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ABSTRACT 
This study develops a neural network (NN) model to explore the nonlinear 
relationship between crash frequency and risk factors. To eliminate the possibility of 
over-fitting and to deal with the black-box characteristic, a network structure 
optimization algorithm and a rule extraction method are proposed. A case study 
compares the performance of the trained and modified NN models with that of the 
traditional negative binomial (NB) model for analyzing crash frequency on road 
segments in Hong Kong. The results indicate that the optimized NNs have somewhat 
better fitting and predictive performance than the NB models. Moreover, the smaller 
training/testing errors in the optimized NNs with pruned input and hidden nodes 
demonstrate the ability of the structure optimization algorithm to identify the 
insignificant factors and to improve the model generalization capacity. Furthermore, 
the rule-set extracted from the optimized NN model can reveal the effect of each 
explanatory variable on the crash frequency under different conditions, and implies 
the existence of nonlinear relationship between factors and crash frequency. With the 
structure optimization algorithm and rule extraction method, the modified NN model 
has great potential for modeling crash frequency, and may be considered as a good 
alternative for road safety analysis. 
 
Keywords: crash frequency; neural network; over-fitting; structure optimization; rule 
extraction. 
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 1 
1. Introduction 2 
 3 

In recent decades, numerous models of crash frequency have been proposed to 4 
model the relationship between crash frequency at road segments or intersections and 5 
risk factors related to traffic and geometrical characteristics of the sites. Most studies 6 
of this sort have employed statistical count modeling techniques, since these models 7 
provide explicit forms for the random, discrete and non-negative nature of counting 8 
crash data and the effects of major contributing factors on crash occurrence. In 9 
addition to statistical models, some artificial intelligence (AI) models have been 10 
proposed (Chang, 2005; Li et al., 2008). As a common class of AI models, neural 11 
network (NN) models have been successfully used in many fields of transportation 12 
research, including highway safety analysis (Karlaftis and Vlahogianni, 2011).  13 

In modeling crash frequency, NNs are able to approximate the potential nonlinear 14 
and complicated relationship between crash frequency and risk factors. Several 15 
studies have demonstrated the better model fitting and predictive performance of NNs 16 
over traditional negative binomial (NB) models, in which nonlinear safety effects of 17 
risk factors have been identified (Chang, 2005; Xie et al., 2007). The 18 
recently-developed random parameters (Anastasopoulos and Mannering, 2009) and 19 
Markov switching (Malyshkina et al., 2009) count models indicate that loosening the 20 
constraint of fixed parameters could significantly improve their performance on 21 
modeling crash frequency, which also partially reflects the existence of nonlinear 22 
relationship in crash modeling. 23 

However, NNs have two primary drawbacks that limit their application to traffic 24 
safety research, including the so-called “black-box” characteristic and the possible 25 
over-fitting problem (Xie et al., 2007). The black-box characteristic has limited NNs’ 26 
ability to explicitly illustrate the effects of explanatory variables on crash frequency. 27 
Even for studies using sensitivity analysis, the impacts on safety of each risk factor 28 
cannot be systematically or globally interpreted either. To overcome this problem, a 29 
more general approach is to extract the knowledge from the NNs. Using regression 30 
analysis, Setiono and Thong (2004) proposed a rule extraction method that generated 31 
a group of piecewise linear functions to approximate NNs. This method may be 32 
adopted in road safety analysis to clarify the relationship between network output(s) 33 
and input risk factors.  34 

The possible over-fitting problem may be caused by the weak generalization 35 
ability of models, which was also observed in generalized linear models (Marzban 36 
and Witt, 2001). Sample size and model architecture are two factors that may have a 37 
profound effect on NNs’ generalization performance (Haykin, 2009). Although 38 
Bayesian neural network (BNN) has been proposed to reduce the over-fitting 39 
phenomenon, it is not suitable for rule extraction (Xie et al., 2007). For a given 40 
sample size, optimizing the structure of NN models, that is, adjusting the number of 41 
units or neurons in each layer and the connections between different neurons, is a 42 
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useful method for improving the model’s generalization ability. Moreover, this 1 
method can identify and prune factors that have no significant effects on the crash 2 
frequency. In previous studies (Chang, 2005; Xie et al., 2007), only the number of 3 
hidden layer units was locally optimized by using cross-validation, which can neither 4 
guarantee the models’ generalization performance nor verify the importance of the 5 
input variables. Recently, many advanced methods for NN model structure 6 
optimization have been proposed to achieve an optimized network that are able to not 7 
only represent more generalized relationship between crash frequency and risk factors, 8 
but also create a simpler set of extracted rules (Setiono and Thong, 2004).  9 

Therefore, it would be interesting to research on the possibility of employing the 10 
emerging NN techniques in better modeling crash frequency. This study aims to 11 
develop a generalized NN model for crash frequency analysis, in which only the 12 
significant risk factors are retained with estimation of their effects on crash frequency.  13 
 14 
2. Literature review 15 
 16 
2.1. Statistical models of crash frequency 17 
 18 

Statistical models have always been the most popular approach for modeling crash 19 
frequency. To handle the possible over-dispersion, multilevel heterogeneities, and 20 
spatiotemporal correlation among observations, models ranging from the negative 21 
binomial (NB) (Miaou, 1994), Poisson-lognormal (Miaou et al., 2005), and 22 
zero-inflation models (Shankar et al., 1997; Huang and Chin, 2010) to the 23 
Conway-Maxwell-Poisson (Lord et al., 2008), finite mixture/latent class (Park and 24 
Lord, 2009; Park et al.,2010), Markov switching (Malyshkina et al., 2009), random 25 
effects or random parameters (Shankar et al., 1998; Anastasopoulos and Mannering, 26 
2009), multilevel (Huang and Abdel-Aty, 2010; Lee et al. 2015; Wang and Huang, 27 
2016), and Bayesian spatial models (Dong et al., 2014, 2015, 2016; Huang et al., 2016; 28 
Xu et al., 2014; Xu and Huang, 2015), have been widely investigated. Most of these 29 
models are based on a generalized linear function framework and certain assumed 30 
distributions of crash data. If these assumptions are violated, the inferences about the 31 
effects of the related factors may become biased (Li et al., 2008). Lord and Mannering 32 
(2010) and Mannering and Bhat (2014) have presented more detailed descriptions and 33 
assessments of these models. 34 
 35 
2.2. NN models of crash frequency 36 
 37 

Unlike the statistical models, NN models are not limited by data assumptions and 38 
have been used to model the potential nonlinear relationship between crash frequency 39 
and related factors. Probably because of the aforementioned two limitations, only a 40 
few studies have focused on predicting crash frequency using NN models. Chang 41 
(2005) compared the use of NB and NN models for crash frequency analysis, and 42 
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found that the NN model has better predictive performance. Xie et al. (2007) 1 
developed a BNN model for analyzing crash frequency and compared the BNN model, 2 
NB model, and NN model trained with a back-propagation (BP) algorithm (BPNN). 3 
The results showed that both the BNN and BPNN had higher prediction accuracies 4 
than the NB model.  5 

 6 
2.3. NN structure optimization 7 
 8 

Basically, the structure of NN models can be optimized by either constructing or 9 
pruning the network. In the constructing method, an NN starts with a small number of 10 
hidden layer neurons, and then hidden units are incrementally added during training 11 
until the training error cannot be reduced. The most common constructing algorithms 12 
include the growing cell structure (GCS) (Fritzke, 1994), constructive 13 
back-propagation (CBP) (Lehtokangas, 1999), and adaptively constructing methods 14 
(Ma and Khorasani, 2003). Although these constructing algorithms are 15 
computationally efficient, they cannot ensure that all of the added units in the hidden 16 
layers are properly trained.  17 

For the pruning algorithms, an NN model is firstly created with sufficient hidden 18 
layer units. During or after network training, irrelative connections or redundant 19 
neurons in the network are removed. Popular pruning algorithms include the optimal 20 
brain surgeon (OBS) (Haykin, 2009), subset-based training and pruning (SBTP) (Xu 21 
and Ho, 2006), and independent component analysis (ICA) (Nielsen and Hansen, 22 
2008). In contrast to the methods that delete one connection at a time, the NN pruning 23 
of the function approximation (N2PFA) algorithm proposed by Setiono and Leow 24 
(2000) removes one hidden/input node each time, which could significantly shorten 25 
the computational time. 26 
 27 
2.4. Rule extraction of NN 28 
 29 

A large number of rule extraction methods have been developed to make up the 30 
black-box characteristic of NNs (Elalfi et al., 2004; Hruschka and Ebecken, 2006). 31 
However, only a couple of methods have been devised to extract rules from NNs used 32 
for regression problems. Setiono et al. (2002) proposed extracting piecewise linear 33 
function rules from NNs. In that study, the hidden unit transfer function was 34 
approximated by either a three-piece or a five-piece linear function, which minimized 35 
the approximation errors. To generate a simpler and more accurate rule-set, Setiono 36 
and Thong (2004) developed a new three-piece linear function form that had 37 
comparable approximation performance with the NN model. This method can be 38 
modified to further improve its performance and be adopted in road safety analysis to 39 
reveal the relationship between safety performance and input factors. 40 
 41 
3. Methodology 42 
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 1 
The NB model is one of the most widely used statistical models in crash 2 

frequency analysis. As in previous research, it is used as a benchmark in this study, 3 
and various techniques are used to compare its predictive performance with that of the 4 
NN models. In this section, the model architectures of the NB and NN models are 5 
specified. Then, the training, structure optimization, and rule extraction algorithms for 6 
the NN model are presented. 7 
 8 
3.1. Model specification 9 
 10 
3.1.1. NB model 11 

The NB model, also known as the Poisson-gamma model, is a modification of the 12 
basic Poisson model that can address the common over-dispersion of crash data. The 13 

crash count itY  at site i  during period t  follows an NB distribution (Washington et 14 

al., 2011), that is, 15 

 
1
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(1 ) ! 1 1
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it it
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yY y
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 
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           

, 0,1,2,3,ity  ,     (1) 16 

where ( )   is the Gamma function and   is the over-dispersion parameter. The 17 

mean of itY , it , is assumed to have a generalized linear relationship with the risk 18 

factors, itX , such that 19 

ln lnit it ite  X β ,                         (2) 20 

in which ite  is the crash exposure and β  are the coefficients to be estimated. 21 

 22 
3.1.2. NN model 23 

NNs are information processing mechanisms that are inspired by biological 24 
nervous systems (Haykin, 2009). Mathematically, an NN is a complex function, 25 
which is designed to learn from the collected data. Depending on their learning 26 
mechanisms, NNs can generally be divided into two groups, namely, supervised and 27 
unsupervised. Supervised NNs are only suited for learning from labeled samples 28 
(those with expected outputs, such as crash observations). Classical supervised NNs 29 
include multilayer perceptron (MLP) and radial basis function (RBF) network. On the 30 
contrary, unsupervised NNs are usually used for learning from unlabeled samples 31 
(those without expected outputs). Fuzzy adaptive resonance theory map (ART) 32 
network and self-organizing feature map (SOFM or SOM) network are typical 33 
examples of unsupervised NNs. The MLP, known as a universal approximator, is the 34 
most popular supervised NN for data mining; here it is used to model the underlying 35 
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nonlinear relationship between crash frequency and related risk factors. Fig. 1 shows 1 
the structure of the developed MLP with fully connected neurons.  2 

 3 
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Fig. 1. Developed MLP structure 5 

 6 

Consider a dataset containing 1N  continuous attributes and 2N  categorical 7 

attributes that may affect the crash frequency. As in many statistical modeling, each 8 

categorical attribute 2( 1, 2, , )nA n N   is transformed into 1nm   binary 9 

attribute(s) 1 1, , ,
n

n n n
j ma a a   , where nm  is the number of possible values for nA . 10 

1n
ja   if nA  is equal to category j ; and 0n

ja   otherwise. Each of the 11 

transformed attributes together with the continuous ones is represented by a node 12 

(i 2, )ix I   in the input layer. Besides, an input node, with 1 1x  , is added. The 13 

weights of its connections with hidden neurons are the biases. The number of units I  14 
in the input layer is 15 

2

1
1

( 1) 1
N

n
n

I N m


    .                        (3) 16 

Although two or more hidden layers are feasible, a single hidden layer is preferred 17 
in the MLP, as experimental evidence suggests that NNs with the latter give a similar 18 
performance to NNs with the former, and are less likely to be trapped at a local 19 
minimum during network training (Villiers and Barnard, 1993). To fit the training data 20 
well, the number of neurons in the hidden layer must be sufficiently large. If it is 21 

assumed to be J , then the connection weight between hidden node , 1, ,j j J   22 
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and input node , 1, ,i i I   is (1)
,j iw . The hyperbolic function, tanh( ) , which is an 1 

odd sigmoid transfer function, is used for all of the hidden nodes. 2 
In the output layer, the only unit,  , represents the expected crash frequency. 3 

(2)
jw  denotes the weight of the connection between the output node and hidden node 4 

, 1, ,j j J  . A linear function is employed as the transfer function for the output 5 

node. As a result, 6 

(2) (1)
,

1 1

tanh( )
J I

j j i i
j i

w w x
 

  .                      (4) 7 

 8 
3.2. Network Training 9 
 10 

In network training, the conjugate gradient algorithm which possesses better 11 
learning performance than the popular BP algorithm is adopted in this study (Haykin, 12 
2009). For training samples { ( ), ( ) | 1, 2, , }m o m m Mx   where ( )mx  and ( )o m  13 
are a vector of risk factors and the corresponding real crash frequency respectively 14 
and M  is the number of samples, the conjugate gradient updates the connection 15 
weight vector, w , as follows: 16 

1 ( 1) 1 (1 )

(1) (1) (1) (2) (2) (2)
1,1 , , 1

( , , , , , , , )

( , , , , , , , )
j I i JI JI JI j J I

j i J I j J

w w w w w w

w w w w w w
    



w    

   
.             (5) 17 

1. Randomly select (1)
, ( 2, , ; 1, , )j iw j J i I    and (2) ( 1, , )jw j J   from two 18 

uniform distributions. The means of both distributions are equal to 0, and their 19 

variances are 1 J  and 1, respectively. Set the initial iteration, 0t  . 20 

2. According to weight vector (0)w , calculate the expected network outputs, 21 

1,( 2) ,( ),m Mm   , the derivative of outputs on all weights, 22 

( ) ( )
(0)

1, 2, ,mm M



w

 , and the gradient vector, (0)g : 23 

(1) (2)
,(2)

1

2 (1) (1)
, ,(1)

1,

( ) tanh( ( )),
( )

( ) tanh ( ( )) ( ),

I

j i i h j
ij

I
h k

j j i i i h j i
ij i

m w x m if w w
wm

w m w w x m x m f w w
w











       

 




,         (6) 24 

1

1 ( )( ) [ ( ) ( )]
( )

M

m

mt o m m
N t





 

g
w

.                    (7) 25 
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3. Set (0) (0) (0)  s r g . 1 
4. In iteration t , for the fixed ( )tw  and ( )ts , use the advance and retreat method to 2 

linearly search the optimal ( )t  by minimizing the cost function, 3 

( ( ) ( ))av t t w s : 4 

2

1

1( ) [ ( ) ( )]
2

M

av
m

o m m
M

 


 w .                   (8) 5 

5. Check convergence criteria. If the Euclidean norm of ( )tr  decreases to a certain 6 

small portion,  , of its initial value, (0)r , or the iteration number meets its 7 

maximum value, T , the algorithm is done: 8 

( ) (0)n r r , or t T . 9 

6. Update the connection weight vector: 10 
( 1) ( ) ( ) ( )t t t t  w w s .                      (9) 11 

7. Calculate the gradient vector ( 1)t g  by formulas (6)-(7) according to ( 1)t w . 12 
Set ( 1) ( 1)t t   r g . 13 

8. Calculate ( 1)t   by the Polak-Ribiere method: 14 

( 1)( ( 1) ( ))( 1) max{ ,0}
( ) ( )

t t tt
t t


   

 


r r r
r r

.               (10) 15 

9. Update the direction vector: 16 
( 1) ( 1) ( 1) ( )t t t t    s r s .                   (11) 17 

10. Set 1t t  , and turn to step 4. 18 
 19 
3.3. Structure optimization 20 
 21 

Owing to Setiono and Leow (2000), the N2PFA algorithm, which has been 22 
successfully used to develop an optimized NN model for crash injury severity analysis 23 
(Zeng and Huang, 2014b), is proposed to improve the generalization capacity of the 24 
NN model and to identify insignificant explanatory variables. This method prunes the 25 
nodes that do not cause significant deterioration of the network’s accuracy. The mean 26 
absolute deviations (MADs) of the training set T  and testing set X , that is p  and 27 
q , are used to evaluate the fitting and predictive performance during network 28 
optimization: 29 

( )1

1 ( ) ( )
o m

p o m m
M




 
Τ

,                    (12) 30 

 
( )2

1 ( ) ( )
o m

q o m m
M




 
Χ

,                    (13) 31 
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where 1M  and 2M  are the number of samples in the training and testing sets, 1 

respectively. 2 
The following steps describe the detailed pruning process. 3 

1. Train the network with a relatively large number of hidden nodes using the 4 
conjugate gradient algorithm. 5 

2. Calculate the p  and q  of the trained NN, and set _p b p , _q b q , and6 
max{ _ , _ }ermax p b q b . 7 

3. For each ( 1, , )i i I  , set (1)
, 0( 1, , )i jw j J    and calculate the fitting errors ip . 8 

4. Retrain the network with (1)
, 0( 1, , )l jw j J   , where minl i ip p , and compute 9 

p  and q  for the retrained network. 10 

5. If (1 )p ermax  and (1 )q ermax  , then remove the input node l , set 11 

_ min{ , _ }p b p p b , _ min{ , _ }q b q q b , max{ _ , _ }ermax p b q b , 1I I  , 12 
and go back to step 3; otherwise, keep the previous weights of the network 13 
connections.  14 

6. For each ( 1, , )j j J  , set (2) 0jw   and calculate the fitting errors jp . 15 

7. Retrain the network with (2) 0hw  , where minh j jp p , and compute p  and q  16 

of the retrained network. 17 

8. If (1 )p ermax   and (1 )q ermax  , then remove the hidden node h . Set 18 

_ min{ , _ }p b p p b , _ min{ , _ }q b q q b , max{ _ , _ }ermax p b q b , and 19 
1J J  , and go back to step 6; otherwise, keep the previous weights of the 20 

network connections. 21 
In the above process, _p b  and _q b  represent respectively the minimal 22 

MADs of training and testing sets achieved so far. During the pruning process, 23 
generally, _p b  increases while _q b  decreases. In addition,   is the margin by 24 
which the error is allowed to increase, when pruning a certain node. 25 
 26 
3.4. Rule extraction 27 
 28 

The rule extraction method developed by Setiono and Thong (2004) is modified to 29 
generate rules from the pruned NN for regression analysis. In the next subsections, a 30 
particle swarm optimization (PSO) algorithm based approach to approximating the 31 
transfer functions of hidden units is introduced as a critical step in the method, and 32 
then the rule extraction process is explicitly described. 33 
 34 
3.4.1. Approximating transfer functions 35 
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The transfer functions of hidden nodes can be approximated by piecewise 1 
functions. Theoretically, more pieces fit the function, more accurate the rule-set may 2 
be, while more rules may be extracted. To balance the two aspects, a three-piece linear 3 
function suggested by Setiono and Thong (2004) is used to approximate the transfer 4 
function of each hidden node ( 1, , )j j J  , tanh( ) , as shown in Fig. 2. The slopes, 5 

0j  and 1j , and the cut-off point, 0j , are three undetermined parameters which 6 

minimize the sum of the squared deviations, i.e., 7 

2

1
min (tanh( ( )) ( ( )))

M

j j j
m

m L m 


 ,                 (14) 8 

where 9 

1 1 0

0 0 0

1 1 0

( )
j j j

j j j j

j j j

x if x
L x x if x

x if x

  
  
  

   
   
  

,                (15) 10 

(1)
,

1
( ) ( )

I

j j i i
i

m w x m


 ,                       (16) 11 

1 0 1 0( )j j j j     .                       (17) 12 

 13 
3.4.2. Searching for the optimal parameters 14 

To approximate the transfer function accurately, the PSO algorithm, an efficient 15 
global search method, is used to solve the aforementioned nonlinear optimization 16 
problem. The PSO algorithm is well-known for its exploration capacity, exploitation 17 
capacity and easy implementation (Poli et al., 2012). In the algorithm, each feasible 18 

solution 0 1 0( , , )j j j    is called a particle, U , and each particle flies around the 19 

three-dimensional search space with a velocity, V , which is updated iteratively 20 
according to the best solution of the particle achieved so far (particle best, pbest ) 21 
and the best solution obtained by all particles in the swarm so far (global best, 22 
gbest ): 23 

 1
1 1 2 2( ) ( )r r r r r r

s s s s s sc c      V V pbest U gbest U ,           (18) 24 

1 1r r r
s s sU U V   ,                         (19) 25 

0 1 0( , , ); 1, 2, , ; 1,2, ,j j j r R s S    U   . 26 

where r
sU  is the s th particle at the r th iteration and r

sV  is its flying velocity to 27 

the r th iteration. 1c  and 2c  are two acceleration constants, while 1  and 2  are 28 
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two uniform random numbers in [0,1] . R  is the maximum iteration number and S  1 

is the number of particles used for searching the optimal solution. 2 
 3 

 4 
Fig. 2. Three-piece linear approximation of tanh( )  5 

 6 
3.4.3. Generating regression rules 7 

Once the transfer functions of hidden units have been approximated, the 8 
relationship between the network inputs and output can be formulated with piecewise 9 
linear functions. The detailed steps for extracting rules from the optimized NN are as 10 
follows: 11 

1. For each hidden unit ( 1, , )j j J  , generate a three-piece linear function ( )jL x12 

with the approach previously described. 13 

2. According to the pair of cut-off points in ( )jL x , 0j  and 0j , a certain input 14 

can be located in one of three sections of hidden node j . Then, J  hidden nodes 15 

will result in 3 3 3
J

    locations for inputs. Consequently, the whole input 16 

space can be separated into 3J  subspaces. 17 

3. For each non-empty subspace, the rule consequence is (2)

1

( )
J

j j j
j

y w L 


  , where 18 

(1)
,

1

I

j i j i
i

w x


  , and the rule condition is 1 2& & JC C C , where jC  is either 19 

0j j   , 0 0j j j      or 0j j  . 20 
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 1 
4. Data preparation and preliminary analysis 2 
 3 

A crash dataset obtained from the Traffic Information System (TIS) maintained by 4 
the Transport Department of Hong Kong is used to demonstrate the proposed NN 5 
models and to compare them with the NB model. This dataset contains 211 road 6 
segments evenly and widely distributed across Hong Kong. Geographical information 7 
system (GIS) techniques are used to map crashes to these segments, and the annual 8 
crash numbers of each site during 2002 to 2006 are obtained. The road geometric and 9 
traffic information is also included in the dataset. Table 1 illustrates the definitions 10 
and descriptive statistics of the variables used in the model development. 11 
 12 
Table 1 Descriptive statistics of the variables 13 
Variable Description Mean S.D. Min. Max. 
Response variable 
Crash Crash count per segment per year 7.64 6.35 0 51 
Exposure variables 
AADT Average annual daily traffic (veh) 22077 19945 1164 101632 
Length Segment length (km) 1.47 1.55 0.15 9.07 
Risk factors 
Lane Number of lanes 2.41 1.18 1 7 
Width Average width of each lane 3.63 0.64 2.40 7.30 
SL Posted speed limit (km/h) 60.3 14.7 50 110 
Merge Number of merging ramps 0.84 1.00 0 4 
Diverge Number of diverging ramps 1.75 2.27 0 17 
Inter Number of intersections 1.90 2.37 0 16 
Gradient Average segment gradient (10-2) 0.04 2.74 -11 11 
Curvature Average segment curvature 21.9 17.5 0 85 
LCO Lane changing opportunity 2.43 1.61 0 7.85 
Median Presence of median barrier: yes = 1, no = 0 0.70 0.46 0 1 
BS Presence of bus stop: yes = 1, no = 0 0.64 0.48 0 1 
Shoulder Presence of hard shoulder: yes = 1, no = 0 0.13 0.34 0 1 
Park Presence of on-street parking: yes = 1, no = 0 0.51 0.49 0 1 
Rainfall Annual precipitation (mm) 2279 565 761 3215 
 14 

The lane changing opportunity (LCO) variable refers to the length-weighted 15 
average number of eligible lane changing in a sub-segment with identical lane 16 
markings. For double continuous lines, no lane changing is allowed (shown in Fig. 17 
3(a)), thus 0LCO  . For double lines with one continuous line and one broken line, 18 
lane changing is only allowed from the side of the broken line to the side of the 19 
continuous line (shown in Fig. 3(b)), thus 1LCO  . For a single broken line, lane 20 
changing between both adjacent lanes is allowed (shown in Fig. 3(c)), thus 2LCO  . 21 
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Pei et al. (2012) provided a more detailed description of LCO. 1 
 2 

(a) (b) (c) 
Fig. 3. Lane changing opportunity for different road section configurations 3 

 4 
According to Table 1, the mean and variance of the crash frequencies are 7.64 and 5 

40.32, respectively, which indicates the possible over-dispersion in the crash data. NB 6 
model is developed in which crash exposure is formulated by the product of a power 7 
of the average annual daily traffic (AADT) and a power of segment length, or 8 

1 2e (AADT) (Length)  , where 1  and 2  are two parameters that can be 9 

estimated (Zeng and Huang, 2014a). 10 
Correlation tests and multi-collinearity diagnoses for the risk factors are 11 

conducted. Table 2 shows the results of Pearson correlation tests. According to the 12 
results, we can find that ln(AADT) and Lane, ln(AADT) and Park, Lane and LCO, SL 13 
and Shoulder, SL and Park are significantly correlated with correlation coefficients 14 
greater than 0.6. To reduce the model complexity, Lane, Park, and Shoulder are 15 
excluded from the models. The results of the diagnoses indicate that there is no 16 
significant collinearity in the remaining factors. In this study, the modified dataset is 17 
used for the development of both NB and NN models. Therefore, the exclusion would 18 
have little impact on the results of model comparison, although it possibly brings 19 
about omitted variable biases. 20 

https://www.researchgate.net/publication/225185747_The_roles_of_exposure_and_speed_in_road_safety_analysis?el=1_x_8&enrichId=rgreq-d64757a7c844326eea27e53e4809d23e-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYwMDM3NDtBUzo0MDYxNDUyMzY3ODMxMDRAMTQ3Mzg0Mzk3ODAxOQ==
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Table 2 Pearson correlation coefficients between explanatory variables 1 

 
Lane SL Merge Diverge Inter Median BS Gradient Shoulder Curvature LCO Width Park Rainfall ln(AADT) ln(Length) 

Lane 1.00 0.35 0.24 -0.18 -0.31 0.57 -0.20 -0.01 0.20 -0.08 0.65 -0.14 -0.38 -0.02 0.71 -0.15 

SL 0.35 1.00 0.24 -0.13 -0.41 0.46 -0.46 -0.02 0.69 0.17 0.28 0.09 -0.67 -0.13 0.57 0.50 

Merge 0.24 0.24 1.00 0.19 -0.19 0.09 -0.03 -0.02 0.19 0.24 0.13 -0.01 -0.28 0.02 0.36 0.23 

Diverge -0.18 -0.13 0.19 1.00 0.56 -0.24 0.26 0.10 -0.16 0.22 -0.19 -0.06 0.09 0.01 -0.20 0.22 

Inter -0.31 -0.41 -0.19 0.56 1.00 -0.33 0.44 0.03 -0.31 -0.07 -0.17 0.00 0.47 0.04 -0.47 -0.06 

Median 0.57 0.46 0.09 -0.24 -0.33 1.00 -0.39 -0.03 0.25 -0.25 0.51 0.16 -0.54 -0.05 0.59 -0.04 

BS -0.20 -0.46 -0.03 0.26 0.44 -0.39 1.00 0.05 -0.35 0.02 -0.13 -0.16 0.46 0.07 -0.36 -0.12 

Gradient -0.01 -0.02 -0.02 0.10 0.03 -0.03 0.05 1.00 -0.02 0.02 0.02 0.00 0.02 0.00 -0.04 0.03 

Shoulder 0.20 0.69 0.19 -0.16 -0.31 0.25 -0.35 -0.02 1.00 0.21 0.32 0.19 -0.39 -0.17 0.31 0.38 

Curvature -0.08 0.17 0.24 0.22 -0.07 -0.25 0.02 0.02 0.21 1.00 -0.17 -0.06 -0.08 -0.02 0.00 0.40 

LCO 0.65 0.28 0.13 -0.19 -0.17 0.51 -0.13 0.02 0.32 -0.17 1.00 0.07 -0.24 -0.03 0.48 -0.24 

Width -0.14 0.09 -0.01 -0.06 0.00 0.16 -0.16 0.00 0.19 -0.06 0.07 1.00 0.03 -0.03 -0.05 -0.08 

Park -0.38 -0.67 -0.28 0.09 0.47 -0.54 0.46 0.02 -0.39 -0.08 -0.24 0.03 1.00 0.09 -0.65 -0.34 

Rainfall -0.02 -0.13 0.02 0.01 0.04 -0.05 0.07 0.00 -0.17 -0.02 -0.03 -0.03 0.09 1.00 0.01 -0.10 

ln(AADT) 0.71 0.57 0.36 -0.20 -0.47 0.59 -0.36 -0.04 0.31 0.00 0.48 -0.05 -0.65 0.01 1.00 0.09 

ln(Length) -0.15 0.50 0.23 0.22 -0.06 -0.04 -0.12 0.03 0.38 0.40 -0.24 -0.08 -0.34 -0.10 0.09 1.00 

 2 
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5. Model implementation and result analysis 1 
 2 
5.1. Model implementation 3 
 4 

The NB model is estimated with the Stata software. The training, structure 5 
optimization, and rule extraction algorithms of the NN model are programmed in 6 
MATLAB. All of the variables are normalized for improving the efficiency of 7 
network training. To compare the performance of the models fully, a 5-fold cross 8 
validation is conducted, where the dataset is randomly divided into five parts with 9 
equal number of observations/patterns. Each time, the sub-dataset of any four parts is 10 
input for training the models while the rest is used for testing the predictive 11 
performance. The number of input nodes 14I  , and initially set 10J  . In the 12 
network training, 0.001   and 50T  . We assume that 0.05   in the N2PFA 13 
algorithm, while 300R   and 700S   in the PSO algorithm.  14 
 15 
5.2. Model comparison 16 
 17 

The results of the model comparison are summarized in Table 3. With regard to 18 
the five folds of model comparison, in terms of the MAD criteria, all of the trained 19 
and optimized NNs have a bit smaller errors for the training and testing datasets than 20 
the NB models. It demonstrates that NNs of crash frequency offer slightly better 21 
approximation performance than NB models, which is consistent to the findings of the 22 
previous studies (Chang, 2005; Xie et al., 2007).  23 

After pruning the network structure with the N2PFA algorithm, the model training 24 
performance is generally expected to be degraded to some extent but the model 25 
prediction should be improved as discussed in the section 3.3. But in the results as 26 
shown in Table 3, it is surprisingly found that both the training and prediction errors 27 
of the NN models in three (No. 2, 4, 5) folds of models are reduced by the proposed 28 
model structure optimization algorithm. As generally known, like other training 29 
algorithms, the proposed conjugate gradient algorithm may have reached a local 30 
optimum (Haykin, 2009). Therefore, a presumable cause for the reduced 31 
model-training errors may be that pruning nodes and retraining network could help to 32 
escape from local minima and to search for better solutions. As a result, we may argue 33 
that the model generalization performance associated with the proposed algorithm is 34 
improved as reflected by the reduced model training and prediction errors.  35 

Moreover, certain numbers of input and hidden nodes are removed from the 36 
trained NNs in all the five runs of models, indicating that the original models have 37 
redundant nodes and that the factors corresponding to those removed input nodes may 38 
have no significant effects on crash frequency.  39 

Unsurprisingly, the rule-sets approximate the relationship between the crash 40 
frequency and the risk factors and the optimized NNs in terms of comparable training 41 
and testing MADs, as the generated three-piece linear functions could be considered 42 

https://www.researchgate.net/publication/222722353_Analysis_of_freeway_accident_frequencies_Negative_binomial_regression_versus_artificial_neural_network?el=1_x_8&enrichId=rgreq-d64757a7c844326eea27e53e4809d23e-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYwMDM3NDtBUzo0MDYxNDUyMzY3ODMxMDRAMTQ3Mzg0Mzk3ODAxOQ==
https://www.researchgate.net/publication/6498329_Predicting_motor_vehicle_collisions_using_Bayesian_neural_network_models_An_empirical_analysis?el=1_x_8&enrichId=rgreq-d64757a7c844326eea27e53e4809d23e-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYwMDM3NDtBUzo0MDYxNDUyMzY3ODMxMDRAMTQ3Mzg0Mzk3ODAxOQ==
https://www.researchgate.net/publication/221900799_Neural_Networks_and_Learning_Machine?el=1_x_8&enrichId=rgreq-d64757a7c844326eea27e53e4809d23e-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYwMDM3NDtBUzo0MDYxNDUyMzY3ODMxMDRAMTQ3Mzg0Mzk3ODAxOQ==
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substitutions for the transfer functions in the optimized NN. However, the linear 1 
function in each rule can illustrate the factors’ effects, whereas the NN cannot. 2 

It is also noticeable that the five optimized NNs end up with slight distinctions in 3 
MAD values and the final sets of input and hidden nodes. This instability is 4 
presumably attributable to the small sample size problem (Xie et al., 2007), given the 5 
important impact of sample size on the model generalization performance (Haykin, 6 
2009). 7 
 8 
Table 3 Model comparison 9 

 Method Training MAD Testing MAD 
Number of 
input nodes 

Number of 
hidden nodes 

1 

NB 3.560 3.912 — — 
Trained NN 3.488 3.682 14 10 

Optimized NN 3.514 3.672 9 4 
Rule-set 3.524 3.631 — — 

2 

NB 3.698 3.432 — — 
Trained NN 3.590 3.412 14 10 

Optimized NN 3.458 3.142 9 5 
Rule-set 3.437 3.147 — — 

3 

NB 3.575 3.769 — — 
Trained NN 3.386 3.733 14 10 

Optimized NN 3.397 3.641 6 5 
Rule-set 3.392 3.652 — — 

4 

NB 3.718 3.386 — — 
Trained NN 3.463 3.300 14 10 

Optimized NN 3.402 3.121 8 3 
Rule-set 3.448 3.167 — — 

5 

NB 3.504 4.009 — — 
Trained NN 3.422 3.738 14 10 

Optimized NN 3.366 3.611 10 2 
Rule-set 3.346 3.647 — — 

Average 

NB 3.611 3.702 — — 
Trained NN 3.470 3.573 — — 

Optimized NN 3.427 3.437 — — 
Rule-set 3.429 3.449 — — 

 10 
5.3. Interpretation of the explanatory variables 11 
 12 

This section presents a discussion for the identified exploratory factors for 13 
justifying the model validity. As an example, the rule-set generated on the first fold of 14 
model comparison is specified and analyzed in details. Table 4 and Table 5 summarize 15 
the specific conditions and consequences of the extracted rules respectively. For 16 

https://www.researchgate.net/publication/6498329_Predicting_motor_vehicle_collisions_using_Bayesian_neural_network_models_An_empirical_analysis?el=1_x_8&enrichId=rgreq-d64757a7c844326eea27e53e4809d23e-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYwMDM3NDtBUzo0MDYxNDUyMzY3ODMxMDRAMTQ3Mzg0Mzk3ODAxOQ==
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comparison purpose, the estimation results of the significant parameters in the NB 1 
model are shown in Table 6, where the mean and 95 % confidence interval of the 2 
over-dispersion parameter are 0.219 and [0.188, 0.255] respectively, suggesting that 3 
the employed crash data is over-dispersed. 4 

The rule conditions in Table 4 may be difficult to be directly understood. 5 
Therefore, instead, we employ the characteristics of the road segments involved at 6 
certain particular rules to illustrate the effects of the risk factors. The analysis mainly 7 
focuses on the rule consequences in Table 5. Even so, according to the conditions, we 8 
can accurately determine which rule each observation in the analysis should be 9 
assigned to. Comparing the results in Table 5 with those in Table 6, we can find that 10 
the coefficients of the factors (including the constant) in the optimized NN are 11 
significant at 95 % confidence level in the NB model.  12 

Regarding the main effects of the risk factors identified, most of the risk factors 13 
have consistent signs as shown in Table 5, which also conform to the signs in NB 14 
model results shown in Table 6. In particular, for the factors AADT, speed limit (SL), 15 
bus stop (BS) and Rainfall, their signs of coefficients are identical in all rules. As for 16 
the other factors, it is interesting to find that they have positive coefficients in several 17 
rules while negative coefficients in the others. Moreover, it is observed that the 18 
coefficient values estimated are also distinct for several specific rules. This implies 19 
that those risk factors probably have variable safety effects at different road 20 
conditions. It could be an important evidence for the nonlinear relationship between 21 
crash frequency and the risk factors, which could not be identified and modeled with 22 
the traditional generalized linear regression models such as NB model.  23 

 24 
Table 4 Rule conditions 25 

Rule Conditiona 
1 v1 <-0.217 & v2 >0.877 & v3 <-0.411 & -0.703≤ v4 ≤0.703 
2 v1 <-0.217 & -0.877≤ v2 ≤0.877 & -0.411≤ v3 ≤0.411 & -0.703≤ v4 ≤0.703 
3 v1 <-0.217 & v2 >0.877 & -0.411≤ v3 ≤0.411 & -0.703≤ v4 ≤0.703 
4 v1 <-0.217 & -0.877≤ v2 ≤0.877 & v3 >0.411 & -0.703≤ v4 ≤0.703 
5 -0.217≤ v1 ≤0.217 & -0.877≤ v2 ≤0.877 & v3 >0.411 & -0.703≤ v4 ≤0.703 
6 v1 >0.217 & -0.877≤ v2 ≤0.877 & v3 >0.411 & -0.703≤ v4 ≤0.703 
7 v1 <-0.217 & v2 >0.877 & v3 >0.411 & -0.703≤ v4 ≤0.703 
8 v1 <-0.217 & v2 >0.877 & v3 <-0.411 & v4 >0.703 
9 v1 <-0.217 & -0.877≤ v2 ≤0.877 & -0.411≤ v3 ≤0.411 & v4 >0.703 

10 v1 <-0.217 & v2 >0.877 & -0.411≤ v3 ≤0.411 & v4 >0.703 

a 1 0 0.302 0
0 0.285

.525
0.333

1.111 1.045 .144
.518 0.476

AADT Mediv Lengt ah n
Rainfa

SL
BS Grad llient LCO



    
  

, 26 

2 0.783 0 0.535
0.4

.383 1.11 0.149
0.014 0.197 .40 94

AADT Mediv Length SL
BS Gradient LCO
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   
 


 
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3 0.533 0.226 .381 004 .045
0.07 0.4 .001

1 0. 0
0.234 0
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4 0.644 0. 0
0.09

0.75 0.018 253 .295
0.213 0. 4 0191 .04

AADT Mediv Length aSL
BS Gradient L

n
RainfO aC ll

    
  

. 1 

 2 
According to the results based on the extracted rules, more crashes tend to occur 3 

on road segments with heavier daily traffic as observed by the coefficient estimations 4 
associated with all the ten rules for AADT (AASHTO, 2010; Zeng and Huang, 2014a). 5 
Nevertheless, the proposed NN model presents specific values for varied safety 6 
effects under different conditions. For example, increasing one unit AADT is expected 7 
to increase only 0.224 (based on the normalized data) crashes under Condition 8 but 8 
1.295 (5.8 times of the former) crashes under Condition 5.  9 

 10 
Table 5 Rule consequences 11 

Rule 
Coefficient of the variable in the consequence (linear function) 

Constant AADT Length SL Median BS Gradient LCO Rainfall 

1 -0.025 0.226 0.504 -0.145 -0.050 0.014 -0.020 0.111 0.055 

2 -0.056 0.316 0.494 -0.231 -0.020 0.025 -0.038 0.211 0.134 

3 -0.040 0.254 0.674 -0.145 -0.045 0.023 -0.069 0.140 0.054 

4 0.061 0.288 0.325 -0.231 -0.026 0.017 0.012 0.182 0.134 

5 0.340 1.295 -0.622 -0.505 0.104 0.486 0.443 -0.076 0.435 

6 -0.332 0.288 0.325 -0.231 -0.026 0.017 0.012 0.182 0.134 

7 0.076 0.226 0.504 -0.145 -0.050 0.014 -0.020 0.111 0.055 

8 -0.018 0.224 0.404 -0.105 -0.004 0.047 -0.050 0.097 0.061 

9 -0.048 0.313 0.394 -0.192 0.025 0.058 -0.067 0.197 0.140 

10 -0.033 0.251 0.574 -0.106 0.001 0.056 -0.099 0.126 0.061 

 12 
Table 6 Estimation of significant parameters in NB 13 

Variables Mean S.D. 
Confidence interval 

2.5 % 97.5 % 
Constant -5.899 .390 -6.664 -5.134 

ln(AADT) .493 .033 .428 .558 
ln(Length) .573 .030 .516 .631 

SL -.025 .002 -.030 -.020 
Diverge .034 .011 .014 .055 
Median -.184 .064 -.309 -.059 

BS .373 .050 .274 .471 
Gradient -1.755 .717 -3.159 -.350 

LCO .110 .016 .079 .140 
Rainfall .00008 .00004 .00002 .00015 

α 0.219 0.017 0.188 0.255 
 14 

As expected, more crashes occur on longer roadways at most rules, because road 15 
segment length is often interpreted as a crash exposure variable in highway safety 16 
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analysis. However, the length is found negatively related to the crash frequency under 1 
Condition 5, in which all crashes occurred on Tsing Long Highway. This is a high 2 
standard highway that is well designed and maintained, and is the longest road 3 
segment in the dataset. However, its average annual crash number is only 5.63, far 4 
smaller than the mean of the whole population (7.64). A possible reason for the 5 
negative effect of Length may be that some unobserved factors associated with this 6 
highway greatly promote the safety situation.  7 

It is interesting to find that the crash frequency decreases with higher speed limits, 8 
which may contradict engineering intuitions and many existing studies 9 
(Aguero-Valverde and Jovanis, 2008). However, some previous researchers have 10 
argued that roadway segments designed for higher speeds are usually well- planned, 11 
constructed, and managed, features that promote road safety (Milton and Mannering, 12 
1998).  13 

Results show the presence of median under most conditions has positive effects in 14 
crash prevention. Donnell and Mason (2006) also found that median barriers could 15 
effectively prevent the occurrence of cross-median crashes. However, the estimated 16 
coefficients are positive at Rules 5, 9 and 10. For those observations at these rules, 92 % 17 
of the road segments have median barriers, of which most are inner-city highways 18 
with heavy daily traffic (mean = 33,437 vehicle), long length (mean = 1.93 km) and 19 
many merging ramps (mean = 1.68). These factors may hinder safe driving and bring 20 
about more median-related collisions. 21 

The presence of bus stop (BS) is found to have positive effects on the crash 22 
frequency. This may be attributed to frequent pedestrian activity around bus stops and 23 
increased interaction between buses and other vehicles when entering or leaving bus 24 
bays. In fact, 93 % of the pedestrian-involved crashes in the observed road segments 25 
occurred on roadways with bus stops (Pei et al., 2012).  26 

The negative coefficients of Gradient under most conditions indicate that more 27 
crashes are expected to occur on the involved road segments with steeper downgrade 28 
slopes, which is generally consistent with engineering experience. Besides, Gradient 29 
is found to have positive effects on the crash frequency at Rules 4, 5 and 6. The 30 
covered roadways consist of the three longest ones—Tsing Long Highway (9.07 km), 31 
Shek O Road (7.75 km) and Tolo Highway (5.60 km). Driving on the downgrade 32 
directions of these long highways, drivers may be more careful, thus reducing the 33 
crash risk. 34 

The variable Lane changing opportunity (LCO) has significant effect to increase 35 
the crash frequency under most conditions. It means that more lane changing 36 
opportunity would lead to higher crash risk. Lane changing maneuver often increases 37 
vehicle interaction, such as overtaking, thereby raising the incidence of traffic conflict 38 
(Pei et al. 2012). Similar to the variable Length, LCO has a negative effect on crash 39 
frequency under Condition 5 only. On Tsing Long Highway, lane changing maneuver 40 
is less frequent than on busy inner-city roadways, which may reduce the vehicle speed 41 
variance. This may possibly explain why LCO negatively affects the crash frequency 42 

https://www.researchgate.net/publication/225185747_The_roles_of_exposure_and_speed_in_road_safety_analysis?el=1_x_8&enrichId=rgreq-d64757a7c844326eea27e53e4809d23e-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYwMDM3NDtBUzo0MDYxNDUyMzY3ODMxMDRAMTQ3Mzg0Mzk3ODAxOQ==
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Zeng et al. 

19 
 

on this highway.  1 
Generally, rainfall obstructs the visibility and makes the road surfaces slippery, 2 

thereby reducing skidding resistance, which raises the probability of crash occurrence. 3 
That is why Rainfall has positive model coefficients under all conditions, which 4 
indicates rainfall condition may always lead to more crashes (Pei et al. 2012).  5 
 6 
6. Conclusions and future research 7 
 8 

This study develops an NN for modeling possible nonlinear relationship between 9 
crash frequency and risk factors. To improve the generalization capacity and to deal 10 
with the black-box characteristic of the NN, a structure optimization N2PFA 11 
algorithm and a modified rule extraction algorithm are proposed. A crash dataset 12 
obtained from the TIS maintained by the Transport Department of Hong Kong is used 13 
to demonstrate the proposed methods and to compare them with the results of an NB 14 
model. 15 

The results show that both the trained and optimized NNs outperform the NB 16 
models in fitting and predictive performance to somewhat extent. In the optimized 17 
NNs, certain numbers of input and hidden nodes are dropped off, and better 18 
approximation performance is achieved, demonstrating the ability of the N2PFA 19 
algorithm to identify insignificant factors and to improve the model generalization 20 
capacity. The optimized NN generates ten rules in which the coefficients of the 21 
explanatory variables are different, which confirms that they are nonlinearly related to 22 
the crash frequency. The signs of these coefficients have identical directions under 23 
most conditions, and are consistent with those in the NB model. Moreover, most of 24 
the results for the explanatory variables are reasonable and conform to traffic 25 
engineering experience or the findings of previous studies, which further validates the 26 
proposed method. 27 

Compared with NB and NN models as employed in previous traffic safety studies, 28 
the improved NN techniques not only achieve better fits when modeling crash 29 
frequency, but also illustrate the effects of the risk factors. As NN is a universal 30 
approximator, these methods may also be useful in other aspects of highway safety 31 
analysis, such as jointly modeling crash frequency and injury severity, identifying 32 
sites with promise and evaluating countermeasure effectiveness. Comparing the 33 
proposed approaches with Empirical Bayes or other state-of-the-art methods in the 34 
application of hotspot identification would be an interesting research topic. Finally, it 35 
is worth noting that the training and testing MADs (≈3.5) are about 50 % of the 36 
average crash count (7.64) per segment per year, which may be attributed to the 37 
heterogeneity among the observations. Moreover, a number of recently proposed 38 
statistical models (e.g. Bayesian hierarchical and random parameter models) may also 39 
outperform the fixed NB model. This study presents an additional vision for 40 
improving crash modeling techniques from the perspective of improved AI model. 41 
Further research efforts could also be made to compare the proposed NN model with 42 
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the emerging advanced statistical models based on more field datasets. 1 
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