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We investigate the optical transition selection rules for excitonic Rydberg series formed in massive Dirac cones.
The entanglement of the exciton envelop function with the pseudospin texture leads to anomalous selection rules
for one-photon generation of excitons, where d orbitals can be excited with the opposite helicity selection rule
from the s orbitals in a given valley. The trigonal warping effects in realistic hexagonal lattices further renders
more excited states bright, where p orbitals can also be accessed by one-photon excitation with the opposite valley
selection rules to the s orbitals. The one-photon generation of exciton in the various states and the intraexcitonic
transition between these states are both dictated by the discrete in-plane rotational symmetry of the lattices, and
our results show that in hexagonal 2D materials the symmetry allowed transitions are enabled when trigonal
warping effects are included in the massive Dirac fermion model. In monolayer transition metal dichalcogenides
where excitons can be generated by visible light and intraexcitonic transitions can be induced by infrared light, we
give the strength of these optical transitions, estimated using modified hydrogenlike envelope functions combined
with the optical transition matrix elements between the Bloch states calculated at various k points.
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I. INTRODUCTION

The study of two-dimensional (2D) Dirac materials has
been one of the most active fields of research today. Seminal
examples are graphene and surface states of topological
insulators where the massless Dirac cones give rise to exotic
properties of wide scientific and technological interest [1-3].
The Dirac cones become massive ones when an energy gap
is opened at the Dirac points, which can be introduced by
inversion symmetry breaking in graphene [4,5], or by the
tunneling between the top and bottom surfaces in a topological
insulator thin film [6]. Studies based on these model systems
have discovered interesting properties of the massive Dirac
cones such as the valley selection rules of the interband
optical transitions [5]. The emergence of monolayer group-
VIB transition-metal dichalcogenides (TMDs) has offered a
practical platform to explore such optical properties of massive
Dirac fermions [7-9]. These compounds are of the chemical
composition of M X, (M = W or Mo, X = S or Se). Mono-
layer TMDs are X-M-X covalently bonded 2D hexagonal
lattices, and their stacking and bounding by the weak van
der Waals interaction form the layered bulk crystals. Thinning
down from bulk to monolayers, a most remarkable change is
the crossover from indirect to a direct band gap semiconductor
[10-12]. In the monolayer TMDs, both the conduction and
valence band edges are at the degenerate but inequivalent K and
—K corners of the hexagonal Brillouin zone, and interestingly
the minimal k - p Hamiltonian describing these band edges is
a valley dependent massive Dirac fermion model [13].

With a direct gap in the visible frequency range, monolayer
TMDs are ideal for the exploration of optical properties of
massive Dirac fermions. Optical field can excite interband
transitions, creating an electron in the upper branch and
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a hole in the lower branch of the massive Dirac cones.
The attractive Coulomb interaction will bind the optically
excited electron-hole pair into a hydrogenlike state, known
as exciton, a most fundamental optical excitation found in
semiconductors. Remarkably, in monolayer TMDs, Coulomb
interaction is particularly strong due to the 2D geometry as
well as the large effective mass of the Dirac cone, resulting
in tightly bound excitons with large binding energies. Opti-
cal resonances corresponding to excitons and their charged
counterpart (i.e., binding an extra electron or hole) have been
observed in monolayer TMDs [14-16]. The large spectral
separation between the charged and neutral excitons point to
an exceptionally large binding energy on the order of hundreds
of meV [14-16], consistent with first principles calculations
[17-22], and experiments where the binding energies are
extracted from measuring the excitonic excited states [23-27]
or the quasiparticle (electronic) band gap [18,23,24,28,29].
The formations of tightly bound excitons in the valley
dependent massive Dirac cones are of particular interest. With
a Wannier type wave function [18], the excitonic ground states
inherit the valley optical selection rules of the band to band
transition [5,13], allowing their valley specific interconversion
with photons of selected helicity. Based on the selection rules,
optical generation of exciton valley polarizations and valley co-
herence have been demonstrated in monolayer TMDs [14,30—
32], and optical studies of various valley related phenomena
became possible [33-36]. Compared to the excitons formed
in conventional semiconductors like GaAs, the underlying
pseudospin texture of the massive Dirac cones can play an
important role here. In principle the envelope function of
the exciton is entangled with the pseudospin texture lying
in the periodic part of the electron and hole Bloch functions,
which need to be properly accounted for beyond the envelope
function approximation. For example, a certain gauge choice
of the pseudospin wave function can lead to a p-like phase
winding in the exciton ground state envelope function [37].
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This artificial phase winding goes away under the proper
gauge choice where the conventional rotational symmetry of
the envelope functions can be restored. Such a gauge choice is
used hereafter, detail definition follows [38]. The gauge field
(Berry curvature) in the massive Dirac cone can also modify
the Coulomb interaction between the electron and hole, lifting
the degeneracy between exciton states with the same angular
momentum quantum number but different magnetic quantum
numbers [38—41].

In this paper, we investigate the optical transition selection
rules for excitonic Rydberg series formed in massive Dirac
cones. We find that the entanglement of the exciton envelope
function with the pseudospin texture leads to anomalous
selection rules for the one-photon generation of excitons,
which cannot be accounted for in the envelope function ap-
proximation. Besides those s-like orbitals, the bright excitonic
states also include the d orbitals which have the opposite valley
dependent helicity selection rule from the s orbitals. This is
in contrast to excitons in the envelope function approximation
where only the s orbitals are optically bright. The transition
strength to the d states can be enhanced by the effective mass
correction (kzoz term) to the massive Dirac cones. Moreover,
we find nontrivial modifications of the transition selection
rules by the inevitable trigonal warping effects in realistic
hexagonal lattices, where the reduction of in-plane rotational
symmetry renders more excited states bright, including the p
orbitals which also have the opposite valley selection rules to
the s orbitals. We further analyze the one-photon transitions
between the excitonic states, which becomes highly relevant
in monolayer TMDs with the large energy separations of
the Rydberg series. In massive Dirac cones with the trigonal
warping effects, the intraexcitonic transitions not possible in
the envelope function approximation can now be accessed as
long as they are allowed by the threefold in-plane rotational
symmetry.

In monolayer TMDs, we have estimated the strength
of the one-photon generation of excitonic states, and the
transition strength between the excitonic states, by using the
first principle values of envelope function k-space spreading
combined with the optical transition matrix elements between
the Bloch states calculated at various k points. The transition
strength of the 2 p orbitals is found to be just one order smaller
compared to that of the 1s ground states. In the calculation
of the band-to-band transition, we have used, respectively,
first principle calculations, a two-band k- p model and a
three-band tight-binding model. Through comparing these
different approaches, we find that the k - p model and the
tight-binding model cannot accurately give the strength of the
excitonic transitions, even when other quantities including the
band dispersions and Berry curvatures are well captured in the
models.

The rest of the paper is organized as follows. In Sec. II, we
start with the massive Dirac fermion model with the continuous
in-plane rotational symmetry and show the anomalous valley
selection rules for the d-orbital excitonic states. In Sec. III,
quadratic k terms are added to the massive Dirac fermion
model to account for the trigonal warping effects and the
effective mass corrections to the electron and hole, and the
anomalous valley selective optical transitions to the p-orbital
excitonic states are derived. In Sec. IV, the intraexcitonic
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transitions between the excitonic states are discussed. In
Sec. V, we give quantitative estimations for the strength of
the various excitonic transitions in monolayer TMDs.

II. EXCITONIC TRANSITION SELECTION RULES
IN MASSIVE DIRAC FERMION MODEL

To begin with, we employ the massive Dirac fermion (MDF)
Hamiltonian

. A
Hy = at(tk:6, + ky6,) + 562, (1)

where k = (k. ,k,) is the wave vector relative to TK point,
T = =1 is the index of the two (£K) valleys that are related
by time reversal symmetry, &,,,/, denote the Pauli matrices
for pseudospin spanning the conduction and valence states at
7K, a is the lattice constant, ¢ the effective hopping integral,
and A the energy gap at =K.

Equation (1) is the minimum Hamiltonian describing the
conduction and valence band edges in monolayer TMDs and
in graphene with a staggered sublattice potential [4,13]. In
graphene, the pseudospin Hilbert space is spanned by the two
carbon p, orbitals, respectively, on the A and B sites in a
unit cell, while in TMDs, the pseudospin Hilbert space is
spanned by the two d orbitals of the metal atom: |¢.) = |d,2),
lpr) = %(|dx2_y2) +itl|dyy)). Spin-orbit coupling (SOC) is
not considered here. This is because graphene and monolayer
TMDs both have a mirror symmetry in the out-of-plane (z)
direction, which dictates that the spin-orbit coupling can only
involve the spin component in the z direction. Optical transition
under normal incidence conserves the spin component in the
z direction. Therefore, spin-orbit coupling of the above form
will only affect the transition energy but not the transition
strength.

In the rigorous sense, an exciton consisting of two massive
Dirac fermions [Eq. (1)] with zero center-of-mass momentum
is described by the Dirac Coulomb Hamiltonian [37,42]

(Aéz + 205 p- V(r>> Vi) = ExWx@®. ()
Here we assume both the electron and hole are in the valley T =
+1.r = (x,y) = (r cos ¢,r sin ¢) is the electron-hole relative
position,p = —ifi(;, %) is the momentum operator of relative
motion, 6 = (6x,6y) is the Pauli matrices for pseudospin, and
—V(r) is the Coulomb attraction between the electron and
hole. ,

The problem for V(r) = £ with a homogeneous dielectric
constant € has been thoroughly investigated by earlier studies;
here the results are directly quoted [37,42]. The exciton
wave function in general is a two-component spinor Wy (r) =

. - T
(e’(F%)‘ﬁpnj(r),e’(”%)"bp,/lj(r)) , with its energy given by
n+4/ j>—a?/4
\/a2/4+(n+ 1'27052/4)2
quantum number, and j = :t%,:i:% ,... the quantum number of

E,j=A .Here n = 0,1,... is the principal

total angular momentum L, + "7 with L, = (r x p), the out-
of-plane component of the angular momentum. o = ¢?/eat
is the effective fine structure constant which characterizes the
pseudospin-orbit coupling strength of the exciton. Since the
minimum | j| valueis 1/2, «> > 1 then corresponds to a strong
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coupling regime which leads to the so-called excitonic collapse
[37,42]. While in the weak coupling limit «> < 1, the solution
returns to the Rydberg series of nonrelativistic 2D hydrogen
model, and the exciton wave function will be reduced to a
scalar form Wx(r) = ei0=2%p, ;(r). We note that the effective

er _ 2at

fine structure constant can also be written as a = < = Aap

in the weak coupling limit, with az = zh;; = 2“‘ L the Bohr

radius of the lowest energy (1s) exciton and u = W the
reduced mass.

In monolayer TMDs, due to its small but finite thickness
and the finite background screening, the effective dielectric
constant € = €(r) has a nonlocal character which depends
strongly on the electron-hole relative distance r [43]. Thus

an effective fine structure constant obtained using o = E—;
becomes problematic as there is no well defined homogeneous
dielectric constant €. On the other hand, the Bohr radius ap
in monolayer TMDs is found to be in the range from 1 nm
to several nm according to first principle calculations and
theoretical analysis. If monolayer TMDs are in the weak
pseudospin-orbit coupling regime, then the effective fine

structure constant can be obtained as o = 2‘” - given that the

weak coupling criterion o> < 1 is satisfied. Takmg ag ~ Inm
together with the typical parameter values (a~32A,t~12

eV,and A ~ 2¢eV), wefindo? = = (- 2‘“ ) ~ (0.2 whichis indeed
much smaller than 1.

From the above analysis, the monolayer TMD system shall
be treated in the weak pseudospin-orbit coupling regime with
a scalar wave function Wy (r). Keeping up to the second order
(V?) terms, the effective Hamiltonian H.g for Wy (r) has a
perturbative form [38]

. i?
Ayt =A — —V> = V(r)
2u

- —<(vv X iV), + %v2v). (3)

Here the second line comes from the pseudospin-orbit cou-
pling. As V(r) = V(r) is a central-force potential, it is not
difficult to verify that

(L. He] = [GXp <——L qb) eff} =0. @)

Thus in the weak pseudospin-orbit coupling regime Wy (r)
is rotational symmetric with a form Wy(r) = X" p,,..(r),

2w

where m = 0,41,+2, ... is the angular quantum number of L.

In monolayer TMDs the eigenstates of the MDF Hamil-
tonian Eq. (1) correspond to the periodic part uc/y k(r)
of the Bloch function, with ¢, k(r) = e ®RTy , (r)
the Bloch states. Taking into account the lattice struc-
ture, the full form of the exciton wave function is
Wy (re,rpn) =Y ) O x (K)¢e k(re)p; | (1), where the envelope
function ®x (k) is connected to Wx(r) by a Fourier transform
Uy(r) = Zk dx(K)e*T. So dx(k) = f ””Qpnm(k) is rota-
tional symmetric as Wy (r). As pointed out in Refs. [38,39],
d x (k) satisfies the Wannier equation with the Berry curvature
corrections, whose form can be derived from H.zWy(r) =
EX\IJ)((I').
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In the region k ~ ag where ®x(k) mainly distributes,

there is (2‘”") < (z‘” ) <« 1. Thus we can do a perturbation

expansion on <= “’k up to the second order that

a’t’k? at . o
luex) = (1- AT luc,0) + Zke liv,0)5 (5a)

a’tk? at .
|y ) = (1 - W)Wu,o) - Xke 19|Mc,0)- (5b)

Note that the weak but finite pseudospin-orbit coupling in the
MDF Hamiltonian [Eq. (1)] leads to a k-dependent pseudospin
texture characterized by a finite Berry curvature Q = a’t>/A>
in the above expansion. Recently two parallel works have in-
vestigated how the Berry curvature can manifest in the exciton
formation, by affecting the intraband dynamics of the electron
and hole. The result is an angular momentum dependent
energy shift to the excitons [38,39], which originates from
the modification of the intraband direct Coulomb interaction
by the pseudospin texture.

Here in this paper, we focus on how the pseudospin texture
affects an interband process, i.e., the coupling between the
exciton and the light field. At K valley (r = +1), band-to-
band transitions at a given k point induced by o=+ light is
described by the optical transition matrix elements: pi(k) =
px(k) £ip,(k), where p are the interband matrix elements
of the momentum operator: p(k) = (uc k|VkH0|uv k). The
transition matrix elements at the two valleys pi(k) are
related through a time reversal relation p1 (k) = —(p3 T(—k)*,
hereafter we focus on the K valley and drop the t superscript.
At K valley we have

a’t’k?
p+(k) = <1 v )Po, (6a)
@’k g
p-(k) = —< Az >€ Po- (6b)

Here py = 2moat /ii. The effect of the pseudospin texture
appears as the k-dependent terms in the above optical transition
matrix elements.

In the envelope function approximation the -elec-
tron/hole Bloch function is approximated by ¢/, k(r) =
e EHOTY L k(r) & ! BTy o o(r), an exciton wave function
is then given by the direct product of the envelope function and
the periodic part of the Bloch function at the high symmetry K
point. Therefore, the excitonic selection rules are determined
by the integral of the envelope function (s orbital being the only
bright one), together with the selection rule of band-to-band
transition at the high symmetry point. At K point we have
p+ = po and p_ = 0, i.e., the interband transition can only
be excited by o+ light [13]. However, if we go beyond
the envelope function approximation, more bright states with
distinct selection rules arise.

With the k dependence of the periodic part of the Bloch
function [c.f. Eq. (5b)], the envelope function gets entangled
with the pseudospin texture. Since the exciton wave function
is a linear superposition of electron-hole pairs ¢ k@, at
the various k points, its optical transition matrix element is
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FIG. 1. (a) The polarization of the band-to-band transitions at the
various K points in the K valley, calculated using the massive Dirac
fermion model [Eq. (1)]. The polarization is in general elliptical, as
shown by the blue elliptical circles with the arrows indicating the
helicity. The ellipticity increase with k. At k = O the selection rule
reduces to circular (04). Decomposing the elliptical polarization
in the circularly polarized basis, the o+ circularly polarized one is
the dominating component. The minor o — polarized component is
shown in (b), where the magnitude of the optical transition matrix
element p_(k) is plotted in the unit |p, (0)|. (c),(d) The polarization
calculated with the massive Dirac fermion model including trigonal
warping effects [Eq. (10)], with the parameters from Ref. [46].

the coherent superposition of the band-to-band transition at
these k points. At a finite k, the band-to-band transition has
finite coupling to both o+ and o — light, so the polarization
selection rule is in fact an elliptical one, with the ellipticity
depending on k and major axis of the elliptical polarization
depending on 6 [Fig. 1(a)]. The latter dependence gives rise to
the anomalous excitonic selection rules beyond the envelope
function approximation.

As we discussed, in the weak coupling regime the en-
velope function for exciton can be expressed as Px(k) =
j—% Pum(k)e’™? | the coupling of the excitonic transition at K
valley to o+ polarized light is characterized by the optical
transition matrix element

S .
(Wylex - PIO) = j—; / ol e ™ pLk)dk,  (7)

where €4 = \/LE(X = iy) is the unit vector for o+ polarization

and we have used ), = # J dk where S is the area of the

box normalization [44]. We find

(Wxley - PlO) = LB 0, (8a)
(Wxle_ - PlO) = 140, 2, (8b)

=
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where the Kronecker deltas arise from the integration over the
angular variable 6, and

2a 2422
I~ ﬁpO/ p,jo(k)<1 - a—2>kdk,
0 ! A
a2 245"
L~ =VSp s [ i ok ar. ©)
0

Since p,,,, (k) decays fast with k for k > agl, in the above we
have restricted the integral range to [O,2agl] in which our
perturbation treatment [Eqs. (5a) and (5b)] is well justified.
Such an integral range is found to give the correct order of
magnitude to the transition strength compared to that using
rigorous solutions of p. (k). Equations (8a) and (8b) give the
transition selection rules for one-photon generation of exciton
states at K valley: The s state exciton (m = 0) is excited by
o+ polarized light, while the d_ state (m = —2) is excited by
o — polarized one. The o — optical selection rule for the d_
state is a direct consequence of Eq. (6b) from the pseudospin
texture. It also slightly reduces the optical transition matrix
element /;. Taking the time reversal of Eq. (8a) and (8b), we
find the selection rules at —K valley where o — light generates
s state exciton and o + excite d state.

III. TRIGONAL WARPING EFFECTS
ON THE SELECTION RULES

Equations (8a) and (8b) are the consequences of the
continuous in-plane rotational symmetry of the Hamiltonian
in Eq. (1). In reality, either graphene or monolayer TMDs
lattice only has the discrete threefold rotational symmetry. As
a result, the dispersion about the K points is not spherical,
but has trigonal warping which is more pronounced at larger
k. This is reflected in the k - p Hamiltonian by including terms
second order in k [45],

~ . R A . B 5 D )
Hyg(k) = at(ky6_ +k_64) + S0+ Ek + Eozk
— k(K364 +k260), (10)

where ki = k, = ik,. B and D terms account for the effective
mass corrections to the hole and electron, which preserves
the continuous rotational symmetry. The B term causes the
effective mass difference between the electron and hole, while
the D term can modify the transition strength to the exciton d
state as shown below. x term is another second order correction
that characterizes the degree of trigonal warping effect, which
reduces the rotational symmetry to a discrete threefold one.
The eigenstates from perturbation expansion are

B at’k? at K 5
i) =(1- luco) + | ——k+ — —kZ Jluv0),

2A2 A A
(11a)
. at K 5 a’t*k?
|ty x) = —<Zk— - Zk+>|uc,0) + (1 T AT [uy,0)-
(11b)
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The optical matrix elements for the band-to-band transitions

are
a’t? D
pr(k) = po|1 — [ — + = )&k*|,
p+(k) Po[ <A2+A):|

a*t? n D
A2 A

(12a)

(k) = —po[i—tkeie + ( )kze_m]. (12b)
At finite Kk, the polarization selection rules for the band-to-
band transitions are still the elliptical ones, but the ellipticity
and major axis of the elliptical polarization as functions of k
are modified by the trigonal warping as well as the effective
mass correction term Do, k? [c.f. Fig. 1(c)], which leads to
the modification of the excitonic transition matrix element as
well.

With the reduced in-plane rotational symmetry, the exci-
tonic transition selection rules become

(Wxles - PlO) = 18,0, (13a)
(Wxle— - PlO) = 18,1 + 1382, (13b)
where
2a5" 2.2
B a“t D
I ~ /S * k|1 = — + — |&? |kdk,
don [ el (54 2)¢]

2ay !
0

2K
I, ~—=/Spo / py ()= Kdk,
’ at

2t2

ZaEI a D
I~ =S | — + = |Kdk. 14
f fpofo Pr o )( o +A) (14)

Here we have neglected the trigonal warping effect on the
exciton envelope function ®x (k). Without this simplification,
Egs. (13a) and (13b) still hold as they are dictated by the
discrete threefold rotational symmetry, while the quantitative
values of I, I, and I; will change. In Eq. (13b), the term
1 1’78,,1,1 means that p, state is now a bright state that can be
excited by o — light at K valley. The strength of this transition
is proportional to «, the degree of trigonal warping. For the
—K valley, it is the p_ state that becomes bright and can be
excited by o+ polarized light.

For an order of magnitude estimate, we can write the
integral as f Pum (K dk ~ k,’l, where k, characterizes the
k-space spreading of the envelope function [47]. Therefore,
the transition strengthes to the ns, np, and nd states are,
respectively,

1] ~ /S pokn, (15a)
2
1)~ —/Spy—IZ, (15b)
at
a’t? D
/ 3
IdN_ﬁPO(F—FZ)kH’ (15C)

where we keep only the leading term of k,. Note that I
originates from p_ in the massive Dirac fermion model (c.f.
Eq. (6b)) which is a second order term in k, while /] originates
from p, which is zeroth order in k. Since k, is inversely
proportional to the Bohr radius which is typically much larger
than the lattice constant a, ak, is a small parameter, and the
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transition matrix element of the d state is in general weak.
The xeffective mass correction to the massive Dirac cones can
enhance the transition matrix element of the exciton d-state if
D is positive (i.e., reducing the electron and hole masses). The
transition to the p state is brought in by the trigonal warping,
and the transition matrix element is proportional to the degree
of warping.

IV. SELECTION RULES FOR INTRAEXCITONIC
TRANSITIONS

Having considered the one-photon generation of excitons in
the s, p, and d states, we now turn to the intraexcitonic optical
transition which is of high relevance in the monolayer TMDs
because of the large energy separations. Recent first-principle
calculations and experiments indicate that the energy spacings
between the exciton levels with different n or |m| can range
from a few tens to a few hundred meV [18,25]. Such large
intraexcitonic energy spacings provide new opportunities of
probing various intraexcitonic transitions using light sources
of infrared frequency range [48], compared to exciton systems
in GaAs quantum wells where the intraexcitonic transitions
are accessible only by the terahertz lasers due to the much
smaller energy splitting [49-52]. We show that due to the
discrete three-fold rotational symmetry of the system, the
intraexcitonic transitions also follow certain selection rules
under the excitation by o=+ polarized light, which allows
selective accessibility of intraexcitonic transitions.

We first establish the selection rules by symmetry analysis.
Use the operator C3 to denote a 27/3 in-plane rotation,
under which the 2D hexagonal lattice remains unchanged.
Consider an exciton state formed at K valley with zero center-
of-mass momentum: Wy = >, ® x(K)Pe k(r.)¢; \ (r). Under
the 277 /3 in-plane rotation, the Bloch function transforms as

C3¢j k() = e 2B, (),

where j = c,v with m, =0, m, = 2 the d-orbital quantum
number for conduction and valence band at K valley, k' = Csk.
Therefore

CiWy = 77PN " dy(K)per (T)P] o (ra),  (16)
k

and for the envelope function of s, p+, and di states
D, (k) = Oy(K), Dpr(k) =T P, (K) and Dyi(k) =
et27/3® ;4 (K'). Therefore, Wy is an eigenstate of Cs,

é3‘IJX — 67iC3(X)'2ﬂ/3\px,

and for the different orbitals we find the corresponding quan-
tum numbers: C3(p_) = C3(dy) =0, C3(s) =1, C3(py) =
C3(d-) =2 and C3(0) = 0.

We can establish the identity for the optical transition matrix
element of absorbing (emitting) a o & (o F) polarized photon:

(Wxlet - PIWx)
= (Uy|Cy ' Crer - PCT G Wy)
_ o ICOOR-CO 23

lex - pl¥x).  (17)

A nonzero matrix element (Wy |ex - p|Wy) therefore requires

Cy(X) £ 1= C5(X')+ 3N. (18)
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This selection rule has an intuitive meaning from the view
of angular momentum conservation: C3(X) is the angular
momentum quantum in the intial state, =1 the change of
angular momentum quantum by the absorption (emission) of
a o=+ (o0 F) photon, C3(X") is the angular momentum quantum
in the final state, and 3N is supplied by the lattice as it only
has the threefold discrete rotational symmetry. Replacing the
initial state by the vacuum which has C3 = 0, the selection
rules for the one-photon generation of excitons discussed in
the previous sections are also given by Eq. (18).

Using the massive Dirac fermion model with the trigonal
warping effect [Eq. (10)], we show below how the transitions
allowed by Eq. (18) emerge and calculate the strength of
the allowed transitions. The intraexcitonic transitions matrix
element is

(Wylex  plWy) = D % Px[pec+(K) — puu =K, (19)
k

where pecu)(K) = %(uc(v),kwkﬁoluc(v),k) are intraband mo-
mentum matrix elements and py(k) = p,(k) £ip,(k) are
given by

B+D at 1o 3DP0K 5 —0ip
ce.+(K) = — ke™? — —— k"™,
Dee,+(K) Po( ar + A) e A ke
(20a)
B—-D at : 3 pok :
. k — . k +i60 k2 1219.
Pov,£(K) Po( 2t A) e +_A e
(20b)
We have
(Wxlex - PIWx) = I1Sam+1 + DOam 72, 21

where Am = m’ — m is the angular quantum number change
in the exciton envelope function, giving exactly the same rules
as Eq. (18). In the above, we have dropped terms with |Am| >
3. The values are given by

N 2at D\ ,
I =27po | 0F o Z + = |Kdk,
A at

b= ~12mp0 [ Opum O 22)

The selection rule carried by the second term in Eq. (21)
(i.e., Am = F2) originates from trigonal warping, where the
transition strength I, o «, the degree of the warping.

Figure 2 schematically shows the optical selection rules for
both the one-photon generation of excitons and the one-photon
intraexcitonic transitions involving exciton energy levels up to
3p state in the K valley. The corresponding rules in the —K
valley can be obtained by taking the time reversal. The relative
strength of the transition matrix elements have been estimated
for excitons in monolayer TMDs using different models, as
presented in Table I and discussed in the next section.

V. STRENGTH OF EXCITONIC TRANSITIONS
IN MONOLAYER TMDS

In monolayer group VIB TMDs including MoS,, MoSe,,
WS,, and WSe,, the band gaps are in the visible frequency
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FIG. 2. (a) Transition selection rules dictated by the threefold
in-plane rotation symmetry of the hexagonal 2D lattices. C3(X) are
the quantum numbers associated with the 27 /3 in-plane rotation
for the excitonic states (see text). The red (blue) arrows stand for
absorbing a o+ (o —) polarized photon, or emitting a 0 — (o+)
polarized photon. (b) Schematics of the allowed excitonic transition
at the K valley of monolayer TMDs. The red (blue) double arrows
denote the coupling by o+ (o —) polarized light. The dash ones are the
transitions enabled by trigonal warping effects, and are absent when
there is continuous in-plane rotational symmetry. We have dropped
nonsecular transitions (i.e., the transition from lower energy states to
higher energy ones by emitting photon, or from higher energy ones
to lower energy ones by absorbing photon). Thickness of the arrow
indicates the strength of the transition (see Table I). The spacing of
excitonic states are given according to the first principle calculation
in Ref. [25].

range, and the energy spacing between the excitonic states
are in the infrared frequency range. These large energy
scales allow the optical probe of the various excitonic states
for understanding Coulomb interactions in these monolayer
semiconductors [23-27,48]. Here we give estimations of the
transition strengths in monolayer TMDs for the allowed
excitonic transitions established in the previous sections.

For excitonic states of the Wannier-type wave functions,
the evaluation of the optical transition matrix elements for
the excitonic states requires the knowledge of both the
envelope functions and the matrix elements of momentum
operators between the constituent Bloch states [c.f. Egs. (7)
and (19)]. In monolayer TMDs, it has been shown that the
distance dependent screening of Coulomb interaction leads
to nonhydrogenic envelope functions of excitons [18,23-25].
Nevertheless, the radial envelope functions calculated from
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TABLE 1. Strength of the transition matrix elements for the
one-photon generation of exciton states (upper panel) and for the
intraexcitonic transitions (lower panel) in K valley of monolayer
WS,. We consider here the absorption of a photon with the specified
helicity (o4 or o —). The columns |V ) and |Wx-) are the initial and
final states, respectively, where |0) denotes the vacuum. The exciton
envelope function momentum space spreading k,, is extracted from
Ref. [25] (see main text). The transition matrix elements between the
Bloch states are calculated using three different approaches. The mag-
nitudes of one-photon excitonic matrix elements are all normalized by
[(Ws]es - PlO)]| calculated using the corresponding approach, while
intraexcitonic transitions are normalized by [(W5,, [ex - P|Wi ). “*”
in the mark column denotes that the corresponding transition is
enabled by the trigonal warping.

Wy [{(Wx le - PlO)/{Wisle - PIO)] Helicity Mark
MDF-TW 3-band TB DFT

s 1 1 1 o+

2p. 3x1072 2x1072 1x107! o— *

2s 8x 107! 8x107' 8x107' o+

3d_ 2x1072 2x1073 2x107* o—

3p. I1x107% 1x107 1x1072  o— *

Uy Wy [(Wxle-plWx)/(¥yple - pIWis)|  Helicity Mark
MDF-TW 3-band TB DFT

1s 2ps 1 5% 107! 1 fef==

Is  3d: 2x102 2x1072 1x107%2 oF *
Is  3p: 3x1077 1x107" 2x107!  o&

2p+ 25  S5x107' 3 x 107" 5x 107! oF

2p. 3di 1x102 5x1073 1x102 o+

2py 3p: 5x107° 3x1073 5x107° o *
2s 3d. 1x1072 8x1073 3x 1073 oF

25 3p: 5x107" 5x107' 5x 107! o+

3dy 3p. 3x107' 2x107' 3 x 107! oF

first principles have qualitatively the same behaviors as the
2D hydrogen wave functions, except that the values for
k, are different [25]. As shown by Egs. (14), (15), (22),
and discussions there follows, for an order of magnitude
estimation of the transition strength, what matters in the radial
envelope functions p,,(k) is not its quantitative form, but
its momentum space spreading k,,. So here in evaluating the
excitonic optical matrix elements, we use k, values extracted
from Ref. [25]: ko_1 ~ 1 nm, kl_1 ~ 1.2 nm, and kz_1 ~ 2 nm
for n =0, 1, and 2, respectively. The calculated magnitude
of 2p state matrix element based on DFT data (c.f. Table I)
indicates that the oscillator strength of 2p state proportional
to [{Wp, le_ - P|O) | is two orders smaller than that of the s
state, which is consistent with the calculation in Ref. [25].
Thus we expect our approach based on DFT data to give a
good order of magnitude estimation to the transition strength.

For evaluating the matrix elements of momentum operators
between the Bloch states, we have compared three different
approaches. The first is the massive Dirac fermion model
with trigonal warping effects (MDF-TW), i.e., k - p model
kept to k%> terms as given in Eq. (10). The second is a
three-band tight-binding model (3-band TB) [53]. Lastly, the
parameters in Eqs. (14), (15), and (22) are also determined
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by fitting the absolute values of the DFT calculated band-
to-band momentum matrix element at various k points to
Egs. (12a) and (12b). In Table I, we give the strengths
of excitonic optical transition matrix elements, combining
the optical matrix elements between the Bloch states with
the exciton envelope functions. Through comparing the three
different approaches, we find that the k - p model and the TB
model are not accurate in giving the strength of the optical
transition matrix elements. We note that in the 3-band TB
model, only the metal atom d2, dy>_,2, and d,, orbitals are
considered, neglecting other orbitals (e.g., chalcogen atom p
orbitals) for simplicity. The k - p model is further reduced
from the TB model by perturbatively eliminating the higher
conduction band. The parameters in the models are obtained
by fitting the dispersions to the DFT calculated bands in the
neighborhood of the K points only [53]. While the dispersions
at the band edge are well captured by these models, they are
not quantitatively accurate in accounting for quantities such as
the interband matrix elements of momentum (which lies in the
dependence of the periodic part of the Bloch function on the
momentum), due to the oversimplifications in these models.
Optical transition strength of excitons are determined by the
interband matrix elements of momentum operator. It is thus
not surprising that the quantitative values fromk - p model and
3-band TB model are different from the DFT results.

VI. CONCLUSIONS

In summary, we have analyzed the selection rules for the
one-photon generation of excitons and for the intraexcitonic
optical transitions in massive Dirac cones. We show that
the entanglement of the exciton envelope function with the
pseudospin texture leads to anomalous selection rules for the
one-photon generation of excitons, where the d states become
bright, and with opposite valley selection rule from the s
states. Such anomalous exciton optical selection rules result
from the effect on the interband process by the pseudospin
texture, complimentary to the intraband correction (Berry
phase correction on exciton binding [38,39]). The latter effect
cannot change the selection rule but can quantitatively modify
the transition dipole strength. Such a correction, however, is a
small one, which is not explicitly discussed here.

Moreover, in realistic hexagonal 2D lattices, the reduction
of the in-plane rotational symmetry, manifested as trigonal
warping effects, also modifies the transition selection rules,
where p states also become bright and have the opposite
valley selection rules to the s states. While these selection
rules can all be obtained by the analysis of the transformation
of exciton envelope functions and the Bloch states under the
27 /3 in-plane rotation, our results show explicitly how the
symmetry-allowed transitions missed by the envelope function
approximation emerge, when the entanglement of the envelope
function with the pseudospin texture is properly accounted
for. In monolayer group-VIB TMDs, we have estimated the
strength of the one-photon generation of excitonic states,
and the transition strength between the excitonic states,
by using the first principle calculated envelope function k-
space spreading combined with the optical transition matrix
elements between the Bloch states calculated using different
approaches.
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