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A Note on Risky Targets and Effort

Abstract

This note examines the effort choice problem of a decision maker (DM) who has to meet

a target. The more the DM spends on effort, the more likely the target is reached. Besides

the risk of missing the target despite his effort, the DM faces additional uncertainty in that

both the target and the status quo are subject to exogenous shocks that are beyond the

DM’s control. We consider two cases: the additive case in which the DM’s effort affects

solely the likelihood of achieving the target, and the multiplicative case in which the DM’s

effort also has direct effect on the target and the status quo. Using the theory of monotone

comparative statics and risk apportionment, we derive sufficient conditions under which

the DM spends more on effort when the target experiences an improvement in risk via

higher-order stochastic dominance.

JEL classification: C61; D81

Keywords: Effort; Monotone comparative statics; Risk apportionment; Risky targets;

Stochastic dominance

1. Introduction

In a recent article in this Journal, Chuang et al. (2013) examine the effort choice problem

of a decision maker (DM) who has a target to meet. The more the DM spends on effort,

the more likely the target is reached.1 Besides the risk of missing the target despite his

effort, the DM faces additional uncertainty in that both the target and the status quo are

subject to exogenous shocks that are beyond the DM’s control. Chuang et al. (2013) focus

on the comparative statics with respect to the DM’s optimal effort when there are changes

in risk that influence either the target or the status quo. Crainich et al. (2016) extend their

analysis to allow for different risk attitudes including not only risk aversion but also risk

1The effort choice problem of Chuang et al. (2013) is analogous to the self-protection problem of Ehrlich
and Becker (1972). While effort is chosen to enhance the likelihood of a positive outcome in the former
problem, it is chosen to reduce the occurrence of a negative event in the latter problem.
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neutrality and risk loving.

Examples of the effort choice problem considered by Chuang et al. (2013) abound.

For instance, firms innovate by incurring R&D expenditures to improve their products.

New products are more likely to be launched, consequently making the existing products

obsolete, should firms spend more on R&D. In the worse case scenario when innovations fail,

firms still have their existing products for sales. Of course, the actual demand for either the

new or existing products is not completely predictable ex ante, thereby exposing the target

and the status quo to substantial uncertainty. As another example, portfolio managers

are commonly required to beat some benchmark returns either explicitly or implicitly. To

this end, they spend resources to construct plausible trading strategies that might generate

abnormal returns. If no such trading strategies are found, portfolio managers can still invest

in the benchmark portfolios. In either case, the portfolio returns are influenced by market

conditions and sentiments, making both the target and the status quo risky.

The purpose of this note is twofold. First, as in Crainich et al. (2016), we derive sufficient

conditions under which the DM spends more on effort when the target experiences an

improvement in risk in the sense of higher-order stochastic dominance. While Chuang et al.

(2013) provide necessary and sufficient conditions for this comparative statics exercise, their

conditions depend on endogenously chosen variables, thereby substantially reducing their

usefulness. Unlike Chuang et al. (2013) and Crainich et al. (2016), both of which rely on the

first- and second-order conditions for the DM’s effort choice problem, we apply the theory

of monotone comparative statics (Milgrom and Shannon, 1994) and risk apportionment

(Eeckhoudt and Schlesinger, 2006; Eeckhoudt et al., 2009; Chiu et al., 2012) to perform

the comparative statics analysis. This approach follows that of Wang and Li (2015), which

shows that precautionary effort à la Eeckhoudt et at. (2012) is another trait for prudence.2

Indeed, Nocetti (2016) offers a rather general setting with one or more decision variables to

study the comparative statics of higher-degree risk changes, which is applicable to generalize

2Wong (2016) extends the analysis of Wang and Li (2015) to the case of precautionary self-insurance-
cum-protection.
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many classical theories such as precautionary saving and self-protection.

Second, we consider not only the additive case in which the DM’s effort affects solely the

likelihood of achieving the target (Chuang et al., 2013; Crainich et al., 2016), but also the

multiplicative case in which the DM’s effort has direct effect on the target and the status

quo. The idea is that while the target and the status quo may be measured by means

of lump-sum stochastic returns as in the additive case, they may very well be measured

by means of per-dollar stochastic returns as in the multiplicative case. The examples of

innovative firms and portfolio managers mentioned above fall squarely into the additive and

multiplicative cases, respectively.

The rest of this note is organized as follows. Section 2 delineates a variant model of

Chuang et al. (2013). Section 3 derives sufficient conditions under which the DM spends

more on effort when the target becomes less risky via higher-order stochastic dominance

in the additive case. Section 4 extends the analysis to the multiplicative case. The final

section concludes.

2. The model

Consider a variant model of risky targets and effort à la Chuang et al. (2013). A

decision maker (DM) has initial wealth, w0 > 0, and a continuously differentiable utility

function, u(w), defined over his terminal wealth, w > 0. Let T be a positive integer and

define UT ≡ {u(w) : (−1)n−1u(n)(w) > 0 for n = 1, ..., T}, where u(n)(w) = dnu(w)/dwn

denotes the nth derivative of u(w). Hence, UT is the set of utility functions that satisfy risk

apportionment up to order T (Eeckhoudt and Schlesinger, 2006). Letting T go to infinity

imposes u(w) to have all odd derivatives positive and all even derivatives negative. In this

case, u(w) is completely monotone and exhibits mixed risk aversion (Caballé and Pomansky,

1996).

The DM faces an original risky situation, b̃, but he prefers to face an alternative risky
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situation, ã, to which we refer as his target. Both ã and b̃ are positive continuous random

variables such that E[u(ã)] > E[u(b̃)], where E[·] is the expectation operator. To make

it more likely to reach the target, the DM can spend an amount, e, on effort, where the

expenditure, e, is endogenously chosen from the compact set, [0, w0].
3 Given that e has

been spent, the probability of achieving the target is p(e) and that of remaining at the

original situation is 1 − p(e), where p(e) is a continuous function such that 0 ≤ p(e) ≤ 1.

We assume that the DM’s effort is effective in that p(e) is increasing in e for all e ∈ [0, w0].

Let F (a) be the cumulative distribution function (CDF) of ã over support [a, a], where

0 ≤ a < a. Define F1(a) = F (a) and Fn+1(a) =
∫ a
a Fn(x)dx for all n = 1, ..., N − 1 and

a ∈ [a, a], where N ≥ 2. Let ã′ be another random variable that is distributed according to

the CDF, G(a), over support [a, a]. Define Gn(a) in an analogous manner as Fn(a) for n = 1,

..., N . We say that ã′ dominates ã via N th-order stochastic dominance if Gn(a) ≤ Fn(a)

for all n = 1, ..., N , and GN(a) ≤ FN(a) for all a ∈ [a, a], where the inequality is strict for

some a. In the special case wherein Gn(a) = Fn(a) for all n = 1, ..., N , the first N − 1

moments of the two distributions coincide. In this case, we say that ã has more N th-degree

risk than ã′ in the sense of Ekern (1980).

3. Additive risky targets and effort

As in Chuang et al. (2013), we consider in this section the case that the risky target

and status quo are additive in nature so that the DM’s expected utility is given by

f(e) = p(e)E[u(w0 − e + ã)] + [1− p(e)]E[u(w0 − e + b̃)], (1)

The DM’s ex-ante decision problem is to choose e ∈ [0, w0] so as to maximize f(e). Since

f(e) is a continuous function of e, the set, arg maxe∈[0,w0] f(e), is non-empty, and plausibly

not a singleton. Let e∗1 be an element in argmaxe∈[0,w0] f(e).

3An alternative way is to specify the effort cost as disutility (see Chuang et al., 2013). In this case, it is
easily verified that the results of Propositions 1 and 2 remain intact.
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Following Chuang et al. (2013), we conduct the comparative statics with respect to

the DM’s optimal effort when the risky target, ã, changes to ã′, where ã′ dominates ã

via N th-order stochastic dominance and N ≥ 1. In this case, the DM’s expected utility

becomes

g(e) = p(e)E[u(w0 − e + ã′)] + [1− p(e)]E[u(w0 − e + b̃)]. (2)

The DM’s ex-ante decision problem is to choose e ∈ [0, w0] so as to maximize g(e). Since

g(e) is a continuous function of e, the set, argmaxe∈[0,w0] g(e), is non-empty, and plausibly

not a singleton. Let e∗2 be an element in argmaxe∈[0,w0] g(e).

To examine the DM’s optimal effort when the target becomes less risky, we have to

compare the two sets, arg maxe∈[0,w0] f(e) and argmaxe∈[0,w0] g(e). This falls into a principal

concern in the theory of monotone comparative statics (Milgrom and Shannon, 1994). The

following well-known theorem is adapted from Topkis (1978, 1998).

Topkis’ Monotonicity Theorem. If the function, φ(e, θ), satisfies the single-crossing

condition in (e, θ), i.e.,

φ(e2, θ1)− φ(e1, θ1) ≥ 0 ⇒ φ(e2, θ2) − φ(e1, θ2) > 0, (3)

for all e2 > e1 and θ2 > θ1, then e∗θ2
≥ e∗θ1

for all θ2 > θ1, where e∗θ ∈ arg maxe∈[0,w0] φ(e, θ).

Proof. Since e∗θ ∈ arg maxe∈[0,w0] φ(e, θ), we must have φ(e∗θ1
, θ1) − φ(e∗θ2

, θ1) ≥ 0. Suppose

that e∗θ1
> e∗θ2

, where θ2 > θ1. It then follows from the single-crossing condition (3) that

φ(e∗θ1
, θ2)− φ(e∗θ2

, θ2) > 0, which is contradictory to e∗θ2
∈ arg maxe∈[0,w0] φ(e, θ2). Hence, it

must be true that e∗θ2
≥ e∗θ1

for all θ2 > θ1. 2

In the following proposition, we derive sufficient, but not necessary, conditions under

which the DM spends more on effort when the target becomes less risky, i.e., e∗2 ≥ e∗1.
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Proposition 1. Given that the risky situations are additive in nature, and that the risky

target, ã, experiences an improvement in risk to ã′ via N th-order stochastic dominance,

the DM spends more on effort, i.e., e∗2 ≥ e∗1, if the DM’s utility function satisfies that

u(w) ∈ UN+1.

Proof. Define f(e) = φ(e, 1) and g(e) = φ(e, 2). For all e2 > e1, it follows from Eq. (1) that

f(e2)− f(e1) ≥ 0 is equivalent to

p(e2)E[u(w0 − e2 + ã)] − p(e1)E[u(w0 − e1 + ã)]

≥ [1− p(e1)]E[u(w0 − e1 + b̃)] − [1 − p(e2)]E[u(w0 − e2 + b̃)]. (4)

Since ã′ dominates ã via N th-order stochastic dominance and w0 − e1 dominates w0 − e2

via first-order stochastic dominance, Theorem 3 of Eeckhoudt et al. (2009) implies that

the 50-50 binary lottery, [w0 − e2 + ã′; w0 − e1 + ã], dominates the 50-50 binary lottery,

[w0 − e1 + ã′; w0 − e2 + ã], via (N + 1)th-order stochastic dominance. Since u(w) ∈ UN+1,

it follows from the (N + 1)th-order stochastic dominance that

1

2
E[u(w0−e2 + ã′)]+

1

2
E[u(w0−e1 + ã)] >

1

2
E[u(w0−e1 + ã′)]+

1

2
E[u(w0−e2 + ã)].(5)

Rearranging terms, we can write inequality (5) as

E[u(w0 − e2 + ã′)]− E[u(w0 − e2 + ã)] > E[u(w0 − e1 + ã′)] − E[u(w0 − e1 + ã)]. (6)

Since ã′ dominates ã via N th-order stochastic dominance and u(w) ∈ UN+1 ⊂ UN , we have

E[u(ã′)] > E[u(ã)]. Since p(e2) > p(e1), we multiply p(e2) to the left-hand side of inequality

(6) and p(e1) to the right-hand side of inequality (6) to yield

p(e2)E[u(w0 − e2 + ã′)]− p(e1)E[u(w0 − e1 + ã′)]

> p(e2)E[u(w0 − e2 + ã)] − p(e1)E[u(w0 − e1 + ã)]
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≥ [1− p(e1)]E[u(w0 − e1 + b̃)] − [1 − p(e2)]E[u(w0 − e2 + b̃)], (7)

where the last inequality follows from inequality (4). It follows from Eq. (2) that inequality

(7) is equivalent to g(e2) − g(e1) > 0. Hence, the single-crossing condition (3) is satisfied

for θ1 = 1 and θ2 = 2. It then follows from Topkis’ Monotonicity Theorem that e∗2 ≥ e∗1. 2

When ã has more N th-degree risk than ã′ in the sense of Ekern (1980), it is straight-

forward to verify that e∗2 ≥ e∗1 if (−1)N−1u(N)(w) > 0 and (−1)Nu(N+1)(w) > 0. Indeed,

Crainich et al. (2016) derive the same sufficient conditions using the traditional approach

that relies on the first- and second-order conditions for the DM’s decision problem.4 We

count on the alternative approach adopted from the theory of monotone comparative stat-

ics and risk apportionment. Proposition 1 shows that the sole driver is the single-crossing

condition (3) and not the first- and second-order conditions for the DM’s decision problem,

making the comparative statics results completely general.

Using the traditional approach, Chuang et al. (2013) derive necessary and sufficient

condition under which e∗2 ≥ e∗1 when ã has more N th-degree risk than ã′ in the sense of

Ekern (1980). Specifically, using our notation, we can state the condition of Chuang et al.

(2013) as follows:

−
u(N+1)(w0 − e∗1 + a)

u(N)(w0 − e∗1 + a)
> −

p′(e∗1)

p(e∗1)
, (8)

for all a ∈ [a, a]. Given that (−1)N−1u(N)(w) > 0 and (−1)Nu(N+1)(w) > 0, the left-

hand side of condition (8) becomes the N th-degree Arrow-Pratt measure of absolute risk

aversion (Caballé and Pomansky, 1996; Jindapon and Neilson, 2007), which is positive.

Hence, condition (8) holds and e∗2 ≥ e∗1. On the other hand, even when u(N)(w) > 0

and u(N+1)(w) > 0, condition (8) may still hold provided that the left-hand side is less

negative relative to the right-hand side, thereby rendering e∗2 ≥ e∗1. As such, u(w) ∈ UN+1

is sufficient but not necessary for e∗2 ≥ e∗1 when ã experiences an improvement in risk to ã′

4It is well-known from the literature on effort that the second-order conditions for effort-choice problems
need not hold. See also Crainich et al. (2016).
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via N th-order stochastic dominance. It is evident from condition (8) that it depends on e∗1,

which is endogenously determined, thereby making condition (8) far less informative.

To see the underlying intuition for Proposition 1, we follow Eeckhoudt and Schlesinger

(2006) to define the utility premium for shifting the risk from ã′ to ã, where ã′ dominates

ã via N th-order stochastic dominance, as

π(e) = p(e)E[u(w0 − e + ã)]− p(e)E[u(w0 − e + ã′)]. (9)

The utility premium, π(e), which is negative if, and only if, the DM’s utility function

satisfies that u(w) ∈ UN . As such, π(e) measures the “pain” caused by the increase in risk

from ã′ to ã in terms of the loss of expected utility. Differentiating Eq. (9) with respect to

e yields

π′(e) = p′(e){E[u(w0 − e + ã)]− E[u(w0 − e + ã′]}

−p(e){E[u′(w0 − e + ã)]− E[u′(w0 − e + ã′)]}. (10)

The expression inside the curly brackets of the first term on the right-hand side of Eq. (10)

is positive if, and only if, u(w) ∈ UN . The expression inside the curly brackets of the second

term on the right-hand side of Eq. (10) is negative if, and only if, u(w) ∈ UN+1. Since

p′(e) > 0, we conclude that π′(e) < 0 if u(w) ∈ UN+1. The DM as such has less incentives

to spend on effort that leads him to the more risky target, thereby rendering that e∗1 ≤ e∗2.

4. Multiplicative risky targets and effort

In this section, we consider the case that the risky target and status quo are multiplica-

tive in nature so that the DM’s expected utility is given by

f(e) = p(e)E
[

u
(

(w0 − e)ã
)]

+ [1− p(e)]E
[

u
(

(w0 − e)b̃
)]

, (11)
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Let e∗1 be an element in argmaxe∈[0,w0] f(e). When the risky target, ã, changes to ã′, where

ã′ dominates ã via N th-order stochastic dominance and N ≥ 1, the DM’s expected utility

becomes

g(e) = p(e)E
[

u
(

(w0 − e)ã′
)]

+ [1− p(e)]E
[

u
(

(w0 − e)b̃
)]

. (12)

Let e∗2 be an element in arg maxe∈[0,w0] g(e).

Denote R(n)(w) = −wu(n+1)(w)/u(n)(w) as the nth-degree Arrow-Pratt measure of

relative risk aversion. In the following proposition, we derive sufficient, but not necessary,

conditions under which the DM spends more on effort when the target becomes less risky,

i.e., e∗2 ≥ e∗1.

Proposition 2. Given that the risky situations are multiplicative in nature, and that the

risky target, ã, experiences an improvement in risk to ã′ via N th-order stochastic dominance,

the DM spends more on effort, i.e., e∗2 ≥ e∗1, if the DM’s utility function satisfies that

u(w) ∈ UN+1 and R(n)(w) ≥ n for n = 1, ..., N .

Proof. Define f(e) = φ(e, 1) and g(e) = φ(e, 2). For all e2 > e1, it follows from Eq. (11)

that f(e2) − f(e1) ≥ 0 is equivalent to

p(e2)E
[

u
(

(w0 − e2)ã
)]

− p(e1)E{u[(w0 − e1)ã]}

≥ [1− p(e1)]E
[

u
(

(w0 − e1)b̃
)]

− [1 − p(e2)]E
[

u
(

(w0 − e2)b̃
)]

. (13)

Since ã′ dominates ã via N th-order stochastic dominance and w0 − e1 dominates w0 − e2

via first-order stochastic dominance, Theorem 3 of Chiu et al. (2012) implies that the

DM prefers the 50-50 binary lottery, [(w0 − e2)ã
′; (w0 − e1)ã], to the 50-50 binary lottery,

[(w0 − e1)ã
′; (w0 − e2)ã], if u(x) ∈ UN+1 and R(n)(w) ≥ n for n = 1, ..., N so that

1

2
E

[

u
(

(w0 − e2)ã
′
)]

+
1

2
E

[

u
(

(w0 − e1)ã
)]
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>
1

2
E

[

u
(

(w0 − e1)ã
′
)]

+
1

2
E

[

u
(

(w0 − e2)ã
)]

. (14)

Rearranging terms, we can write inequality (14) as

E
[

u
(

(w0 − e2)ã
′
)]

−E
[

u
(

(w0 − e2)ã
)]

> E
[

u
(

(w0 − e1)ã
′
)]

−E
[

u
(

(w0 − e1)ã
)]

.(15)

Since ã′ dominates ã via N th-order stochastic dominance and u(w) ∈ UN+1 ⊂ UN , we have

E[u(ã′)] > E[u(ã)]. Since p(e2) > p(e1), we multiply p(e2) to the left-hand side of inequality

(15) and p(e1) to the right-hand side of inequality (15) to yield

p(e2)E
[

u
(

(w0 − e2)ã
′
)]

− p(e1)E
[

u
(

(w0 − e1)ã
′
)]

> p(e2)E
[

u
(

(w0 − e2)ã
)]

− p(e1)E
[

u
(

(w0 − e1)ã
)]

≥ [1− p(e1)]E
[

u
(

(w0 − e1)b̃
)]

− [1 − p(e2)]E
[

u
(

(w0 − e2)b̃
)]

, (16)

where the last inequality follows from inequality (13). It follows from Eq. (12) that in-

equality (16) is equivalent to g(e2) − g(e1) > 0. Hence, the single-crossing condition (3) is

satisfied for θ1 = 1 and θ2 = 2. It then follows from Topkis’ Monotonicity Theorem that

e∗2 ≥ e∗1. 2

When ã has more N th-degree risk than ã′ in the sense of Ekern (1980), it is easily

verified that e∗2 ≥ e∗1 if (−1)N−1u(N)(w) > 0, (−1)Nu(N+1)(w) > 0, and R(N)(w) ≥ N . To

see the underlying intuition for Proposition 2, we follow Eeckhoudt and Schlesinger (2006)

to define the utility premium for shifting the risk from ã′ to ã, where ã′ dominates ã via

N th-order stochastic dominance, as

π(e) = p(e)E
[

u
(

(w0 − e)ã
)]

− p(e)E
[

u
(

(w0 − e)ã′
)]

. (17)

The utility premium, π(e), which is negative if, and only if, the DM’s utility function

satisfies that u(w) ∈ UN . As such, π(e) measures the “pain” caused by the increase in risk
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from ã′ to ã in terms of the loss of expected utility. Differentiating Eq. (17) with respect

to e yields

π′(e) = p′(e)
{

E
[

u
(

(w0 − e)ã
)]

− E
[

u
(

(w0 − e)ã′
)]}

−p(e)
{

E
[

u′
(

(w0 − e)ã
)

ã
]

− E
[

u′
(

(w0 − e)ã′
)

ã′
]}

, (18)

The expression inside the curly brackets of the first term on the right-hand side of Eq. (18)

is positive if, and only if, u(w) ∈ UN . According to Theorem 3 of Chiu et al. (2012), the

expression inside the curly brackets of the second term on the right-hand side of Eq. (18)

is negative if u(w) ∈ UN+1 and R(n)(w) ≥ n for n = 1, ..., N . Since p′(e) > 0, we conclude

that π′(e) < 0 if u(w) ∈ UN+1 and R(n)(w) ≥ n for n = 1, ..., N . The DM as such has

less incentives to spend on effort that leads him to the more risky target, thereby rendering

that e∗1 ≤ e∗2.

5. Conclusion

In this note, we revisit the effort choice problem of a decision maker (DM) who has to

meet a target, as developed by Chuang et al. (2013). The more the DM spends on effort,

the more likely the target is reached. Besides the risk of missing the target despite his

effort, the DM faces additional uncertainty in that both the target and the status quo are

subject to exogenous shocks that are beyond the DM’s control. We consider two cases: the

additive case in which the DM’s effort affects solely the likelihood of achieving the target,

and the multiplicative case in which the DM’s effort also has direct effect on the target and

the status quo. Using the theory of monotone comparative statics (Milgrom and Shannon,

1994) and risk apportionment (Eeckhoudt and Schlesinger, 2006; Eeckhoudt et al., 2009;

Chiu et al., 2012), we derive sufficient conditions under which the DM spends more on effort

when the target experiences an improvement in risk via higher-order stochastic dominance.
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