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Abstract: This study was performed to investigate the spatially varying relationships between
crash frequency and related risk factors. A Bayesian spatially varying coefficients model was
elaborately introduced as a methodological alternative to simultaneously account for the
unstructured and spatially structured heterogeneity of the regression coefficients in predicting
crash frequencies. The proposed method was appealing in that the parameters were modeled
via a conditional autoregressive prior distribution, which involved a single set of random
effects and a spatial correlation parameter with extreme values corresponding to pure
unstructured or pure spatially correlated random effects.

A case study using a three-year crash dataset from the Hillsborough County, Florida, was
conducted to illustrate the proposed model. Empirical analysis confirmed the presence of both
unstructured and spatially correlated variations in the effects of contributory factors on severe
crash occurrences. The findings also suggest that ignoring spatially structured heterogeneity
may result in biased parameter estimates and incorrect inferences, while assuming the
regression coefficients to be spatially clustered only is probably subject to the issue of
over-smoothness.

Keywords: Crash frequency; spatial heterogeneity; unobserved heterogeneity; conditional
autoregressive prior; Bayesian inference

1. Introduction

Modeling crash data involving contiguous spatial units, such as road networks and traffic
analysis zones (TAZs), has gained growing research interests in the road traffic safety domain.
This allows safety analysts to identify the clustering pattern of crashes, to better understand
the factors that contribute to crash occurrences, and to recommend targeted countermeasures.
Conventional crash prediction models, including the commonly used negative binomial and
Poisson lognormal models, have an underlying assumption that their observations should be
mutually independent. This fundamental requirement is almost always violated, because crash
data collected in close proximity usually display spatial dependence (Quddus, 2008). The
inclusion of spatially correlated effects typically has two main benefits. First, considering
spatial correlation helps site estimates to pool strength from their neighbors, thereby
improving model estimations (Aguero-Valverde and Jovanis, 2008). Second, spatial
dependence can serve as a surrogate for unobserved covariates that vary smoothly over the
region of interest (Cressie, 1993).

A range of spatial statistical techniques have been used to incorporate this spatial
dependence into crash frequency modeling. The Bayesian hierarchical models are primarily
used in these analyses, in which the spatial correlation is modeled via a set of random effects
at the second level of hierarchy (Miaou et al., 2003; MacNab, 2004; Aguero-Valverde and
Jovanis, 2006, 2008, 2010, 2014; Quddus, 2008; El-Basyouny and Sayed, 2009a; Mitra, 2009; Guo
et al., 2010; Huang and Abdel-Aty, 2010; Siddiqui and Abdel-Aty, 2012; Flask and Schneider,
2013; Wang et al., 2013a; Xie et al., 2013; Dong et al., 2014, 2016; Xu et al., 2014; Zeng and
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Huang, 2014; Lee et al., 2015; Huang et al., 2016; Wang and Huang, 2016; Wang et al., 2016).
This effect is mostly derived from the intrinsic conditional autoregressive (CAR) prior
distribution proposed by Besag et al. (1991), which is a special case of Gaussian Markov
random fields (Rue and Held, 2005). Alternative CAR specifications were also introduced by
Richardson et al. (1992), Cressie (1993), and Leroux et al. (1999). Lee (2011) made a
comprehensive comparison and concluded that the model of Leroux et al. (1999) was most
appealing, as it performed consistently well in the presence of independence and strong
spatial correlation.

Although most safety analysts have made an effort to handle the spatially correlated
effects in model residuals, a limited number of studies have specifically focused on another
issue related to the location dimension of crash data, i.e., spatial heterogeneity or spatial
non-stationarity (Xu and Huang, 2015). Variables do not usually vary identically across space,
and the relationship between crashes and related risk factors may not necessarily be constant
or fixed across the study area. The possibility of accounting for this spatial heterogeneity by
allowing some or all parameters to vary spatially holds considerable promise.

One possible method is the random parameters count-data models. Some of the many
factors that influence crash occurrences are not observed or are nearly impossible to collect. If
these unobserved factors were correlated with observed ones, biased parameters would be
estimated and incorrect inference could be drawn (Mannering and Bhat, 2014). The random
parameters approach has therefore been used to account for the unobserved heterogeneity in
crash frequency (Anastasopoulos and Mannering, 2009; EI-Basyouny and Sayed, 2009b, 2011;
Dinu and Veeraragavan, 2011; Ukkusuri et al., 2011; Venkataraman et al., 2013; Barua et al,,
2015, 2016). The regression coefficients in these random parameters models typically arise
independently from some univariate distributions, and no attention is paid to the locations to
which the parameters refer. This hypothesis may be inappropriate, particularly in cases where
the unobserved factors are correlated over space (Xu and Huang, 2015). To capture this
spatially structured variability in the effects of contributory factors, Xu and Huang (2015)
advocated the development of a model based on the principle that the estimated parameters
on a geographical surface are related to each other with closer values more similar than distant
ones.

To address this potential spatial correlation in varying coefficients, two competing
approaches are promising, i.e.,, the geographically weighted Poisson regression (GWPR;
Fotheringham et al., 2002; Nakaya et al., 2005) and the Bayesian spatially varying coefficients
(BSVC) models (Congdon, 1997; Assuncao et al., 2002; Congdon, 2003; Gelfand et al., 2003).
The geographically weighted approach is one of the most innovative techniques in geography
and has become increasingly prevalent in spatial econometrics, ecology analysis and disease
mapping (Yao et al., 2015a). The method is similar in spirit to local linear models, relying on
the calibration of multiple regression models for different geographical entities. Recently
published studies have empirically demonstrated the superiority of the GWPR model with a
substantial improvement in model goodness-of-fit and the ability to explore the spatially
varying relationships between crash counts and predicting factors (Hadayeghi et al., 2010; Li et
al.,, 2013; Pirdavani et al., 2014a, 2014b; Shariat-Mohaymany et al., 2015; Xu and Huang, 2015;
Yao et al., 2015b).

Another potential method is the BSVC. The BSVC model has long been emerging in
statistics as a methodological alternative to examine the non-constant linear relationships
between variables (Congdon, 1997). The varying coefficients in the BSVC model can be
selectively modeled as the geostatistical (Gelfand et al., 2003), intrinsic CAR (Congdon, 1997;
Assuncao et al., 2002), or multiple membership processes (Congdon, 2003). Such an approach
fits naturally into the Bayesian paradigm, where all parameters are treated as unknown
random quantities. Obviously, the BSVC model differs from the GWPR in that the former is a
single statistical model specified in a hierarchical manner, whereas the latter is an assembly of



O 0 NI O O = W N =

S
N U1 = W N =R O

17

18
19
20
21
22
23
24
25

26

27
28
29
30
31
32
33
34
35

36
37
38
39

40

41
42
43
44
45

local spatial regression models, each fits separately. Wheeler and Calder (2007) conducted a
series of simulation studies to evaluate the accuracy of regression coefficients in these two
types of models under the presence of collinearity. Their evidence suggested that the BSVC
model produced more accurate and more easily interpreted inferences, thus providing more
flexibility (Wheeler and Calder, 2007). However, to assume the regression coefficients to be
spatially clustered only is a strong prior belief. In reality, spatial pooling with smoothly
varying coefficients over contiguous areas may be implausible, especially when clear
discontinuities exist (Congdon, 2014, p. 340). In this vein, a robust model with a mechanism to
accommodate the global and local smoothing collectively would be preferable.

This study intends to investigate the spatially varying relationships between crash
frequency and relevant risk factors using a fully Bayesian approach. To simultaneously
determine the strength of the unstructured and spatially structured variations in model
regression coefficients, the CAR prior distribution derived from Leroux et al. (1999) is
elaborately extended to the spatially varying coefficients framework. The proposed method is
illustrated based on a case study with a comprehensive dataset from Hillsborough County,
Florida.

2. Methodology

We begin this section with a quick review of the fixed coefficients model commonly used for
modeling spatially correlated errors in crash prediction. We then move on to detail how this
basic model can be readily generalized to estimate the varying regression coefficients within a
fully Bayesian context.

Let Y, denote the observed number of crashes in location i(i=1,2,..,n), EV, the
exposure, and X, the kth(k=12,..,p) explanatory variable. On the basis of Huang and
Abdel-Aty (2010), we have:

Y, ~ Poisson(4,) ;
IN(4) = B, + B, INEV,) + Y B, Xy +U; +5, (1)

where 4 is the parameter of the Poisson model (i.e., the expected number of crashes in site
i); A istheintercept; B, (k=2,..,p) refers to the kth regression coefficient to be estimated;
U, denotes the pure unstructured effect, which could be specified via an exchangeable normal
prior, i.e, U ~N(0,67);and s is the spatially structured or spatially correlated error.

One widely used joint density for the spatial effects s=(s;,s,,..,s,) is in terms of
pairwise differences in errors and a variance term ol (Besag et al., 1991):

P(S1:8;00008,) & exp[-0.5(7)* Y ¢, (s, -5,)’] (2)

This joint density implies a normal conditional prior for s, conditioning on the effect of
S; in the remaining observations:

]
chusj 052)
chij 'chu

(3)

Si

Sj¢i - N(

where G represents the non-normalized weight, e.g.,, ¢; =1 if i directly connects with j,
otherwise ¢; =0 (with ¢;=0); and o’ is the variance parameter, which controls the
amount of extra variations due to spatial correlation. It is worth noting that this intrinsic CAR
specification permits contiguity and distance-based weight matrices, but precludes the kth-
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nearest neighbor weighting scheme as such weights violate the symmetry condition.
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Although the univariate conditional prior distribution in equation (3) is well defined, the
corresponding joint prior distribution for s is now improper (i.e., undefined mean and
infinite variance; Sun et al., 1999). This fact probably leads to problems in convergence and
identifiability in Bayesian estimation (Eberly and Carlin, 2000).

An alternative strategy to gain propriety is based on the strength of a single set of random
effects v=(v,V,,..,V,):

IN(2) = 5.+ f, NEV) + 3 B, X,y +v (4)

Following Lee (2011), v; here is specified as the CAR prior proposed by Leroux et al.
(1999):

2
vajCijVj o,

, ) (5)
1_pv +vajCij 1_pv +vajCij

Vi |Vj¢i ~ N(

where p,(0<p, <1) is the spatial correlation parameter, with p, =0 simplifying to an
independent identically distributed normal prior, and an increase in its value toward one
indicating an increasing spatial correlation. Accordingly, setting p, =1 corresponds to the
improper CAR as in equation (3).

Based on the factorization theorem, v=(v,,v,,...,V,) results in a joint multivariate
Gaussian distribution (Congdon, 2008):

v~ MVN(0,57[p,K+(1-p)T™) (6)

where 1 isan nxn identity matrix, and the elements of K are calculated as:

—c,  ifi#]

Despite the local relationship is incorporated through the covariance structure of the error
term, the outputs from the preceding models still consist of a set of global parameter estimates.
Intuitively, the local variations can be addressed by setting the regression slopes as random
effects!, allowing the effects of covariates to vary spatially:

IN(4) = A+ B, INEV,) + S B Xy +V, (8)

where B, is the coefficient of the kth explanatory variable for site i . In practice, one may
assume g, as an independent normal distribution (e, N(z,07)) in accordance with
El-Basyouny and Sayed (2009) and Barua et al. (2015), or alternatively as a pure spatially
correlated effects as illustrated by Assuncao et al. (2002), Congdon (2003), and Gelfand et al.
(2003). However, the variations in the regression coefficients are very likely to arise from both
unstructured and spatially structured effects. On this occasion, we have:

1 In fully Bayesian analysis, if the priors relates to random effects, the specification involves the form of distribution
and the naming of its parameters, followed by the assignment of values to these parameters in a higher stage prior. By
contrast, the prior for a fixed effect involves just one stage of specification.
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B, ~ MVN(w,, oy [p K+(1—-p I ™) (9)

Unlike equation (6), the formula in equation (9) has a constant non-zero mean p, = (..., 44,
in which g, is the overall estimate of the regression slope, denoting the average of the
posterior estimates of B, (B, B+ B ) - The precision matrix is now given by p K+ (@1-p)I,
which is a weighted average of spatially correlated and independent structures (denoted as K
and I, respectively). This specification is capable of accounting for a range of weak and
strong spatial correlations in regression coefficients, with p, =0 decreasing to the spatially
independent random effects and an increase in p, to the value of one representing spatial
smoothing only.

The univariate full conditional distribution corresponding to equation (9) is given as
follows:

pkzj'cijﬂjk +(1- o) sz
1_pk+pkzjcij ,l_pk+pk2jcij

B |y ~ N( (10)

Specifically, the conditional expectation of £, is a weighted average of the random effects at
neighboring sites and the overall mean g, , and the conditional variance has a compelling
methodological interpretation. When the regression coefficients present a strong spatial
correlation, p, would be close to one and the conditional variance approaches o} /Z Gy -
This variance configuration recognizes that in the presence of a strong spatial correlation, the
more neighbors a site has, the more information in the data about the value of its random
effects. In comparison, if the random effect is spatially independent, the conditional variance
becomes o7 . Apparently, the parameter p, (0< p, <1) can serve as an indicator to assess the
relative strength of spatial and unstructured variations in the estimated coefficients. Besides, if
there is no significant heterogeneity in B, , the o; then displays a dispersion with the mean
of its posterior distribution lower than the standard deviation (Barua et al., 2015). In this case,
the regression slopes are better fitted as the fixed effects.

Obtaining the fully Bayesian posterior estimates requires the specification of prior
distributions. Prior distributions are typically used to reflect prior knowledge about the
parameters of interest. If such prior information is available, it would be encouraged to
formulate the so-called informative priors (Yu and Abdel-Aty, 2013; Heydari et al., 2014). In the
absence of sufficient prior knowledge, non-informative (i.e., vague) prior could be applied to
model parameters:

LS. ~ N(0,1000) (1)
4, ~ N(0,1000)

In light of a study by Congdon (2008), the spatial correlation parameters p, and p,
were assigned as a uniform (0,1). Given that the commonly used inverse-Gamma (s,¢)
priors (where ¢ is a small number, e.g., 0.01 or 0.001) are sensitive to the value of ¢ if the
true variance is close to zero, a uniform (0,10) was finally specified for o, and o,
respectively (Gelman, 2006).

For model comparison and selection, three commonly used measures, i.e., Rﬁ, mean
absolute deviance (MAD), and Deviance Information Criterion (DIC) were employed.
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The R} was calculated as (Xu and Huang, 2015):

$in-3f i

R} =1-2——
(v -V) ¥

( 1 2 )

[N

where i denotes the expected crash number obtained by the crash prediction models, and
Y is the average of crash frequency. The model with R towards value of one fits better to
the data.

The MAD was adopted to provide a measure of model prediction performance:

MAD =1y

n =

( 1 3 )

/Ali —Yi‘

A smaller value of MAD suggests that on average the model predicts the observed crash
data better.

Meanwhile, the penalized goodness of fit measure, i.e., DIC was also used here to take
model complexity into account:

DIC=D(#)+2p, =D+ p, (14)

where D(6) is the deviance evaluated at 6, the posterior means of the parameters; p, is
the effective_ number of parameters in the model; and D is the posterior mean of the deviance
statistic D(¢). The lower the DIC, the better the model fit. In General, differences in DIC of
more than 10 definitely rule out the model with the higher DIC, differences between 5 and 10
are considered substantial, and a difference of less than 5 indicates that the models are not

statistically different (Spiegelhalter et al., 2002).

3. Data preparation

To illustrate the application of the proposed BSVC models, a case study was conducted based
on a dataset from Hillsborough County, Florida. A total of 57,694 crashes were recorded from
the year 2005 to 2007. Of these, 4854 (8.41%) were reported as severe crashes with fatalities and
severe injuries. Road and traffic-related factors were mainly extracted from the Florida
Department of Transportation’s roadway characteristics inventory and geographical
information maps for Hillsborough. These variables included the daily vehicle miles traveled
(DVMT), trip productions and attractions, intersections, and road segment lengths with
various speed limits. A number of factors reflecting the demographic and socioeconomic
features were also downloaded from the United States Census reports.

Hillsborough contains 738 TAZs in total. The shape file of TAZs was collected from the
Florida Department of Transportation District 7’s Intermodal Systems Development Unit. To
assign the boundary crashes, a buffer zone with the size of 1001t (i.e., 30.48 meters) was created
around the TAZ boundaries. Crashes located within the boundary buffer were then allocated
to adjacent TAZs equally. This half-to-half ratio assignment method was recommended by Wei
and Lovegrove (2010) and Washington et al. (2010). Other variables were also spatially
attached to the respective TAZs in a similar way.

The variables available for model development, in addition to their descriptive statistics,
are shown in Table 1. In this study, we selected the number of severe crashes as the dependent
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variable. The DVMT along with trips and total population was treated as the measures of
exposure, as the model with multiple exposure variables outperformed its counterpart using a
single specification (Pridavani et al.,, 2012; Lee et al., 2015). The explanatory variables were
those commonly used in previous macroscopic safety analyses (Aguero-Valverde and Jovanis,
2006; Quddus, 2008; Hadayeghi et al., 2010; Huang et al., 2010; Pridavani et al., 2012; Li et al,,
2013; Lee et al., 2014, 2015). Concerning the spatial weight matric, as a default option, the
adjacency-based first-order neighbors (i.e., ¢; =1 if and only if TAZ shared a common
boundary with TAZ,) were considered here for convenience. This neighborhood structure
was also widely employed in current macroscopic crash analysis (Aguero-Valverde and
Jovanis, 2006; Quddus, 2008; Huang et al., 2010; Siddiqui and Abdel-Aty, 2012; Wang et al.,
2013; Lee et al., 2014; Xu et al., 2015; Dong et al., 2016).

Table 1. Summary of variables and descriptive statistics.

Variables Definition Mean SD Min Max

Predictor Variable

Severe crashes  Total number of fatal and severe injury crashes per TAZ 6.58 7.02  0.00 47.00
Exposure Variables

DVMT Daily vehicle miles traveled (in thousands) 95.07 11024 0.06  788.77
TRIP Trip production and attraction (in thousands) 10.46 912  0.09 108.36
POP Total population (in thousands) 1.31 1.27  0.00 9.48
Explanatory Variables

Inter_density Number of intersections/road length 3.17 561  1.00 66.12

Total road segment length/area (miles per acre, in

Road density hundreds) 2.07 1.14  0.00 7.44
Seglen15 Percent of road segment length with 15-mph speed limit 2.27 498  0.00 52.52
Seglen25 Percent of road segment length with 25-mph speed limit 72.01 20.80  0.00  100.00
Seglen35 Percent of road segment length with 35-mph speed limit 17.73 1536 0.00  100.00
Seglen45 Percent of road segment length with 45-mph speed limit 2.10 532  0.00 43.78

Percent of road segment length with 55- to 65-mph speed

Seglen55_65 5.10 1047  0.00 83.27

limit
Male Proportion of male population 49.98 996  0.00 100.00
POP_15 Proportion of population below 15 years of age 21.23 7.77  0.00 43.25
POP_65 Proportion of population above 65 years of age 12.67 11.77  0.00  100.00
MHINC Median household income (USD, in thousands) 40.14 20.24  0.00 115.66
WORKERS Percent of workers 43.94 1458  0.00 90.91
WT_PRV Percent of workers taking motor vehicles to work 87.10 19.11  0.00  100.00
WT_PUB Percent of workers taking public transportation to work 1.96 3.71 0.00 27.27
WT_BIC Percent of workers taking bicycles to work 0.70 1.56  0.00 12.90
WT_WALK Percent of workers walking to work 2.17 3.62  0.00 40.00
WT_HOME Percent of workers working at home 2.62 2.83  0.00 23.08

4. Results and discussions

The proposed models were estimated in a fully Bayesian context using Markov chain Monte
Carlo simulation. The freeware software WinBUGS (Spiegelhalter et al., 2005) was used to
calibrate the models. Two parallel chains with diverse starting values were tracked. The first
10,000 iterations in each chain were discarded as burn-ins. 5000 iterations were then
performed for each chain, resulting in a sample distribution of 10,000 for each parameter. The
model’s convergence was monitored by the Brooks-Gelman-Rubin statistic, visual examination
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of the Markov chain Monte Carlo chains, and the ratios of Monte Carlo errors relative to the
respective standard deviations of the estimates. As a rule of thumb, these ratios should be less
than 0.05.
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For model specification, a correlation test was first conducted to ensure the non-inclusion
of highly correlated variables. The correlation analysis indicated a high correlation between
the percent of road segment length with a speed limit of 25 mph and the percent of road
segment length with a speed limit of 35 mph, as the value of Pearson product-moment
correlation coefficient for these two variables was equal to 0.79. This result implied that those
two variables should not be included together in the model. The DIC was then used to
compare alternative models with different covariate subsets. The one producing a lower DIC
value was considered superior.

For comparison purpose, in addition to the proposed BSVC model, we considered three
candidate models in which the regression coefficients were modeled as fixed -effects,
unstructured random effects, and pure spatially correlated random effects, respectively. As
such, four models were eventually estimated. In this section, the performance of these models
is compared, followed by the parameter estimates presented and discussed.

4.1 Model performance comparison

Table 2 shows the results of the goodness-of-fit measures for the calibrated models. The
regression coefficients in these four models were respectively specified as the N(0,1000),
N(g,, o), intrinsic CAR prior of Besag et al. (1991), and CAR prior of Leroux et al. (1999). The
results indicated that the consideration of spatial heterogeneity could considerably improve
model performance. In particular, the developed BSVC-3 model performed best with the
highest R? as well as the lowest MAD and DIC values. This finding suggested that the
cross-sectional variability in crash counts could be better explained if the unstructured and
spatially correlated variations in regression coefficients were simultaneously addressed.
Besides, the BSVC-1 model was found to be comparable with the fixed coefficients counterpart
in terms of model goodness of fit. Chen and Tarko (2014) reported a similar conclusion when
using the random parameters and random effects models (the intercept was randomly
distributed with the regression coefficients fixed) to analyze work zone safety.

Table 2 Measures of model goodness-of-fit

Model Regression coefficients structure R; MAD DIC

Basic Fixed effects 0.79 2.58 3535.92
BSVC-1 Unstructured random effects 0.79 2.57 3534.83
BSVC-2 Pure spatially correlated random effects 0.82 2.46 3527.86
BSVC-3 Unstructured and spatially correlated random effects 0.84 2.38 3522.87

4.2 Parameters estimates

Table 3 summarizes the parameter estimates in the basic and spatially varying coefficients
models. A 5% level of significance was used as the threshold to determine whether the
parameters differed from zero. Any variables that were insignificant in all four models were
excluded. As shown in Table 3, the following factors were associated with a significant
positive relationship with severe crash counts: DMVT, number of trips, population, and the
percentage of road segments with a 45-mph speed limit. Affluent TAZs with a higher
percentage of road segments with a speed limit of 25 mph and the greater use of bicycles by
workers tend to be relatively safer in terms of severe crash rates. In addition, the median
household income consistently resulted in a significant variation in the coefficient (i.e., the
posterior mean of owe was higher than its standard deviation).

10



Table 3. Estimates results for the basic and spatially varying coefficients models.

Basic BSVC-1 BSVC-2 BSVC-3

Mean(SD) 95% BCI Mean(SD) 95% BCI Mean(SD) 95% BCI Mean(SD) 95% BCI
Intercept 1.427(0.062)*  (1.304,1.550) 1.425(0.070)**  (1.282,1.564) 1.425(0.076)*  (1.268,1.569) 1.430(0.069)*  (1.290,1.563)
In(DVMT) 0.549(0.036)**  (0.479,0.620) 0.540(0.036)**  (0.470,0.612) 0.548(0.038)*  (0.474,0.623) 0.544(0.036)**  (0.473,0.616)
In(TRIP) 0.128(0.035)**  (0.059,0.197) 0.121(0.036)**  (0.051,0.191) 0.126(0.036)**  (0.056,0.197) 0.122(0.036)**  (0.052,0.192)
In(POP) 0.290(0.053)**  (0.187,0.392) 0.324(0.056)**  (0.216,0.434) 0.298(0.058)**  (0.183,0.410) 0.324(0.056)**  (0.214,0.435)
Seglen25 -0.099(0.041)**  (-0.177,-0.019) -0.109(0.041)** (-0.189,-0.029) -0.103(0.042)**  (-0.184, -0.021) -0.110(0.041)**  (-0.190,-0.030)
Seglen45 0.065(0.030**  (0.005,0.124) 0.069(0.030y**  (0.010,0.127) 0.067(0.030y**  (0.008,0.126) 0.068(0.030y**  (0.009,0.126)
MHINC -0.127(0.044)**  (-0.212,-0.041) -0.156(0.048)** (-0.251,-0.062) -0.155(0.051)**  (-0.254, -0.055) -0.157(0.056)**  (-0.268,-0.048)
WT_BIC -0.074(0.033)**  (-0.139,-0.010) -0.059(0.035)* (-0.128,0.009) -0.060(0.035)* (-0.130,0.009) -0.060(0.035)* (-0.129,0.009)
Sone 0.077(0.033y*  (0.012,0.146) 0.190(0.082)**  (0.056,0.377) 0.194(0.112)**  (0.043,0.463)
5 0.944(0.162)*  (0.674,1.302) 0.820(0.145)*  (0.570,1.133) 0.807(0.157)*  (0.569,1.196) 0.799(0.145)*  (0.549,1.113)
:BMHINC 0 1 0.390(0.286)*  (0.020,0.913)
;V 0.588(0.133)**  (0.363,0.883) 0.706(0.145)** (0.432,0.975) 0.647(0.152)** (0.372,0.958) 0.684(0.149)*  (0.407,0.968)

Note: SD refers to the standard deviation. BCI refers to the Bayesian confidence interval. ** and * indicate 5% and 10% levels of significance, respectively.

11
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Several general observations are worth mentioning. First, unlike the basic model whose
coefficients were restricted to be constant, the BSVC models allowed the regression coefficients
to vary spatially. Hence, one crash prediction model was applied for the entire area using the
basic model, whereas by virtue of BSVC, different crash prediction models could be estimated
for individual TAZ. Second, the significant variables were not entirely identical between the
fixed and BSVC models. For example, the percentage of residents who took bicycles to work
appeared to be less significant in the BSVC models. This inconsistency was likely due to model
misspecification, including the neglect of spatial heterogeneity. Third, it is interesting to
observe that the error variability (ie., o ) obviously decreased, dropping from 0.944 to
approximately 0.80 when variations were introduced in the regression coefficients. This was
expected to some extent, as the heterogeneity in the regression slopes could capture some of
the extra variations previously explained by the random effects in error term. More
importantly, although the average estimate of the median household income (i.e., Umnnc ) was
fairly similar across the three BSVC models, the spatial correlation parameter ;MH'NC in model
BSVC-3 produced a posterior estimate with a mean of 0.390 and a standard deviation of 0.286,
implying that a moderate proportion of variations (around 40%) was explained by the
spatially correlated effects. The corresponding 95% Bayesian confidence interval was reported
as (0.020, 0.913), which significantly differed from both zero and one. This finding
demonstrated the presence of both unstructured and spatially structured variations in the
effects of related risk factors in crash prediction.

To illustrate the distinctions in inference among the three BSVC models, an in-depth
investigation into the estimates of the varying coefficients is believed to provide additional
insights. The parameters of median household income generated for each TAZ (i.e., Byyunc ) are
therefore plotted in Fig. 1, and their spatial patterns are further explored.

/- <

Fig. 1. Estlmated parameters of medlan household income in the three BSVC models.

As shown in Fig. 1, the estimated parameters derived from the developed BSVC models
revealed obvious spatial variations, but the three models produced notably different sets of
results. Specifically, the mapped pattern of the BSVC-1 coefficients was apparently less smooth
than that of the other two BSVC counterparts. This result was not surprising given that the
BSVC-1 model made no spatial assumptions, allowing more noise to introduce roughness into
the local parameter estimates. In contrast, the BSVC-2 model provided estimates using a
mechanism essentially based on spatial smoothing. However, to assume the varying
coefficients to be spatially clustered uniquely is prone to sustaining the risk of
over-smoothness. In fact, heterogeneity in the effects of the explanatory variables may also
occur due to the unstructured effects, analogous to white noise in time series. From this point
of view, the proposed BSVC-3 model seemed more rational, as it not only allowed for a spatial
pooling of strength when appropriate, but also adopted a strategy to reflect parameters that
were discordant with those of surrounding areas. To illustrate this, Fig. 1 identified the overall
pattern of the regression coefficients in the BSVC-3 model as spatial clustering, while the
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parameters for a small number of TAZs located in the northwest and south were visibly
isolated from their neighbors.

To quantify the slope of spatial correlation in local coefficient estimates, Moran's I
statistics were calculated and results are presented in Table 4. As expected, the parameters in
BSVC-2 and BSVC-3 models exhibited statistically significant spatial clustering (i.e., positive
spatial correlation) at the 95% confidence level. Counterintuitively, a significant negative
spatial correlation (i.e., spatial dispersion) was observed in the varying coefficients of BSVC-1.
Note that these coefficients in model BSVC-1 were assumed to be spatially random distributed.
This underlying model hypothesis was violated, and biased parameters might thus be
produced.

Table 4. Moran’s I statistic for the coefficients of median household incomes.

Moran’s I I Z score p-value
BSVC-1 -0.082%** -2.029 0.042
BSVC-2 0.411** 10.307 0.000
BSVC-3 0.094** 2.378 0.017

Note: ** represents a 5% level of significance.

Given that the BSVC-3 model outperformed the other models, we use it to interpret our
results. A good interpretation of the parameter estimates also helped to partially justify the
validity of the developed model. According to Table 3, six variables finally produced
statistically significant parameters with 95% BCls bounded away from zero in BSCV-3: DVMT,
number of trips, population, the percent of road segments with speed limits of 25 and 45 mph,
and median household income. The percentage of workers who took bicycles to work was
found significant at a 90% confidence level. The signs of these parameters were generally
consistent with empirical judgments and previous studies.

DVMT, trips and population were included as exposure variables in the model. The
coefficients were all significantly positive, implying that more severe crashes were expected in
zones with higher concentrations of traffic volumes, travel demands, and residents. Similar
results were also previously reported (Huang et al., 2010; Pridavani et al., 2012; Lee et al,,
2015).

Looking at roadways with different speed limits, the percentage of road segments with a
speed limit of 25 mph was observed to have a significant negative relationship with severe
crash frequency, while increasing the proportion of road segments with a speed limit of 45
mph was expected to lead to more fatal and severe injury crashes. This finding was consistent
with the well-accepted fact that, with other risk factors held constant, higher speed is
associated with more serious crash outcomes (Aarts and Schagen, 2006; Wang et al., 2013b).

Area deprivation level is supposed to be closely correlated with safety awareness, driving
behavior, and transport facility conditions, and thus has an indirect influence on safety
outcomes. In this study, the median household income resulted in a spatially varying
coefficient with a posterior mean of —0.157 and a variance parameter of 0.194. The magnitude
of this coefficient ranged from —0.523 to 0.482. Given these distributional parameters, 94.58% of
the distribution indicated a negative effect on severe crash occurrence. An inspection of the
BClIs implied that the majority of the TAZs with positive signs were insignificant. This result
confirmed the results of most prior studies that deprived areas were more likely to suffer from
higher casualty rates (Quddus, 2008; Huang et al., 2010; Lee et al., 2015).

At present, people are being encouraged to cycle more as a viable alternative and
economical mode of transportation. Interestingly, the percentage of workers who took bicycles
to work was reported to have a negative relationship with severe crashes at the 10%
significance level. One potential explanation is that bicyclists typically have a strong value
preference for “perceived” safe routes with lower speeds, lower traffic volumes, and
well-designed infrastructural facilities (Jacobsen et al., 2009). As a result, areas in which more
residents ride bicycles tend to be inherently safer. It is also noteworthy that perceived safety
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did not necessarily correspond with actual safety (Cho et al., 2009). Perceived safety without
actual safety creates a false sense of security, while actual safety without perceived safety
discourages people from bicycling. Therefore, to promote cycling, both the safety of facilities
and the number of bicyclists should be increased.

5. Conclusions

Traffic crashes are complex events that involve dynamic interactions between traffic
participants, vehicles, road geometric features, and environmental conditions. Given these
complex circumstances, it seems impossible to access all of the data that potentially determine
the likelihood of a crash. To deal with this challenge, random parameters models have been
employed to address the unobserved heterogeneity, i.e., variations in the effects of variables
across a sample population that are unknown to analysts (Mannering et al., 2016).

This study particularly focused on the spatial heterogeneity in crash prediction. The
spatial heterogeneity here could be defined as “the continuous space-varying structural
relationships describing space-related factors that systematically vary across the region of
interest”. We provided new insights to current research that in addition to unstructured
variability, the heterogeneity in the effects of explanatory variables could also arise from the
spatially correlated effects. For this purpose, an alternative fully Bayesian approach was
introduced to simultaneously accommodate the unstructured and spatial structured variations
in model parameters. The proposed method was superior in the sense that the regression
coefficients were modeled via a single set of random effects and a spatial correlation
parameter with extreme values corresponding to pure unstructured or pure spatially
correlated random effects.

Based on a three-year crash dataset from the Hillsborough County, Florida, empirical
analysis demonstrated the presence of both unstructured and spatially structured variations in
the effects of contributory factors in severe crash occurrences. The results also suggested that
ignoring spatially structured heterogeneity may result in biased estimates and incorrect
inferences, while assuming the regression coefficients to be spatially clustered only is probably
subject to the issue of over-smoothness.

Since crash data are typically collected in spatial proximity, we expect the present study to
promote awareness of the spatial dimension of crashes among safety analysts, i.e., the
discrimination between “analysis of spatial data” and “spatial data analysis”. Despite both
types of studies involve data with geographical co-ordinates, the former effectively ignores the
geographical component and treats data as if they were aspatial, while the latter makes use of
the geographical component to explore the spatial aspects of the data.

For future research, apart from the typically used CAR model, other spatial prior
distributions such as the jointly specified (Mitra, 2009; Aguero-Valverde, 2014) and multiple
membership (El-Basyouny and Sayed, 2009a) forms could be attempted. Considering that the
model calibrated in our study is applicable to a univariate cross-sectional outcome, further
efforts to extend the approach to multivariate and longitudinal dimensions are also highly
advocated. Furthermore, sicne the results of the study are based on a single dataset, future
studies with different data sources would prove worthwhile to enhance our findings.
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