0�  cluster to a new 
document ��«�m¬� = ­2�	2(�)®¯°�Q� , thus obtaining new 
parameters ����n±, x���n±for GBNs by solving the following two 
regressions with new documents: 

&'* = �&'*|&E(&'*)� + F&'*
(@)⨁&C'*

[D]H ����n± + �&'*|&E(&'*)²  

�'* = ��'*|&E(�'*)� + F�'*
(@)⨁�C'*

[D]H x���n± + ��'*|&E(�'*)²  

The conditional dependencies Pr�&'*�&'*
(@)⨁&C'*

[D],  ���
  and 
Pr��'*��'*

(@) ⨁�C'*
[D],  x��
  obey Gaussian distributions, thus we 

update the means and variances of GBNs to: 
�&'*|&E(&'*)�� = �&'*|&E(&'*

� + F&'*
(@)⨁&C'*

[D]H ����n±             
��'*|&E(�'*)�� = ��'*|&E(�'*)� + F�'*

(@)⨁�C'*
[D]H x���n±            

S��&'*|&E(&'*)�� 
 = S(&/*) − ����n± ∙ � F&'*
(@)⨁&C'*

[D]H%� ∙ ����n±$           
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S���'*|&E(�'*)�� 
 = S(�/*) − x���n± ∙ � F�'*
(@) ⨁�C'*

[D]H%� ∙ x���n±$ (12) 
 

And, we update ª�� by: 
ª���n± = ∑ ������


³
³�Q�                           (13)  

In this way the coupled model iteratively unions the 
documents ��«�m¬�  and trains the parameters with new union 
datasets until convergence, thus overcoming the local optima 
problem of traditional EM algorithm. Details of EM algorithm 
of the coupled model are elaborated in Algorithm 1: 

Algorithm 1: EM learning of the coupled model  
Input: 1) Air pollutants and meteorological datasets in documents 
{&�<, &�>, … , &�´} & {��<, ��>, … , ��´}, 2) K: Number of clusters 
Output: ���, x�� for the he ST cause-and-effect relations in GBNs  

Repeat: 
For d = 1 to M 

For k = 1 to K 
Update ª�� by Equation (13)  

End  
End 
For k = 1 to K 

 Update ���, x��, plus the means and variances for GBNs 
End 
Update the cluster assignment Pr(�|�) based on Equation (11) 

Until: convergence; 

IV. EVALUATION 
We use 6 air pollutants and 5 meteorological data from 52 cities, 
515 air quality monitoring stations, 404 meteorology stations in 
Huabei, the center region of China, during Jun 1st 2013 – May 
1st 2015. The urban data are: PM2.5, PM10, NO2, CO, O3, SO2, 
as well as temperature (T), pressure (P), humidity (H), wind 
speed (WS), and wind direction (WD). The spatial range is with 
35N-43N, and 110E-123E. Fig. 7 visualizes the locations of the 
urban data for experiments. We average the meteorology value 
around each air quality monitoring station, to make the locations 
of meteorological data consistent with the air pollution data. 
 

 
Fig. 7. Locations of air quality and meteorological data. 

A. Evaluation of Component 1 
To evaluate Component 1, i.e. the GBN-based ST representation 
of cause-and-effect relations between air pollutants, we compare 
the time efficiency for learning the GBN structure in the ST 
space with 4 baseline Bayesian-based causal structure learning 
algorithms. The baselines for Bayesian structure learning are: 1) 
hill climbing, 2) Markov-chain Monte Carlo (MCMC), 3) K2, 
and conditional independency (CI) test. These methods usually 
encode the cause-and-effect relations into a directed acyclic 
graph (DAG), and learn the structure by maximizing a score, e.g. 
BIC score or K2 score [21]. Hill climbing and K2 are greedy-
based algorithm, while MCMC samples and updates the 
structure by “adding”, “subtracting”, or “reversing” connections. 
CI test is a pairwise conditional probability based method which 

verifies the dependency by µ� test [22]. The global structure is 
generated by connecting the link with the maximum conditional 
dependency, and later assigns the direction of each connection 
based on a d-separation rule [3]. 

Our method and four baselines are realized by MATLAB 
BNT toolbox [23]. Table I shows the time for learning the causal 
structures. Our method provides nearly linear scalability in time, 
with about 4.6 hours for learning ST causality at 52 cities and 
about 47.4 hours for learning 515 air quality monitoring stations. 
This suggests the ST transfer entropy based algorithm can be a 
feasible way to locate the causes for air pollution with big urban 
data. To learn the causal structure with 515 stations, the first 
three baselines either takes very long time or fails to compute. 
The last baseline has superiority in time but fails to perform 
accurately in the prediction task for Component 2. 

 

TABLE I. TIME FOR LEARNING THE CAUSAL STRUCTURE 
Time (s) Our 

Method 
Hill 

climbing 
MCM

C 
K2 + 
PS CI test 

52 cities 16624 20204.3 82947 14102 3562 
515 170802 -- -- 202543 18463

 

Fig. 8 presents an example of the learnt cause-and-effect 
representation in the ST space. In Fig. 8(a), PM2.5 in Beijing 
increases to a very unhealthy level during a time interval [��, ��]. 
We want to know the locations of causes during the selected time 
interval. Given a spatial range � as input, we learn and present 
the specific causes for the increase of Beijing’s PM2.5 in Fig. 
8(b). The illustrated structure suggests the increase of PM2.5 in 
Beijing is most likely caused by: 1) the PM10 of Cangzhou city 
one hour ago; 2) the PM10 of Shijiazhuang three hours ago. 
Further, PM10 in Shijiazhuang is likely to be caused by SO2 in 
Xingtai city five hours ago. We also visualize the time 
dependency for each neighbor location by showing the time lag 
with the maximum Pearson correlation with the target pollutant.  

 
Fig. 8. An example of the ST cause-and-effect representation. 

B. Evaluation of Component 2 
Component 2 is evaluated by predicting the future air pollutants 
with historical and neighborhood air pollutants with the 
parameters we learnt in the GBNs. We use two data segments, 
Jun 1st 2013 – April 1st 2014 and Jun 1st 2014 - April 1st 2015 
for training, with the corresponding data in April 1st 2014 – May 
1st 2014 and April 1st 2015 - May 1st 2015 for verification. 
Prediction precision is calculated and averaged by the two 
verification segments. To avoid biased prediction caused by 
meteorology, we calculate the expected air pollution values with 
respect to the different confounding variable K, i.e.  

&'* = �&'*|&E(&'*)� + ∑ Pr(�|�) ∙ F&'*
(@)⨁&C'*

[D]H ���
�Q� .   (14) 
 

We first conduct a 1-hour prediction task, to study the effects 
of neighbor location number N and cluster number K on the 

(a) Air quality monitoring stations (b) Meteorology stations

d

(a) Input of the model with spatial 
range d and temporal range [t1,t2]
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Zhuang
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given spatio-temporal ranges 
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prediction accuracy. As illustrated in Fig. 9, the general trend of 
the precision of 1-hour prediction task increases first and then 
decreases. N=3 and K=8 present the best performance. When 
K>15, the performance will degrade due to over-fitting. Note 
that when the number of influential neighborhood locations N=1, 
the precision fluctuates a lot as K increases. This may suggest 
the air pollutants may not just be caused by air pollutants at 1 
neighborhood location.  

 
Fig. 9. Precision of 1-hour PM2.5 prediction for 515 monitoring 
stations, with different N and K in the coupled model. 

 

  Afterwards, we verify the coupling idea based on the prediction 
precision, coupled or not coupled with meteorology. Fig. 10(a) 
shows 1-6 hour prediction precision over all the datasets. 
Generally the model with coupling outperforms the model 
without coupling. With coupling, we can achieve over 84% 
precision for 1-hour prediction and over 74% precision for 6-
hour prediction in station level. This suggests our proposed 
model is capable of identifying the causalities between air 
pollutants and understand how they interact. Note that without 
coupling, the 2-hour prediction outperforms 1-hour prediction. 
This may be due to the air pollutants at city level being more 
likely to be “caused” by neighborhood locations 2 hour ago. We 
also compare our model with/without coupling with four 
baselines for 1-hour prediction, as shown in Fig. 10(b). Results 
show our method obviously outperforms the baselines. 

 
Fig. 10. Precision of PM2.5 prediction based on our proposed model 
with and without meteorology coupling. 

V. CONCLUSION  
We propose a coupled Gaussian Bayesian model to identify 

the causalities for air pollutants in the ST space. The model 
comprises two components, 1) a GBN-based cause-and-effect 
representation to locate where air pollution comes from, and 2) 
a coupled model that integrates meteorology into the cause-and-
effect relations, thus eliminating the impact of confounding. 
Evaluation with real-world urban big data shows both time 
efficiency and prediction accuracy of this model. We further 
plan to modify the model for online causality analysis and 
provide real-time poor air quality warnings. 
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