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 
Abstract—Extreme weather events, many of which are climate 

change-related, are occurring with increasing frequency and 
intensity and causing catastrophic outages, reminding the need to 
enhance the resilience of power systems. This paper proposes a 
proactive operation strategy to enhance system resilience during 
an unfolding extreme event. The uncertain sequential transition of 
system states driven by the evolution of extreme events is modeled 
as a Markov process. At each decision epoch, the system topology 
is used to construct a Markov state. Transition probabilities are 
evaluated according to failure rates caused by extreme events. For 
each state, a recursive value function, including a current cost and 
a future cost, is established with operation constraints and 
inter-temporal constraints. An optimal strategy is established by 
optimizing the recursive model, which is transformed into a mixed 
integer linear programming by using the linear scalarization 
method, with the probability of each state as the weight of each 
objective. The IEEE 30-bus system, the IEEE 118-bus system, and 
a realistic provincial power grid are used to validate the proposed 
method. The results demonstrate that the proposed proactive 
operation strategies can reduce the loss of load due to the 
development of extreme events. 
 

Index Terms—Extreme weather events, generation redispatch, 
Markov model, power system resilience, sequentially proactive 
strategy 
 

NOMENCLATURE 
Indices and Sets 
, ,i i i    Index of Markov states 
,t t    Index of time periods 
,a a   Index of actions 

l     Index of lines  
k     Index of electrical devices 
 

This work was supported by the National Natural Science Foundation of 
China under Grant 51677160, the Theme-based Research Scheme through 
Project No. T23-701/14-N, the Research Grant Council of Hong Kong SRA 
under Grants ECS739713 and GRF17202714, Basic Research 
Program-Shenzhen Fund (JCYJ20150629151046877), and research funding 
from China Southern Power Grid (ZD2014-2-0004).  

C. Wang, Y. Hou, and S. Lei are with the Department of Electrical & 
Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, 
and HKU Shenzhen Institute of Research and Innovation, Shenzhen, China 
(wangc@eee.hku.hk, yhhou@eee.hku.hk, leishunbo@eee.hku.hk). 

F. Qiu is with the Energy Systems Division, Argonne National Laboratory, 
Argonne, IL 60439 USA (e-mail: fqiu@anl.gov ). 

K. Liu is with China Southern Power Grid Co., Ltd., Guangzhou, China 
(liukai@csg.cn) 

 
 

j     Index of generators 
,n n   Index of nodes 

r     Index of paths between states 
,C t   Set of components that might be in failure at t 

,S t   Set of Markov states at t 

A    Set of actions  

T    Set of time periods 

N    Set of nodes  

G    Set of generators 

, 1
S
i t   Set of states at t+1 following the state Si,t at t 

,
S
i t   Set of states  
G
n    Set of generators connected with node n 
D
n    Set of loads connected with node n 
N
n    Set of nodes connected with node n 
Path
i   Set of paths from initial state to state Si,t 

Notation for Failure Rate 
w
t    Failure rate due to typhoon, windstorms etc 

w    A given wind speed 
tw    Wind speed at t 

    A given parameter 
     Failure rate under normal weather conditions 

I
t    Failure rate due to ice storm 

,t LM   Total load in kN on line  

LM    Maximum load in kN on line 
Lim    Ice load on lines 

Lwm    Wind load on lines 
( )Lf   Joint probability density function of ice load and 

wind load on lines 

Notation for Optimization Model  
,i tS    Markov state at t 

, 1i tS     Markov state at t+1 

,i tS     Markov state at t   

,k ts  Status of component k at t and t+1. ‘0’ and ‘1’ denote 
a failure state and normal operating status 

, 1k t    Failure rate of component k at t+1 
( )tR    Immediate cost at t ($) 
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Pr( )   Transition probability  

,L t    Penalty due to loss of load ($/MWh) 
( )tv    Value function at t  

1( )tv     Value function at t+1 

( )tv    Optimal value function 

, ,n t iL    Load demand of node n in state Si,t at t (MW) 
min
jP   Lower generation of generator j (MW) 
max
jP   Upper generation of generator j (MW) 
UP
jR    Ramp-up rate limit of generator j (MW/h) 
DN
jR   Ramp-down rate limit of generator j (MW/h) 
,max

,
L

n nP    Max capacity of line n n  (MW) 
,min

,
L

n nP    Min capacity of line n n  (MW) 
max
n   Max limit of Phase angle of node n 
min
n    Min limit of Phase angle of node n 

,a tA    Action a at t 

,n nB    Electrical susceptance of line n- n  
ON
jD    Min on time of generator j (Decision Epoch) 
OFF
jD   Min off time of generator j (Decision Epoch) 
T    Duration of each period (h) 
, ,
G
j t iP    Generation of generator j in state Si,t at t (MW) 

, 1,
G
j t iP    Generation of generator j in state , 1i tS    at t (MW) 

, , ,
L

n n t iP    Power from node n  to n  in state Si,t at t (MW) 

, ,n t iL   Load shedding of node n in state Si,t at t (MW) 

, ,n t i    Phase angle of node n in state Si,t at t 

, ,j t io  Binary variable to indicate status of generator j in 
state Si,t at t 

, 1,j t io   Binary variable to indicate status of generator j in 

state , 1i tS    at t+1 

, ,j t io    Binary variable to indicate status of generator j in 

state ,i tS    at t   

, , ,n n t iu   Binary outage indicator to indicate status of line 

n n  in state ,i tS    at t 

TN    Number of time periods 
N    A large number 

( )PDF
iP  Probability of state Si,t 

, ,r i tp  Probability from initial state to state Si,t via path r  

I. INTRODUCTION 
XTREME weather events, e.g., wind storms, typhoons, and 
hurricanes, are occurring with increasing intensity [1][2] 

and causing complete or partial power outages. These outages 
suggest the vulnerability of current power systems. Since 
power systems are critical infrastructures for society and 
economic development [3], an outage might cause severe 

consequences. In the United States, weather-related outages 
cause estimated $25 billion economic losses each year [4]. In 
China, Typhoon Rammasun, which struck the Guangdong 
province on July 2014, took several 220 kV transmission lines 
out of service. The severe consequences of such extreme 
weather events in power systems have brought power system 
resilience to the attention of organizations and governments in 
the world. A Policy Framework for the 21st Century Grid [5], 
which was released by the U.S. government in June 2011, 
emphasized the significance of resilient grids in countering the 
effects of increasingly intense weather events. The United 
States National Research Council (NRC) [3] and the House of 
Lords in the United Kingdom [6] have also emphasized the 
importance of a resilient energy infrastructure. The North 
American Electric Reliability Corporation (NERC) [7]-[9] and 
the United States Electric Power Research Institute (EPRI) [10] 
have both recognized the functionalities of system resilience. 

Based on the requirements of power system resilience [3], 
some conceptual frameworks have been proposed [11]. To 
ensure resilience against extreme weather events, the strategies 
in the three stages of a severe event [8] (i.e., prior to the event, 
during the event and after the event) should be considered.  

Prior to an extreme weather-related event, an accurate outage 
prediction contributes to manage preparedness and restoration 
efforts. To improve accuracy of predictions, a negative 
binomial regression model is proposed [12]. Since this model is 
based on data regarding outages caused by three hurricanes, 
i.e., Fran (1996), Bonnie (1998), and Floyd (1999), it is only 
suitable for a specific service area. To overcome this limit, a 
generic model for the full U.S. coastline is proposed in [13]. To 
estimate power outage durations in face of hurricanes, a 
statistical model is proposed in [14]. With outages and the 
duration predictions, some preventive strategies prior to an 
extreme weather-related event can be performed to increase 
power system resilience. Considering the stochastic and 
sequential characteristics of events, the events’ potential 
impacts on the resilience of power systems are analyzed by 
using sequential Monte Carlo simulations [15]. To minimize 
negative impacts, the response before a hurricane is modeled as 
a mixed-integer programming problem [16]. In addition, 
preparation of sufficient blackstart generating units and 
emergency generators also plays an important role in 
improving power system resilience before an extreme 
weather-related event. To assess blackstart capacities, a 
GRM-based algorithm is developed [17]. To provide enough 
blackstart resources at right locations, [18] proposes a model to 
establish a procurement plan with a minimal cost while 
guarantee sufficient blackstart capacities. [19] focuses on 
dispatch strategies of mobile emergency generators to 
minimize the loss of load. Furthermore, some strategies, e.g., 
maintenance planning [20] and wide-area controls in response 
to communication failures [21], [22], can also be performed to 
enhance power system resilience before an weather-related 
event.  

During the event, hardening, which refers to physically 
changing power systems, is a measure to make systems less 
susceptible to weather-related events. In [23], a resilient 
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distribution network planning problem is formulated as a 
two-stage robust optimization model. In addition to hardening, 
islanding schemes can also be used to improve power system 
resilience. In [24], a unified resilience evaluation and an 
enhancement method, including a novel defensive islanding 
algorithm, are proposed. The proposed islanding scheme can 
mitigate potential cascading effects during weather-related 
events. Considering non-dispatchable and dispatchable 
distributed generators, [25] proposes a novel comprehensive 
operation and self-healing scheme, which sectionalizes a 
distribution system into several micro-grids, to improve 
distribution system resilience. 

After an extreme weather-related event, it is necessary for 
system operators to implement restoration strategies [26]-[28] 
to restore loads as quickly as possible. A generic conventional 
power system restoration can be divided into three stages, i.e., 
preparation, system restoration and load restoration [29]. In the 
preparation stage, the system status, i.e., blackstart units, 
non-blackstart units and critical loads, should be evaluated. In 
the system restoration stage, the main goal is to establish a 
strong bulk power network by restarting appropriate blackstart 
and non-blackstart units associated with appropriate 
transmission lines and some critical loads [30]. In the load 
restoration stage, the critical objective is to restore all loads as 
quickly as possible. Many approaches, e.g., expert systems [31] 
and heuristic approaches [32], have been proposed to deal with 
load restoration. However, outages caused by weather-related 
events usually have their own unique characteristics, which 
might result in inapplicability of the existing recovery schemes. 
Therefore, new techniques should be proposed to deal with 
restoration after weather-related events. [28] proposes a novel 
operational approach for distribution systems by establishing 
multiple microgrids energized distributed generators to restore 
critical load from power outages. In [33], the impact of 
microgrids as blackstart resources after a natural disaster is 
evaluated. Furthermore, decentralized restoration schemes [34] 
can be employed. 

Most research studies have focused on assessment/strategies 
prior to an weather-related event and restoration strategies after 
an weather-related event. However, strategies during an event 
are still in their infancy. In this work, we focus on operational 
strategies during an event to enhance power system resilience 
against extreme weather-related events. During extreme 
weather events, operating strategies should be established 
subject to both current system/equipment statuses and potential 
future statuses as the weather-related events unfolding. Due to 
the essentially sequential characteristics during an event 
unfolding, the operation strategies should be a sequence of 
actions associated with uncertainties caused by development of 
the event and faults of components. 

The main contributions of this paper are two-fold. 1) A 
Markovian method for sequentially proactive generation 
redispatch is proposed. At each decision epoch, the system 
topology, which may change due to the failure of some 
components (such as transformers or transmission lines) due to 
extreme event, constitutes a Markov state. Transition 
probabilities between different states, i.e., different topologies, 

are determined by component failure rates and development of 
the event. In each state, a recursive value function that includes 
a current cost and a future cost is established subject to 
operation constraints (such as ramping rates of generators). 2) 
The optimal strategy for each state is obtained by optimizing 
the proposed recursive model. The recursive model is 
transformed into a mixed integer linear programming by using 
the linear scalarization method, with the probability of each 
state used as the weight of each objective. The linear 
programming is solved with the CPLEX solver. Two IEEE test 
systems and a modified realistic system are used to validate the 
proposed model, with the results showing that the proposed 
model provides insight for proactive generation redispatch 
under extreme weather events. 

This paper is organized as follows. Section II describes the 
impacts of extreme weather events on system states. Section III 
introduces sequentially proactive operation strategies, while 
Section IV shows the solution. Section V presents the case 
studies, and the work is concluded in Section VI. 

II. INFLUENCES OF EXTREME WEATHER EVENTS ON SYSTEM 
STATES 

This section introduces the influences of extreme weather 
events on system states. First, several component failure rate 
models are introduced. Second, system states on the trajectory 
of extreme weather events are presented. Third, transition 
probabilities between different system states are modeled. 

A. Component Failure Rate 
In certain extreme weather events, such as hurricanes, 

tornados, typhoons, windstorms, floods, lightning storms [35], 
the intensity of the hazardous forces will change both 
temporally and geographically as the trajectories of the weather 
events move passing a region. The component failures are 
correlated with hazardous forces. Usually, a generic fragility 
curve, in Fig. 1, can be used to relate failure probabilities of a 
component to the weather intensity [24].  
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Fig. 1  Generic fragility curve 

 
Typically, several models for calculating component failure 

probabilities under different extreme weather events may be 
employed. 
1) Failure rate caused by hurricanes, tornados, typhoon and 
windstorms 

For hurricanes, tornados, typhoons and windstorms, the 
pressure of high wind is a key reason of component failures. It 
is deemed that the pressure exerted on components is 
approximately proportional to the square of wind speeds [36]. 
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The failure rates of components during these events can be 
expressed as  

 2 21 1w
t tw w       

 
         (1) 

2) Failure rate caused by ice storm 

Many research studies have focused on transmission 
reliability assessment in consideration of ice storms. Take 
transmission lines for example, their failure rates under ice 
storms can be expressed as  

,
( , )

t L

L

ML
t L Li Lw Li Lw

M
f m m dm dm          (2) 

The failure rates of transmission towers under ice storms 
have the similar expression. 

B. System States on Trajectories of Extreme Weather Events 
Because of the time sequence in which components 

experience extreme weather events, different components, e.g., 
lines, transformers, loads and generators, might be in failure at 
sequential time intervals. For example, there are two 
components A and B on the trajectory of a typhoon, as shown in 
Fig. 2. Since the failure rates depend on the wind speed, the 
failure rates of each component at different sequential time 
intervals are usually different, as shown in Fig. 3(a). 
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Fig. 2  Two components on the trajectory of a typhoon. 
 

Fa
ilu

re
 R

at
es

Time

A
B

PA,1

PB,2

PA,1
PB,3

(a)

M
ar

ko
v 

St
at

es

Time
(b)

S0 S0

SA

t1 t2 t4t3 t5 t1 t2 t4t3 t5

S0

SA

SB

SAB

S0

SA

SB

SAB

S0

SA

SB

SAB

 
Fig. 3  (a) Failure rates at different time intervals. (b) Markov states at different 
time intervals. 
 

At each decision epoch, the system topology may be changed 
due to component failures in the face of an event. As for the 
system operators, they should make decisions based on the 
current system topology at each decision epoch in the face of 
the event, as well as consider possible topology scenarios 
caused by the extreme weather event in the subsequent time 
intervals. In this paper, the system topology is defined as a 
Markov state. The number of Markov states depends on the 
number of components that might be in failure due to the 
extreme weather event. Let ΩC,t be the set of components that 
might be in failure at time t. Sets at different time intervals 
satisfy the following equations. 

, , 1 , {1,2, }C t C t t             (3) 
where (3) denotes that possible failed components at one 
interval should include the possibly failed components from the 
previous time intervals. For example, the typhoon only directly 
influences the component B at t3, but Ω𝐶,t at t3 in Fig. 2 includes 
the component A as well as the component B. The Markov 
states include S0, SA, SB and SAB, as shown in Fig. 3(b). The 
subscript ‘0’ denotes that no components are in failure. In 
general, the number of Markov states at time t is 2𝑁𝐶,𝑡, and 𝑁𝐶,𝑡 
is the number of components that might be in failure at time t. 

Usually, a realistic trajectory is uncertain and the forecast of 
the trajectory cannot be entirely accurate. When considering the 
uncertainty of a trajectory, its influences on component failures 
can be included in component failure probabilities.  

C. Transition Probabilities between Different System States 
Let Ω𝑆,𝑡 be the set of states at time t. Let 𝑆𝑖,𝑡 and 𝑆𝑖′ ,𝑡+1 be 

states at time t and t+1, respectively. The transition probability 
from 𝑆𝑖,𝑡 to 𝑆𝑖′,𝑡 can be expressed as 

   
, 1

, , 1 , , 1 ,Pr , Pr , ,
C t

i t i t k t k t S tk
S S s s i


  


     (4) 

 

, , 1

, , 1
, , 1

, 1 , , 1

, 1 , , 1

1 0, 0
0 0, 1

Pr ,
1 1, 1

1, 0

k t k t

k t k t
k t k t

k t k t k t

k t k t k t

s s
s s

s s
s s
s s










 

 

 


 
 

  
  

     (5) 

where Pr⁡(⋅) is the transition probability, 𝜆𝑘,𝑡+1  is the failure 
probability of the component k at time t+1, 𝑠𝑘,𝑡 and 𝑠𝑘,𝑡+1 are 
statuses of the component k at time t and t+1, respectively. The 
lowercase s denotes a status of an electrical device on the 
trajectory of a weather event. It can be a failure status or a 
non-failure status. ‘0’ and ‘1’ denote a failure status and a 
normal operating status, respectively. The uppercase S denote a 
system state, which should consider all statuses of electrical 
devices on the trajectory of a weather event. 

III. SEQUENTIALLY PROACTIVE OPERATION STRATEGY 
This section introduces the optimization model to establish 

sequentially proactive operation strategies. First, a recursive 
model for each system state, including current and future 
influences, is established. Second, constraints for sequentially 
proactive operation strategies are presented. 

A. Sequential Decision Processes 
Since the failure of a component on the trajectory of an 

extreme weather event is uncertain, the best decision making 
for system operators is to adjust strategies, according to 
real-time states of the system, to optimize their objective. 
Meanwhile, when making decisions based on a state, the 
system operators should consider not only the current 
influences, but also any future influences caused by the 
decisions. This decision process is a Markov decision process. 
For a realistic system, the system operators make decisions 
continuously. To simplify the model, we assume that the 
decisions are made at discrete decision epochs. In this context, 
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we model the whole decision process as a discrete-time Markov 
decision process. 

Since the system operators should consider both current and 
future influences, the value function for each state can be 
expressed as a recursive formula. 

, 1

, , , ,

, , 1 1 , 1 , 1

,

( , ) ( , )

Pr( , ) ( , )

, , , , 1

S
i t

t i t a t t i t a t

i t i t t i t a t
i

S t A A T T

v S A R S A

S S v S A

i a a t t


     



 

  

     

  (6) 

where 𝐴𝑎,𝑡  denotes actions, i.e., redispatching the system. In 
this paper, “redispatching the system” means “generation 
redispatch”, i.e., adjusting outputs of available generators. 
𝑣𝑡(𝑆𝑖,𝑡 , 𝐴𝑎,𝑡) is the expected cost, from time t to the terminal 
time, with state 𝑆𝑖,𝑡 under action 𝐴𝑎,𝑡 . Before an event hits a 
power grid, the system topology can also be considered as a 
Markov state, which can be included in the model. 𝑅(𝑆𝑖,𝑡 , 𝐴𝑎,𝑡) 
is the immediate cost at time t for state 𝑆𝑖,𝑡 under action 𝐴𝑎,𝑡. 
This immediate cost is the cost of loss of load. Usually, when a 
system is under a severe weather event, the reliability, 
represented as expected loss of load in the paper, has a higher 
priority. Therefore, the expected loss of load works as the 
objective of the system operators. 

Based on (6), the optimal strategy with state 𝑆𝑖,𝑡 at t can be 
obtained by using the following formula. 

 , , , ,( ) min ( , ), , ,t i t t i t a t A S t Tv S v S A a i t       (7) 

where 𝑣𝑡∗(𝑆𝑖,𝑡) is the minimal expected cost of state 𝑆𝑖,𝑡 at time 
t. The immediate cost 𝑅𝑡(𝑆𝑖,𝑡 , 𝐴𝑎,𝑡) is the cost of loss of load, 
which can be expressed as 

 , , , , ,( , )
N

t i t a t L t n t i
n

R S A L T


            (8) 

B. Constraints for Sequentially Proactive Operation Strategy 
During generation redispatch in state 𝑆𝑖,𝑡  at time t, the 

constraints of power balance, upper and lower limits of 
generators, upper and lower limits of voltage, power flows 
through lines and load limits should be satisfied. Typically, the 
ramping rates between possible states should be satisfied. 
1) Power balance 

The power balance constraint in state Si,t at time t can be 
expressed as 

 , , , , , , , , , 0 ,
G N
n n

G L
j t i n t i n t i n n t i

j n

P L L P n

 

          (9) 

where (9) denotes power balance at each node in state Si,t at 
time t. 
2) Ramping rates of generators 

The ramping rates of each generator in state Si,t at time t 
should be satisfied during the implementation of any proactive 
generation redispatch such that 

min
, 1, , , , , , 1,

, , , 1, , 1

(2 )

(1 ) ,

G G
j t i j t i j t i j t i j

UP S
j t i j t i j i t

P P o o P

o o R i j
  

 

    

     
  (10) 

min
, , , 1, , , , 1,

, , , 1, , 1

(2 )

(1 ) ,

G G
j t i j t i j t i j t i j

DN S
j t i j t i j i t

P P o o P

o o R i j
  

 

    

     
  (11) 

where the term 𝑖′ ∈ Ω𝑖,𝑡+1
𝑆  ensures that ramping rates should be 

satisfied between the state 𝑆𝑖,𝑡 at t and its possible following 
states at t+1. Considering potential online/offline statuses of 
generators, binary variables regarding generators’ statuses are 
included in constraints (10) and (11). 
3) Minimum up time and down time constraints of generators 

When performing generation redispatch, minimum up time 
and down time constraints of generators should be satisfied. 

, , , 1, , ,

, 1 ,

0 ,1

, ,

ON
j t i j t i j t i j

S S
i t i t

o o o t t D

i i j
  

 

      

   
    (12) 

, , , 1, , ,

, 1 ,

1 ,1

, ,

OFF
j t i j t i j t i j

S S
i t i t

o o o t t D

i i j
  

 

     

   
   (13) 

where the terms 𝑖′ ∈ Ω𝑖,𝑡+1
𝑆  and 𝑖′′ ∈ Ω𝑖,𝑡+

𝑆  ensure that 
minimum up time and down time constraints should be satisfied 
between possible transition states. 
4) Power flows of lines 

The limits for power flows through online lines in state Si,t at 
time t should be satisfied. 

 , , , , , , , , , , ,(1 ) 0

, ,

L
n n n t i n t i n n t i n n t i

l

B P u N

n n Line l

          

 
 (14) 

 , , , , , , , , , , ,(1 ) 0

, ,

L
n n n t i n t i n n t i n n t i

l

B P u N

n n Line l

          

 
 (15) 

,min ,max
, , , , , , , , , , ,

, ,

L L L
n n n n t i n n t i n n n n t i

l

P u P P u
n n Line l

       

 
   (16) 

where (14) and (15) represent the physical relations between 
voltage angles and power flows through transmission lines. 
un,n’,t,i is a binary outage indicator. If the line l is in outage in 
state Si,t at time t, un,n’,t,i=0; otherwise un,n’,t,i=1. N is a 
disjunctive parameter. With a sufficiently large N, (14) and (15) 
are redundant when lines are outages. (16) shows the limits of 
transmission lines. The models of power flows through 
transformers are similar to (14)-(16). 
5) Upper and lower limits of the outputs of generators 

During the implementation of generation redispatch in state 
Si,t at time t, the upper and lower limits of generators should be 
satisfied by 

min max
, , , , , ,

G
j j t i j t i j j t iP o P P o j            (17) 

6) Load limits 
When performing generation redispatch in state Si,t at time t, 

load shedding might be conducted to ensure power balance 
when considering the ramping rates of the generators, power 
flows through the lines and so on. When conducting load 
shedding , the following constraints should be involved 

, , , ,0 n t i n t iL L n               (18) 
where Ln,t,i is the forecasted load of the bus n at t. Its value can 
be predicted based on existing load forecasting methods. 
7) Voltage limits 

The following constraint regarding voltage in state Si,t at t 
should be satisfied. 

min max
, ,n n t i n n                (19) 
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8) Other constraints 
For binary variables in state Si,t at t, there are following 

constraints. 
, , {0,1}j t io j                 (20) 

where oj,t,i represents the generator’s status. System operators 
can add constraints regarding binary variables to artificially set 
statuses of generators. In addition, some generators might be 
out of service, due to weather events, corresponding to certain 
Markov states. Under this condition, the constraint oj,t,i=0 (j, t 
and i corresponding to given values) are added.  

IV. SOLUTION METHOD 
According to (6) and (7), the optimal strategy for each state 

should ensure the minimum expected cost from the current 
decision epoch to the terminal decision epoch. Take the 
scenario in Fig. 4 as an example. For the state S1, the optimal 
strategy should ensure the minimum expected cost of the 
current state and the future possible states, i.e., the states in the 
red triangle. For the state S2, the optimal strategy should ensure 
the minimum expected cost of the states in the blue triangle. 
From the perspective of the mathematical model, it is necessary 
to find a solution for each state to guarantee that the multiple 
objectives are optimal. If the ramping rates of each generator 
are not considered, the backward induction method and the 
value iteration method [37] can be employed to find the 
solution for each state. However, if we include the ramping 
rates as a condition, it is difficult for some scenarios to find 
solutions for each state to ensure optimal multiple objectives 
simultaneously. 
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p36

 
Fig. 4  A scenario with three decision epochs. 

 
When considering the generators’ ramping rates with (6) and 

(7), the problem becomes an optimization with multiple 
objectives. In this paper, we employ the linear scalarization 
method to transform the original multi-objective optimization 
problem into a single-objective optimization problem.  

For the linear scalarization method, one critical point is to 
determine the weight of each objective. The probability of each 
state works as the weight of the objective of the corresponding 
state. Even though each state, i.e., a system topology, occurs 
stochastically due to the uncertain failure of each component on 
the trajectory of the extreme weather event, the probability of 

each state can be expressed as 

 ( )
, ,

1
Path
i

PDF
i r i t

rT

P p
N 

          (21) 

Take the scenario in Fig. 4 as an example, the probabilities of S1, 
S2, S3, S4, S5 and S6 are as shown in Fig. 5. 

The linear scalarization method is used to reformulate the 
model as a mixed integer linear programming. The 
reformulated model is similar to a stochastic optimization. With 
the weight of each objective, the reformulated model can be 
expressed as follows. 

 
,

( )
, ,min ( , )

T S t

PDF
i t i t a t

t i
P v S A

 

       (22) 

subject to  
Equations (4), (5), ⁡𝑖 ∈ Ω𝑆,𝑡⁡, 𝑡 ∈ ⁡Ω𝑇 
Equation (6) 
Equation (8), 𝑖 ∈ Ω𝑆,𝑡 ⁡, 𝑡 ∈ ⁡Ω𝑇  
Constraint (9), (10), (11),(12), (13), 𝑖 ∈ Ω𝑆,𝑡 ⁡, 𝑡 ∈ ⁡Ω𝑇 
Constraints (14), (15), (17), (18),(19), (20), 𝑖 ∈ Ω𝑆,𝑡 ⁡, 𝑡 ∈ ⁡Ω𝑇  
Equation (21), 𝑖 ∈ Ω𝑆,𝑡⁡, 𝑡 ∈ ⁡Ω𝑇. 
The reformulated model is a mixed integer linear 

programming, which is solved using the CPLEX solver.  
With increasing components on the trajectory of an extreme 

weather event and decision epochs, the state tree in Fig. 4 
increase exponentially. The model may be computationally 
intractable. Scenario reduction, e.g., deleting states with 
extreme low probabilities, can be used to ensure acceptable 
computer velocity. 
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Fig. 5  Probabilities of states. 

V. CASE STUDIES 
In this section, we present simulations conducted using the 

IEEE 30-bus system, the IEEE 118-bus system and a practical 
power grid system to show the effectiveness of the proposed 
model. The cases are tested in MATLAB 2014b using the 
CPLEX solver on a personal computer with a 3.1 GHz i5 
processor and 8 GB RAM. For the sake of brevity, we take the 
extreme weather event of a typhoon as the event for each case.  

A. IEEE 30-bus System 
1) Data description 

The IEEE 30-bus system and the trajectory of the typhoon 
are shown in Fig. 6. For the sake of exposition, we assume that 
decisions are made at discrete time t1, t2, t3, t4 and t5. The 
duration between two adjacent decision epochs is 6 minutes. 
On the trajectory of the typhoon, the potential failure 
components include six transmission lines, two generators and 
two partial loads. Since distribution systems might be damaged, 
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on this occasion, the load would decrease from the perspective 
of transmission systems. The failure rates of the components on 
the trajectory of the typhoon are shown in Table I. In practice, 
these probabilities can be achieved based on generic fragility 
curves or failure rate calculation models, e.g., (1). 
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Fig. 6  IEEE 30-bus system topology. 

 
TABLE I 

PROBABILITIES OF COMPONENT FAILURE 
Component No. Components Failure Probabilities 

C1 Line 15-23 0.25 
C2 Line 18-19 0.22 
C3 50% Load 19 0.10 
C4 Line 16-17 0.20 
C5 60% Load 17 0.10 
C6 G6 0.08 
C7 Line 4-6 0.18 
C8 G2 0.08 
C9 Line 2-6 0.15 
C10 Line 2-5 0.12 

 
TABLE II 

PARAMETERS OF GENERATORS 

Unit Bus Pmin  Pmax Ramping Rates 𝐷𝑖
𝑂𝑁  𝐷𝑖

𝑂𝐹𝐹 

G1 1 30 120 120 3 3 
G2 2 35 140 120 3 3 
G3 5 10 50 72 3 3 
G4 8 05 30 60 3 3 
G5 11 10 55 72 3 3 
G6 13 15 40 60 3 3 

 
2) Mapping states to strategies 

Based on the proposed model, the optimal redispatch 
strategy for each state is calculated in advance. The strategies at 
the decision epoch t1 can be considered as preventive actions 
before the typhoon. During the typhoon, the system operators 
observe the system topology, i.e., the state, at one decision 
epoch, and then map the state to the optimal strategy. The same 
process is repeated at the next decision epoch, as shown in Fig. 

7. Table III shows four scenarios with uncertain failure 
components, and Fig. 8 shows the corresponding strategies. 
The optimal strategies are selected according to system states in 
real systems.  

 

State Strategy

Mapping State to Strategy

   Real System

 
Fig. 7  The process of mapping a state to a strategy. 

 
TABLE III 

DIFFERENT FAILURE SCENARIOS  
Scenario 

No. 
Failure Components 

t1 t2 t3 t4 t5 

1 No No No C6,C7 C6,C7,C9,C10 

2 No C3 C3,C5 C3,C5,C6,C7 C3,C5,C6,C7,
C9,C10 

3 No C1 C1,C4 C1,C4,C7 C1,C4,C7,C9 

4 No C2,C3 C2,C3,C4,
C5 

C2,C3,C4,C5,
C6,C7 

C2,C3,C4,C5,
C6,C7,C9,C10 
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Fig. 8  Optimal strategies for four scenarios. 
 

Since the generators G2 and G6 might be in failure on the 
typhoon’s trajectory, these two generators are tended to be 
offline or with small outputs in the process of generation 
dispatch. For example, the generator G6 has small outputs so 
that the other generators can cover its generation loss due to the 
typhoon, as shown in Fig. 8 (a), (b) and (d). 

The strategies should also consider potential damaged load 
due to the typhoon. For example, the total generation at the first 
decision epoch is 189.2 MW. At the second decision epoch, the 
total generation becomes 184.45 MW if 50% load at the bus 19 
is damaged due to the typhoon in Fig. 8 (b), while the total 
generation retain 189.2 MW if the load is not damaged. 
Similarly, the total generation becomes 179.05 MW if 60% 
load at the bus 17 is damaged at the third decision epoch, while 
retain 189.2 MW if not.  

Fig. 9 shows the strategies for possible states at each decision 
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epoch. Based on these mapping relations, the system operators 
can select the optimal strategy for the observed state at each 
decision epoch. 
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Fig. 9  Mapping states to strategies. 

 
3) Effectiveness of the proposed method 

This section shows the effectiveness of the proposed method 
by comparing the following methods: 

M1: The proposed method; 
M2: Non-proactive strategies. In this case, system operators 

will not proactively perform generation redispatch beforehand. 
They only take actions after some events, i.e., line faults, to 
minimize loss of load, in consideration of operation constraints. 
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Fig. 10  Differences of LoL with M1 and M2. 

 
Fig. 10 shows differences of loss of load (LoL) with M1 and 

M2. Most failure scenarios correspond to smaller loss of load 
by using M1. There are a few failure scenarios with larger loss 
of load by using M1, because M1 synthetically considers 
possible scenarios on the trajectory of the typhoon and some 
scenarios may sacrifice loss of load. From the perspective of all 
scenarios, however, the proposed method is more effective. 

4) Influences of scenario reduction 
This section shows the influences of state reduction. Table 

IV shows the results of different maximum failure component 
scenarios. More maximum failure components have higher 
accuracy, while result in longer CPU time. 

 
TABLE IV 

DIFFERENT MAXIMUM FAILURE COMPONENT SCENARIOS  
Maximum Failure 

Components 
Objective 
Value ($) 

Error  
(%) 

Total CPU 
Time (s) 

2 322.54 47.92 29 

3 476.42 23.07 72 

4 569.55 8.03 185 

5 603.90 2.49 542 

6 616.06 0.52 1035 

7 618.94 0.06 1935 

8 619.27 0.0048 3021 

9 619.28 0.0032 3935 

10 619.30 0 4235 

 

B. IEEE 118-bus System 
1) Data description 

The IEEE 118-bus system and the trajectory of a typhoon are 
shown in Fig. 11. The data for the system can be found in [38] 
and [39]. The ramping rates of all generators are assumed to be 
60 MW/h. For the sake of exposition, decisions are made at 
discrete times t1, t2, t3, t4, t5, t6, t7 and t8. The duration between 
two adjacent decision epochs is 6 minutes. Two trajectory 
scenarios, as shown in Table V, are considered. 
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Fig. 11  IEEE 118-bus system topology and the typhoon trajectory. 
 
2) Simulation results of scenario one 

This section shows the influences on power flows. The 
trajectory of the typhoon divides the system into two areas A 
and B. In the first period, the area A has 1,670 MW load and 
1,812 MW real output, and the area B has 2,572 MW load and 
2,430 MW real output. Since the DC power flow is used, line 
losses are ignored. The imbalance of real power outputs 
between A and B indicates that real power is transferred from A 
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to B through the lines on the trajectory. When performing 
generation redispatch based on system states, the real output in 
the area A decreases and the real output in the area B increases, 
as shown in Fig. 12, to reduce real power through transmission 
lines on the trajectory of the typhoon, in case these line might 
be in failure. 
 

TABLE V 
DIFFERENT MAXIMUM FAILURE COMPONENT SCENARIOS  

Time 
Period 

Scenario one Scenario two 

Component Failure 
Probability Component Failure 

Probability 

t2 Line 68-81 0.25 
Line 68-81 0.25 

60% Load at bus 116 0.10 
t3 Line 69-77 0.22 Line 69-77 0.22 

t4 Line 69-75 0.20 
Line 69-75 0.20 

Generator at bus 69 0.15 

t5 Line 69-70 0.18 
Line 69-70 0.18 

60% load at bus 70 0.10 
t6 Line 29-38 0.15 Line 29-38 0.15 

t7 Line 19-34 0.12 
Line 19-34 0.12 

50% load at bus 34 0.10 
t8 Line 15-33 0.10 Line 15-33 0.10 
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Fig. 12  Real power outputs and loss of load under the scenario that the lines 
69-81, 69-77, 69-75, 69-70 and 30-38 are sequentially in failure at t2, t3, t4, t5 
and t6, respectively. 

 
3) Simulation results of scenario two 

This section shows the influences on outputs of generators on 
the trajectory of the typhoon. Since the generator at bus 69 may 
be in failure at the 4th decision epoch with the probability 0.15, 
its outputs remain close to its lower limit from the 1st to 3rd 
decision epochs, as shown in Fig. 13. This can avoid a large 
loss of load due to power unbalance considering operation 
constraints, e.g., ramping rates and upper limits of line 
capacity. If the generator is out of service at the 4th decision 
epoch, its outputs at the 4th and following decision epochs are 
zeros. 
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Fig. 13  Sequential outputs of the generator at bus 69 under different system 
state scenarios 

 

C. The Simplified Guangdong Power Grid System 
The simplified Guangdong power grid has 116 generating 

units, 1,117 buses and 1,771 transmission lines. We take the 
typhoon Mujigae [40], which struck the Guangdong province 
of China on October 4, 2015, as an example. According to the 
trajectory, seven critical transmission lines and one critical 
generator undergo the typhoon sequentially. The duration 
between two adjacent decision epochs is about one hour. The 
failure probabilities of the seven transmission lines and the 
generator on the trajectory are 0.2, 0.18, 0.12, 0.1, 0.08 0.08, 
0.07 and 0.1, respectively. The upper and lower limits of the 
critical generator are 1059MW and 110 MW. Its ramping rate is 
100MW/h. 

The benchmark strategy is based on the M2 method, which 
was introduced previously. Fig. 14 shows the differences of 
loss of load with M1 and M2. The results show that the 
proposed strategy (M1) can ensure a better performance 
compared with non-proactive strategies (M2).  

Fig. 15 shows the outputs of the critical generator on the 
trajectory. Since the critical generator may be in failure at the 
5th decision epoch, its outputs remain close to its lower limit 
from the 1st to 4th decision epochs to avoid a large loss of load 
due to power unbalance considering operation constraints. 

Fig. 16 shows the cost of expected loss of load with different 
numbers of available generators for dispatch. Each value is the 
average value based on 50 simulations, which randomly select 
generators for dispatch. Results show that more generators for 
dispatch tend to be less costs of expected loss of load. 
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VI. CONCLUSIONS 
In this paper, a Markov model was proposed to construct 

sequentially proactive generation redispatch strategies based on 
system states, in consideration of operating constraints. Since 
trajectories and the failures of components on the trajectory due 
to extreme weather events are with uncertainties, a recursive 
value function that included the current cost and the future cost 
for each state was established. To address the computational 
difficulties caused by the constraints of ramping rates of 
generators, the recursive value function was transformed into a 
mixed integer linear programming model, with the probability 
of each state used as the weight of each objective. Simulations 
were carried out on the IEEE 30-bus system, the IEEE 118-bus 
system and a simplified Guangdong power grid system to 
validate the proposed model. The major findings are as follows. 
1) The Markov model can adequately describe sequential 
decision processes with consideration of uncertainties during 
an event unfolding. 2) The proposed strategies tend to 
redispatch the power flows of lines on the trajectory of the 
extreme weather event to reduce potential power loss. 3) The 
proposed model provides insight into proactive operation 
strategies under extreme weather events. The results 
demonstrate that the proposed proactive operation strategies 
can reduce loss of load due to the development of extreme 
events. 
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