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Abstract
Bone and surgical site infections after osteosynthesis are notoriously difficult to manage and pose a tremendous burden in
fracture management. In this article, we use the term osteosynthesis-associated infection (OAI) to refer to this clinical
entity. While relatively few surgically treated fractures become infected, it is challenging to perform a rapid diagnosis.
Optimal management strategies are complex and highly customized to each scenario and take into consideration the
status of fracture union, the presence of hardware and the degree of mechanical stability. At present, a high level of
relevant evidence is unavailable; most findings presented in the literature are based on laboratory work and non-
randomized clinical studies. We present this overview of OAI in two parts: an examination of recent literature con-
cerning OAI pathogenesis, diagnosis and classification and a review of treatment options.
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Introduction

The term osteosynthesis-associated infection (OAI) is

defined here as the clinical or subclinical infection of a

fracture following surgical fixation with an internally

placed implant. Prosthetic joint infection (PJI) is another

type of orthopaedic implant infection. Patients with either

OAI or PJI may present with implant-bound infections,

bone and soft tissue defects, sinuses, osteomyelitis, implant

loosening and deformities as well as various adverse micro-

biological and patient characteristics.1,2 OAI is uniquely

challenging, however, due to the presence of trauma, frac-

ture instability, non-union and the need for cartilage pre-

servation. Also, at present, there is a relative lack of

consensus among clinicians as to the proper treatment of

OAI. PJI has its challenges though effective treatment

options are better understood.3–5

While OAI is uncommon – the rate of infection after

closed fracture, for instance, is only 1–2%6 – its high com-

plexity of management makes it extremely costly to treat.

OAI management frequently involves prolonged hospital

stay, rehabilitation, repeated operations and the extensive

use of specialized investigation and treatment.7–9 As a

result, patients with OAI have high morbidity rates and are

less likely to return to duty.10 The increasingly frequent use

of internal fixation11–13 and the emergence of antibiotic-

resistant microorganisms14 have exacerbated this problem.

Risk factors

Fracture type

Open fractures are most commonly associated with OAI.

The risk of secondary infection according to the Gustilo
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and Anderson grading15 is 2–4% for grades I and II, and

between 4% and 52% for class III fractures, depending on

the severity of soft tissue damage.15–20 Fractures of the

lower limbs, especially near the proximal and distal

tibia,11,17,21 are at the greatest risk.22 Severe soft tissue

involvement, polytrauma,23 penetrating, blast, combat inju-

ries10,24–26 and compartment syndrome are significant risk

factors for subsequent infection.27,28 Irradiation-related

fractures,29 pathological fractures30 and pelvic fractures

requiring arterial embolization31 are all also at increased

risk of OAI. In comparison to acute fractures, fixations of

non-unions have double the risk of infection.17

Patient risk factors

Tobacco smoking, diabetes mellitus, history of stroke,

heart failure and multiple previous operations are identified

risk factors of OAI.32–37 Immunocompromised patients can

present atypically38,39 with slow growing atypical organ-

isms40 and a combination of less fulminant initial clinical

features that lead to a delay in diagnosis but later rapidly

deteriorate into life-threatening infections.41 Elderly

patients,42–44 intravenous drug users and socially deprived

patients are also shown to be at higher risk.45 In fragility hip

fractures, both mortality and disability are increased with

OAI.34,46 HIV-infected patients are at risk of osteoporosis,

all types of fractures,47–49 infection of non-operated frac-

ture haematoma50 and OAI.51

Controllable risk factors

There is robust evidence to show that antibiotic prophylaxis

is highly effective in reducing the risk of OAI for both open

and closed fractures.15,17,52 In open fractures, the infection

risk is profoundly increased when the administration of

prophylactic antibiotics is delayed for more than 6 h.53

In open fractures, a minor delay in initial surgical deb-

ridement of more than 6 h is not associated with signifi-

cantly increased risk,54,55 but patients operated on by

inexperienced surgeons are at higher risk.56 Early closure

of the primary open wound appears to be beneficial.57–59

Prolongation of surgery is associated with infection.23,27,60

The use of plastic adhesive drapes can reduce bacterial load

at the surgical site.61 Overzealous powered reaming or

drilling causes heat necrosis.62 The risk is increased with

multiplicity and size of implants and the presence of bone

grafts, allografts or other foreign materials.63–67 Prolonged

use of surgical drains is thought to increase the risk of OAI,

but the issue remains controversial.43 Indwelling catheters

and blood transfusions may carry a small rise in the like-

lihood of infection.68–71 There is weak evidence showing

that prolonged use of external fixators for more than 28

days before internal fixation is associated with a higher

likelihood of infection.23,72,73

From a randomized study, smoking cessation effectively

halved infection and other complications.74 Routine

auditing of infection rates and clinical practice is effective

in minimizing OAI at the hospital management level.75

Pathogenesis

Microbiology

Staphylococcus aureus causes the majority of OAI cases.

Methicillin-resistant S. aureus is now more frequent than

methicillin-susceptible S. aureus in some areas and not

limited to institutionalized patients.7,34,36,76–80 OAI caused

by less virulent skin organisms, such as coagulase-negative

staphylococci (CNS), can be as frequent as S. aureus6,46

and 80–90% of CNS cases are methicillin resistant.81

Lower virulence skin flora, such as Corynebacterium82,83

and Propionibacterium,84–86 are increasingly identified as

diagnostic techniques are improved and should not be

regarded as contaminants.

Gastrointestinal tract organisms, including Escherichia

coli, Enterobacter, Enterococci, Klebsiella and Proteus,

are important causes of OAI in sites near the perineum.28

Gram-negative glucose non-fermenters, such as Pseudomo-

nas aeruginosa and Acinetobacter baumannii, are fre-

quently found both inside and outside the hospital. They

have a minimal nutritional requirement, tolerance to rela-

tively high temperature and resistant to many antibiotics.

There is an increasing frequency of infections caused by

multidrug-resistant P. aeruginosa and A. baumannii.87,88 P.

aeruginosa is associated with significantly higher recur-

rence rates and failure of control as compared with

Staphylococcus.89,90

Polymicrobial infection is linked to open fractures78,79

and poor outcome.91 Clostridium species, which is found in

the soil, and Aeromonas species, which resides in brackish

water, are highly virulent organisms associated with life-

threatening necrotizing infections, which require urgent

surgical intervention.92–97 Nontuberculous mycobacterium

and fungi are environmental organisms resistant to conven-

tional antibiotics and disinfectants and occasionally intro-

duced via open wounds.98–100 Mycobacterium

tuberculosis101,102 is rare even in endemic countries.103

When atypical slow-growing pathogens are identified, a

pre-existing bone infection, pathological fracture and an

immunocompromised state must be suspected.104–107

Biofilm formation and development
of drug resistance

At inoculation, bacteria are in planktonic form and suscep-

tible to host defence and antibiotics. Successful bacteria

initiate infection in the soft tissue and replicate rapidly.

Bone and implant involvement increase over the following

1–2 weeks characterized by osteitis, bone necrosis, reduced

the new bone formation and implant loosening. Organisms

became chronically entrenched within implant surface
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biofilm and emptied Haversian canals, becoming increas-

ingly difficult to eradicate.108

Biofilm production109 is critical to bacterial survival in

the environment, because planktonic organisms are highly

susceptible to adverse external factors. The biofilm is a

colony-like aggregation of cells embedded in an exopoly-

saccharide matrix mixed with extracellular products, firmly

attached to the surface of implants.110,111 There are five

stages in its development and maturation.112 Free-floating

planktonic microbes first adhere to metal surfaces (stage I).

In stage II, they multiply and start to produce exopolysac-

charide matrix, which retains nutrients and more planktonic

organisms. In stage III, the early biofilm architecture devel-

ops (colonization) and then matures (stage IV), wherein

microorganisms in the deeper layers become increasingly

dormant and isolated from the external environment. At the

final stage (stage V), microbes are dispersed back into the

environment to colonize other new substrates.

Biofilm-bound organisms are resistant to phagocytosis.

Macrophages that attempt to attack the biofilm may cause

more damage to the surrounding tissues. The exopolysac-

charide matrix hinders the penetration of antibiotics and

antibodies both physically and by electrostatic binding. Phy-

siological dormancy of bacterial cells makes them refractory

to antibiotics that target their metabolic and replication path-

ways.113,114 For instance, the minimal inhibitory concentra-

tion for biofilm bounded pseudomonas can increase 1000-

fold when compared to planktonic forms.111

Organisms within the biofilm can cross-communicate

and adapt. This is referred to as the quorum-sensing sys-

tem.115,116 Various virulence factors are regulated and

released to protect the biofilm from elimination. In chronic

infections, there is increased mutation and increased

genetic resistance to antibiotics and host defence.114

Small-colony variants (SCVs) are slow-growing variants

of the offending organism which tend to reside in the bio-

film and develop resistance and play a major role in persis-

tent or recurrent infections.117 Because SCVs are

overwhelmed in acute infections, they are not easily

detected using routine methods.

Implant material and design

The presence of foreign bodies impairs the host

defences.118 Macrophages accumulated around implants

are functionally defective as they become exhausted when

unable to engulf targets of excessive physical size.119 Simi-

larly, granulocytes become activated because of foreign

materials, but bacteria-targeted degranulation, ingestion

and superoxide production are all impaired.120 Materials

that are less biocompatible triggers off a more intense cyto-

kine cascade, together with adjacent tissue damage and

formation of an immune-impaired reactive capsule and a

potential space in between.121,122

Microorganism and biofilm adhesion is affected by bac-

terial, environmental and surface characteristics.123

Microrough surfaces at bacterial length scales are prone

because of increased surface area and greater resistance

to shear forces.124 Different microorganisms have different

affinity for surfaces depending on factors, such as surface

topology, chemical composition, charge, hydrophobicity

and physical configuration, as well as environmental fac-

tors, such as temperature, pH, electrolyte concentration,

flow and the presence of serum proteins and antibiotics.

The most commonly used materials are stainless steel

and titanium alloy. While stainless steel is less biocompa-

tible and more susceptible to staphylococcal infection in

animal models,121,125,126 they are typically manufactured

with a polished surface finish. Conversely, the finishing

of titanium alloy is usually anodized, and its microrough

surface favours biofilm development. In all, there is no

definite in vivo evidence to support the superiority of either

material.127

Implants with internal dead spaces, such as cannulated

open section nails, are more prone to OAI.128 Minimally

invasive plating alone does not appear to reduce infection

when compared to open surgery.129 Rather, infection is

lowered with low contact plating, because periosteal strip-

ping and disturbance to blood supply are minimized.130,131

In limited studies, absorbable polymer implants had similar

infection risk compared with metallic implants.132 There is,

however, a general concern for associated infection related

to their biocompatibility, associated tissue reaction, osteo-

lysis and retained debris.133

Infection and fracture stability

An unstable infected fracture is more problematic than a

stably infected fracture.134 Although infection is more

likely to occur in conjunction with the presence of a foreign

body, stable internal fixation of fractures appears to reduce

the likelihood of infection. In a rabbit model, osteotomies

inoculated with S. aureus were less likely to get infected

after stable internal fixation compared to unstable internal

fixation.135 Although the mechanism is still unknown, it is

believed that increased soft tissue irritation, difficulty in

revascularization,136 haematoma and evolving dead space

resulting from excess motion are all unfavorable factors of

infection.

Stability is compromised when there is the persistence

of infection for more than 2 weeks.137 Natural bone turn-

over is affected by the homeostatic balance between

osteoblast and osteoclast activities is disrupted. Surface-

associated material from staphylococci induces leukocytes

production of tumour necrosis factor alpha (TNF-a, IL-I

and IL-6 and upregulation of receptor activator of the

nuclear factor-kB (RANK) in pre-osteoclasts. Osteoclasts

are hyperactivated, and the balance is tipped against bone-

forming osteoblasts. Excessive bone is resorbed from

infected areas adjacent to the implant and the fracture,

leading to mechanical failure, instability, non-union and

persistence of infection138 (Figure 1).
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Diagnosis

Clinical

The diagnosis of OAI is usually clinical. The presentation

varies depending on the virulence of the organism, mode of

infection, condition of fracture healing and depth. The typical

features are increasing local pain, erythema, swelling, wound

breakdown, purulent discharge, sinus formation and systemic

symptoms, such as fever. For acute OAI, patients most com-

monly present in the first month after fracture fixation.139

Cast treatment can obscure local features and delay the diag-

nosis.97 Delayed infections often have less severe features as

they are often caused by low virulent microorganisms such as

CNS. Moreover, OAI manifestations may be masked because

of liberal usage of empirical antibiotic treatment.140

Imaging studies

Changes in plain radiographs usually occur late and are

therefore not useful in detecting acute infections. Patients

with delayed infections may have extensive periosteal reac-

tions, implant loosening and non-union on radiographs.139

Gas indicates severe infections or the presence of a sinus

tract if not due to recent surgery. Despite a lack of sensi-

tivity and specificity,141 routine serial radiographic

evaluations serve to provide crucial information on fracture

healing and implant stability.

Computed tomography (CT) is useful in confirming the

status of fracture healing, the presence of sequestra and

infection. Intravenous contrast enhances the visualization

of inflamed soft tissue and the rims around abscess. Soft

tissue signal findings are 100% sensitive and 87% specific

for orthopaedic implant-related infection.142 Titanium

implants are less susceptible artefacts than stainless steel.

The implant should be aligned along the axis of the gantry,

so that beam traversal is minimized. Other artefact reduc-

tion techniques include using high energy settings, narrow

collimation, thin sections and extended dynamic ranges.143

CT scans contrast sonograms are useful in evaluating deep

originating sinuses.144 Gadolinium-contrast magnetic reso-

nance imaging (MRI) scans are very prone to metallic arte-

facts but helpful in mapping out infected soft tissue and

sequestrum after implant removal.

Ultrasonography is useful for detecting collections.141

Implant and bone surfaces are highly echogenic, fluid sig-

nals are well defined and metallic artefacts are minimal

compared to CT or MRI scans. Ultrasound-guided aspira-

tion is appropriate when small collections are deeply situ-

ated. The limited acoustic window may fail to penetrate

very deep locations at the hip and pelvis in obese patients.

Figure 1. The sequence of events occurring in OAI from inoculation to establishment of infection, implant loosening and abscess
rupture at different magnifications (refer to pathogenesis). The illustration is not drawn to scale. OAI: osteosynthesis-associated
infection.

4 Journal of Orthopaedic Surgery 25(1)



Radionuclide scans are useful in confirming occult

implant related infections or anatomical localization of

unrecognized focus. The indium-111-labelled leukocyte

scan has a superior accuracy of 90%145 compared to

bone-gallium 67 or technetium-99m scintigraphy, because

they are prone to false positives from the effects of bone

healing, trauma, degeneration and surgery. Unfortunately,

there are some major drawbacks of leukocyte scanning.

The method is time-consuming, technically complex and

relatively expensive, typically requiring at least 2 days for

leukocyte labelling and scanning. Routine use of leukocyte

scanning to exclude infections in non-unions appears to be

less accurate and not cost-effective compared to routine

blood tests alone.146

Positron emission tomography

Until recently, 18F-fluorodeoxyglucose positron emission

tomography (FDG-PET) was primarily used for detecting

hypermetabolic malignancies. However, PET is discovered

to be increasingly useful in infections where glucose meta-

bolism is also increased. The test has a sensitivity of nearly

100% and specificity of above 90% in occult and early

musculoskeletal infections, including OAI. Since 2010, the

European Medicines Agency (EMEA) considered PET

scans to be indicated for the diagnosis of chronic bone and

joint and adjacent infection including osteomyelitis, spon-

dylosis, discitis or osteitis including presence of metallic

implants.147

When compared to leukocyte scans, PET is considerably

quicker, typically requiring only 2–3 h. There is lower

radiation exposure and reduced costs.148,149 Most impor-

tantly, information gathered from PET/CT scans is

three-dimensional. The anatomical location of infection is

accurately defined. FDG uptake showing moderately raised

maximum standardized uptake value circumscribing metal-

lic implants is usually diagnostic of OAI. The images are

minimally distorted by metal artefacts. Furthermore, spatial

resolution is superior to both leukocyte scans and single

photon emission CT. Serial FDG-PET is demonstrated to

be useful in monitoring progress.150,151 With appropriate

use of PET scans, infections can be accurately detected

where timely surgical treatment can be more appropriately

initiated.152 In very early stages of infection, surgical deb-

ridement may be totally avoided by early initiation of anti-

biotics.149 Currently, the optimal diagnostic criteria of OAI

in PET remain to be studied and accurately defined. False

positive exams can rarely occur from acute fracture healing

and early post-operative inflammation especially within the

first 6 weeks after osteosynthesis.

Blood tests

There is robust data to support routine checking of leuko-

cyte count, erythrocyte sedimentation rate (ESR) and

C-reactive protein level (CRP) in OAI cases. In non-

unions with suspected infection, the positive predictive

value is 100, 56 and 18%, respectively, when three, two

and one of the tests are abnormally elevated. In excluding

infection, the negative predictive value is 81.6% when all

four results are normal.146

The CRP usually peaks on the second post-operative day

and normalizes after 2–3 weeks.153 A persistently raised

CRP beyond 4 to 7 days after surgery raises the suspicion

of infection.154 ESR has high sensitivity but suffers from a

long half-life of around 6 weeks and is, therefore, less

specific. Serial ESR and CRP levels are very useful in

monitoring treatment progress in patients with established

OAI. Serum IL-6 levels have a short half-life and have been

studied as a possible sensitive and specific alternative to

CRP.155,156 Unfortunately, IL-6 levels are more prone to an

elevation in response to major trauma or surgery and still

less specific than CRP.157

Blood cultures should be routinely obtained before sur-

gical treatment. Patients with clinical sepsis have higher

yields than those without. False positives due to contami-

nation may be minimized by obtaining two sets of blood

culture from two different sites at separate time intervals.

Immunocompromised patients with bacteraemia should be

suspected to have distant seeding at multiple sites espe-

cially when there are multiple implants.

Local samples

Superficial swabs are less sensitive than bone, tissue or

fluid specimens and should be interpreted together with

clinical features.158 Superficial swabs are neither sensitive

nor specific in chronic wounds and sinus tracts, because

contamination and colonization are usual.159

Aspiration of peri-implant collection for culture and

susceptibility testing is relatively simple. Before surgical

intervention, the procedure is performed using aseptic tech-

nique under clinical or image guidance. Unless in clinical

sepsis, antibiotics should be withheld for 2 weeks before

specimen collection.

Exploration and debridement can establish the diagnosis

when the local and systemic clinical features, laboratory

findings and radiological pictures are inconclusive. A com-

prehensive set of specimens, including peri-implant soft

tissues, callus and bone, should collect routinely at sur-

gery.160 Necrotic and infected materials typically provide

higher yields. Sequestrum may harbour slow-growing

organisms. Fluids such as joint fluid, pus, infected haema-

toma or sanguineous collections can be injected into blood

culture bottles to improve the recovery of slow-growing

microbes. A larger volume of specimen increases the yield.

Histological examination is complimentary to microbio-

logical tests, because infection presents with specific pat-

terns of inflammatory response, leukocyte migration,

abscess and tissue necrosis. Atypical low-grade pathogens

such as fungus or mycobacterium are sometimes only iden-

tifiable through histology.161 Antibiotic susceptibility tests
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are routine. Clinicians should liaise with the microbiology

laboratory for testing of additional antibiotics if

necessary.162

Culture-negative infections

There are several reasons for negative culture results in

patients with suspected OAI, the most common of which

is the prior use of antimicrobials. Other common factors

include insufficient microbiological testing, inadequate

quantity of specimens, failure to obtain the representative

samples and use of non-routine or unfamiliar testing pro-

tocols. Negative cultures may also result from infections by

fastidious organisms or organisms that cannot be cultured.

Finally, the clinical situation may not be an infection, but

rather an allergic implant material reaction or other scenar-

ios clinically indistinguishable from infection.163

Mechanical scraping of implants is ineffective in dislod-

ging microorganisms.164,165 Fluid bath sonification of

retrieved implants has a sensitivity of 90.4% in OAI166 and

an 18–30% increase in pickup rate compared to conven-

tional cultures in implant infections.162,166–168 The sonifi-

cation equipment uses low-frequency ultrasound to detach

biofilm-bound organisms by the formation of transient

microscopic bubbles on the implant surface. The process

is performed in lactated Ringer’s solution. Vortex mixing,

centrifugation169 and inoculation of the sonicated fluid in

blood culture bottles170 appear to further improve the diag-

nostic yield.

While laboratory bacterial culture remains standard, mole-

cular diagnosis by polymerase chain reaction (PCR) of spe-

cific genes can identify suspected organisms in 9–85% of

culture negative orthopaedic implant infections.171–176

The broad range PCR can detect a broad variety of organ-

isms with known sequences of the 16s-rRNA gene. A pos-

itive test would have a concordance rate of around 90%
with positive laboratory cultures. Sensitivity may be fur-

ther improved by using sonicate fluid171 and additionally

performing pathogen-specific PCR against common

pathogens such as S. aureus.176 In PCR, slower growing

organisms such as Propionibacterium acnes are increas-

ingly identified.174 The sensitivity of the test varied widely

between studies but is thought to dependent on the number

of pre-determined organisms in the genome database and

secondly following strict handling procedures. PCR has a

number of limitations, including proneness to contamina-

tion, high equipment costs, lack of quantitative assess-

ments, lack of information on antibiotic susceptibility

and difficulty in picking up polymicrobial infections. For

best cost-effectiveness, PCR test should be reserved for

culture negative cases only.

Classification

OAI may be classified according to the route of infection,

the onset of symptoms after implantation, fracture stability,

union status, location, the extent of infection and host sta-

tus.177 Romanò178 proposed a seven-item classification,

which simultaneously considered clinical presentation,

aetiology, anatomical location, host-type, microorganism,

bone defect and soft tissue defect. So far, the system has not

been widely adopted and yet no other classification system

appeared sufficiently precise and comprehensive.

According to time after surgery

Chronological classification of OAI is preferred, because it

gives guidance on the treatment strategy.20 Early or acute

infections (within �2 weeks after implantation) are most

common and associated with virulent organisms, such S.

aureus, aerobic gram-negative bacilli or Streptococcus

pyogenes.80 Fortunately, organisms at an early stage are

susceptible to antibiotics and associated with less biofilm

and sequestrum formation.

Delayed infections (3–10 weeks after implantation) are

associated with moderate or less virulent skin flora such S.

aureus or CNS. Late infections (>10 weeks after implanta-

tion) are commonly associated with delayed diagnosis.

Typical organisms are S. Aureus, S. epidermidis and Pseu-

domonas aeruginosa.80,179 Delayed and late infections are

harder to eradicate due to the presence of biofilm, seques-

trum and microbial resistance. Reactivation due to the con-

tinuous bacterial residence after successful treatment is

common.90,180 Management is complicated when there are

implant loosening and incomplete union. This will be dis-

cussed in the second part of this article (Figure 2).

According to route of infection

The route of infection can be exogenous, contiguous or

haematogenous.6,181 Direct exogenous inoculation is most

common and is associated with adverse wound factors.

Contiguous spread of an adjacent local infection, such as

cellulitis or a nearby septic joint and haematogenous seed-

ing from distant sites, is relatively less often compared to

PJI.182,183 It is important to note whether the patient has

other foci of infection especially for immunocompromised

hosts and those with prosthetic devices.184

According to fracture healing

The concern for fracture healing is unique in OAI.

Romanò178 proposed a three-category classification based

on stability and callus formation. In type I infections, there

is stable osteosynthesis and progressive callus formation.

Cases may be treated non-operatively with antibiotics and

allowing time until union. In type II infections, there is

stable osteosynthesis but scarce or absent callus progres-

sion. Stability must be maintained, and hardware can be

retained. Infection is controlled surgically and with drugs.

Bone healing is accelerated through physical stimulation

and biological factors. In type III infections, osteosynthesis
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is unstable, hardware revision or external fixation is

required in addition to above.

According to clinical severity

Many studies classify infections as superficial or deep.

Superficial infections are usually early infections, only

affecting the overlying soft tissue without collection and

osteomyelitis. The definition is controversial, because

superficial surgical wounds are nearly always connected

to the deep unless the fascial barrier in between is water

tight. The so-called milder form of ‘superficial infection’ is

less common than deep infection according to a prospective

multicenter study of hip fractures.76 Superficial infections

are clinically indistinguishable from deep one in locations

with thin soft tissue envelope such as near the ankle.185

Some classifications considered the presence of an active

sinus186 and size of bone defects187,188 to grade clinical

severity and guide management.

According to host type

Host immunity and physiological status are an important

factor in surgical decision-making. The systems proposed

by Cierny189 and McPherson190 classify hosts into types A,

B and C. Type A hosts have no significant local adverse

factors or medical comorbidities and healthy immune

response, metabolism and vascularity of the infected area.

Type B hosts have one or two significant local or systemic

adverse factors, and Type C hosts either have three or more

adverse factors or are medically too unwell to undergo

surgery. Type C patients are most immunocompromised

and unlikely to benefit from multiple stages of surgery,

so either drug suppression therapy or amputation is consid-

ered. The downgrading of hosts to a more favourable status

is possible by control of systemic and local adverse factors

(Table 1).

Summary

We have discussed the risk factors, pathogenesis, diagnos-

tic and classification considerations of OAI above. Stability

of the fracture appears to be highly relevant. Despite some

adverse effects of implants, their maintenance may be ben-

eficial, because stability imparts better overall control of

infection. The absence of a rapid, simple and reliable pro-

tocol for diagnosis and the lack of consensus in classifica-

tion is where further research is needed. Understanding the

fundamentals above is essential in formulating preventive

and treatment tactics. The management of OAI will be

discussed in the second part of this article.
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Figure 2. A 76-year-old lady suffering from CNS infection of the proximal humerus 6 weeks from fixation. Infection was controlled
with debridement, implant removal, suture stabilization of the tuberosities, immobilization and 4 weeks of antibiotics. Despite healing,
the glenohumeral joint was destroyed with only 90� of shoulder elevation. The presentation of this patient can be classified as a delayed
infection. CNS: coagulase-negative staphylococci. Note: the extensive periosteal reaction and failure of fixation.

Table 1. Systemic and local factors that affect local immunity,
metabolism and vascularity in the host physiological
classification system adopted from Cierny et al.189

Adverse factors affecting immunity, metabolism and local
vascularity

Systemic Local

Malnutrition Chronic lymphedema
Renal, liver failure Venous stasis
Alcohol abuse Major vessel compromise
Immune deficiency Arteritis
Chronic hypoxia Extensive scarring
Malignancy Radiation fibrosis
Diabetes mellitus
Extremes of age
Steroid therapy
Tobacco abuse

Fang et al. 7



Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) received no financial support for the research,

authorship, and/or publication of this article.

References

1. Struijs PA, Poolman RW and Bhandari M. Infected nonunion

of the long bones. J Orthop Trauma 2007; 21(7): 507–511.

2. Ochsner PE. Chronic infection following osteosynthesis.

Ther Umsch 1990; 47(7): 597–605.

3. Tande AJ and Patel R. Prosthetic joint infection. Clin Micro-

biol Rev 2014; 27(2): 302–345.

4. Osmon DR, Berbari EF, Berendt AR, et al. Executive sum-

mary: diagnosis and management of prosthetic joint infec-

tion: clinical practice guidelines by the infectious diseases

society of America. Clin Infect Dis 2013; 56(1): 1–10.

5. Minassian AM, Osmon DR and Berendt AR. Clinical guide-

lines in the management of prosthetic joint infection. J Anti-

microb Chemother 2014; 69(Suppl 1): i29–35.

6. Trampuz A and Zimmerli W. Diagnosis and treatment of

infections associated with fracture-fixation devices. Injury

2006; 37(Suppl 2): S59–66.

7. Edwards C, Counsell A, Boulton C, et al. Early infection after

hip fracture surgery: risk factors, costs and outcome. J Bone

Joint Surg Br 2008; 90(6): 770–777.

8. Pollard TC, Newman JE, Barlow NJ, et al. Deep wound

infection after proximal femoral fracture: consequences and

costs. J Hosp Infect 2006; 63(2): 133–139.

9. Darouiche RO. Treatment of infections associated with sur-

gical implants. N Engl J Med 2004; 350(14): 1422–1429.

10. Napierala MA, Rivera JC, Burns TC, et al. Infection reduces

return-to-duty rates for soldiers with Type III open tibia frac-

tures. J Trauma Acute Care Surg 2014; 77(3 Suppl 2):

S194–197.

11. Musahl V, Tarkin I, Kobbe P, et al. New trends and tech-

niques in open reduction and internal fixation of fractures of

the tibial plateau. J Bone Joint Surg Br 2009; 91(4): 426–433.

12. Chung KC, Shauver MJ and Birkmeyer JD. Trends in the

United States in the treatment of distal radial fractures in the

elderly. J Bone Joint Surg Am 2009; 91(8): 1868–1873.

13. Mellstrand-Navarro C, Pettersson HJ, Tornqvist H, et al. The

operative treatment of fractures of the distal radius is increas-

ing: results from a nationwide Swedish study. Bone Joint J

2014; 96(7): 963–969.

14. Nixon M, Jackson B, Varghese P, et al. Methicillin-resistant

Staphylococcus aureus on orthopaedic wards: incidence,

spread, mortality, cost and control. J Bone Joint Surg Br

2006; 88(6): 812–817.

15. Gustilo RB and Anderson JT. Prevention of infection in the

treatment of one thousand and twenty-five open fractures of

long bones: retrospective and prospective analyses. J Bone

Joint Surg Am 1976; 58(4): 453–458.

16. Henley MB, Chapman JR, Agel J, et al. Treatment of type II,

IIIA, and IIIB open fractures of the tibial shaft: a prospective

comparison of unreamed interlocking intramedullary nails

and half-pin external fixators. J Orthop Trauma 1998;

12(1): 1–7.

17. Young S, Lie SA, Hallan G, et al. Risk factors for infection

after 46,113 intramedullary nail operations in low- and

middle-income countries. World J Surg 2013; 37(2):

349–355.

18. Kim PH and Leopold SS. Gustilo-Anderson classification.

Clin Orthop Relat Res 2012; 470(11): 3270–3274.

19. Gustilo RB, Mendoza RM, and Williams DN. Problems in the

management of type III (severe) open fractures: a new clas-

sification of type III open fractures. J Trauma 1984; 24(8):

742–746.

20. Gustilo RB, Merkow RL and Templeman D. The manage-

ment of open fractures. J Bone Joint Surg Am 1990; 72(2):

299–304.

21. Weber D, Dulai SK, Bergman J, et al. Time to initial opera-

tive treatment following open fracture does not impact devel-

opment of deep infection: a prospective cohort study of 736

subjects. J Orthop Trauma 2014; 28(11): 613–619.

22. Dellinger EP, Miller SD, Wertz MJ, et al. Risk of infection

after open fracture of the arm or leg. Arch Surg 1988;

123(11): 1320–1327.

23. Metsemakers WJ, Handojo K, Reynders P, et al. Individual

risk factors for deep infection and compromised fracture heal-

ing after intramedullary nailing of tibial shaft fractures: a

single centre experience of 480 patients. Injury 2015; 46(4):

740–745.

24. Dworak TC, Kang DG and Lehman RA Jr. Combat-related

L3 fracture treated with L2-L4 posterior spinal fusion com-

plicated by multidrug-resistant acinetobacter infection. Spine

J 2012; 12(9): 864–866.

25. Simchen E, Raz R, Stein H, et al. Risk factors for infection in

fracture war wounds (1973 and 1982 wars, Israel). Mil Med

1991; 156(10): 520–527.

26. Mody RM, Zapor M, Hartzell JD, et al. Infectious complica-

tions of damage control orthopedics in war trauma. J Trauma

2009; 67(4): 758–761.

27. Liang Y, Fang Y, Tu CQ, et al. Analyzing risk factors for

surgical site infection following Pilon fracture surgery.

Zhongguo Gu Shang 2014; 27(8): 650–653.

28. Suzuki T, Morgan SJ, Smith WR, et al. Postoperative surgical

site infection following acetabular fracture fixation. Injury

2010; 41(4): 396–399.

29. Sternheim A, Saidi K, Lochab J, et al. Internal fixation of

radiation-induced pathological fractures of the femur has a

high rate of failure. Bone Joint J 2013; 95(8): 1144–1148.

30. Heinz TH, Stoick W and Vecsei V. Behandlung und Ergeb-

nisse von pathologischen Frakturen. Unfallchirurg 1989; 92:

477–485.

31. Manson TT, Perdue PW, Pollak AN, et al. Embolization of

pelvic arterial injury is a risk factor for deep infection after

acetabular fracture surgery. J Orthop Trauma 2013; 27(1):

11–15.

8 Journal of Orthopaedic Surgery 25(1)



32. Bachoura A, Guitton TG, Smith RM, et al. Infirmity and

injury complexity are risk factors for surgical-site infection

after operative fracture care. Clin Orthop Relat Res 2011;

469(9): 2621–2630.

33. Kadar A, Sherman H, Glazer Y, et al. Predictors for non-

union, reoperation and infection after surgical fixation of

patellar fracture. J Orthop Sci 2015; 20(1): 168–173.

34. Partanen J, Syrjala H, Vahanikkila H, et al. Impact of deep

infection after hip fracture surgery on function and mortality.

J Hosp Infect 2006; 62(1): 44–49.

35. Soni A, Vollans S, Malhotra K, et al. Association between

smoking and wound infection rates following calcaneal frac-

ture fixation. Foot Ankle Spec 2014; 7(4): 266–270.

36. Rightmire E, Zurakowski D and Vrahas M. Acute infections

after fracture repair: management with hardware in place.

Clin Orthop Relat Res 2008; 466(2): 466–472.
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91. Ovaska MT, Mäkinen TJ, Madanat R, et al. Predictors of poor

outcomes following deep infection after internal fixation of

ankle fractures. Injury 2013; 44(7): 1002–1006.

92. Fenton P, Singh K, and Cooper M. Clostridium difficile

infection following hip fracture. J Hosp Infect 2008; 68(4):

376–377.

93. Lucas HK, Speller DC and Stephens M. Chronic clostridium

septicum infection of a tibial fracture: a case report. Injury

1976; 8(2): 117–119.

94. Raunest J and Derra E. Clostridium perfringens infection

following intramedullary nailing of an open femur shaft frac-

ture. Aktuelle Traumatol 1990; 20(5): 254–256.

95. Charissoux JL, Dunoyer J, Pecout C, et al. Infection of an

open fracture caused by Aeromonas hydrophila. A case

report. Rev Chir Orthop Reparatrice Appar Mot 1990;

76(2): 141–143.

10 Journal of Orthopaedic Surgery 25(1)



96. Ebrad P and Gerry F. Aeromonas hydrophila infection in a

case of open fracture. Presse Med 1992; 21(20): 951.

97. Simodynes EE and Cochran RM, 2nd. Aeromonas hydrophila

infection complicating an open tibial fracture. A case report.

Clin Orthop Relat Res 1982; 171: 117–120.

98. Kwan K and Ho ST. Mycobacterium chelonae and Mycobac-

terium fortuitum infection following open fracture: a case

report and review of the literature. Indian J Med Microbiol

2010; 28(3): 248–250.

99. Suy F, Carricajo A, Grattard F, et al. Infection due to

mycobacterium thermoresistibile: a case associated with

an orthopedic device. J Clin Microbiol 2013; 51(9):

3154–3156.

100. Iordache SD, Daneman N and Axelrod TS. Mycobacterium

chelonae infection following silicone arthroplasty of the

metacarpophalangeal joints: a case report. Hand (N Y)

2009; 4(2): 129–133.

101. Kadakia AP, Williams R and Langkamer VG. Tuberculous

infection in a total knee replacement performed for medial

tibial plateau fracture: a case report. Acta Orthop Belg 2007;

73(5): 661–664.

102. Krappel FA and Harland U. Failure of osteosynthesis and

prosthetic joint infection due to mycobacterium tuberculosis

following a subtrochanteric fracture: a case report and

review of the literature. Arch Orthop Trauma Surg 2000;

120(7–8): 470–472.

103. Mahale YJ and Aga N. Implant-associated mycobacterium

tuberculosis infection following surgical management of

fractures: a retrospective observational study. Bone Joint J

2015; 97(9): 1279–1283.

104. Li H, Liang CZ, Tao YQ, et al. Elevated local TGF-beta1

level predisposes a closed bone fracture to tuberculosis

infection. Med Hypotheses 2012; 79(3): 400–402.

105. Luc M, Armingeat T, Pham T, et al. Chronic Brucella infec-

tion of the humerus diagnosed after a spontaneous fracture.

Joint Bone Spine 2008; 75(2): 229–231.

106. Sennoune B, Koulali KI, Fnini S, et al. Tuberculous infec-

tion after dynamic-hip screw osteosynthesis: a case report.

Rev Chir Orthop Reparatrice Appar Mot 2003; 89(3):

257–260.

107. Sapunar J and Bahamondes L. Hydatidosis of the humerus

complicated with fracture, bacterial infection, fistula, and

extraosseous localization. Bol Chil Parasitol 1995; 50(1–2):

37–41.

108. Ochsner PE and Hailemariam S. Histology of osteosynthesis

associated bone infection. Injury 2006; 37(Suppl 2):

S49–58.

109. Harris LG and Richards RG. Staphylococci and implant

surfaces: a review. Injury 2006; 37(Suppl 2): S3–S14.

110. Rodrıguez R, Zamora J, Salinas-Rodrıguez E, et al. Stochas-

tic modeling of some aspects of biofilm behavior. Revista

mexicana de fı́sica 2003; 49(2): 132–143.

111. Costerton JW, Lewandowski Z, Caldwell DE, et al. Micro-

bial biofilms. Annu Rev Microbiol 1995; 49(1): 711–745.

112. Aparna MS and Yadav S. Biofilms: microbes and disease.

Braz J Infect Dis 2008; 12(6): 526–530.

113. Mah TF and O‘Toole GA. Mechanisms of biofilm resistance

to antimicrobial agents. Trends Microbiol 2001; 9(1):

34–39.

114. Hoiby N, Ciofu O, Johansen HK, et al. The clinical impact

of bacterial biofilms. Int J Oral Sci 2011; 3(2): 55–65.

115. El–Azizi MA, Starks SE and Khardori N. Interactions of

candida albicans with other candida spp. and bacteria in the

biofilms*. Journal of Applied Microbiology 2004; 96(5):

1067–1073.

116. Bjarnsholt T and Givskov M. The role of quorum sensing in

the pathogenicity of the cunning aggressor Pseudomonas

aeruginosa. Anal Bioanal Chem 2007; 387(2): 409–414.

117. Neut D, van der Mei HC, Bulstra SK, et al. The role of

small-colony variants in failure to diagnose and treat biofilm

infections in orthopedics. Acta Orthop 2007; 78(3):

299–308.

118. Zimmerli W and Sendi P. Pathogenesis of implant-

associated infection: the role of the host. Semin Immuno-

pathol 2011; 33(3): 295–306.

119. Underhill DM and Goodridge HS. Information processing

during phagocytosis. Nat Rev Immunol 2012; 12(7):

492–502.

120. Anderson JM, Rodriguez A and Chang DT. Foreign body

reaction to biomaterials. Semin Immunopathol 2008; 20(2):

86–100.

121. Chang CC and Merritt K. Infection at the site of implanted

materials with and without preadhered bacteria. J Orthop

Res 1994; 12(4): 526–531.

122. Gristina AG. Implant failure and the immuno-incompetent

fibro-inflammatory zone. Clin Orthop Relat Res 1994; 298:

106–118.

123. Ribeiro M, Monteiro FJ and Ferraz MP. Infection of ortho-

pedic implants with emphasis on bacterial adhesion process

and techniques used in studying bacterial-material interac-

tions. Biomatter 2012; 2(4): 176–194.

124. Wu Y, Zitelli JP, TenHuisen KS, et al. Differential response

of staphylococci and osteoblasts to varying titanium surface

roughness. Biomaterials 2011; 32(4): 951–960.

125. Schlegel U and Perren SM. Surgical aspects of infection

involving osteosynthesis implants: implant design and resis-

tance to local infection. Injury 2006; 37(Suppl 2): S67–73.

126. Arens S, Schlegel U, Printzen G, et al. Influence of materials

for fixation implants on local infection. An experimental

study of steel versus titanium DCP in rabbits. J Bone Joint

Surg Br 1996; 78(4): 647–651.

127. Rochford ETJ, Richards RG and Moriarty TF. Influence of

material on the development of device-associated infec-

tions. Clin Microbiol Infect 2012; 18(12): 1162–1167.

128. Melcher GA, Claudi B, Schlegel U, et al. Influence of type

of medullary nail on the development of local infection. An

experimental study of solid and slotted nails in rabbits. J

Bone Joint Surg Br 1994; 76(6): 955–959.

129. Arens S, Kraft C, Schlegel U, et al. Susceptibility to local

infection in biological internal fixation. Experimental study

of open vs minimally invasive plate osteosynthesis in rab-

bits. Arch Orthop Trauma Surg 1999; 119(1–2): 82–85.

Fang et al. 11



130. Eijer H, Hauke C, Arens S, et al. PC-Fix and local infection

resistance—influence of implant design on postoperative

infection development, clinical and experimental results.

Injury 2001; 32(Suppl 2): B38–43.

131. Arens S, Eijer H, Schlegel U, et al. Influence of the design

for fixation implants on local infection: experimental study

of dynamic compression plates versus point contact fixators

in rabbits. J Orthop Trauma 1999; 13(7): 470–476.
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