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Abstract

A perturbation analysis is presented in this paper for electroosmotic (EO) flow of

an Eyring fluid through a wide rectangular microchannel that rotates about an axis

perpendicular to its own. Mildly shear-thinning rheology is assumed such that at the

leading order the problem reduces to that for Newtonian EO flow in a rotating channel,

while the shear thinning effect shows up in a higher-order problem. Using the relaxation

time as the small ordering parameter, analytical solutions are deduced for the leading-

as well as the first-order problems in terms of the dimensionless Debye and rotation

parameters. The velocity profiles of the Ekman–EDL layer, which is the boundary layer

that arises when the Ekman layer and the electric double layer (EDL) are comparably

thin, are also deduced for an Eyring fluid. It is shown that the present perturbation

model can yield results that are close to the exact solutions even when the ordering

parameter is as large as order unity. By this order of the relaxation time parameter,

the enhancing effect on the rotating EO flow due to the shear-thinning Eyring rheology

can be significant.
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1 Introduction

Owing to their portability and high throughput, microfluidic devices have now been in com-

mon use for chemical or biological assays, where the fluid transport is often times driven by

electrokinetic pumping. For a variety of reasons such as ionization of surface groups, many

solid surfaces will acquire an electric charge when brought into contact with an electrolyte

solution, which will in return upset the charge balance of the solution. The charged surface

will furthermore determine the distribution of free ions in the solution. Ions of opposite

charge with that of the surface (or counterions) will be attracted while those of the same

charge (or coions) will be repelled. As a result, the so-called electric double layer (EDL)

develops near the solid surface, where the Stern layer is formed by immobile ions sorbed

onto the surface and the diffuse layer develops under the influence of electric attraction and

random thermal motion. The electric potential at the slipping plane of the EDL is known as

the zeta potential. Outside the EDL, the solution is essentially electrically neutral. When

an electric field is applied externally, the net charges in the EDL will move, thereby causing

the bulk fluid to move as well through the viscous action. Such flow is termed electroosmotic

(EO) flow. Electrokinetic pumping is known to be better than hydrodynamic pumping in

several aspects, such as easy control and fabrication, less sensitivity of flow rate to channel

size, negligible sample dispersion, low noise, absence of mechanical moving parts, and so on.

Microfluidics are often applied to the assay of biofluids, such as blood and DNA solutions,

which will exhibit non-Newtonian behaviors when sheared in a microscale environment. Stud-

ies on EO flow of non-Newtonian fluid in microchannels have been reported extensively in the

literature in recent years [1]. For EO flow of non-Newtonian fluids, the most chosen model

has been the power-law model, as has been studied by, among many others, Chakraborty [2],

Zhao et al. [3], Zhao and Yang [4, 5], Babaie et al. [6], Deng et al. [7], Dhar et al. [8], and

Ng and Qi [9]. The power-law model is a relatively simple two-parameter nonlinear model

that can conveniently represent rheological behaviors of shear thinning, Newtonian, or shear

thickening by its behavior index being smaller than, equal to, or larger than unity, respec-

tively. Besides the power-law fluid, other models have also been used to describe EO flow

of non-Newtonian fluids. Examples include viscoelastic fluids [10, 11, 12], and viscoplastic

materials [13, 14].
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Compared with other models, EO flow of Eyring fluid has received much less attention

than it deserves. The Eyring model is a kind of structural viscosity model that can represent a

wide range of non-Newtonian fluids, such as colloidal suspensions. In fact, this non-Newtonian

model, although more complicated in form, is superior to other models in some aspects. First,

the Eyring model is derived from the kinetic theory of liquid rather than from an empirical

reasoning as in the case of power-law fluid. Second, an Eyring fluid will tend to a Newtonian

fluid of finite viscosity at both low and high shear rates, while the apparent viscosity of a

power-law fluid is infinite at zero shear rate. There exist in the literature only a couple

of studies on EO flow of Eyring fluid, however. Berli and Olivares [15] developed a two-

zone model for EO flows of various types of non-Newtonian fluids (power-law, Bingham, and

Eyring), where the outer zone is a Newtonian depletion layer covering the EDL, and the inner

zone is non-Newtonian but without electric body force. More recently, Goswami et al. [16]

looked into EO flow of a Powell-Eyring fluid through a slit microchannel and they obtained

analytical solution by employing the homotopy perturbation method. The need to further

understand EO flow of Eyring fluid has motivated us to pursue the present study.

Another key aspect of the present study is to consider EO flow in a rotating environment.

This is germane to centrifugal microfluidics [17, 18], which is an emerging technology using

centrifugation for mass separation and flow control on the microscale. This technology may

offer a convenient way to integrate liquid handling for sample preparation and subsequent

detection [19]. Rapid mixing can also be achieved in a centrifugal microfluidic platform by

alternate rotation (clockwise and counter-clockwise) of microchambers containing the mix-

ture [20, 21, 22, 23]. In a rotating environment, secondary flow is induced in the plane

perpendicular to the primary flow by the Coriolis force. As the direction of the secondary

flow depends on the sense of rotation, the secondary flow can be used to generate directional

switching at high rotation frequencies [24, 25]. To enhance the efficiency of flow control and

separation, some researchers have fabricated systems incorporating electrokinetics into cen-

trifugal pumping [26–29]. In particular, Wang et al. [26] developed a dual-pumping CD-like

microfluidic system for biomedical separation. It was a multi-channel electrophoretic separa-

tion CD system that worked under the interaction between the centrifugal and electric forces.

These authors found that, through the adjustment of the applied electric field, a higher sepa-
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ration efficiency could be attained by centrifugation, with the advantages of lower joule-heat

generation, low chemical reaction, and steadiness of ion concentration during processes.

Motivated by Duffy et al. [17], Chang and Wang [30] pioneered a theoretical study on

rotating EO flow over an infinite plate or in a parallel-plate channel. They developed analyt-

ical solutions for the axial and transverse flows as functions of the parameters characterizing

the rotation, viscous effect and electrokinetics. The work by Chang and Wang [30] was later

extended by Xie and Jian [31] and Li et al. [32] for rotating EO flow of power-law and third-

grade fluids between two parallel plates. Lateral confinement due to side walls was, however,

ignored by these authors. More recently, Ng and Qi [33] presented an analytical model for

EO flow of a Newtonian fluid through a rotating rectangular channel, where the confinement

due to side walls was taken into account. They deduced in particular the velocity profiles

in an electrokinetically modulated Ekman layer, known as Ekman–EDL layer, that develops

near a wall under the conditions of fast rotation and a thin EDL.

The aim of the present study is to develop analytical solution for EO flow of an Eyring

fluid in a rotating wide rectangular channel. The channel is assumed to be so wide that the

primary and secondary flows are functions of the coordinate along the axis of rotation only.

It is also assumed that the dimensionless relaxation time, which can be interpreted as the

ratio of the EO stress to the stress parameter of the Eyring model, is a small parameter. The

Eyring model can thereby be expanded into two terms, where the first term corresponds to

the Newtonian model valid at small shear rates, while the second term corresponds to a first-

order correction accounting for shear-thinning behavior of the material. On this basis, we

may carry out a perturbation analysis using the square of the dimensionless relaxation time

as the small ordering parameter. In the leading-order problem, we allow the zeta potentials

on the upper and lower walls to be different, which extends the work by Ng and Qi [33] in

the limiting case of a very wide channel. For simplicity, only the condition of equal zeta

potentials is considered in the first-order problem. We shall further look into the limiting

case when the rotation speed is so high that the Ekman layer becomes as thin as the EDL.

The resulting Ekman–EDL layer is shown to be characterized by the Ekman layer thickness

normalized by the Debye length. This extends the solution deduced by Ng and Qi [33] for a

Newtonian Ekman–EDL layer to a higher order for Eyring fluid. Finally, with some numerical
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results, we shall examine how rotation may change the velocity profiles depending on the zeta

potential distribution on the two walls. We shall also confirm that the effects of rotation on

the primary and secondary flows are qualitatively the same in the leading and the first orders.

2 Problem formulation

The present problem is to consider rotating electroosmotic (EO) flow of an Eyring fluid

through a wide rectangular channel. As shown in Fig. 1, a right-handed coordinate system

that is attached to the rotating channel is defined such that the x- and y-axes point along the

longitudinal and transverse directions, respectively, while the z-axis points vertically upward.

The upper and lower walls, located at z = ±h, are charged with different zeta potentials, ζ1

and ζ2, respectively. The channel rotates about the z-axis at a constant rotation speed Ω.

Primary flow occurs along the x-direction resulting from an electric field Ex applied in this

direction, while secondary flow arises in the (y, z) plane as driven by Coriolis force induced

by the system rotation. It is assumed that the channel is long in the x-direction and wide in

the y-direction such that the flow, in the fully-developed region, is essentially independent of

x and y [30, 31, 32]. As a result, the velocity component in the z-direction is identically zero.

Owing to the lateral side walls, the net flux in the y-direction is zero. To satisfy this condition,

a pressure gradient in this direction is induced in order to generate a counterbalancing flow.

Further assuming negligible inertia and gravity effects, the governing equations in a ro-

tating frame for steady incompressible flow read as follows:

∇ · ~u = 0, (1)

2ρ~Ω × ~u = −∇P + ∇ ·T + ρe
~E, (2)

where T is the stress tensor, ~u = (u, v, 0) is the velocity vector seen in the rotating frame with

u and v denoting respectively the axial and transverse velocities, ~Ω = (0, 0,Ω), ~E = (Ex, 0, 0),

ρ is the fluid density, P is the reduced pressure, and ρe is the free charge density in the fluid.

It follows from the assumption of a very long and wide channel that the variables are functions

of z only: u = u(z), v = v(z), and ρe = ρe(z). The pressure gradient is non-zero only in the

y-direction, as reasoned above.
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The electric potential distribution ψ(z) in the electric double layer (EDL) is related to

the free charge density ρe by the following Poisson equation:

d2ψ

dz2
= −

ρe

ε
, (3)

where ε is the dielectric permittivity of the liquid electrolyte. With the further assumptions

of a Boltzmann distribution for the ions in the EDL and a 1:1 symmetrical electrolyte of

valence Z, the free charge density is given by

ρe = −2Zen∞ sinh

(

Zeψ

kBT

)

, (4)

where e is the fundamental charge, n∞ is the bulk concentration, kB is the Boltzmann con-

stant, and T is the absolute temperature. On applying the Debye–Hückel approximation,

which is valid for very small potential, |Zeψ/kBT | � 1, a linearized Poisson–Boltzmann

equation results from Eqs. (3) and (4):

d2ψ

dz2
− κ2ψ = 0, (5)

where κ = (2Z2e2n∞/εkBT )1/2 is called the Debye parameter, the inverse of which is the De-

bye shielding thickness of the EDL. With the following boundary conditions for the potential

ψ:

ψ = ζ1 at z = h, (6)

ψ = ζ2 at z = −h,

the solution to Eq. (5) is given by

ψ(z) = a
cosh(κz)

cosh(κh)
+ b

sinh(κz)

sinh(κh)
(7)

with a = (ζ1 + ζ2)/2 and b = (ζ1 − ζ2)/2.

By virtue of the simplifying assumptions stated above, the Cauchy momentum equations

reduce to the following component form:

−2ρΩv =
dτxz

dz
− εκ2ψEx, (8)

2ρΩu = −
dP

dy
+

dτyz

dz
, (9)
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where τxz and τyz are the only non-zero stress components, and dP/dy is the pressure gradient

induced in the y-direction in order to maintain a zero net flux in this direction.

Under simple shear, the rheology of an Eyring fluid can be expressed as [34]:

γ̇

γ̇0
= sinh

(

τ

τ0

)

, (10)

where γ̇ is the shear, τ is the shear stress, and γ̇0 and τ0 are material constants characterizing

the shear rate and shear stress. For three-dimensional shear, a more formal constitutive

relationship in terms of the stress tensor τij and the rate-of-deformation tensor γ̇ij can be

obtained as follows:

τij = µ(γ̇)γ̇ij , (11)

where

µ(γ̇) = µ0
sinh−1(λγ̇)

λγ̇
, (12)

in which

γ̇ =
√

1
2
γ̇ij : γ̇ij , γ̇ij =

∂ui

∂xj
+
∂uj

∂xi
, (13)

and µ0 and λ are parameters characterizing the viscosity and relaxation time of the material.

On comparing with the model for simple shear, one can readily identify that

µ0 = τ0/γ̇0, λ = γ̇−1
0 . (14)

Also note the two extremes of µ:

µ →







µ0 as λγ̇ � 1

0 as λγ̇ � 1
. (15)

Hence, the Eyring fluid described by Eqs. (11) and (12) will behave like a Newtonian fluid

with viscosity µ0 when γ̇ is much smaller than γ̇0, but behave like a shear-thinning fluid (i.e.,

with a diminishing effective viscosity) when γ̇ is of order γ̇0 or larger.

To allow the present problem to be solved analytically, we assume that the fluid is

only subjected to relatively low shear rates such that λγ̇ � 1, by which we may expand

sinh−1(λγ̇) ≈ λγ̇ − λ3γ̇3/6, thereby leading to the approximation

µ ≈ µ0

(

1 −
λ2γ̇2

6

)
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= µ0

{

1 −
λ2

6

[

(

du

dz

)2

+

(

dv

dz

)2
]}

, (16)

where the error of the approximation is O(λ4γ̇4). Obviously, in this two-term expansion, the

first term corresponds to the Newtonian model, which is recovered when λ = 0, while the

second term, which is of order λ2γ̇2, represents the shear-thinning property of the material.

Based on the simplified Eyring model, the stress components are now given by

τxz = µ0

{

du

dz
−
λ2

6

[

(

du

dz

)3

+

(

dv

dz

)2
du

dz

]}

, (17)

and

τyz = µ0

{

dv

dz
−
λ2

6

[

(

du

dz

)2
dv

dz
+

(

dv

dz

)3
]}

. (18)

Substituting Eqs. (17) and (18) into Eqs. (8) and (9) gives

−2ρΩv = µ0

{

d2u

dz2
−
λ2

6

[

3

(

du

dz

)2
d2u

dz2
+

(

dv

dz

)2
d2u

dz2
+ 2

du

dz

dv

dz

d2v

dz2

]}

− εκ2ψEx, (19)

2ρΩu = −
dP

dy
+ µ0

{

d2v

dz2
−
λ2

6

[

3

(

dv

dz

)2
d2v

dz2
+

(

du

dz

)2
d2v

dz2
+ 2

du

dz

dv

dz

d2u

dz2

]}

. (20)

Let us introduce the following normalized variables and dimensionless parameters (distin-

guished by an overhead caret):

(ŷ, ẑ) = (y, z)/h, (û, v̂) = (u, v)/U, (ψ̂, â, b̂) = (ψ, a, b)/ζ0,

κ̂ = κh, P̂ = Ph/(µ0U), λ̂ = λκU,







(21)

in which U = −εζ0Ex/µ0 is the Helmholtz–Smoluchowski (or EO slip) velocity, and ζ0 is a

characteristic value for the electric potential. Note that in pure EO flow the velocity gradient

is largely zero outside the EDL, and hence the shear rate is scaled by the EO slip velocity

divided by the EDL thickness (instead of the channel height): γ̇ ∼ κU . This explains the

normalization for the relaxation time parameter λ̂ introduced above. Further note that,

from Eq. (14), λ = µ0/τ0, by which we may also express the dimensionless time relaxation

parameter as a ratio of stresses:

λ̂ = τE/τ0, (22)

where τE = −εκζ0Ex is known as the characteristic shear stress in EO flow. We may therefore

interpret that a small shear rate λ̂ � 1 amounts to a small ratio of the applied EO stress to

the stress parameter of the material, which accords with the simple-shear relationship (10).
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In terms of the normalized variables, the momentum equations can be expressed in the

following non-dimensional form

−ωv̂ =
d2û

dẑ2
−

λ̂2

6κ̂2

[

3

(

dû

dẑ

)2
d2û

dẑ2
+

(

dv̂

dẑ

)2
d2û

dẑ2
+ 2

dû

dẑ

dv̂

dẑ

d2v̂

dẑ2

]

+ κ̂2ψ̂, (23)

ωû = K̂y +
d2v̂

dẑ2
−

λ̂2

6κ̂2

[

3

(

dv̂

dẑ

)2
d2v̂

dẑ2
+

(

dû

dẑ

)2
d2v̂

dẑ2
+ 2

dû

dẑ

dv̂

dẑ

d2û

dẑ2

]

, (24)

where ω = 2ρΩh2/µ0 is the inverse Ekman number, K̂y = −dP̂ /dŷ is the normalized pressure

gradient induced in the ŷ-direction, and the non-dimensional electric potential distribution

ψ̂ is given by

ψ̂(ẑ) = â
cosh(κ̂ẑ)

cosh(κ̂)
+ b̂

sinh(κ̂ẑ)

sinh(κ̂)
, (25)

where â = (ζ̂1 + ζ̂2)/2 and b̂ = (ζ̂1 − ζ̂2)/2. Note that the Ekman number is a dimensionless

number representing the ratio of viscous force to Coriolis force in a rotating fluid system. The

smaller the Ekman number, the thinner the Ekman layer, which is a boundary layer where

viscous effect is balanced by Coriolis effect.

As explained above, the internally triggered pressure gradient K̂y that appears in Eq. (24)

is to generate a counterbalancing flow in the transverse direction so as to maintain a zero net

flux in this direction as required by the lateral confinement of the channel. To determine K̂y,

we need to impose the following condition for the flow

∫ 1

−1

v̂(ẑ)dẑ = 0. (26)

Our assumption of small shear rates, namely λγ̇ � 1, which has been used to approximate

the Eyring model, means that we may use λ̂ � 1 as a small ordering parameter here. Let us

expand the variables into the following perturbation series:

û = û0 + λ̂2û1 + · · · , (27)

v̂ = v̂0 + λ̂2v̂1 + · · · , (28)

K̂y = K̂y0 + λ̂2K̂y1 + · · · . (29)

To be consistent with the approximation in Eq. (16), it suffices for us to consider the first two

orders in the perturbation expansions. Again, the O(1) solution (û0, v̂0, K̂y0) corresponds to
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that for Newtonian fluid flow, while the O(λ̂2) solution (û1, v̂1, K̂y1) gives the correction to

the leading order solution in order to account for the shear-thinning behavior of the material.

Substituting the expansions above into Eqs. (23), (24) and (26), and collecting terms of

the same order, we get the following perturbation problems, where a single/double prime

denotes a first-/second-derivative with respect to ẑ.

O(1) problem:

−ωv̂0 = û′′0 + κ̂2ψ̂, (30)

ωû0 = K̂y0 + v̂′′0 , (31)
∫ 1

−1

v̂0dẑ = 0. (32)

O(λ̂2) problem:

−ωv̂1 = û′′1 − f0, (33)

ωû1 = K̂y1 + v̂′′1 − g0, (34)
∫ 1

−1

v̂1dẑ = 0, (35)

where

f0 =
(

3û′20 û
′′

0 + v̂′20 û
′′

0 + 2û′0v̂
′

0v̂
′′

0

)

/6κ̂2, (36)

g0 =
(

3v̂′20 v̂
′′

0 + û′20 v̂
′′

0 + 2û′0v̂
′

0û
′′

0

)

/6κ̂2. (37)

With the no-slip condition at the two walls:

û0 = û1 = v̂0 = v̂1 = 0 at ẑ = ±1, (38)

the two problems can be solved in sequence, as detailed in the following sections.

3 Solution to O(1) problem

As remarked above, the solution to the O(1) problem, (û0, v̂0, K̂y0), corresponds to the Newto-

nian limit of the Eyring model. Therefore, presented in this section is essentially the problem

of EO flow of Newtonian fluid in a very wide rotating channel. A similar problem, but for

equal zeta potentials on the two walls, has been studied by Ng and Qi [33].
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For ω 6= 0, Eqs. (30) and (31) can be rewritten as

û
(4)
0 + ω2û0 = ωK̂y0 − κ̂4ψ̂, (39)

v̂0 = −ω−1
(

û
′′

0 + κ̂2ψ̂
)

, (40)

in which the normalized potential distribution ψ̂ is given by Eq. (25). Equation (39) is a

fourth-order inhomogeneous ordinary differential equation, of which the particular solution

ûp
0 and the complementary solution ûc

0 can be readily found as follows:

ûp
0 =

K̂y0

ω
−

(

κ̂4

κ̂4 + 4η4

)

[

â sech(κ̂) cosh(κ̂ẑ) + b̂ csch(κ̂) sinh(κ̂ẑ)
]

, (41)

and

ûc
0 =

1

2
eηẑ [C1 cos(ηẑ) + C2 sin(ηẑ)] +

1

2
e−ηẑ [C ′

1 cos(ηẑ) + C ′

2 sin(ηẑ)] , (42)

in which C1,2 and C ′

1,2 are four yet-to-be-determined coefficients, and η = (ω/2)1/2 is a

dimensionless rotation parameter. Substituting û0 = ûp
0 + ûc

0 into Eq. (40) then gives

v̂0 = −

(

2κ̂2η2

κ̂4 + 4η4

)

[

â sech(κ̂) cosh(κ̂ẑ) + b̂ csch(κ̂) sinh(κ̂ẑ)
]

+
1

2
eηẑ [C1 sin(ηẑ) − C2 cos(ηẑ)] −

1

2
e−ηẑ [C ′

1 sin(ηẑ) − C ′

2 cos(ηẑ)] . (43)

Using the no-slip boundary conditions in Eq. (38), the four coefficients can be determined as

C1 = −
2 cos(η) cosh(η)

cos(2η) + cosh(2η)

(

K̂y0

ω

)

+
2âκ̂2 [κ̂2 cos(η) cosh(η) + 2η2 sin(η) sinh(η)]

(κ̂4 + 4η4) [cos(2η) + cosh(2η)]

−
2b̂κ̂2 [κ̂2 cos(η) sinh(η) + 2η2 sin(η) cosh(η)]

(κ̂4 + 4η4) [cos(2η) − cosh(2η)]
, (44)

C2 = −
2 sin(η) sinh(η)

cos(2η) + cosh(2η)

(

K̂y0

ω

)

+
2âκ̂2 [κ̂2 sin(η) sinh(η)− 2η2 cos(η) cosh(η)]

(κ̂4 + 4η4) [cos(2η) + cosh(2η)]

−
2b̂κ̂2 [κ̂2 sin(η) cosh(η) − 2η2 cos(η) sinh(η)]

(κ̂4 + 4η4) [cos(2η) − cosh(2η)]
, (45)

C ′

1 = −
2 cos(η) cosh(η)

cos(2η) + cosh(2η)

(

K̂y0

ω

)

+
2âκ̂2 [κ̂2 cos(η) cosh(η) + 2η2 sin(η) sinh(η)]

(κ̂4 + 4η4) [cos(2η) + cosh(2η)]

+
2b̂κ̂2 [κ̂2 cos(η) sinh(η) + 2η2 sin(η) cosh(η)]

(κ̂4 + 4η4) [cos(2η) − cosh(2η)]
, (46)
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C ′

2 =
2 sin(η) sinh(η)

cos(2η) + cosh(2η)

(

K̂y0

ω

)

−
2âκ̂2 [κ̂2 sin(η) sinh(η)− 2η2 cos(η) cosh(η)]

(κ̂4 + 4η4) [cos(2η) + cosh(2η)]

−
2b̂κ̂2 [κ̂2 sin(η) cosh(η) − 2η2 cos(η) sinh(η)]

(κ̂4 + 4η4) [cos(2η) − cosh(2η)]
. (47)

Finally, the transverse pressure gradient K̂y0 can be found by substituting v̂0 into Eq. (32).

After some algebra, we get

K̂y0

ω
=

âκ̂4

κ̂4 + 4η4
+

(

2âκ̂2η2

κ̂4 + 4η4

)

sin(2η) + sinh(2η)

sin(2η) − sinh(2η)

−

[

4âκ̂η3 tanh(κ̂)

κ̂4 + 4η4

]

cos(2η) + cosh(2η)

sin(2η) − sinh(2η)
. (48)

Integrating the axial velocity across the channel gives the flow-rate of the primary flow

q̂0 =

∫ 1

−1

û0dẑ =
2K̂y0

ω
−

2âκ̂3 tanh(κ̂)

κ̂4 + 4η4
+

(

4âκ̂2η

κ̂4 + 4η4

)

cos(2η) − cosh(2η)

sin(2η) − sinh(2η)

+

[

4âκ̂η2 tanh(κ̂)

κ̂4 + 4η4

]

sin(2η) + sinh(2η)

sin(2η) − sinh(2η)
. (49)

It is worth pointing out that K̂y0 and q̂0 depend only on the average of the two zeta potentials

(i.e., â), but not the difference of them (i.e., b̂). In fact, both these quantities are linearly

proportional to â. Hence, when ζ̂1 = −ζ̂2 or â = 0, both the pressure gradient and the flow

rate are zero.

In the particular case when the two zeta potentials are the same, ζ̂1 = ζ̂2 = 1, the solution

can be obtained by setting â = 1 and b̂ = 0 as follows:

û
(s)
0 =

K̂y0

ω
−

[

κ̂4 sech(κ̂)

κ̂4 + 4η4

]

cosh(κ̂ẑ) + C1 cosh(ηẑ) cos(ηẑ) + C2 sinh(ηẑ) sin(ηẑ), (50)

v̂
(s)
0 = −

(

2κ̂2η2

κ̂4 + 4η2

)

sech(κ̂) cosh(κ̂ẑ) + C1 sinh(ηẑ) sin(ηẑ) − C2 cosh(ηẑ) cos(ηẑ), (51)

where the term K̂y0/ω is given by Eq. (48) with â = 1. This solution for the particular case

of equal zeta potentials on the two walls agrees with the one previously obtained by Ng and

Qi [33].

For a non-rotating channel, ω = 0, the secondary flow is identically zero (v̂0 ≡ 0), and the

axial velocity can be readily found as

ûnr
0 (ẑ) = â

[

1 −
cosh(κ̂ẑ)

cosh(κ̂)

]

+ b̂

[

ẑ −
sinh(κ̂ẑ)

sinh(κ̂)

]

, (52)
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and the flow-rate of the axial flow is given by

q̂nr
0 =

∫ 1

−1

ûnr
0 dẑ = 2â

(

1 −
tanh(κ̂)

κ̂

)

. (53)

4 Solution to O(λ̂2) problem

For simplicity, we consider only the case of equal zeta potentials, ζ̂1 = ζ̂2 = 1, on deducing

solutions to the O(λ̂2) problem. By symmetry, we may reduce the domain of analysis to the

upper half of the channel, 0 ≤ ẑ ≤ 1. The algebra for this problem is much more tedious and

lengthy than that for the preceding problem, and we have obtained the analytical expressions

presented below with the aid of the package Mathematica 9.0.

Let us first rewrite Eqs. (33) and (34) as follows (again, ω 6= 0 is assumed here; the case

for ω = 0 will be discussed separately in Section 6):

û
(4)
1 + ω2û1 = ωK̂y1 + f ′′

0 − ωg0, (54)

v̂1 = ω−1 (f0 − û′′1) , (55)

where f0 and g0 are given in Eqs. (36) and (37), respectively. The complementary solution

(ûc
1, v̂

c
1) and the particular solution (ûp

1, v̂
p
1) are expressible by

ûc
1 = C3 cos(ηẑ) cosh(ηẑ) + C4 sin(ηẑ) sinh(ηẑ), (56)

v̂c
1 = C3 sin(ηẑ) sinh(ηẑ) − C4 cos(ηẑ) cosh(ηẑ), (57)

ûp
1 =

κ̂4 sech2(κ̂)

12 (κ̂4 + 4η4)
(ηẑ) [(C1 − C2) sin(ηẑ) cosh(ηẑ) − (C1 + C2) cos(ηẑ) sinh(ηẑ)]

+
K̂y1

ω
+ Uκ(ẑ) +

(

η2

κ̂2

)

Uη(ẑ), (58)

v̂p
1 = −

κ̂4 sech2(κ̂)

12 (κ̂4 + 4η4)
(ηẑ) [(C1 −C2) cos(ηẑ) sinh(ηẑ) + (C1 + C2) sin(ηẑ) cosh(ηẑ)]

+ Vκ(ẑ) +

(

η2

κ̂2

)

Vη(ẑ), (59)
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where C3,4 are yet-to-be-determined coefficients, and Uκ,η(ẑ) and Vκ,η(ẑ) are four functions

given in the appendix. By applying the no-slip boundary conditions, the coefficients C3,4 can

be found as follows:

C3 = −
2 cos(η) cosh(η)

cos(2η) + cosh(2η)

[

Uc +
K̂y1

ω

]

−
2 sin(η) sinh(η)Vc

cos(2η) + cosh(2η)
, (60)

C4 =
2cot(η) coth(η)

cos(2η) + cosh(2η)

[

cos(η) cosh(η)

(

Uc +
K̂y1

ω

)

+ sin(η) sinh(η)Vc

]

− csc(η)csch(η)

[

Uc +
K̂y1

ω

]

, (61)

where

Uc = Mκ +

(

η2

κ̂2

)

Mη +
κ̂4η sech2(κ̂)

12 (κ̂4 + 4η4)
[(C1 − C2) sin(η) cosh(η) − (C1 + C2) cos(η) sinh(η)] ,

(62)

and

Vc = Nκ +

(

η2

κ̂2

)

Nη −
κ̂4η sech2(κ̂)

12 (κ̂4 + 4η4)
[(C1 − C2) cos(η) sinh(η) + (C1 + C2) sin(η) cosh(η)] ,

(63)

in which Mκ = Uκ(ẑ = 1), Mη = Uη(ẑ = 1), Nκ = Vκ(ẑ = 1), and Nη = Vη(ẑ = 1). Their

expressions are given in the appendix.

The transverse pressure gradient K̂y1 is then found by substituting v̂1 = v̂c
1 + v̂p

1 into Eq.

(35):

K̂y1

ω
= −Uc − Vc

sin(2η) + sinh(2η)

sin(2η) − sinh(2η)
−
Kc

2

cos(2η) + cosh(2η)

sin(2η) − sinh(2η)
, (64)

where

Kc = Kκ +

(

η2

κ̂2

)

Kη +
κ̂4η sech2(κ̂)

3 (κ̂4 + 4η4)
[C1 sin(η) sinh(η) − C2 cos(η) cosh(η)] , (65)

in which the two coefficients Kκ and Kη are also given in the appendix.

After obtaining the particular and complementary solutions, the O(λ̂2) flow-rate of the

primary flow can then be found:

q̂1 = 2

∫ 1

0

û1dẑ = 2

∫ 1

0

(ûp
1 + ûc

1)dẑ, (66)
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which can be numerically computed using Simpson’s rule. Adding this flux to the leading

order flux gives the total flux

q̂ = q̂0 + λ̂2q̂1 for ω 6= 0, (67)

where q̂0 is the O(1) flow-rate given by Eq. (49) with â = 1, corresponding to the condition

ζ̂1 = ζ̂2 = 1 under which the O(λ̂2) solution has been deduced.

5 Ekman–EDL layer

Let us consider in this section a limiting flow structure, which happens when the rotation and

Debye parameters are both large, corresponding to a high speed rotation and a thin EDL.

The boundary layer structure that arises under such a limiting condition is known as an

Ekman–EDL layer [33]. It is a thin near-wall layer incorporating the effects due to pressure,

Coriolis, viscous and electric forces. Outside this layer, where the viscous and electric forces

vanish, the flow is geostrophic, as it results from a balance between pressure gradient and

Coriolis force.

Recall that the dimensionless rotation parameter is η = (ω/2)1/2, where ω = 2ρΩh2/µ0 is

the inverse Ekman number. Alternatively, we may write η = h/δE , where δE = (µ0/ρΩ)1/2

is the Ekman layer thickness. An Ekman layer shows up when the Ekman thickness is much

smaller than the channel height, δE � h, or η � 1. Also recall that the dimensionless Debye

parameter κ̂ = κh is the ratio of the channel height to the Debye length. Hence, a thin

EDL corresponds to κ̂ � 1. An Ekman–EDL layer arises when κ̂ and η are both large, and

comparable to each other.

To fix ideas, let us consider an Ekman–EDL that develops near the upper wall. In this

regard, we introduce the following stretched local coordinate

z∗ = η(1 − ẑ). (68)

We further introduce a modified dimensionless Debye parameter, which is the Debye param-

eter normalized by the Ekman layer thickness instead of the channel height:

ξ = κ̂/η. (69)
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The electric potential near the upper wall then simplifies to ψ̂ = exp(−ξz∗). In terms of the

newly-defined variable z∗, the velocities in the Ekman–EDL layer can be obtained by taking

the limits of η � 1 and κ̂� 1 in the solutions given in Sections 3 and 4. Again, the condition

of equal zeta potentials ζ̂1 = ζ̂2 = 1 is assumed here.

The axial and transverse velocities, denoted by û∗(z∗) and v̂∗(z∗), can be expressed as

follows. First, the perturbation expansions

û∗(z∗) = û∗0(z
∗) + λ̂2û∗1(z

∗) + · · · , (70)

and

v̂∗(z∗) = v̂∗0(z
∗) + λ̂2v̂∗1(z

∗) + · · · . (71)

The O(1) velocities are

û∗0 = K̂∗

y0 −
ξ4

ξ4 + 4
e−ξz∗ +

2ξ2 − 4ξ

ξ4 + 4
e−z∗ cos(z∗) +

2ξ2

ξ4 + 4
e−z∗ sin(z∗), (72)

v̂∗0 = −
2ξ2

ξ4 + 4
e−ξz∗ −

2ξ2 − 4ξ

ξ4 + 4
e−z∗ sin(z∗) +

2ξ2

ξ4 + 4
e−z∗ cos(z∗), (73)

where

K̂∗

y0 = lim
κ̂,η�1

(

K̂y0

ω

)

=
ξ4 − 2ξ2 + 4ξ

ξ4 + 4
. (74)

These leading-order velocities, which are velocities in a Newtonian Ekman–EDL layer, have

been obtained previously by Ng and Qi [33]. The O(λ̂2) velocities are

û∗1 = K̂∗

y1 + U∗

κ(z∗) +
U∗

η (z∗)

ξ2
−

(

N∗

κ +
N∗

η

ξ2

)

e−z∗ sin(z∗)

−

(

N∗

κ +
N∗

η

ξ2
+
K∗

κ

2
+
K∗

η

2ξ2

)

e−z∗ cos(z∗), (75)

v̂∗1 = V ∗

κ (z∗) +
V ∗

η (z∗)

ξ2
+

(

N∗

κ +
N∗

η

ξ2
+
K∗

κ

2
+
K∗

η

2ξ2

)

e−z∗ sin(z∗)

−

(

N∗

κ +
N∗

η

ξ2

)

e−z∗ cos(z∗), (76)

where

K̂∗

y1 = lim
κ̂,η�1

(

K̂y1

ω

)

= −M∗

κ −
M∗

η

ξ2
+N∗

κ +
N∗

η

ξ2
+
K∗

κ

2
+
K∗

η

2ξ2
, (77)

in which the six coefficients M∗

κ,η, N
∗

κ,η and K∗

κ,η are given in the appendix.
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In the inviscid core (i.e., outside the Ekman–EDL layer), the transverse velocity tends to

zero, while the axial velocity tends to the following geostrophic limit

lim
z∗→∞

û∗ = K̂∗

y0 + λ̂2K̂∗

y1. (78)

6 Non-rotating channel

For completeness of this paper, let us also consider the case of EO flow of an Eyring fluid

through a non-rotating parallel-plate channel. Only ζ̂1 = ζ̂2 = 1 is considered here.

6.1 Exact solution

When the channel is not rotating (ω = 0), the secondary flow vanishes, and the flow becomes

purely electroosmotic. In this case Eq. (8) reduces to

dτxz

dz
= εκ2Exψ. (79)

Upon integrating this equation, and using the symmetry condition, τxz = 0 at z = 0, the

shear stress distribution is obtained as follows:

τxz = −τE
sinh(κz)

cosh(κ)
, (80)

where τE = −εκExζ0. Under simple shear, the rheological behavior of an Eyring fluid is given

by Eq. (10). Combining Eqs. (80) and (10) gives

du

dz
=
τ0
µ0

sinh

[

−
τE sinh(κz)

τ0 cosh(κ)

]

, (81)

or in dimensionless form,
dû

dẑ
=
κ̂

λ̂
sinh

[

−λ̂
sinh(κ̂ẑ)

cosh(κ̂)

]

. (82)

Integrating the above equation while applying the no-slip boundary condition gives a formal

expression for the velocity

û(ẑ) =
κ̂

λ̂

∫ 1

ẑ

sinh

[

λ̂
sinh(κ̂ẑ)

cosh(κ̂)

]

dẑ for 0 ≤ ẑ ≤ 1, (83)
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where the integral can be numerically evaluated using Simpson’s rule. This velocity profile

is an exact solution to the problem, as it is applicable for any values of λ̂. The flow rate in a

non-rotating channel is then given by:

q̂ = 2

∫ 1

0

û(ẑ)dẑ for ω = 0, (84)

which is also found numerically.

6.2 Perturbation solution

Using the method of perturbation, an approximate solution can also be found for λ̂� 1. For

a non-rotating channel, the perturbation problems reduce to

û′′0 + κ̂2ψ̂ = 0, (85)

û′′1 − û′20 û
′′

0/(2κ̂
2) = 0. (86)

The solutions to these problems can be readily found as below:

ûappr = û0 + λ̂2û1

= 1 −
cosh(κ̂ẑ)

cosh(κ̂)
− λ̂2

[

cosh(3κ̂ẑ) − 9 cosh(κ̂ẑ) + 9 cosh(κ̂) − cosh(3κ̂)

72 cosh3(κ̂)

]

, (87)

which accords with the perturbation solutions (for zero interfacial slip) that has been deduced

recently by Goswami et al. [16].

In Table 1, we compare, for various values of λ̂, the axial velocity as computed by the

exact Eq. (83) with that by the approximate Eq. (87). In theory, the value of λ̂ should be

much smaller than unity for the perturbation solution to be close to the exact solution. In

practice, the requirement can often times be relaxed. Table 1 shows that the approximate

values can be very close to the exact ones even when λ̂ = 1.

7 Discussion

For electrokinetic transport in microchannels, the thickness of EDL typically ranges from

10 nm to 10 µm, and the cross-sectional dimension of a rotating microchannel can vary
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Table 1: The exact and approximate values of the axial velocity û(ẑ) in a non-rotating channel

for λ̂ = O(1), where κ̂ = 10.

ẑ
λ̂ = 0.5 λ̂ = 1 λ̂ = 1.5 λ̂ = 2

Exact Appr. Exact Appr. Exact Appr. Exact Appr.

0.99 0.0985 0.0988 0.1099 0.1096 0.1306 0.1276 0.1637 0.1528

0.95 0.4033 0.4043 0.4371 0.4366 0.4975 0.4906 0.5911 0.5661

0.90 0.6442 0.6453 0.6853 0.6849 0.7583 0.7509 0.8703 0.8433

0.85 0.7896 0.7906 0.8324 0.8318 0.9081 0.9005 1.0240 0.9966

0.80 0.8777 0.8785 0.9209 0.9201 0.9972 0.9894 1.1140 1.0863

over a wide range of O(1 − 103) µm [17]. Hence, the normalized Debye parameter κ̂ = κh

is usually O(10) or larger. In order to examine theoretical trends, we may also consider

κ̂ = O(1), however. Depending on the design, the rotation speed Ω of a centrifuge can be as

fast as O(103). For a fluid with kinematic viscosity of 10−6 m2s−1, an Ekman layer is thinner

than O(100) µm, which allows the rotation parameter ω to vary over a wide range. We shall

consider ω ≤ 200 in the following discussion.

7.1 Without lateral side walls

Although we have been considering flow in the presence of lateral confinement, our model

can be readily adapted to the case of no lateral confinement. Without side walls, the channel

will become open in both the axial and transverse directions. This amount to rotating EO

flow between two parallel plates. To model this case, we may simply set the transverse

pressure gradients K̂y0 = 0 and K̂y1 = 0 in Eqs. (31) and (34), respectively. The zero

net flux conditions, as in Eqs. (32) and (35), are not imposed. In other words, by setting

K̂y0 = K̂y1 = 0, our solutions deduced above will reduce to the solutions for the case of flow

without lateral confinement. The O(1) problem is then exactly the same problem studied

previously by Chang and Wang [30].
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Let us first demonstrate the limit of validity of our perturbation model. To this end, we

shall compare results with those generated by a numerical model that uses the original exact

expression for the Eyring viscosity, as in Eq. (12). The objective is to check the upper bound

of the ordering parameter λ̂ within which the perturbation analysis, which is based on the

simplified Eyring viscosity as in Eq. (16), may produce results in close agreement with the

numerical solutions based on the full Eyring model.

Adopting an iterative finite-difference numerical scheme that we have recently developed

for rotating EO flow of viscoplastic material between two parallel plates [35], we may solve

numerically the Cauchy momentum equations, where the full Eyring rheological model is

used to describe the effective viscosity: µ̂ = sinh−1(λ̂ˆ̇γ)/λ̂ˆ̇γ.

In Fig. 2, we show the axial and transverse velocity profiles (û, v̂) for ω = 10, 50, where

κ̂ = 10, ζ̂1 = ζ̂2 = 1. For four values of the dimensionless relaxation time parameter,

λ̂ = 0, 1, 3, 4, we compare the results generated by the perturbation model (solid lines) with

those computed using the numerical model (circles). At λ̂ = 0 (Newtonian limit), the two

models are identical and so are their results, as expected. As has been remarked earlier, the

perturbation analysis is in theory valid only when the ordering parameter is small. In practice,

this condition can often times be relaxed as far as the accuracy of results is concerned. We

see here again when λ̂ is as large as 1, the perturbation model can generate results that are

still in close agreement with those by the numerical model. The figure suggests that the close

agreement may persist as long as λ̂ < 3. Discrepancy between the two sets of results will

become appreciable when λ̂ > 3.

The corresponding axial and transverse flow rates (q̂x, q̂y), as functions of the ordering

parameter λ̂, are shown in Fig. 3. This figure confirms our observation made above: the

results yielded by the perturbation model are in close agreement with the numerical solutions

as long as λ̂ < 3. The difference is limited to 2% or smaller. The error of the perturbation

model will not be very significant until λ̂ > 3.

A larger value of λ̂ also amounts to a higher degree of shear thinning of the fluid. This

will, as a matter of course, result in a larger flow rate under the same forcing. Figure 2 reveals

that the shear-thinning induced enhancement of flow rate is mainly caused by the increase
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in the near-wall peak velocity. This can be reasoned by the fact that the shear stress is

maximum at the wall, which will by virtue of the shear-thinning rheology lower the effective

viscosity near the wall, thereby causing the fluid to flow more readily in this region for larger

λ̂. Similar shear-thinning effect on rotating EO flow velocity profiles has been reported by

Xie and Jian [31].

7.2 With lateral side walls

Let us consider in the following sections the O(1) and O(λ̂2) perturbation problems for

rotating EO flow subject to lateral confinement.

7.2.1 Newtonian fluid

We first look into the O(1) solution, corresponding to the Newtonian limiting case. This is

to extend the previous work by Ng and Qi [33], who have studied EO flow of a Newtonian

fluid in a rotating channel with equal potentials on the upper and lower walls. The problem

is re-examined here, allowing possibly unequal zeta potentials on the two walls.

Figure 4 shows velocity distributions in the axial and transverse directions, û0(ẑ) and

v̂0(ẑ), for ζ̂1 = 2 and ζ̂2 = 0, or â = b̂ = 1. Owing to the unequal zeta potentials, the axial

velocity profiles are as a result asymmetrical about the centerline. The degree of asymmetry,

however, decreases as the rotation rate increases. As ω gets larger, û(ẑ) becomes increasingly

symmetrical about ẑ = 0. One can reason that under the effect of rotation, the axial velocity

in the interior will tend to a Taylor–Proudman profile [36], where the velocity gradient is

essentially zero. This trend is clearly seen in Figs. 4(a, c). For a rotation speed as high

as ω = 200 or η = 10, û0 is essentially uniform in the interior region, where the velocity,

known as the geostrophic velocity, is given by K̂y0/ω. Near the walls are the Ekman–EDL

layers where the velocity is affected by all the parameters: κ̂, ω, and K̂y0. As is typical for

a Taylor–Proudman profile, the boundary layer exhibits an overshoot before matching the

geostrophic core.

The transverse velocity profiles v̂0(ẑ) shown in Figs. 4(b, d) exhibit a very different trend
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as ω increases. They are mostly anti-symmetrical about the centerline. In other words, the

transverse flow near one wall has largely the same distribution as, but is opposite in direction

to that near the other wall. The flow in one half of the channel counterbalances that in the

other half of the channel. Also, the magnitude of the peak transverse velocity has a non-

monotonic relation with the rotation speed. In one half of the channel, the transverse flow

is the maximum in magnitude for a finite value of ω, and will diminish to zero at the two

limits: ω → 0 and ω → ∞. This non-monotonic dependence of the transverse flow on the

rotation speed has been observed previously by Chang and Wang [30].

It is of interest to compare Fig. 4 with Fig. 5, which shows velocity distributions for

the same values of κ̂ and ω, but for ζ̂1 = ζ̂2 = 1, or â = 1 and b̂ = 0. With the same â,

the corresponding cases shown in Figs. 4 and 5 have the same axial flow rate q̂0 and the

same transverse pressure gradient K̂y0. The corresponding velocity profiles are, however,

dramatically different. With equal zeta potentials, both the axial and transverse velocity

profiles are always symmetrical about the centerline. The axial velocity in the interior, which

is the Helmholtz–Smoluchowski velocity at ω = 0, is reduced when the geostrophic velocity

takes over for ω � 1. The reduction in the axial velocity is caused by a favorable pressure

gradient in the transverse direction, which is induced in order to generate a zero net flux in

this direction.

Among the cases shown in Figs. 4 and 5, the only case where the corresponding axial

velocity profiles look alike is the one for κ̂ = 10 and ω = 200 (η = 10). This suggests that, for

the same â, when κ̂ and η are both large and comparable to each other, the same Ekman–

EDL axial flow will develop near each of the walls, irrespective of the distribution of zeta

potentials on these walls.

In the symmetrical case, the transverse flow reverses in direction, thereby satisfying the

condition of a net zero flux, within one half of the channel. This is in sharp contrast to the

transverse flow in the asymmetrical case. In the symmetrical case (Fig. 5), the transverse

flow is positive near both the upper and lower walls. In the asymmetrical case (Fig. 4), the

transverse flow is positive near the lower wall, but is negative near the upper wall. In either

case, as ω increases, the transverse flow tends to zero in the geostrophic core.
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On comparing Figs. 2 and 5, one can further see the following effects on the flow due to

the lateral confinement. First, the net transverse flow is always negative in the case of no

lateral confinement, but is exactly zero in the case of lateral confinement. Second, for ω > 0,

the axial flow rate is in general higher under the condition of lateral confinement than that

without lateral confinement. As explained above, at sufficiently high rotation speed the flow

in the interior is geostrophic where the velocity is proportional to the transverse pressure

gradient. Therefore, the transverse pressure gradient that is induced in the case of lateral

confinement but not in the case of no lateral confinement will bring forth a larger axial flow

rate in the former than that in the latter.

7.2.2 Shear-thinning effect

Recall that the O(λ̂2) solution is the correction to the leading order solution to account for

the shear-thinning effect of the fluid rheology.

We show in Figs. 6 and 7 the O(1) and O(λ̂2) flow rates, q̂0 and q̂1, as functions of ω

and κ̂. From these figures, the following observations can be made. First, for both orders,

the flow rate decreases with increasing ω. The decreasing effect on the flow rate due to

rotation is most appreciable when κ̂ ≈ 10. For κ̂ > 50, the effect of rotation on the flow

rate is much weakened. Second, the figures reveal that the flow rates q̂0 and q̂1 vary with

the parameters κ̂ and ω in almost the same manner. Both flow rates are subject to nearly

the same rate of change with respect to each of the two parameters. This means that the

effect of rotation on the EO flow is qualitatively the same whether the fluid is Newtonian or

Eyring, i.e., irrespective of λ̂. Third, q̂1 is in general approximately 10 times smaller than

q̂0. This means that for the shear-thinning effect to be appreciable, the parameter λ̂ has to

be sufficiently large. As has been found above, our perturbation model may yield reasonably

accurate results even when λ̂ is as large as 3. Hence, as long as λ = O(1), for which our

perturbation solutions remain accurate, the shear-thinning behavior of the fluid may enhance

the flow by an amount comparable to the base Newtonian flow.

We finally show in Fig. 8 the O(1) and O(λ̂2) velocity profiles in the Ekman–EDL layer,

(û∗0, v̂
∗

0) and (û∗1, v̂
∗

1), as computed by Eqs. (72), (73), (75) and (76). The key features of the
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leading-order velocity profiles (û∗0, v̂
∗

0) have been discussed previously by Ng and Qi [33]. It

is here seen that the velocity profiles of the two orders vary with the parameter ξ mostly

in the same manner. The profiles of û∗1 have a sharper overshoot, which is located closer

to the wall, when compared with the corresponding profiles of û∗0. Otherwise, the velocity

profiles of the two orders look similar in form. The first-order velocity is in general an order

of magnitude smaller than the leading-order velocity. Nevertheless, after multiplying the

ordering parameter λ̂2, where λ̂ can be as large as 3, the first-order correction can be a finite

fraction of the leading-order solution, as has been remarked above. We have here shown

that the validity of the present perturbation analysis can be extended to a range where the

shear-thinning rheology as described by the Eyring model may have finite effect on the flow.

To further look into the difference between the leading- and first-order axial velocity

profiles in the Ekman–EDL layer, we show in Fig. 9 two quantities as a function of ξ in

its subfigures (a) and (b). The quantity ũ∗
m

= û∗
m
/û∗

∞
shown in Fig. 9(a) is a ratio of the

maximum to the geostrophic core axial velocities, while ẑ∗
m

shown in Fig. 9(b) is the location

where the axial velocity reaches its maximum. The degree of overshoot of the axial velocity

profile is measured by the quantity ũ∗
m
, which is always more pronounced in the first-order

than in the leading-order profile, or a sharper overshoot of û∗1 than that of û∗0. As ξ increases,

the overshoot of û∗1 will become milder, which also can be seen from Fig. 8(b). For the

leading-order axial velocity û∗0, it does not follow a monotonous trend as ξ increases although

the change of the overshoot is very gentle within the range of ξ shown in the figure. There are

also distinct trends of dependence of ẑ∗
m

on ξ for the leading- and first-order axial velocities. In

the range 0 ≤ ξ ≤ 1, the location of the peak û∗1 varies slightly as ξ increases while it is always

closer to the wall than that for û∗0. As ξ further increases, ẑ∗
m

will decrease monotonously, for

both the leading- and first-order axial velocities.

8 Concluding remarks

We have performed a perturbation analysis on the EO flow of a mildly shear-thinning fluid

through a very wide rectangular channel that rotates about an axis perpendicular to its own.

The fluid rheology is described by the Eyring model, which has the Newtonian model as its
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limit at small shear rates. We have deduced solutions to the leading-order as well as the

first-order problems, where in the leading-order problem we allow the zeta potentials on the

upper and lower walls to be different. We have seen how the zeta potential distribution on the

two walls may affect the axial and transverse velocity profiles. We have explained the effect

of rotation on the velocity profiles in terms of the Taylor–Proudman profile, geostrophic

interior, and Ekman–EDL boundary layer. On comparing with numerical solutions that

take into account the full Eyring model, our perturbation analysis is shown to be able to

generate accurate results as long as the dimensionless relaxation time parameter does not

exceed order unity. We have also shown that the first-order flow rate is always positive,

confirming that the shear-thinning rheology of an Eyring fluid is always to enhance the flow

rate. Also, the dependence of the first-order flow on the electrokinetic and rotation parameters

is qualitatively almost the same as that of the leading-order flow. We may therefore conclude

that, within the range of validity of the present perturbation model, the higher-order shear-

thinning correction can be a finite fraction of the base Newtonian fluid flow.

In this work, no-slip boundary condition has been assumed, which is applicable when the

substrate is a wetting substance. When the substrate is non-wetting, hydrophobic interactions

may give rise to an apparent wall slip [37] on the edge of the Stern layer. It is of interest if

a study can be pursued in the future to look into such apparent slip effect on electrokinetic

flow [16, 38] in a rotating channel.
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Appendix

This appendix contains the lengthy expressions for functions or parameters introduced in

Sections 4 and 5. In Eqs. (58) and (59), the four functions are given by

Uκ(ẑ) =
κ̂2η2C1C2

3 (κ̂4 + 4η4)
sech(κ̂) cosh(κ̂ẑ)

+ sech3(κ̂) cosh(κ̂ẑ)
[

U1 sinh2(κ̂ẑ) + U2 cosh2(κ̂z)
]

+ sech2(κ̂) cosh(2κ̂ẑ) [U3 sin(ηẑ) sinh(ηẑ) + U6 cos(ηẑ) cosh(ηẑ)]

+ sech2(κ̂) sinh(2κ̂ẑ) [U4 sin(ηẑ) cosh(ηẑ) + U5 cos(ηẑ) sinh(ηẑ)]

+ sech(κ̂) cosh(κ̂ẑ) [U7 sin(2ηẑ) sinh(2ηẑ) + U10 cos(2ηẑ) cosh(2ηẑ)]

+ sech(κ̂) sinh(κ̂ẑ) [U8 sin(2ηẑ) cosh(2ηẑ) + U9 cos(2ηẑ) sinh(2ηẑ)]

+ U11 sech(κ̂) sin(2ηẑ) sinh(κ̂ẑ) + U12 sech(κ̂) cos(2ηẑ) cosh(κ̂ẑ)

+ U13 sech(κ̂) sinh(2ηẑ) sinh(κ̂ẑ) + U14 sech(κ̂) cosh(2ηẑ) cosh(κ̂ẑ), (A.1)

Uη(ẑ) = sin(ηẑ) sin(2ηẑ) [U15 sinh(2ηẑ) sinh(ηẑ) + U16 cosh(2ηẑ) cosh(ηẑ)]

+ sin(ηẑ) cos(2ηẑ) [U17 cosh(2ηẑ) sinh(ηẑ) + U18 sinh(2ηẑ) cosh(ηẑ)]

+ cos(ηẑ) sinh(ηẑ) [U19 sin(2ηẑ) cosh(2ηẑ) + U20 cos(2ηẑ) sinh(2ηẑ)]

+ U21 sin(ηẑ) sin(2ηẑ) cosh(ηẑ) + U22 sin(ηẑ) cos(2ηẑ) sinh(ηẑ)

+ U23 sin(ηẑ) sinh(ηẑ) cosh(2ηẑ) + U24 cos(ηẑ) sinh(ηẑ) sinh(2ηẑ), (A.2)

Vκ(ẑ) =
κ̂2η2 (C2

1 − C2
2)

6 (κ̂4 + 4η4)
sech(κ̂) cosh(κ̂ẑ)

+
κ̂4 sech2(κ̂)

6 (κ̂4 + 4η4)
[C2 cos(ηẑ) cosh(ηẑ) − C1 sin(ηẑ) sinh(ηẑ)]

+ V1 sech3(κ̂) cosh(κ̂ẑ) sinh2(κ̂ẑ) + V2 sech3(κ̂) cosh3(κ̂z)

+ V3 sech2(κ̂) sin(ηẑ) sinh(ηẑ) + V4 sech2(κ̂) cos(ηẑ) cosh(ηẑ)

+ sech2(κ̂) cosh(2κ̂ẑ) [V5 sin(ηẑ) sinh(ηẑ) + V8 cos(ηẑ) cosh(ηẑ)]

+ sech2(κ̂) sinh(2κ̂ẑ) [V6 sin(ηẑ) cosh(ηẑ) + V7 cos(ηẑ) sinh(ηẑ)]

+ V9 sech(κ̂) sin(2ηẑ) sinh(κ̂ẑ) + V10 sech(κ̂) cos(2ηẑ) cosh(κ̂ẑ)

+ V11 sech(κ̂) sinh(2ηẑ) sinh(κ̂ẑ) + V12 sech(κ̂) cosh(2ηẑ) cosh(κ̂ẑ)

+ sech(κ̂) cosh(κ̂ẑ) [V13 sin(2ηẑ) sinh(2ηẑ) + V16 cos(2ηẑ) cosh(2ηẑ)]
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+ sech(κ̂) sinh(κ̂ẑ) [V14 sin(2ηẑ) cosh(2ηẑ) + V15 cos(2ηẑ) sinh(2ηẑ)] , (A.3)

Vη(ẑ) = −
5

12

(

C2
1 + C2

2

)

[C1 cos(ηẑ) cosh(ηẑ) −C2 sin(ηẑ) sinh(ηẑ)]

+ V17 sin(ηẑ) sin(2ηẑ) cosh(ηẑ) + V18 sin(ηẑ) cos(2ηẑ) sinh(ηẑ)

+ V19 cos(ηẑ) sin(2ηẑ) sinh(ηẑ) + V20 cos(ηẑ) cos(2ηẑ) cosh(ηẑ)

+ V21 sin(ηẑ) sinh(ηẑ) cosh(2ηẑ) + V22 sin(ηẑ) cosh(ηẑ) sinh(2ηẑ)

+ V23 cos(ηẑ) sinh(ηẑ) sinh(2ηẑ) + V24 cos(ηẑ) cosh(ηẑ) cosh(2ηẑ)

+ sin(ηẑ) sin(2ηẑ) [V25 sinh(ηẑ) sinh(2ηẑ) + V26 cosh(ηẑ) cosh(2ηẑ)]

+ sin(ηẑ) cos(2ηẑ) [V27 sinh(ηẑ) cosh(2ηẑ) + V28 cosh(ηẑ) sinh(2ηẑ)]

+ cos(ηẑ) sin(2ηẑ) [V29 sinh(ηẑ) cosh(2ηẑ) + V30 cosh(ηẑ) sinh(2ηẑ)]

+ cos(ηẑ) cos(2ηẑ) [V31 sinh(ηẑ) sinh(2ηẑ) + V32 cosh(ηẑ) cosh(2ηẑ)] , (A.4)

where by introducing ξ = κ̂/η (for η 6= 0), the constants U1−24 and V1−32 are given as follows

U1 =
ξ8 (−27ξ8 + 56ξ4 + 16)

2 (ξ4 + 4)
3
(81ξ4 + 4)

, (A.5)

U2 =
ξ12 (9ξ4 − 44)

(ξ4 + 4)3 (81ξ4 + 4)
, (A.6)

U3 =
ξ6 [(3ξ4 − 10)C1 − ξ2C2]

24 (ξ4 − 1) (ξ4 + 4)2 , (A.7)

U4 =
ξ3 [2ξ2 (ξ4 + 1) (C1 + C2) − (3ξ8 − 2ξ4 − 4) (C1 −C2)]

24 (ξ4 − 1) (ξ4 + 4)2 , (A.8)

U5 =
ξ3 [2ξ2 (ξ4 + 1) (C1 − C2) + (3ξ8 − 2ξ4 − 4) (C1 + C2)]

24 (ξ4 − 1) (ξ4 + 4)2 , (A.9)

U6 = −
ξ6 [ξ2C1 + (3ξ4 − 10)C2]

24 (ξ4 − 1) (ξ4 + 4)2 , (A.10)

U7 =
ξ2 [(ξ4 + 180) (C2

1 − C2
2) + 16ξ2C1C2]

6 (ξ4 + 4) (ξ4 + 324)
, (A.11)

U8 = −
ξ [(ξ4 − 12ξ2 + 108) (C2

1 − C2
2) + 2 (ξ4 + 12ξ2 + 108)C1C2]

3 (ξ4 + 4) (ξ4 + 324)
, (A.12)

U9 = −
ξ [(ξ4 + 12ξ2 + 108) (C2

1 − C2
2) − 2 (ξ4 − 12ξ2 + 108)C1C2]

3 (ξ4 + 4) (ξ4 + 324)
, (A.13)

U10 =
ξ2 [4ξ2 (C2

1 − C2
2) − (ξ4 + 180)C1C2]

3 (ξ4 + 4) (ξ4 + 324)
, (A.14)
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U11 =

[

2ξ (ξ2 + 2) (ξ2 + 10)

3 (ξ4 + 4) (ξ4 + 16ξ2 + 100)

]

(

C2
1 + C2

2

)

, (A.15)

U12 =

[

ξ2 (ξ4 + 12ξ2 + 44)

3 (ξ4 + 4) (ξ4 + 16ξ2 + 100)

]

(

C2
1 + C2

2

)

, (A.16)

U13 =

[

2ξ (ξ2 − 10) (ξ2 − 2)

3 (ξ4 + 4) (ξ4 − 16ξ2 + 100)

]

(

C2
1 + C2

2

)

, (A.17)

U14 = −

[

ξ2 (ξ4 − 12ξ2 + 44)

3 (ξ4 + 4) (ξ4 − 16ξ2 + 100)

]

(

C2
1 + C2

2

)

, (A.18)

U15 = −C2

(

C2
1 + C2

2

)

/40, (A.19)

U16 =
(

−4C3
1 + 3C2

1C2 − 4C1C
2
2 + 3C3

2

)

/240, (A.20)

U17 = −C1

(

C2
1 + C2

2

)

/40, (A.21)

U18 =
(

3C3
1 + 4C2

1C2 + 3C1C
2
2 + 4C3

2

)

/240, (A.22)

U19 =
(

3C3
1 − 4C2

1C2 + 3C1C
2
2 − 4C3

2

)

/240, (A.23)

U20 = −
(

4C3
1 + 3C2

1C2 + 4C1C
2
2 + 3C3

2

)

/240, (A.24)

U21 =
(

4C3
1 − 3C2

1C2 + 4C1C
2
2 − 3C3

2

)

/48, (A.25)

U22 = −
(

3C3
1 + 4C2

1C2 + 3C1C
2
2 + 4C3

2

)

/48, (A.26)

U23 = −
(

3C3
1 − 4C2

1C2 + 3C1C
2
2 − 4C3

2

)

/48, (A.27)

U24 =
(

4C3
1 + 3C2

1C2 + 4C1C
2
2 + 3C3

2

)

/48, (A.28)

V1 = −
16ξ10 (3ξ4 + 2)

(ξ4 + 4)3 (81ξ4 + 4)
, (A.29)

V2 =
2ξ10 (19ξ4 − 4)

(ξ4 + 4)3 (81ξ4 + 4)
, (A.30)

V3 =
ξ4 [(3ξ4 + 4)C1 − 4ξ2C2]

12 (ξ4 + 4)2 , (A.31)

V4 = −
ξ4 [4ξ2C1 + (3ξ4 + 4)C2]

12 (ξ4 + 4)
2 , (A.32)

V5 = −
ξ4 [(−9ξ4 + 8)C1 + ξ2 (ξ4 + 6)C2]

24 (ξ4 − 1) (ξ4 + 4)2 , (A.33)

V6 =
ξ3 [(ξ8 + 6ξ4 − 4) (C1 + C2) − 2ξ2 (3ξ4 − 1) (C1 − C2)]

24 (ξ4 − 1) (ξ4 + 4)2 , (A.34)

V7 =
ξ3 [(ξ8 + 6ξ4 − 4) (C1 − C2) + 2ξ2 (3ξ4 − 1) (C1 + C2)]

24 (ξ4 − 1) (ξ4 + 4)2 , (A.35)
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V8 = −
ξ4 [ξ2 (ξ4 + 6)C1 + (9ξ4 − 8)C2]

24 (ξ4 − 1) (ξ4 + 4)2 , (A.36)

V9 =
16ξ (ξ2 + 5) (C2

1 + C2
2)

3 (ξ4 + 4) (ξ4 + 16ξ2 + 100)
, (A.37)

V10 =
4ξ2 (ξ2 + 2) (C2

1 + C2
2)

3 (ξ4 + 4) (ξ4 + 16ξ2 + 100)
, (A.38)

V11 =
16ξ (ξ2 − 5) (C2

1 + C2
2 )

3 (ξ4 + 4) (ξ4 − 16ξ2 + 100)
, (A.39)

V12 = −
4ξ2 (ξ2 − 2) (C2

1 + C2
2 )

3 (ξ4 + 4) (ξ4 − 16ξ2 + 100)
, (A.40)

V13 = −
ξ2 [−4ξ2(C2

1 − C2
2) + (ξ4 + 180)C1C2]

3 (ξ4 + 4) (ξ4 + 324)
, (A.41)

V14 = −
ξ [(ξ4 + 12ξ2 + 108) (C2

1 − C2
2) − 2 (ξ4 − 12ξ2 + 108)C1C2]

3 (ξ4 + 4) (ξ4 + 324)
, (A.42)

V15 =
ξ [(ξ4 − 12ξ2 + 108) (C2

1 − C2
2) + 2 (ξ4 + 12ξ2 + 108)C1C2]

3 (ξ4 + 4) (ξ4 + 324)
, (A.43)

V16 = −
ξ2 [(ξ4 + 180) (C2

1 − C2
2) + 16ξ2C1C2]

6 (ξ4 + 4) (ξ4 + 324)
, (A.44)

V17 =
(

2C3
1 − 5C2

1C2 + 2C1C
2
2 − 5C3

2

)

/24, (A.45)

V18 =
(

C3
1 + 5C2

1C2 + C1C
2
2 + 5C3

2

)

/24, (A.46)

V19 = −
(

6C3
1 + 7C2

1C2 + 6C1C
2
2 + 7C3

2

)

/48, (A.47)

V20 =
(

7C3
1 − 6C2

1C2 + 7C1C
2
2 − 6C3

2

)

/48, (A.48)

V21 = −
(

C3
1 − 5C2

1C2 + C1C
2
2 − 5C3

2

)

/24, (A.49)

V22 =
(

6C3
1 − 7C2

1C2 + 6C1C
2
2 − 7C3

2

)

/48, (A.50)

V23 = −
(

2C3
1 + 5C2

1C2 + 2C1C
2
2 + 5C3

2

)

/24, (A.51)

V24 =
(

7C3
1 + 6C2

1C2 + 7C1C
2
2 + 6C3

2

)

/48, (A.52)

V25 = C1

(

C2
1 + C2

2

)

/60, (A.53)

V26 = −
(

7C3
1 − 4C2

1C2 + 7C1C
2
2 − 4C3

2

)

/240, (A.54)

V27 = C2

(

C2
1 + C2

2

)

/15, (A.55)

V28 =
(

4C3
1 − 13C2

1C2 + 4C1C
2
2 − 13C3

2

)

/240, (A.56)

V29 = −
(

4C3
1 + 13C2

1C2 + 4C1C
2
2 + 13C3

2

)

/240, (A.57)
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V30 = C2

(

C2
1 + C2

2

)

/24, (A.58)

V31 =
(

7C3
1 + 4C2

1C2 + 7C1C
2
2 + 4C3

2

)

/240, (A.59)

V32 = −C1

(

C2
1 + C2

2

)

/24, (A.60)

in which C1 and C2 are given in Eqs. (44) and (45), respectively.

Setting ẑ = 1 in functions Uκ(ẑ), Uη(ẑ), Vκ(ẑ) and Vη(ẑ), we can have the parameters

Mκ,η and Nκ.η as follows

Mκ =
ξ2C1C2

3 (ξ4 + 4)
+ U1 tanh2(κ̂) + U2 + U3

[

1 + tanh2(κ̂)
]

sin(η) sinh(η)

+ 2 tanh(κ̂) [U4 sin(η) cosh(η) + U5 cos(η) sinh(η)]

+ U6

[

1 + tanh2(κ̂)
]

cos(η) cosh(η) + U7 sin(2η) sinh(2η)

+ tanh(κ̂) [U8 sin(2η) cosh(2η) + U9 cos(2η) sinh(2η)]

+ U10 cos(2η) cosh(2η) + U11 tanh(κ̂) sin(2η) + U12 cos(2η)

+ U13 tanh(κ̂) sinh(2η) + U14 cosh(2η), (A.61)

Mη = sin(η) sin(2η) [U15 sinh(η) sinh(2η) + U16 cosh(η) cosh(2η)]

+ sin(η) cos(2η) [U17 sinh(η) cosh(2η) + U18 cosh(η) sinh(2η)]

+ cos(η) [U19 sin(2η) sinh(η) cosh(2η) + U20 cos(2η) sinh(η) sinh(2η)]

+ U21 sin(η) sin(2η) cosh(η) + U22 sin(η) cos(2η) sinh(η)

+ U23 sin(η) sinh(η) cosh(2η) + U24 cos(η) sinh(η) sinh(2η), (A.62)

Nκ =
ξ2 (C2

1 − C2
2)

6 (ξ4 + 4)
+
ξ4 sech2(κ̂)

6 (ξ4 + 4)
[C2 cos(η) cosh(η) − C1 sin(η) sinh(η)]

+ V1 tanh2(κ̂) + V2 + sech2(κ̂) [V3 sin(η) sinh(η) + V4 cos(η) cosh(η)]

+ V5

[

1 + tanh2(κ̂)
]

sin(η) sinh(η) + 2V6 tanh(κ̂) sin(η) cosh(η)

+ 2V7 tanh(κ̂) cos(η) sinh(η) + V8

[

1 + tanh2(κ̂)
]

cos(η) cosh(η)

+ V9 tanh(κ̂) sin(2η) + V10 cos(2η) + V11 tanh(κ̂) sinh(2η) + V12 cosh(2η)

+ V13 sin(2η) sinh(2η) + tanh(κ̂) [V14 sin(2η) cosh(2η) + V15 cos(2η) sinh(2η)]

+ V16 cos(2η) cosh(2η), (A.63)

Nη =
5

12

(

C2
1 + C2

2

)

[C2 sin(η) sinh(η) − C1 cos(η) cosh(η)]
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+ sin(η) [V17 cosh(η) sin(2η) + V18 sinh(η) cos(2η)]

+ cos(η) [V19 sinh(η) sin(2η) + V20 cosh(η) cos(2η)]

+ sin(η) [V21 sinh(η) cosh(2η) + V22 sinh(2η) cosh(η)]

+ cos(η) [V23 sinh(η) sinh(2η) + V24 cosh(η) cosh(2η)]

+ sin(η) sin(2η) [V25 sinh(η) sinh(2η) + V26 cosh(η) cosh(2η)]

+ sin(η) cos(2η) [V27 sinh(η) cosh(2η) + V28 sinh(2η) cosh(η)]

+ sin(2η) cos(η) [V29 sinh(η) cosh(2η) + V30 sinh(2η) cosh(η)]

+ cos(η) cos(2η) [V31 sinh(η) sinh(2η) + V32 cosh(η) cosh(2η)] . (A.64)

In Eq. (65), the two coefficients Kκ,η are

Kκ = −
2ξ (C2

1 −C2
2 )

3 (ξ4 + 4)
tanh(κ̂) +

4ξ9 (4 − 119ξ4)

3 (ξ4 + 4)3 (81ξ4 + 4)
sech2(κ̂) tanh(κ̂)

+
20ξ9

3 (ξ4 + 4)2 (81ξ4 + 4)
sech2(κ̂) tanh(κ̂) cosh(2κ̂)

+
ξ4sech2(κ̂)

6 (ξ4 + 4)
[sin(η) cosh(η) (C1 − C2) − cos(η) sinh(η) (C1 + C2)]

− 2 sech2(κ̂) [sin(η) cosh(η) (V3 + V4) − cos(η) sinh(η) (V3 − V4)]

+
sech2(κ̂)

2ξ2 − 2ξ + 1
[K1 sin(η) cosh(η − 2κ̂) +K2 cos(η) sinh(η − 2κ̂)]

+
sech2(κ̂)

2ξ2 + 2ξ + 1
[−K3 sin(η) cosh(η + 2κ̂) +K4 cos(η) sinh(η + 2κ̂)]

+
4

4 + ξ2
[−K5 sin(2η) +K6 tanh(κ̂) cos(2η)]

+
4

4 − ξ2
[K7 sinh(2η) +K8 tanh(κ̂) cosh(2η)]

−
4 sin(2η)

64 + ξ4
[K9 tanh(κ̂) sinh(2η) +K10 cosh(2η)]

+
4 cos(2η)

64 + ξ4
[K11 sinh(2η) +K12 tanh(κ̂) cosh(2η)] , (A.65)

Kη =
5

6

(

C2
1 + C2

2

)

[(C1 −C2) sin(η) cosh(η) + (C1 + C2) cos(η) sinh(η)]

+
K13

5
sin(η) cosh(3η) +

K14

5
sin(3η) cosh(η) +

K15

5
cos(η) sinh(3η)

+
K16

5
cos(3η) sinh(η) +K17 sin(η) cosh(η) +K18 cos(η) sinh(η)

+
K19

2
sin(η) cosh(η) +

K20

2
cos(η) sinh(η) +

K21

6
sin(3η) cosh(3η)
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+
K22

6
cos(3η) sinh(3η) +

K23

10
sin(η) cosh(3η) +

K24

10
sin(3η) cosh(η)

+
K25

10
cos(η) sinh(3η) +

K26

10
cos(3η) sinh(η), (A.66)

in which K1−26 are given as follows,

K1 = (1 − 2ξ)(−V5 + V6) + V7 − V8 (A.67)

K2 = V5 − V6 + (1 − 2ξ)(V7 − V8) (A.68)

K3 = (1 + 2ξ)(V5 + V6) + V7 + V8 (A.69)

K4 = V5 + V6 − (1 + 2ξ)(V7 + V8) (A.70)

K5 = ξV9 + 2V10 (A.71)

K6 = 2V9 − ξV10 (A.72)

K7 = ξV11 − 2V12 (A.73)

K8 = −2V11 + ξV12 (A.74)

K9 = ξ3V13 + (16 − 2ξ2)V14 + (16 + 2ξ2)V15 − 8ξV16 (A.75)

K10 = (16 − 2ξ2)V13 + ξ3V14 − 8ξV15 + (16 + 2ξ2)V16 (A.76)

K11 = (16 + 2ξ2)V13 − 8ξV14 − ξ3V15 − (16 − 2ξ2)V16 (A.77)

K12 = −8ξV13 + (16 + 2ξ2)V14 + (−16 + 2ξ2)V15 − ξ3V16 (A.78)

K13 = −3V21 − 3V22 − V23 − V24 (A.79)

K14 = 3V17 − V18 − V19 − 3V20 (A.80)

K15 = V21 + V22 − 3V23 − 3V24 (A.81)

K16 = V17 + 3V18 + 3V19 − V20 (A.82)

K17 = −V17 + V18 − V19 − V20 + V21 − V22 + V23 − V24 (A.83)

K18 = −V17 − V18 + V19 − V20 − V21 + V22 + V23 − V24 (A.84)

K19 = V25 − V26 − V27 + V28 + V29 − V30 + V31 − V32 (A.85)

K20 = V25 − V26 + V27 − V28 − V29 + V30 + V31 − V32 (A.86)

K21 = V25 + V26 − V27 − V28 − V29 − V30 − V31 − V32 (A.87)
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K22 = V25 + V26 + V27 + V28 + V29 + V30 − V31 − V32 (A.88)

K23 = −V25 − V26 + 3V27 + 3V28 − 3V29 − 3V30 − V31 − V32 (A.89)

K24 = −3V25 + 3V26 + V27 − V28 + V29 − V30 + 3V31 − 3V32 (A.90)

K25 = −3V25 − 3V26 − V27 − V28 + V29 + V30 − 3V31 − 3V32 (A.91)

K26 = −V25 + V26 − 3V27 + 3V28 − 3V29 + 3V30 + V31 − V32 (A.92)

Under the assumptions of κ̂� 1 and η � 1, the four functions Uκ,η(ẑ) and Vκ,η(ẑ) in Eqs.

(A.1)–(A.4) can be simplified and expressed in terms of the variable z∗ as follows

U∗

κ(z∗) = −
8ξ3 (ξ5 + 10ξ4 + 46ξ3 + 84ξ2 + 16ξ − 24) e−(ξ+2)z∗

3 (ξ4 + 4)
2
(ξ2 + 2ξ + 2) (ξ2 + 6ξ + 10) (ξ2 + 6ξ + 18)

+
ξ4 (6ξ6 + 9ξ5 + 9ξ4 + 6ξ3 − 4ξ2 − 4ξ − 4)

6 (ξ4 + 4)2 (ξ2 + 2ξ + 2) (ξ3 + ξ2 + ξ + 1)
e−(2ξ+1)z∗ sin (z∗)

−
ξ4 (3ξ5 + 5ξ4 + 8ξ3 + 8ξ2 + 8ξ + 4)

6 (ξ4 + 4)2 (ξ2 + 2ξ + 2) (ξ3 + ξ2 + ξ + 1)
e−(2ξ+1)z∗ cos (z∗)

+
ξ8 (4 − 9ξ4) e−3ξz∗

2 (ξ4 + 4)
2
(81ξ4 + 4)

, (A.93)

U∗

η (z∗) =
8ξ3 [(7ξ − 6) sin (z∗) + (ξ − 8) cos (z∗)]

15 (ξ4 + 4)2 (ξ2 + 2ξ + 2)
e−3z∗ , (A.94)

V ∗

κ (z∗) = −
10ξ10e−3ξz∗

(ξ4 + 4)
2
(81ξ4 + 4)

−
64ξ3(ξ + 2)e−(ξ+2)z∗

3 (ξ4 + 4)
2
(ξ2 + 2ξ + 2) (ξ2 + 6ξ + 10)

+
ξ4 (ξ5 + 15ξ4 + 20ξ3 + 20ξ2 + 16ξ + 4)

6 (ξ4 + 4)2 (ξ2 + 2ξ + 2) (ξ3 + ξ2 + ξ + 1)
e−(2ξ+1)z∗ sin (z∗)

+
ξ4 (2ξ6 + 3ξ5 + 3ξ4 − 2ξ3 − 4ξ − 4)

6 (ξ4 + 4)2 (ξ2 + 2ξ + 2) (ξ3 + ξ2 + ξ + 1)
e−(2ξ+1)z∗ cos (z∗)

+
8ξ3 [6(ξ + 2) cos (2z∗) − (ξ3 + 4ξ2 + 8ξ − 12) sin (2z∗)]

3 (ξ4 + 4)
2
(ξ2 + 2ξ + 2) (ξ2 + 6ξ + 18)

e−(ξ+2)z∗ , (A.95)

V ∗

η (z∗) =
8ξ3 [(7ξ − 6) cos (z∗) − (ξ − 8) sin (z∗)]

15 (ξ2 + 2ξ + 2) (ξ4 + 4)2 e−3z∗ . (A.96)

Similarly, the six coefficientsM∗

κ,η, N
∗

κ,η and K∗

κ,η corresponding to Mκ,η , Nκ,η and Kκ,η reduce

to

M∗

κ =
ξ8 (4 − 9ξ4)

2 (ξ4 + 4)2 (81ξ4 + 4)
−

ξ4 (3ξ5 + 5ξ4 + 8ξ3 + 8ξ2 + 8ξ + 4)

6 (ξ4 + 4)2 (ξ2 + 2ξ + 2) (ξ3 + ξ2 + ξ + 1)
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−
8ξ3 (ξ5 + 10ξ4 + 46ξ3 + 84ξ2 + 16ξ − 24)

3 (ξ4 + 4)2 (ξ2 + 2ξ + 2) (ξ2 + 6ξ + 10) (ξ2 + 6ξ + 18)
, (A.97)

M∗

η =
8ξ3(ξ − 8)

15 (ξ4 + 4)2 (ξ2 + 2ξ + 2)
, (A.98)

N∗

κ = −
10ξ10

(ξ4 + 4)2 (81ξ4 + 4)
+

ξ4 (2ξ6 + 3ξ5 + 3ξ4 − 2ξ3 − 4ξ − 4)

6 (ξ4 + 4)2 (ξ2 + 2ξ + 2) (ξ3 + ξ2 + ξ + 1)

−
16ξ3(ξ + 2) (ξ2 + 6ξ + 42)

3 (ξ4 + 4)2 (ξ2 + 2ξ + 2) (ξ2 + 6ξ + 10) (ξ2 + 6ξ + 18)
, (A.99)

N∗

η =
8ξ3(7ξ − 6)

15 (ξ4 + 4)2 (ξ2 + 2ξ + 2)
, (A.100)

K∗

κ =

[

32 (ξ3 + 7ξ2 + 16ξ + 42)

(ξ2 + 6ξ + 10) (ξ2 + 6ξ + 18)
−
ξ2 (ξ4 + ξ3 + ξ2 + 2ξ + 2)

ξ3 + ξ2 + ξ + 1

]

×

2ξ3

3 (ξ2 + 2ξ + 2) (ξ4 + 4)
2 +

40ξ9

3 (ξ4 + 4)
2
(81ξ4 + 4)

, (A.101)

K∗

η = −
32ξ3(2ξ − 1)

15 (ξ4 + 4)2 (ξ2 + 2ξ + 2)
. (A.102)
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Figure 1: Schematic diagram of the problem: electroosmotic flow through a wide rectangular

channel of height 2h and width 2b (b � h) rotating about the z-axis at the speed Ω, with

primary and secondary flow velocities u(z), v(z) in the x- and y-directions. The zeta potentials

are ζ1 and ζ2 on the upper and lower walls, respectively.
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Figure 2: Axial and transverse velocity profiles û(ẑ), v̂(ẑ), for ω = 10, 50 and λ̂ = 0, 1, 3, 4,

where κ̂ = 10 and ζ̂1 = ζ̂2 = 1, under the condition of no lateral confinement. The solid lines

and the circles denote results of the perturbation model and the numerical model, respectively.
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Figure 3: Axial and transverse flow rates (q̂x, q̂y) as functions of the ordering parameter λ̂,

for ω = 10, 50, where κ̂ = 10 and ζ̂1 = ζ̂2 = 1, under the condition of no lateral confinement.

The solid lines and the circles denote results of the perturbation model and the numerical

model, respectively.
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Figure 4: The leading-order axial and transverse velocity profiles: û0(ẑ) and v̂0(ẑ), for ω =

0, 40, 200, and κ̂ = 10, 50, where ζ̂1 = 2 and ζ̂2 = 0 (i.e., asymmetrical zeta potential

distribution).
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ẑ

(d) κ = 50^

^

Figure 5: The leading-order axial and transverse velocity profiles: û0(ẑ), v̂0(ẑ), for ω =

0, 40, 200, and κ̂ = 10, 50, where ζ̂1 = ζ̂2 = 1 (i.e., symmetrical zeta potential distribution).

43



ω
0 50 100 150 200

0

0.5

1

1.5

2

q̂
0

1

κ̂ = 10

50

(a)

ω
0 50 100 150 200

0

0.04

0.08

0.12

q̂
1

1

κ̂ = 10

50

(b)

Figure 6: The leading- and first-order flow rates: (a) q̂0, (b) q̂1, as functions of ω for κ̂ =

1, 10, 50, where ζ̂1 = ζ̂2 = 1.
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Figure 7: The leading- and first-order flow rates: (a) q̂0, (b) q̂1, as functions of κ̂ for ω =

0, 40, 200, where ζ̂1 = ζ̂2 = 1.
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Figure 8: The leading- and first-order axial and transverse velocity profiles in an Ekman–

EDL layer: (a) û∗0(z
∗), (b) û∗1(z

∗), (c) v̂∗0(z
∗), (d) v̂∗1(z

∗), for various values of the modified

dimensionless Debye parameter ξ.
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Figure 9: For the leading- and first-order axial velocities in an Ekman–EDL layer: (a) the

ratio of the peak to the geostrophic velocity ũ∗
m

= û∗
m
/û∗

∞
as a function of ξ; (b) the location

of the peak velocity ẑ∗
m

as a function of ξ.
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